
M a k e r s o f B e r k e l e y D B

Getting Started
with Berkeley DB
Java Edition .

Legal Notice

This documentation is distributed under the terms of the Sleepycat public license. You may review the terms
of this license at: http://www.sleepycat.com/download/oslicense.html
[http://www.sleepycat.com/download/jeoslicense.html]

Sleepycat Software, Berkeley DB, Berkeley DB XML and the Sleepycat logo are trademarks or service marks of
Sleepycat Software, Inc. All rights to these marks are reserved. No third-party use is permitted without the
express prior written consent of Sleepycat Software, Inc.

Java™ and the Java-powered logo are trademarks or registered trademarks of Sun Microsystems, Inc, in the
United States and other countries and are used under license.

To obtain a copy of this document's original source code, please write to <support@sleepycat.com>.

Published 8/18/2004

http://www.sleepycat.com/download/jeoslicense.html

Table of Contents
Preface ... v

Conventions Used in this Book ... v
1. Introduction to Berkeley DB Java Edition ... 1

Features ... 1
The JE Application ... 3

Databases and Database Environments .. 3
Database Records .. 4
Putting and Getting Database Records ... 4
Duplicate Data ... 4
Replacing and Deleting Entries .. 4
Secondary Databases .. 5
Transactions .. 5
JE Resources .. 6
Application Considerations .. 7

JE Backup and Restore .. 7
Getting and Using JE .. 8
JE Exceptions ... 8

2. Database Environments ... 9
Opening Database Environments ... 9
Closing Database Environments .. 10
Environment Properties .. 10

The EnvironmentConfig Class .. 11
EnvironmentMutableConfig ... 12

Environment Statistics ... 13
Database Environment Example .. 14

3. Databases ... 17
Opening Databases ... 17

Closing Databases .. 18
Database Properties .. 19
Administrative Methods .. 20
Database Example .. 22

4. Database Records .. 25
Using Database Records .. 25
Reading and Writing Database Records ... 27

Writing Records to the Database .. 27
Getting Records from the Database ... 28
Deleting Records ... 30
Data Persistence ... 30

Using the BIND APIs ... 31
Numerical and String Objects .. 31
Serializeable Complex Objects ... 33

Usage Caveats .. 34
Serializing Objects ... 35
Deserializing Objects .. 37

Custom Tuple Bindings .. 38
Using Comparators .. 42

Page iiGetting Started with JE8/18/2004

Writing Comparators ... 42
Setting Comparators ... 43

Database Record Example ... 44
5. Using Cursors ... 56

Opening and Closing Cursors .. 56
Getting Records Using the Cursor .. 57

Searching for Records ... 59
Working with Duplicate Records ... 62

Putting Records Using Cursors .. 64
Deleting Records Using Cursors ... 66
Replacing Records Using Cursors ... 67
Cursor Example ... 68

6. Secondary Databases .. 73
Opening and Closing Secondary Databases ... 74
Implementing Key Creators .. 76
Secondary Database Properties ... 79
Reading Secondary Databases .. 79
Deleting Secondary Database Records ... 80
Using Secondary Cursors .. 81
Database Joins .. 82

Using Join Cursors .. 83
JoinCursor Properties .. 86

Secondary Database Example ... 86
Opening Secondary Databases with MyDbEnv 88
Using Secondary Databases with ExampleInventoryRead 91

7. Transactions .. 94
Enabling and Starting Transactions .. 95
Committing and Aborting Transactions .. 96

Aborting Transactions ... 96
Using Autocommit .. 97

Transactional Cursors .. 99
Configuring Dirty Reads .. 100
Transactions and Concurrency .. 103

Transactions and Deadlocks ... 103
Performance Considerations .. 104

Transactions Example .. 105
8. Backing up and Restoring Berkeley DB Java Edition Applications 109

Databases and Log Files .. 109
Log File Overview ... 109
Cleaning the Log Files .. 110
The BTree .. 110
Database Modifications .. 110
Syncs .. 111
Normal Recovery .. 111
Checkpoints .. 111

Performing Backups ... 112
Performing a Partial Backup .. 112
Performing a Complete Backup ... 112

Performing Catastrophic Recovery ... 113

Page iiiGetting Started with JE8/18/2004

Hot Standby .. 113
9. Administering Berkeley DB Java Edition Applications 115

The JE Properties File .. 115
Managing the Background Threads ... 115

The Cleaner Thread .. 116
The Evictor Thread ... 117
The Checkpointer Thread ... 117

Sizing the Cache ... 117
The Command Line Tools .. 118

DbDump .. 119
DbLoad ... 120
DbVerify .. 121

A. Concurrent Processing in Berkeley DB Java Edition 123
Multithreaded Applications .. 123
Multiprocess Applications .. 124

Page ivGetting Started with JE8/18/2004

Preface
Welcome to Berkeley DB Java Edition (JE). This document introduces JE, version 1.5. It
is intended to provide a rapid introduction to the JE API set and related concepts. The
goal of this document is to provide you with an efficient mechanism with which you can
evaluate JE against your project's technical requirements. As such, this document is
intended for Java developers and senior software architects who are looking for an
in-process data management solution. No prior experience with Sleepycat technologies
is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "The
Environment.openDatabase() method returns a Database class object."

Variable or non-literal text is presented in italics. For example: "Go to your JE_HOME
directory."

Program examples are displayed in a monospaced font on a shaded background. For
example:

import com.sleepycat.je.Environment;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnv;

In some situations, programming examples are updated from one chapter to the next.
When this occurs, the new code is presented in monospaced bold font. For example:

import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import java.io.File;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnv;
EnvironmentConfig envConfig = new EnvironmentConfig();
envConfig.setAllowCreate(true);
myDbEnv = new Environment(new File("/export/dbEnv"), envConfig);

Finally, notes of interest are represented using a note block such as this.☞

Page vGetting Started with JE8/18/2004

Page viGetting Started with JE8/18/2004

Chapter 1. Introduction to Berkeley DB Java
Edition

Welcome to Berkeley DB Java Edition (JE). JE is a general-purpose, transactionally
protected, embedded database written in 100% Java (JE makes no JNI calls). As such, it
offers the Java developer safe and efficient in-process storage and management of
arbitrary data.

JE requires Java J2SE 1.4.2 or better.

Features

JE provides an enterprise-class Java-based data management solution. You use JE through
a series of Java APIs. All you need to get started is to add a single jar file to your
application's classpath. See Getting and Using JE (page 8) for more information.

JE offers the following major features:

• Large database support. JE databases efficiently scale from one to millions of records.
The size of your JE databases are likely to be limited more by physical constraints
than by any limits imposed upon you by JE.

Databases are described in Databases (page 17).

• Multiple thread and process support. JE is designed from the ground up for multiple
threads of control. Both read and write operations can be performed by multiple
threads. JE uses record-level locking for high concurrency in threaded applications.
Further, JE uses robust deadlock detection to help you ensure that two threads of
control do not deadlock indefinitely.

Moreover, JE allows multiple processes to access the same databases. However, in
this configuration JE requires that there be no more than one process allowed to write
to the database. Read-only processes are guaranteed a consistent, although potentially
out of date, view of the stored data.

• Database records. All database records are organized as simple key/data pairs. Both
keys and data can be anything from primitive Java types to the most complex of Java
objects.

Database records are described in Database Records (page 25).

• Transactions. Transactions allow you to treat one or more operations on one or more
databases as a single unit of work. JE transactions offer the application developer
recoverability, atomicity, and isolation for your database operations.

Note that transaction protection is optional. Transactions are described in
Transactions (page 94).

Page 1Getting Started with JE8/18/2004

• Indexes. JE allows you to easily create and maintain secondary indices for your primary
data through the use of secondary databases. In this way, you can obtain rapid access
to your data through the use of an alternative, or secondary, key.

Indexes are described in Secondary Databases (page 73).

• In-memory cache. The cache allows for high speed database access for both read and
write operations by avoiding unnecessary disk I/O. The cache will grow on demand up
to a preconfigured maximum size. To improve your application's performance
immediately after startup time, you can preload your cache in order to avoid disk I/O
for production requests of your data.

Cache management is described in The Evictor Thread (page 117) and in Sizing the
Cache (page 117).

• Log files. For data persistence, JE databases are stored in one or more log files on
disk. The log files are write-once and are portable across platforms with different
endian-ness.

Note that unlike other database implementations, there are no change records or
change logs in JE. Instead, JE employs write-ahead-logging to protect database
modifications. Before any change is made to a database, JE writes information about
the change to the log file.

Note that JE's log files are not binary compatible with Berkeley DB's database files.
However, both products provide dump and load utilities, and the files that these
operate on are compatible across product lines.

JE's log files are described in more detail in Backing up and Restoring Berkeley DB Java
Edition Applications (page 109). For information on using JE's dump and load utilities,
see The Command Line Tools (page 118).

• Background threads. JE provides several threads that manage internal resources for
you. There is the evictor thread, which is responsible for keeping the in-memory cache
within a preconfigured maximum size by removing unneeded records from it. The
checkpointer is responsible for flushing database data to disk that was written to cache
as the result of a transaction commit (this is done in order to shorten recovery time).
Finally, the cleaner thread is responsible for cleaning and removing unneeded log
files, thereby helping you to save on disk space.

Background thread management is described in Managing the Background
Threads (page 115).

• Database environments. Database environments provide a unit of encapsulation and
management for one or more databases. In addition, the environment is the unit of
management for internal resources such as the in-memory cache and the background
threads. Note that all applications using JE are required to use database environments.

Database environments are described in Database Environments (page 9).

Page 2Getting Started with JE8/18/2004

Features

• Backup and restore. JE's backup mechanism consists of simply copying JE's log files to
a safe location for storage. To recover from a catastrophic failure, you copy your
archived log files back to your production location on disk and reopen the JE
environment.

Note that JE always performs normal recovery when it opens a database environment.
Normal recovery brings the database to a consistent state based on change information
found in the database log files.

JE's backup and recovery mechanisms are described in Backing up and Restoring
Berkeley DB Java Edition Applications (page 109).

The JE Application

This section provides a brief overview to the major concepts and operations that comprise
a JE application. This section is concluded with a summary of the decisions that you need
to make when building a JE application.

Note that the core JE classes are all contained in the com.sleepycat.je package. In
addition, this book describes some classes that are found in com.sleepycat.je.bind. The
bind APIs are used for converting Java objects in and out of byte arrays.

Databases and Database Environments

To use a JE database, you must first open a JE database environment. Database
environments require you to identify the directory on disk where the environment lives.
This location must exist before you create the environment.

You open a database environment by instantiating an Environment object. Your Environment
instance is called an environment handle.

Once you have opened an environment, you can use it to open any number of databases.
Each such database is encapsulated by a Database object. You are required to provide a
string that uniquely identifies the database when you open it. Like environments, the
Database instance is sometimes referred to as a database handle.

You use the environment handle to manage database environments and database opens
through methods available on the Environment class. You use the database handle to
manage individual databases through methods available on the Database class.

You use environment handles to close environments, and you use database handles to
close databases.

Note that for both databases and environments, you can optionally allow JE to create
them if they do not exist at open time.

Environments are described in greater detail in Database Environments (page 9).
Databases are described in greater detail in Databases (page 17).

Page 3Getting Started with JE8/18/2004

The JE Application

Database Records

Database records are represented as simple key/data pairs. Both record keys and record
data must be instances of a DatabaseEntry class. DatabaseEntry only supports storage of
Java byte arrays. For complex objects, Java serialization can be used to obtain a byte
array representation of the object, but for performance reasons this is discouraged. To
help you with byte array conversions, Sleepycat provides the bind APIs.

Database records and byte array conversion are described in Database Records (page 25).

Putting and Getting Database Records

You store records in a Database by putting the record into to the Database. You can put
records by using a Database handle directly. JE automatically determines the record's
proper placement in the database's internal B-Tree using whatever key and data comparison
functions that are available to it.

You can also retrieve, or get, records using the Database handle. Gets are performed by
providing the key (and sometimes also the data) of the record that you want to retrieve.

You can also use cursors for database puts and gets. Cursors are essentially a mechanism
by which you can iterate over the records in the database. Like databases and database
environments, cursors must be opened and closed. Cursors are managed using the Cursor
class.

Databases are described in Databases (page 17). Cursors are described in Using
Cursors (page 56).

Duplicate Data

At creation time, databases can be configured to allow duplicate data. Remember that
JE database records consist of a key/data pair. Duplicate data, then, occurs when two
or more records have identical keys, but different data. By default, a Database does not
allow duplicate data.

If your Database contains duplicate data, then a simple database get based only on a
key returns just the first record that uses that key. To access all duplicate records for
that key, you must use a cursor.

Replacing and Deleting Entries

How you replace database records depends on whether duplicate data is allowed in the
database.

If duplicate data is not allowed in the database, then simply calling Database.put() with
the appropriate key will cause any existing record to be updated with the new data.
Similarly, you can delete a record by providing the appropriate key to the
Database.delete() method.

Page 4Getting Started with JE8/18/2004

The JE Application

If duplicate data is allowed in the database, then you must position a cursor to the record
that you want to update, and then perform the put operation using the cursor.

To delete records, you can use either Database.delete() or Cursor.delete(). If duplicate
data is not allowed in your database, then these two method behave identically. However,
if duplicates are allowed in the database, then Database.delete() deletes every record
that uses the provided key, while Cursor.delete() deletes just the record at which the
cursor is currently positioned.

Secondary Databases

Secondary Databases provide a mechanism by which you can automatically create and
maintain secondary keys or indices. That is, you can access a database record using a key
other than the one used to store the record in the first place.

When you are using secondary databases, the database that holds the data you are indexing
is called the primary database.

You create a secondary database by opening it and associating it with an existing primary
database. You must also provide a class that generates the secondary's keys (that is, the
index) from primary records. Whenever a record in the primary database is added or
changed, JE uses this class to determine what the secondary key should be.

When a primary record is created, modified, or deleted, JE automatically updates the
secondary database(s) for you as is appropriate for the operation performed on the
primary.

You manage secondary databases using the SecondaryDatabase class. You identify how to
create keys for your secondary databases by implementing the
SecondaryKeyCreator.createSecondaryKey() method.

Secondary databases are described in Secondary Databases (page 73).

Transactions

Transactions provide a high level of safety for your database operations by allowing you
to manage one or more database operations as if they were a single unit of work.
Transactions provide your database operations with recoverability, atomicity, and isolation.

Transactions provide recoverability by allowing JE to undo any transactionally protected
operations that may have been in progress at the time of an application failure.

Transactions provide atomicity by allowing you to group many database operations into
a single unit of work. Either all operations succeed or none of them do. This means that
if one write operation fails for any reason, then all other writes contained within that
transaction also fail. This ensures that the database is never partially updated as the
result of an only partially successful chain of read/write operations.

Transactions provide isolation by ensuring that the transaction will never write to a record
that is currently in use (for either read or write) by another transaction. Similarly, any

Page 5Getting Started with JE8/18/2004

The JE Application

record to which the transaction has written can not be read outside of the transaction
until the transaction ends. (Note that the exception to this second rule is that you can
configure your Database or Cursor to perform dirty reads – that is, read records modified
but not yet committed by a transaction).

Essentially, transactional isolation provides a transaction with the same unmodified view
of the database that it would have received had the operations been performed in a
single-threaded application.

Transactions may be long or short lived, they can encompass as many database operations
as you want, and they can span databases so long as all participating databases reside in
the same environment.

Transaction usage results in a performance penalty for the application because they
generally require more disk I/O than do non-transactional operations. Therefore, while
most applications will use transactions for database writes, their usage is optional. In
particular, processes that are performing read-only access to JE databases might not use
transactions. Also, applications that use JE for an easily recreated cache might also choose
to avoid transactions.

You manage transactions using the Transaction class. Transactions are described in
Transactions (page 94).

JE Resources

JE has some internal resources that you may want to manage. Most important of these is
the in-memory cache. You should carefully consider how large the JE cache needs to be.
If you set this number too low, JE will perform potentially unnecessary disk I/O which
will result in a performance hit. If you set it too high, then you are potentially wasting
RAM that could be put to better purposes.

Note that the size that you configure for the in-memory cache is a maximum size. At
application startup, the cache starts out fairly small (only about 7% of the maximum
allowed size for the cache). It then grows as is required by your application's database
operations. Also, the cache is not pinned in memory – it can be paged out by your operating
system's virtual memory system.

Beyond the cache, JE uses several background threads to keep the cache within its size
limits, to clean the JE log files, and to flush database changes seen in the cache to the
backing data files. For the majority of JE applications, the default behavior for the
background threads should be acceptable and you will not need to manage their behavior.
Note that background threads are started no more than once per process upon environment
open.

For more information on sizing the cache and on the background threads, see Administering
Berkeley DB Java Edition Applications (page 115).

Page 6Getting Started with JE8/18/2004

The JE Application

Application Considerations

When building your JE application, be sure to think about the following things:

• What data do you want to store? What is best used for the primary key? What is the
best representation for primary record data? Think about the most efficient way to
move your keys and data in and out of byte arrays. See Database Records (page 25)
for more information.

• Does the nature of your data require duplicate record support? Remember that
duplicate support can be configured only at database creation time. See Opening
Databases (page 17) for more information.

If you are supporting duplicate records, you may also need to think about duplicates
comparators (not just key comparators). See Using Comparators (page 42) for more
information.

• What secondary indexes do you need? How can you compute your secondary indexes
based on the data and keys stored in your primary database? Indexes are described in
Secondary Databases (page 73).

• What cache size do you need? See Sizing the Cache (page 117) for information on how
to size your cache.

• Does your application require transactions (most will). Transactions are described in
Transactions (page 94).

JE Backup and Restore

Backing up a JE database consists of copying log files off to a safe storage location. You
do not have to close your database or otherwise cease database operations when you do
this. Sometimes the term snapshot is used to describe a particular kind of a backup. In
JE there is no difference between a snapshot and a backup.

Restoring a JE database from a backup consists of closing your JE environment, copying
archived log files back into your environment directory and then opening your JE
environment again.

Note that whenever a JE environment is opened, JE runs normal recovery. This involves
bringing your database into a consistent state given the changed data found in the
database. If you are using transactions, then JE automatically runs checkpoints for you
so as to limit the time required to run this recovery. In any case, running normal recovery
is a routine operation. Running database restores is not.

For more information on JE backup and restores, and on checkpoints, see Backing up and
Restoring Berkeley DB Java Edition Applications (page 109).

Page 7Getting Started with JE8/18/2004

JE Backup and Restore

Getting and Using JE

You can obtain JE by visiting the Sleepycat download page:
http://www.sleepycat.com/download/index.shtml.

To install JE, simple untar or unzip the distribution to the directory of your choice. If you
use unzip, make sure to specify the -U option in order to preserve case.

For more information on installing JE, see JE_HOME/docs/relnotes.html, where JE_HOME
is the directory where you unpacked JE.

You can use JE with your application by adding JE_HOME/lib/je.jar to your application's
classpath.

Beyond this manual, you can find documentation for JE at JE_HOME/docs/index.html
directory. In particular, complete Javadoc for the JE API set is available at
JE_HOME/docs/java/index.html.

JE Exceptions

It is difficult to describe Java API usage without first examining the exceptions thrown
by those APIs. So, briefly, this section describes the exceptions that you can expect to
encounter when writing JE applications.

All of the JE APIs throw DatabaseException. DatabaseException extends
java.lang.Exception. Also, the following classes are subclasses of DatabaseException:

• DatabaseNotFoundException

Thrown whenever an operation requires a database, and that database cannot be
found.

• DeadlockException

Thrown whenever a transaction is selected to resolve a deadlock. Upon receiving this
exception, any open cursors must be closed and the enclosing transaction aborted.
Transactions are described in Transactions (page 94).

• RunRecoveryException

Thrown whenever JE determines that recovery needs to be run on the database. If
you receive this exception, you must reopen your environment so as to allow normal
recovery to run. See Databases and Log Files (page 109) for more information on how
normal recovery works.

Note that when reopening your environment, you should stop all database read and
write activities, close all your cursors, close all your databases, and then reopen your
environment.

Note that DatabaseException and its subclasses belong to the com.sleepycat.je package.

Page 8Getting Started with JE8/18/2004

Getting and Using JE

http://www.sleepycat.com/download/index.shtml

Chapter 2. Database Environments
Berkeley DB Java Edition requires that all databases be placed in an database environment.
Database environments encapsulate one or more databases. This encapsulation provides
your threads with efficient access to your databases by allowing a single in-memory cache
to be used for each of the databases contained in the environment. This encapsulation
also allows you to group operations performed against multiple databases inside a single
transactions (see Transactions (page 94) for more information).

Most commonly you use database environments to create and open databases (you close
individual databases using the individual database handles). You can also use environments
to delete and rename databases. For transactional applications, you use the environment
to start transactions. For non-transactional applications, you use the environment to sync
your in-memory cache to disk.

You can also use the database environment for administrative and configuration activities
related to your database log files and the in-memory cache. See Administering Berkeley
DB Java Edition Applications (page 115) for more information.

For information on managing databases using database environments, see
Databases (page 17). To find out how to use environments with a transactionally protected
application, see Transactions (page 94).

Opening Database Environments

You open a database environment by instantiating an Environment object. You must
provide to the constructor the name of the on-disk directory where the environment is
to reside. This directory location must exist or the open will fail.

By default, JE will not create the environment for you if it does not exist. Set the creation
property to true if you want JE to create the environment. For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.Environment;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.EnvironmentConfig;
import java.io.File;

...

// Open the environment. Allow it to be created if it does not already exist.
Environment myDbEnvironment = null;

try {
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setAllowCreate(true);
 myDbEnvironment = new Environment(new File("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {

Page 9Getting Started with JE8/18/2004

 // Exception handling goes here
}

Your application can open and use as many environments as you have disk and memory
to manage, although most applications will use just one environment. Also, you can
instantiate multiple Environment objects for the same physical environment.

Note that opening an environment usually causes some background threads to be started.
JE uses these threads for log file cleaning and some in-memory cache administrative tasks.
However, these threads will only be opened once per process, so if you open the same
environment more than once from within the same process, there is no performance
impact on your application. Also, if you open the environment as read-only, then the
background threads (with the exception of the evictor thread) are not started.

Also, opening your environment causes normal recovery to be run. This causes your
databases to be brought into a consistent state relative to the changed data found in your
log files. See Databases and Log Files (page 109) for more information.

Closing Database Environments

You close your environment by calling the Environment.close() method. Note that if you
are not using transactions, then you should run an environment sync before closing your
environment. Without a sync, you are not guaranteed that your database will be written
to disk. See Databases and Log Files (page 109) for more information on environment syncs.

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;

...

try {
 if (myDbEnvironment != null) {
 myDbEnvironment.sync(); //For non-transactional only
 myDbEnvironment.close();
 }
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

You should close your environment(s) only after all other database activities have
completed and you have closed any databases currently opened in the environment.

Closing the last environment handle in your application causes all internal data structures
to be released and the background threads to be stopped. If there are any opened
databases, then JE will complain before closing them as well. At this time, any open
cursors are also closed, and any on-going transactions are aborted.

Page 10Getting Started with JE8/18/2004

Closing Database Environments

Environment Properties

You set properties for the Environment using the EnvironmentConfig class. You can also
set properties for a specific Environment instance using EnvironmentMutableConfig.

The EnvironmentConfig Class

The EnvironmentConfig class makes a large number of fields and methods available to
you. Describing all of these tuning parameters is beyond the scope of this manual. However,
there are a few properties that you are likely to want to set. They are described here.

Note that for each of the properties that you can commonly set, there is a corresponding
getter method. Also, you can always retrieve the EnvironmentConfig object used by your
environment using the Environment.getConfig() method.

You set environment configuration parameters using the following methods on the
EnvironmentConfig class:

• EnvironmentConfig.setAllowCreate()

If true, the database environment is created when it is opened. If false, environment
open fails if the environment does not exist. This property has no meaning if the
database environment already exists. Default is false.

• EnvironmentConfig.setCachePercent()

Sets the percentage of the JVM memory set aside for the in-memory cache. If a non-zero
value is set for EnvironmentConfig.setCacheSize(), this percentage value is not used
to determine the cache size. Further, this percentage is used only for those JVMs that
are capable of reporting the maximum requested memory via Runtime.maxMemory().

You can also set this property using the je.maxMemory parameter in your
env_home/je.properties file.

• EnvironmentConfig.setCacheSize()

Sets the amount of memory in bytes allowed for the in-memory cache. If a non-zero
value is set for this property, then any percentage set for
EnvironmentConfig.setCachePercent() is ignored. See Sizing the Cache (page 117) for
advice on setting your cache size.

You can also set this property using the je.maxMemory parameter in your
env_home/je.properties file.

• EnvironmentConfig.setReadOnly()

If true, then all databases opened in this environment must be opened as read-only.
If you are writing a multi-process application, then all but one of your processes must
set this value to true. Default is false.

Page 11Getting Started with JE8/18/2004

Environment Properties

You can also set this property using the je.env.isReadOnly parameter in your
env_home/je.properties file.

• EnvironmentConfig.setTransactional()

If true, configures the database environment to support transactions. Default is false.

You can also set this property using the je.env.isTransactional parameter in your
env_home/je.properties file.

For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.DatabaseException;

import java.io.File;

...

Environment myDatabaseEnvironment = null;
try {
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setAllowCreate(true);
 envConfig.setCacheSize(134217728); // 128 x 1024 x 1024
 envConfig.setTransactional(true);
 myDatabaseEnvironment =
 new Environment(new File("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {
 System.err.println(dbe.toString());
 System.exit(1);
}

EnvironmentMutableConfig

EnvironmentMutableConfig manages properties that can be reset after the Environment
object has been constructed. In addition, EnvironmentConfig extends
EnvironmentMutableConfig, so you can set these mutable properties at Environment
construction time if necessary.

The EnvironmentMutableConfig class allows you to set just one property:

• setTxnNoSync()

Determines whether change records created due to a transaction commit are written
to the backing log files on disk. A value of true causes the change records to not be
flushed to disk. See Committing and Aborting Transactions (page 96) for more
information.

Page 12Getting Started with JE8/18/2004

Environment Properties

There is also a corresponding getter method (getTxnNoSync()). Also, you can always
retrieve your environment's EnvironmentMutableConfig object by using the
Environment.getMutableConfig() method.

For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentMutableConfig;

import java.io.File;

...

try {
 Environment myEnv = new Environment(new File("/export/dbEnv"), null);
 EnvironmentMutableConfig envMutableConfig =
 new EnvironmentMutableConfig();
 envMutableConfig.setTxnNoSync(true);
 myEnv.setMutableConfig(envMutableConfig);
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Environment Statistics

JE offers a wealth of information that you can examine regarding your environment's
operations. The majority of this information involves numbers relevant only to the JE
developer and as such a description of those statistics is beyond the scope of this manual.

However, one statistic that is very important (especially for long-running applications) is
EnvironmentStats.getNCacheMiss(). This statistic returns the total number of requests
for database objects that were not serviceable from the cache. This number is important
to the application administrator who is attempting to determine the proper size for the
in-memory cache. See Sizing the Cache (page 117) for details.

To obtain this statistic from your environment, call Environment.getStats() to return an
EnvironmentStats object. You can then call the EnvironmentStats.getNCacheMiss()
method. For example:

import com.sleepycat.je.Environment;

...

long cacheMisses = myEnv.getStats(null).getNCacheMiss();

...

Page 13Getting Started with JE8/18/2004

Environment Statistics

Note that environment statistics can only be obtained from within your application's
process. In order for the application administrator to obtain this statistic, you must either
provide a mechanism by which you application can be queried for the statistic (for
example, using SNMP) or you must print it for examination (for example, log the value
once a minute).

Note that what is really important for cache sizing is the change in this value over time,
and not the actual value itself. So you might consider offering a delta from one examination
of this statistic to the next (a delta of 0 is desired while large deltas are an indication
that the cache is too small).

Database Environment Example

This example provides a complete class that can open and close an environment. It is
both extended and used in subsequent examples in this book to open and close both
environments and databases. We do this so as to make the example code shorter and
easier to manage. You can find this class in:

JE_HOME/examples/com/sleepycat/examples/je/gettingStarted/examples/
MyDbEnv.java

where JE_HOME is the location where you placed your JE distribution.

Example 2.1. Database Environment Management Class

First we write the normal class declarations. We also set up some private data members
that are used to manage environment creation. We use the class constructor to instantiate
the EnvironmentConfig object that is used to configure our environment when we open
it.

// File MyDbEnv.java
package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.Environment;
import com.sleepycat.je.DatabaseException;

import java.io.File;

public class MyDbEnv {

 private Environment myEnv;

 public MyDbEnv() {}

Next we need a method to open the environment. This is responsible for instantiating our
Environment object. Remember that instantiation is what opens the environment (or
creates it if the creation property is set to true and the environment does not currently
exist).

Page 14Getting Started with JE8/18/2004

Database Environment Example

 public void setup(File envHome, boolean readOnly)
 throws DatabaseException {

 // Instantiate an environment configuration object
 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 // Configure the environment for the read-only state as identified by
 // the readOnly parameter on this method call.
 myEnvConfig.setReadOnly(readOnly);
 // If the environment is opened for write, then we want to be able to
 // create the environment if it does not exist.
 myEnvConfig.setAllowCreate(!readOnly);

 // Instantiate the Environment. This opens it and also possibly
 // creates it.
 myEnv = new Environment(envHome, myEnvConfig);
 }

Next we provide a getter method that allows us to retrieve the Environment directly. This
is needed for later examples in this guide.

 // Getter methods
 public Environment getEnv() {
 return myEnv;
 }

Finally, we need a method to close our Environment. We wrap this operation in a try
block so that it can be used gracefully in a finally statement.

 // Close the environment
 public void close() {
 if (myEnv != null) {
 try {
 myEnv.close();
 } catch(DatabaseException dbe) {
 System.err.println("Error closing environment" +
 dbe.toString());
 }
 }
 }
}

This completes the MyDbEnv class. While not particularly useful as it currently exists, we
will build upon it throughout this book so that it will eventually open and close all of the
databases required by our applications.

We can now use MyDbEnv to open and close a database environment from the appropriate
place in our application. For example:

Page 15Getting Started with JE8/18/2004

Database Environment Example

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import java.io.File;

...

MyDbEnv exampleDbEnv = new MyDbEnv();

try {
 exampleDbEnv.setup(new File("/directory/currently/exists"), true);
 ...

} catch(DatabaseException dbe) {
 // Error code goes here
} finally {
 exampleDbEnv.close();
}

Page 16Getting Started with JE8/18/2004

Database Environment Example

Chapter 3. Databases
In Berkeley DB Java Edition, a database is a collection of records. Records, in turn, consist
of two parts: key and data. That is, records consist of key/data pairings.

Conceptually, you can think of a Database as containing a two-column table where column
1 contains a key and column 2 contains data. Both the key and the data are managed
using DatabaseEntry class instances (see Database Records (page 25) for details on this
class). So, fundamentally, using a JE Database involves putting, getting, and deleting
database records, which in turns involves efficiently managing information encapsulated
by DatabaseEntry objects. The next several chapters of this book are dedicated to those
activities.

Note that on disk, databases are stored in log files in the directory where the opening
environment is located. JE log files are described Databases and Log Files (page 109).

Opening Databases

You open a database by using the Environment.openDatabase() method (environments
are described in Database Environments (page 9)). This method creates and returns a
Database object handle to you. You must provide Environment.openDatabase() with a
database name. This name is a Java String object that uniquely identifies the database.

You can optionally provide Environment.openDatabase() with a DatabaseConfig() object.
DatabaseConfig() allows you to set properties for the database, such as whether it can
be created if it does not currently exist, whether you are opening it read-only, and whether
the database is to support transactions.

Note that by default, JE does not create databases if they do not already exist. To override
this behavior, set the creation property to true.

Finally, if you configured your environment and database to support transactions, you
can optionally provide a transaction object to the Environment.openDatabase().
Transactions are described in Transactions (page 94) later in this manual.

The following code fragment illustrates a database open:

Page 17Getting Started with JE8/18/2004

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;

import java.io.File;
...

Environment myDbEnvironment = null;
Database myDatabase = null;

...

try {
 // Open the environment. Create it if it does not already exist.
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setAllowCreate(true);
 myDbEnvironment = new Environment(new File("/export/dbEnv"), envConfig);

 // Open the database. Create it if it does not already exist.
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setAllowCreate(true);
 myDatabase = myDbEnvironment.openDatabase(null,
 "sampleDatabase",
 dbConfig);
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Closing Databases

Once you are done using the database, you must close it. You use the Database.close()
method to do this.

Closing a database causes it to become unusable until it is opened again. If any cursors
are opened for the database, JE warns you about the open cursors, and then closes them
for you. Active cursors during a database close can cause unexpected results, especially
if any of those cursors are writing to the database. You should always make sure that all
your database accesses have completed before closing your database.

Remember that for the same reason, you should always close all your databases before
closing the environment to which they belong.

Cursors are described in Using Cursors (page 56) later in this manual.

The following illustrates a database close:

Page 18Getting Started with JE8/18/2004

Opening Databases

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Database;
import com.sleepycat.je.Environment;

...

try {
 if (myDatabase != null) {
 myDatabase.close();
 }

 if (myDbEnvironment != null) {
 myDbEnvironment.close();
 }
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Database Properties

You can set database properties using the DatabaseConfig class. For each of the properties
that you can set, there is a corresponding getter method. Also, you can always retrieve
the DatabaseConfig object used by your database using the Database.getConfig()method.

The database properties that you can set are:

• DatabaseConfig.setAllowCreate()

If true, the database is created when it is opened. If false, the database open fails if
the database does not exist. This property has no meaning if the database currently
exists. Default is false.

• DatabaseConfig.setBtreeComparator()

Sets the class that is used to compare the keys found on two database records. This
class is used to determine the sort order for two records in the database. For more
information, see Using Comparators (page 42).

• DatabaseConfig.setDuplicateComparator()

Sets the class that is used to compare two duplicate records in the database. For more
information, see Using Comparators (page 42).

• DatabaseConfig.setSortedDuplicates()

If true, duplicate records are allowed in the database. If this value is false, then
putting a duplicate record into the database results in the replacement of the old
record with the new record. Note that this property can be set only at database
creation time. Default is false.

Page 19Getting Started with JE8/18/2004

Database Properties

• DatabaseConfig.setExclusiveCreate()

If true, the database open fails if the database currently exists. That is, the open
must result in the creation of a new database. Default is false.

• DatabaseConfig.setReadOnly()

If true, the database is opened for read activities only. Default is false.

• DatabaseConfig.setTransactional()

If true, the database supports transactions. Default is false.

For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;

...
// Environment open omitted for brevity
...

Database myDatabase = null;
try {
 DatabaseConfig dbConfig = new DatabaseConfig();
 dbConfig.setAllowCreate(true);
 dbConfig.setSortedDuplicates(true);
 myDatabase =
 myDbEnv.openDatabase(null,
 "sampleDatabase",
 dbConfig);
} catch (DatabaseException dbe) {
 // Exception handling goes here.
}

Administrative Methods

Both the Environment and Database classes provide methods that are useful for
manipulating databases. These methods are:

• Database.getDatabaseName()

Returns the database's name.

String dbName = myDatabase.getDatabaseName();

Page 20Getting Started with JE8/18/2004

Administrative Methods

• Database.getEnvironment()

Returns the Environment that contains this database.

Environment theEnv = myDatabase.getEnvironment();

• Database.truncate()

Deletes every record in the database and optionally returns the number of records
that were deleted. Note that it is much less expensive to truncate a database without
counting the number of records deleted than it is to truncate and count.

int numDiscarded = myDatabase.truncate(null,
 true); // If true, then the number of
 // records deleted are counted.
System.out.println("Discarded " + numDiscarded +
 " records from database " + myDatabase.getDatabaseName());

• Database.preload()

Preloads the database into the in-memory cache. Optionally takes a long that identifies
the maximum number of bytes to load into the cache. If this parameter is not supplied,
the maximum memory usage allowed by the evictor thread is used.

myDatabase.preload(1048576l); // 1024*1024

• Environment.getDatabaseNames()

Returns a list of Strings of all the databases contained by the environment.

import java.util.List;
...
List myDbNames = myDbEnv.getDatabaseNames();
for(int i=0; i < myDbNames.size(); i++) {
 System.out.println("Database Name: " + (String)myDbNames.get(i));
}

• Environment.removeDatabase()

Deletes the database. The database must be closed when you perform this action on
it.

String dbName = myDatabase.getDatabaseName();
myDatabase.close();
myDbEnv.removeDatabase(null, dbName);

Page 21Getting Started with JE8/18/2004

Administrative Methods

• Environment.renameDatabase()

Renames the database. The database must be closed when you perform this action
on it.

String oldName = myDatabase.getDatabaseName();
String newName = new String(oldName + ".new");
myDatabase.close();
myDbEnv.renameDatabase(null, oldName, newName);

Database Example

In Database Environment Example (page 14) we created a class that manages an
Environment. We now extend that class to allow it to open and manage multiple databases.
Again, remember that you can find this class in:

JE_HOME/examples/com/sleepycat/examples/je/gettingStarted/examples/
MyDbEnv.java

where JE_HOME is the location where you placed your JE distribution.

Example 3.1. Database Management with MyDbEnv

First, we need to import a few additional classes, and setup some global variables to
support databases. The databases that we are configuring and creating here are used by
applications developed in examples later in this guide.

// File MyDbEnv.java

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.Environment;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.Database;

import java.io.File;

public class MyDbEnv {

 private Environment myEnv;
private Database vendorDb;

 private Database inventoryDb;

 public MyDbEnv() {}

Next we need to update the MyDbEnv.setup() method to instantiate a DatabaseConfig
object. We also need to set some properties on that object. These property values are

Page 22Getting Started with JE8/18/2004

Database Example

determined by the value of the readOnly parameter. We want our databases to be
read-only if the environment is also read-only. We also want to allow our databases to
be created if the databases are not read-only.

 public void setup(File envHome, boolean readOnly)
 throws DatabaseException {

 // Instantiate an environment and database configuration object
 EnvironmentConfig myEnvConfig = new EnvironmentConfig();

DatabaseConfig myDbConfig = new DatabaseConfig();
 // Configure the environment and databases for the read-only
 // state as identified by the readOnly parameter on this
 // method call.
 myEnvConfig.setReadOnly(readOnly);

myDbConfig.setReadOnly(readOnly);
 // If the environment is opened for write, then we want to be
 // able to create the environment and databases if
 // they do not exist.
 myEnvConfig.setAllowCreate(!readOnly);

myDbConfig.setAllowCreate(!readOnly);

 // Instantiate the Environment. This opens it and also possibly
 // creates it.
 myEnv = new Environment(envHome, myEnvConfig);

// Now create and open our databases.
 vendorDb = myEnv.openDatabase(null,
 "VendorDB",
 myDbConfig);

 inventoryDb = myEnv.openDatabase(null,
 "InventoryDB",
 myDbConfig);
 }

Next we need some additional getter methods used to return our database handles.

 // Getter methods
 public Environment getEnvironment() {
 return myEnv;
 }

public Database getVendorDB() {
 return vendorDb;
 }

 public Database getInventoryDB() {
 return inventoryDb;
 }

Page 23Getting Started with JE8/18/2004

Database Example

Finally, we need to update the MyDbEnv.close() method to close our databases.

 // Close the environment
 public void close() {
 if (myEnv != null) {
 try {

vendorDb.close();
 inventoryDb.close();
 myEnv.close();
 } catch(DatabaseException dbe) {
 System.err.println("Error closing MyDbEnv: " +
 dbe.toString());
 System.exit(-1);
 }
 }
 }
}

We can now use MyDbEnv to open and close both database environments and databases
from the appropriate place in our application. For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Database;

import java.io.File;

...

MyDbEnv exampleDbEnv = new MyDbEnv();

try {
 exampleDbEnv.setup(new File("/directory/currently/exists"), true);

Database vendorDb = exampleDbEnv.getVendorDB();
 Database inventoryDB = exampleDbEnv.getInventoryDB();

 ...

} catch(DatabaseException dbe) {
 // Error code goes here
} finally {
 exampleDbEnv.close();
}

Page 24Getting Started with JE8/18/2004

Database Example

Chapter 4. Database Records
JE records contain two parts — a key and some data. Both the key and its corresponding
data are encapsulated in DatabaseEntry class objects. Therefore, to access a JE record,
you need two such objects, one for the key and one for the data.

DatabaseEntry can hold any kind of data from simple Java primitive types to complex
Java objects so long as that data can be represented as a Java byte array. Note that due
to performance considerations, you should not use Java serialization to convert a Java
object to a byte array.

This chapter describes how you can convert both Java primitives and Java class objects
into and out of byte arrays. It also introduces storing and retrieving key/value pairs from
a database. In addition, this chapter describes how you can use comparators to influence
how JE sorts its database records.

Using Database Records

Each database record is comprised of two DatabaseEntry objects — one for the key and
another for the data. The key and data information is stored in DatabaseEntry objects as
byte arrays. Therefore, using DatabaseEntry instances is mostly an exercise in efficiently
moving your keys and your data in and out of byte arrays.

For example, to store a database record where both the key and the data are Java String
objects, you instantiate a pair of DatabaseEntry objects:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;

...

String aKey = "key";
String aData = "data";

try {
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry(aData.getBytes("UTF-8"));
} catch (Exception e) {
 // Exception handling goes here
}

 // Storing the record is described later in this chapter

Notice that we specify UTF-8 when we retrieve the byte array from our String object.
Without parameters, String.getBytes() uses the Java system's default encoding. You should☞
never use a system's default encoding when storing data in a database because the encoding
can change.

Page 25Getting Started with JE8/18/2004

When the record is retrieved from the database, the method that you use to perform this
operation populates two DatabaseEntry instances for you, one for the key and another
for the data. Assuming Java String objects, you retrieve your data from the DatabaseEntry
as follows:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;

...

// theKey and theData are DatabaseEntry objects. Database
// retrieval is described later in this chapter. For now,
// we assume some database get method has populated these
// objects for us.

// Use DatabaseEntry.getData() to retrieve the encapsulated Java
// byte array.

byte[] myKey = theKey.getData();
byte[] myData = theData.getData();

String key = new String(myKey);
String data = new String(myData);

Note that in the following example we do not allow JE to assign the memory for the
retrieval of the money value. The reason why is that some systems may require float
values to have a specific alignment, and the memory as returned by may not be properly
aligned (the same problem may exist for structures on some systems). We tell JE to use
our memory instead of its own by specifying the DB_DBT_USERMEM flag. Be aware that when
we do this, we must also identify how much user memory is available through the use of
the ulen field.

There are a large number of mechanisms that you can use to move data in and out of
byte arrays. To help you with this activity, JE provides the bind APIs. These APIs allow
you to efficiently store both primitive data types and complex objects in byte arrays.

The next section describes basic database put and get operations. A basic understanding
of database access is useful when describing database storage of more complex data such
as is supported by the bind APIs. Basic bind API usage is then described in Using the BIND
APIs (page 31).

Page 26Getting Started with JE8/18/2004

Using Database Records

Reading and Writing Database Records

When reading and writing database records, be aware that there are some slight
differences in behavior depending on whether your database supports duplicate records.
Two or more database records are considered to be duplicates of one another if they
share the same key. The collection of records sharing the same key are called a duplicates
set.

By default, JE databases do not support duplicate records. Where duplicate records are
supported, cursors (see below) are used to access all of the records in the duplicates set.

JE provides two basic mechanisms for the storage and retrieval of database key/data
pairs:

• The Database.put() and Database.get() methods provide the easiest access for all
non-duplicate records in the database. These methods are described in this section.

• Cursors provide several methods for putting and getting database records. Cursors and
their database access methods are described in Using Cursors (page 56).

Writing Records to the Database

Database records are stored in the internal BTree based on whatever sorting routine is
available to the database. Records are sorted first by their key. If the database supports
duplicate records, then the records for a specific key are sorted by their data.

By default, JE sorts both keys and the data portion of duplicate records using byte-by-byte
lexicographic comparisons. This default comparison works well for the majority of cases.
However, in some case performance benefits can be realized by overriding the default
comparison routine. See Using Comparators (page 42) for more information.

You can use the following methods to put database records:

• Database.put()

Puts a database record into the database. If your database does not support duplicate
records, and if the provided key already exists in the database, then the currently
existing record is replaced with the new data.

• Database.putNoOverwrite()

Disallows overwriting (replacing) an existing record in the database. If the provided
key already exists in the database, then this method returns OperationStatus.KEYEXIST
even if the database supports duplicates.

Page 27Getting Started with JE8/18/2004

Reading and Writing Database
Records

• Database.putNoDupData()

Puts a database record into the database. If the provided key and data already exists
in the database (that is, if you are attempting to put a record that compares equally
to an existing record), then this returns OperationStatus.KEYEXIST.

When you put database records, you provide both the key and the data as DatabaseEntry
objects. This means you must convert your key and data into a Java byte array. For
example:

package com.sleepycat.je.examples.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Database;

...

// Environment and database opens omitted for clarity.
// Environment and database must NOT be opened read-only.

String aKey = "myFirstKey";
String aData = "myFirstData";

try {
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry(aData.getBytes("UTF-8"));
 myDatabase.put(null, theKey, theData);
} catch (Exception e) {
 // Exception handling goes here
}

Getting Records from the Database

The Database class provides several methods that you can use to retrieve database records.
Note that if your database supports duplicate records, then these methods will only ever
return the first record in a duplicate set. For this reason, if your database supports
duplicates, you should use a cursor to retrieve records from it. Cursors are described in
Using Cursors (page 56).

You can use either of the following methods to retrieve records from the database:

• Database.get()

Retrieves the record whose key matches the key provided to the method. If no records
exists that uses the provided key, then OperationStatus.NOTFOUND is returned.

Page 28Getting Started with JE8/18/2004

Reading and Writing Database
Records

• Database.getSearchBoth()

Retrieve the record whose key matches both the key and the data provided to the
method. If no record exists that uses the provided key and data, then
OperationStatus.NOTFOUND is returned.

Both the key and data for a database record are returned as DatabaseEntry objects. These
objects are passed as parameter values to the Database.get() method.

In order to retrieve your data once Database.get() has completed, you must retrieve the
byte array stored in the DatabaseEntry and then convert that byte array back to the
appropriate datatype. For example:

package com.sleepycat.je.examples.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Database;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;

...

// Environment and database opens omitted for clarity.
// Environment and database may be opened read-only.

String aKey = "myFirstKey";

try {
 // Create a pair of DatabaseEntry objects. theKey
 // is used to perform the search. theData is used
 // to store the data returned by the get() operation.
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 // Perform the get.
 if (myDatabase.get(null, theKey, theData, LockMode.DEFAULT) ==
 OperationStatus.SUCCESS) {

 // Recreate the data String.
 byte[] retData = theData.getData();
 String foundData = new String(retData);
 System.out.println("For key: '" + aKey + "' found data: '" +
 foundData + "'.");
 } else {
 System.out.println("No record found for key '" + aKey + "'.");
 }
} catch (Exception e) {
 // Exception handling goes here
}

Page 29Getting Started with JE8/18/2004

Reading and Writing Database
Records

Deleting Records

You can use the Database.delete() method to delete a record from the database. If your
database supports duplicate records, then all records associated with the provided key
are deleted. To delete just one record from a list of duplicates, use a cursor. Cursors are
described in Using Cursors (page 56).

You can also delete every record in the database by using Database.truncate().

For example:

package com.sleepycat.je.examples.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Database;

...

// Environment and database opens omitted for clarity.
// Environment and database can NOT be opened read-only.

try {
 String aKey = "myFirstKey";
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));

 // Perform the deletion. All records that use this key are
 // deleted.
 myDatabase.delete(null, theKey);
} catch (Exception e) {
 // Exception handling goes here
}

Data Persistence

When you perform a database modification, your modification is made in the in-memory
cache. This means that your data modifications are not necessarily written to disk, and
so your data may not appear in the database after an application restart.

Therefore, if you care about whether your data persists across application runs, and to
guard against the rare possibility of database corruption, you should use transactions to
protect your database modifications. Every time you commit a transaction, JE ensures
that the data will not be lost due to application or system failure. Transaction usage is
described in Transactions (page 94).

If you do not want to use transactions, then the assumption is that your data is of a nature
that it need not exist the next time your application starts. You may want this if, for
example, you are using JE to cache data relevant only to the current application runtime.

If, however, you are not using transactions for some reason and you still want some
guarantee that your database modifications are persistent, then you should periodically

Page 30Getting Started with JE8/18/2004

Reading and Writing Database
Records

run environment syncs. Syncs cause the entire contents of your in-memory cache to be
written to disk. As such, they are quite expensive and you should use them sparingly.

You run a sync by calling the Environment.sync() method. For applications that use them,
syncs are at a minimum performed immediately before the environment is closed. This
close should occur in the appropriate finally block. See Opening Database
Environments (page 9) for an example of this.

For a brief description of how JE manages its data in the cache and in the log files, and
how sync works, see Databases and Log Files (page 109).

Using the BIND APIs

Except for Java String and boolean types, efficiently moving data in and out of Java byte
arrays for storage in a database can be a nontrivial operation. To help you with this
problem, JE provides the Bind APIs. While these APIs are described in detail in the
Sleepycat Sleepycat Java Collections Tutorial (see
http://www.sleepycat.com/docs/ref/toc.html), this section provides a brief introduction
to using the Bind APIs with:

• Single field numerical and string objects

Use this if you want to store a single numerical or string object, such as Long, Double,
or String.

• Complex objects that implement Java serialization.

Use this if you are storing objects that implement Serializable and if you do not want
to sort on this information.

• Non-serialized complex objects.

If you are storing objects that do not implement serialization, you can create your
own custom tuple bindings. Note that you should use custom tuple bindings even if
your objects are serializeable if you want to sort on that data.

Numerical and String Objects

You can use the Bind APIs to store primitive data in a DatabaseEntry object. That is, you
can store a single field containing one of the following types:

• String

• Character

• Boolean

• Byte

• Short

Page 31Getting Started with JE8/18/2004

Using the BIND APIs

http://www.sleepycat.com/docs/ref/toc.html

• Integer

• Long

• Float

• Double

To store primitive data using the Bind APIs:

1. Create an EntryBinding object.

When you do this, you use TupleBinding.getPrimitiveBinding() to return the binding
that you use for the conversion.

2. Use the EntryBinding object to place the numerical object on the DatabaseEntry.

Once the data is stored in the DatabaseEntry, you can put it to the database in whatever
manner you wish. For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.je.DatabaseEntry;

...

// Need a key for the put.
try {
 String aKey = "myLong";
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));

 // Now build the DatabaseEntry using a TupleBinding
 Long myLong = new Long(123456789l);
 DatabaseEntry theData = new DatabaseEntry();
 EntryBinding myBinding = TupleBinding.getPrimitiveBinding(Long.class);
 myBinding.objectToEntry(myLong, theData);

 // Now store it
 myDatabase.put(null, theKey, theData);
} catch (Exception e) {
 // Exception handling goes here
}

Retrieval from the DatabaseEntry object is performed in much the same way:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.tuple.TupleBinding;

Page 32Getting Started with JE8/18/2004

Using the BIND APIs

import com.sleepycat.je.DatabaseEntry;

...

// Need a key for the get...
String aKey = "myLong";
DatabaseEntry theKey = new DatabaseEntry(aKey);

// ...and a DatabaseEntry to hold the associated data.
DatabaseEntry theData = new DatabaseEntry();

// Bindings need only be created once for a given scope
EntryBinding myBinding = TupleBinding.getPrimitiveBinding(Long.class);

// Get it
try {
 OperationStatus retVal = myDatabase.get(null, theKey, theData,
 LockMode.DEFAULT);
 if (retVal == OperationStatus.SUCCESS) {
 // Recreate the data.
 // Use the binding to convert the byte array contained in theData
 // to a Long type.
 Long theLong = (Long) myBinding.entryToObject(theData);
 String retKey = new String(theKey.getBytes("UTF-8"));
 System.out.println("For key: '" + retKey + "' found Long: '" +
 theLong + "'.");
 } else {
 System.out.println("No record found for key '" + retKey + "'.");
 }
} catch (Exception e) {
 // Exception handling goes here
}

Serializeable Complex Objects

Frequently your application requires you to store and manage objects for your record
data and/or keys. You may need to do this if you are caching objects created by another
process. You may also want to do this if you want to store multiple data values on a
record. When used with just primitive data, or with objects containing a single data
member, JE database records effectively represent a single row in a two-column table.
By storing a complex object in the record, you can turn each record into a single row in
an n-column table, where n is the number of data members contained by the stored
object(s).

In order to store objects in a JE database, you must convert them to and from a byte
array. The first instinct for many Java programmers is to do this using Java serialization.
While this is functionally a correct solution, the result is poor performance because doing
so directly causes the class information to be stored on every such database record. This

Page 33Getting Started with JE8/18/2004

Using the BIND APIs

information can be quite large and it is redundant — the class information does not vary
for serialized objects of the same type.

In other words, directly using serialization to place your objects into byte arrays means
that you will be storing a great deal of unnecessary information in your database, which
ultimately leads to larger databases and more expensive disk I/O.

The easiest way for you to solve this problem is to use the Bind APIs to perform the
serialization for you. Doing so causes the extra object information to be saved off to a
unique Database dedicated for that purpose. This means that you do not have to duplicate
that information on each record in the Database that your application is using to store
it's information.

Note that when you use the Bind APIs to perform serialization, you still receive all the
benefits of serialization. You can still use arbitrarily complex object graphs, and you still
receive built-in class evolution through the serialVersionUID (SUID) scheme. All of the
Java serialization rules apply without modification. For example, you can implement
Externalizable instead of Serializable.

Usage Caveats

Before using the Bind APIs to perform serialization, you may want to consider writing your
own custom tuple bindings. Specifically, avoid serialization if:

• If you need to sort based on the objects your are storing. The sort order is meaningless
for the byte arrays that you obtain through serialization. Consequently, you should
not use serialization for keys if you care about their sort order. You should also not
use serialization for record data if your Database supports duplicate records and you
care about sort order.

• You want to minimize the size of your byte arrays. Even when using the Bind APIs to
perform the serialization the resulting byte array may be larger than necessary. You
can achieve more compact results by building your own custom tuple binding.

• You want to optimize for speed. In general, custom tuple bindings are faster than
serialization at moving data in and out of byte arrays.

For information on building your own custom tuple binding, see Custom Tuple
Bindings (page 38).

Page 34Getting Started with JE8/18/2004

Using the BIND APIs

Serializing Objects

To serialize and store a serializeable complex object using the Bind APIs:

1. Implement the class whose instances that you want to store. Note that this class
must implement java.io.Serializable.

2. Open (create) your databases. You need two. The first is the database that you use
to store your data. The second is used to store the class information.

3. Instantiate a class catalog. You do this with
com.sleepycat.bind.serial.StoredClassCatalog, and at that time you must provide
a handle to an open database that is used to store the class information.

4. Create an entry binding that uses com.sleepycat.bind.serial.SerialBinding.

5. Instantiate an instance of the object that you want to store, and place it in a
DatabaseEntry using the entry binding that you created in the previous step.

For example, suppose you want to store a long, double, and a String as a record's data.
Then you might create a class that looks something like this:

package com.sleepycat.je.examples.gettingStarted;

import java.io.Serializable;

public class MyData implements Serializable {
 private long longData;
 private double doubleData;
 private String description;

 MyData() {
 longData = 0;
 doubleData = 0.0;
 description = null;
 }

 public void setLong(long data) {
 longData = data;
 }

 public void setDouble(double data) {
 doubleData = data;
 }

 public void setDescription(String data) {
 description = data;
 }

 public long getLong() {

Page 35Getting Started with JE8/18/2004

Using the BIND APIs

 return longData;
 }

 public double getDouble() {
 return doubleData;
 }

 public String getDescription() {
 return description;
 }
}

You can then store instances of this class as follows:

package com.sleepycat.je.examples.gettingStarted;

import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.StoredClassCatalog;
import com.sleepycat.bind.serial.SerialBinding;

...

// The key data.
String aKey = "myData";

// The data data
MyData data2Store = new MyData();
data2Store.setLong(123456789l);
data2Store.setDouble(1234.9876543);
data2Store.setDescription("A test instance of this class");

try {
 // Environment open omitted for brevity

 // Open the database that you will use to store your data
 DatabaseConfig myDbConfig = new DatabaseConfig();
 myDbConfig.setAllowCreate(true);
 myDbConfig.setSortedDuplicates(true);
 Database myDatabase = myDbEnv.openDatabase(null, "myDb", myDbConfig);

 // Open the database that you use to store your class information.
 // The db used to store class information does not require duplicates
 // support.
 myDbConfig.setSortedDuplicates(false);
 Database myClassDb = myDbEnv.openDatabase(null, "classDb", myDbConfig);

Page 36Getting Started with JE8/18/2004

Using the BIND APIs

 // Instantiate the class catalog
 StoredClassCatalog classCatalog = new StoredClassCatalog(myClassDb);

 // Create the binding
 EntryBinding dataBinding = new SerialBinding(classCatalog,
 MyData.class);

 // Create the DatabaseEntry for the key
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));

 // Create the DatabaseEntry for the data. Use the EntryBinding object
 // that was just created to populate the DatabaseEntry
 DatabaseEntry theData = new DatabaseEntry();
 dataBinding.objectToEntry(data2Store, theData);

 // Put it as normal
 myDatabase.put(null, theKey, theData);

 // Database and environment close omitted for brevity
} catch (Exception e) {
 // Exception handling goes here
}

Deserializing Objects

Once an object is stored in the database, you can retrieve the MyData objects from the
retrieved DatabaseEntry using the Bind APIs in much the same way as is described above.
For example:

package com.sleepycat.je.examples.gettingStarted;

import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.LockMode;
import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.StoredClassCatalog;
import com.sleepycat.bind.serial.SerialBinding;

...

// The key data.
String aKey = "myData";

try {
 // Environment open omitted for brevity.

 // Open the database that stores your data
 DatabaseConfig myDbConfig = new DatabaseConfig();

Page 37Getting Started with JE8/18/2004

Using the BIND APIs

 myDbConfig.setAllowCreate(false);
 Database myDatabase = myDbEnv.openDatabase(null, "myDb", myDbConfig);

 // Open the database that stores your class information.
 Database myClassDb = myDbEnv.openDatabase(null, "classDb", myDbConfig);

 // Instantiate the class catalog
 StoredClassCatalog classCatalog = new StoredClassCatalog(myClassDb);

 // Create the binding
 EntryBinding dataBinding = new SerialBinding(classCatalog,
 MyData.class);

 // Create DatabaseEntry objects for the key and data
 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 // Do the get as normal
 myDatabase.get(null, theKey, theData, LockMode.DEFAULT);

 // Recreate the MyData object from the retrieved DatabaseEntry using
 // the EntryBinding created above
 MyData retrievedData = (MyData) dataBinding.entryToObject(theData);

 // Database and environment close omitted for brevity
} catch (Exception e) {
 // Exception handling goes here
}

Custom Tuple Bindings

If you want to store complex objects in your database, then you can use tuple bindings
to do this. While they are more work to write and maintain than if you were to use
serialization, the byte array conversion is faster. In addition, custom tuple bindings should
allow you to create byte arrays that are smaller than those created by serialization.
Custom tuple bindings also allow you to optimize your BTree comparisons, whereas
serialization does not.

For information on using serialization to store complex objects, see Serializeable Complex
Objects (page 33).

To store complex objects using a custom tuple binding:

1. Implement the class whose instances that you want to store. Note that you do not
have to implement serialization.

2. Implement the com.sleepycat.bind.tuple.TupleBinding interface.

3. Open (create) your database. Unlike serialization, you only need one.

Page 38Getting Started with JE8/18/2004

Using the BIND APIs

4. Create an entry binding that uses the tuple binding that you implemented in step 2.

5. Instantiate an instance of the object that you want to store, and place it in a
DatabaseEntry using the entry binding that you created in the previous step.

For example, suppose you want to your keys to be instances of the following class:

package com.sleepycat.je.examples.gettingStarted;

public class MyData2 {
 private long longData;
 private Double doubleData;
 private String description;

 public MyData2() {
 longData = 0;
 doubleData = new Double(0.0);
 description = "";
 }

 public void setLong(long data) {
 longData = data;
 }

 public void setDouble(Double data) {
 doubleData = data;
 }

 public void setString(String data) {
 description = data;
 }

 public long getLong() {
 return longData;
 }

 public Double getDouble() {
 return doubleData;
 }

 public String getString() {
 return description;
 }
}

In this case, you need to write a tuple binding for the MyData2 class. When you do this,
you must implement the TupleBinding.objectToEntry()and TupleBinding.entryToObject()
abstract methods. Remember the following as you implement these methods:

Page 39Getting Started with JE8/18/2004

Using the BIND APIs

• You use TupleBinding.objectToEntry() to convert objects to byte arrays. You use
com.sleepycat.bind.tuple.TupleOutput to write primitive data types to the byte
array. Note that TupleOutput provides methods that allows you to work with numerical
types (long, double, int, and so forth) and not the corresponding java.lang numerical
classes.

• The order that you write data to the byte array in TupleBinding.objectToEntry() is
the order that it appears in the array. So given the MyData2 class as an example, if
you write description, doubleData, and then longData, then the resulting byte array
will contain these data elements in that order. This means that your records will sort
based on the value of the description data member and then the doubleData member,
and so forth. If you prefer to sort based on, say, the longData data member, write it
to the byte array first.

• You use TupleBinding.entryToObject() to convert the byte array back into an instance
of your original class. You use com.sleepycat.bind.tuple.TupleInput to get data from
the byte array.

• The order that you read data from the byte array must be exactly the same as the
order in which it was written.

For example:

package com.sleepycat.je.examples.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;

public class MyTupleBinding extends TupleBinding {

 // Write a MyData2 object to a TupleOutput
 public void objectToEntry(Object object, TupleOutput to) {

 MyData2 myData = (MyData2)object;

 // Write the data to the TupleOutput (a DatabaseEntry).
 // Order is important. The first data written will be
 // the first bytes used by the default comparison routines.
 to.writeDouble(myData.getDouble().doubleValue());
 to.writeLong(myData.getLong());
 to.writeString(myData.getString());
 }

 // Convert a TupleInput to a MyData2 object
 public Object entryToObject(TupleInput ti) {

 // Data must be read in the same order that it was
 // originally written.
 Double theDouble = new Double(ti.readDouble());

Page 40Getting Started with JE8/18/2004

Using the BIND APIs

 long theLong = ti.readLong();
 String theString = ti.readString();

 MyData2 myData = new MyData2();
 myData.setDouble(theDouble);
 myData.setLong(theLong);
 myData.setString(theString);

 return myData;
 }
}

In order to use the tuple binding, instantiate the binding and then use:

• MyTupleBinding.objectToEntry() to convert a MyData2 object to a DatabaseEntry.

• MyTupleBinding.entryToObject() to convert a DatabaseEntry to a MyData2 object.

For example:

package com.sleepycat.je.examples.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.je.DatabaseEntry;

...

TupleBinding keyBinding = new MyTupleBinding();

MyData2 theKeyData = new MyData2();
theKeyData.setLong(123456789l);
theKeyData.setDouble(new Double(12345.6789));
theKeyData.setString("My key data");

DatabaseEntry myKey = new DatabaseEntry();

try {
 // Store theKeyData in the DatabaseEntry
 keyBinding.objectToEntry(theKeyData, myKey);

 ...
 // Database put and get activity omitted for clarity
 ...

 // Retrieve the key data
 theKeyData = (MyData2) keyBinding.entryToObject(myKey);
} catch (Exception e) {
 // Exception handling goes here
}

Page 41Getting Started with JE8/18/2004

Using the BIND APIs

Using Comparators

Internally, JE databases are organized as BTrees. This means that most database operations
(inserts, deletes, reads, and so forth) involve BTree node comparisons. This comparison
most frequently occurs based on database keys, but if your database supports duplicate
records then comparisons can also occur based on the database data.

By default, JE performs all such comparisons using a byte-by-byte lexicographic
comparison. This mechanism works well for most data. However, in some cases you may
need to specify your own comparison routine. One frequent reason for this is to perform
a language sensitive lexical ordering of string keys.

Writing Comparators

You override the default comparison function by providing a Java Comparator class to the
database. The Java Comparator interface requires you to implement the
Comparator.compare() method (see
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html for details).

JE hands your Comparator.compare() method the byte arrays that you stored in the
database. If you know how your data is organized in the byte array, then you can write
a comparison routine that directly examines the contents of the arrays. Otherwise, you
have to reconstruct your original objects, and then perform the comparison.

For example, suppose you want to perform unicode lexical comparisons instead of UTF-8
byte-by-byte comparisons. Then you could provide a comparator that uses
String.compareTo(), which performs a Unicode comparison of two strings (note that for
single-byte roman characters, Unicode comparison and UTF-8 byte-by-byte comparisons
are identical – this is something you would only want to do if you were using multibyte
unicode characters with JE). In this case, your comparator would look like the following:

package com.sleepycat.je.examples.gettingStarted;

import java.util.Comparator;

public class MyDataComparator implements Comparator {

 public MyDataComparator() {}

 public int compare(Object d1, Object d2) {

 byte[] b1 = (byte[])d1;
 byte[] b2 = (byte[])d2;

 String s1 = new String(b1);
 String s2 = new String(b2);
 return s1.compareTo(s2);
 }
}

Page 42Getting Started with JE8/18/2004

Using Comparators

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html

Setting Comparators

You specify a Comparator using the following methods. Note that by default these methods
can only be used at database creation time, and they are ignored for normal database
opens.

• DatabaseConfig.setBtreeComparator()

Sets the Java Comparator class used to compare two keys in the database.

• DatabaseConfig.setDuplicateComparator()

Sets the Java Comparator class used to compare the data on two duplicate records in
the database. This comparator is used only if the database supports duplicate records.

You can use the above methods to set a database's comparator after database creation
time if you explicitly indicate that the comparator is to be overridden. You do this by
using the following methods:

If you override your comparator, the new comparator must preserve the sort order
implemented by your original comparator. That is, the new comparator and the old☞
comparator must return the same value for the comparison of any two valid objects. Failure
to observe this constraint will cause unpredictable results for your application.

If you want to change the fundamental sort order for your database, back up the contents
of the database, delete the database, recreate it, and then reload its data.

• DatabaseConfig.setOverrideBtreeComparator()

If set to true, causes the database's Btree comparator to be overridden with the
Comparator specified on DatabaseConfig.setBtreeComparator().

• DatabaseConfig.setOverrideDuplicateComparator()

If set to true, causes the database's duplicates comparator to be overridden with the
Comparator specified on DatabaseConfig.setDuplicateComparator().

For example, to use the Comparator described in the previous section:

package com.sleepycat.je.examples.gettingStarted;

import java.util.Comparator;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;

...

// Environment open omitted for brevity

try {

Page 43Getting Started with JE8/18/2004

Using Comparators

 // Get the database configuration object
 DatabaseConfig myDbConfig = new DatabaseConfig();
 myDbConfig.setAllowCreate(true);

 // Set the duplicate comparator class
 myDbConfig.setDuplicateComparator(MyDataComparator.class);

 // Open the database that you will use to store your data
 myDbConfig.setSortedDuplicates(true);
 Database myDatabase = myDbEnv.openDatabase(null, "myDb", myDbConfig);
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Database Record Example

In Database Example (page 22), we created MyDbEnv, a class that manages
DatabaseEnvironment and Database opens and closes. We will now write an application
that takes advantage of this class to open databases, put a series of records in them, and
then close the databases and environment.

Remember that all of the classes and programs presented here can be found in the
following directory:

JE_HOME/examples/com/sleepycat/examples/je/gettingStarted/examples

where JE_HOME is the location where you placed your JE distribution.

Note that in this example, we are going to save two types of information. First there are
a series of inventory records that identify information about some food items (fruits,
vegetables, and desserts). These records identify particulars about each item such as the
vendor that the item can be obtained from, how much the vendor has in stock, the price
per unit, and so forth.

We also want to manage vendor contact information, such as the vendor's address and
phone number, the sales representative's name and his phone number, and so forth.

Example 4.1. Inventory.java

All Inventory data is encapsulated in an instance of the following class. Note that because
this class is not serializable, we need a custom tuple binding in order to place it on a
DatabaseEntry object. Because the TupleInput and TupleOutput classes used by custom
tuple bindings support Java numerical types and not Java numerical classes, we use int
and float here instead of the corresponding Integer and Float classes.

Page 44Getting Started with JE8/18/2004

Database Record Example

// File Inventory.java
package com.sleepycat.examples.je.gettingStarted;

public class Inventory {

 private String sku;
 private String itemName;
 private String category;
 private String vendor;
 private int vendorInventory;
 private float vendorPrice;

 public void setSku(String data) {
 sku = data;
 }

 public void setItemName(String data) {
 itemName = data;
 }

 public void setCategory(String data) {
 category = data;
 }

 public void setVendorInventory(int data) {
 vendorInventory = data;
 }

 public void setVendor(String data) {
 vendor = data;
 }

 public void setVendorPrice(float data) {
 vendorPrice = data;
 }

 public String getSku() { return sku; }
 public String getItemName() { return itemName; }
 public String getCategory() { return category; }
 public int getVendorInventory() { return vendorInventory; }
 public String getVendor() { return vendor; }
 public float getVendorPrice() { return vendorPrice; }

}

Page 45Getting Started with JE8/18/2004

Database Record Example

Example 4.2. Vendor.java

The data for these records are instances of the following class. Notice that we are using
serialization with this class for no other reason than to demonstrate serializing a class
instance.

// File Vendor.java
package com.sleepycat.examples.je.gettingStarted;

import java.io.Serializable;

public class Vendor implements Serializable {

 private String repName;
 private String address;
 private String city;
 private String state;
 private String zipcode;
 private String bizPhoneNumber;
 private String repPhoneNumber;
 private String vendor;

 public void setRepName(String data) {
 repName = data;
 }

 public void setAddress(String data) {
 address = data;
 }

 public void setCity(String data) {
 city = data;
 }

 public void setState(String data) {
 state = data;
 }

 public void setZipcode(String data) {
 zipcode = data;
 }

 public void setBusinessPhoneNumber(String data) {
 bizPhoneNumber = data;
 }

 public void setRepPhoneNumber(String data) {
 repPhoneNumber = data;
 }

Page 46Getting Started with JE8/18/2004

Database Record Example

 public void setVendor(String data) {
 vendor = data;
 }

 // Corresponding getter methods omitted for brevity.
 // See examples/com/sleepycat/examples/je/gettingStarted/
 // examples/Vendor.java
 // for a complete implementation of this class.

}

Because we will not be using serialization to convert our Inventory objects to a
DatabaseEntry object, we need a custom tuple binding:

Example 4.3. InventoryBinding.java

// File InventoryBinding.java
package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.bind.tuple.TupleInput;
import com.sleepycat.bind.tuple.TupleOutput;

public class InventoryBinding extends TupleBinding {

 // Implement this abstract method. Used to convert
 // a DatabaseEntry to an Inventory object.
 public Object entryToObject(TupleInput ti) {

 String sku = ti.readString();
 String itemName = ti.readString();
 String category = ti.readString();
 String vendor = ti.readString();
 int vendorInventory = ti.readInt();
 float vendorPrice = ti.readFloat();

 Inventory inventory = new Inventory();
 inventory.setSku(sku);
 inventory.setItemName(itemName);
 inventory.setCategory(category);
 inventory.setVendor(vendor);
 inventory.setVendorInventory(vendorInventory);
 inventory.setVendorPrice(vendorPrice);

 return inventory;
 }

 // Implement this abstract method. Used to convert a

Page 47Getting Started with JE8/18/2004

Database Record Example

 // Inventory object to a DatabaseEntry object.
 public void objectToEntry(Object object, TupleOutput to) {

 Inventory inventory = (Inventory)object;

 to.writeString(inventory.getSku());
 to.writeString(inventory.getItemName());
 to.writeString(inventory.getCategory());
 to.writeString(inventory.getVendor());
 to.writeInt(inventory.getVendorInventory());
 to.writeFloat(inventory.getVendorPrice());
 }
}

In order to store the data identified above, we write the ExampleDatabasePut application.
This application loads the inventory and vendor databases for you.

Inventory information is stored in a Database dedicated for that purpose. The key for
each such record is a product SKU. The inventory data stored in this database are objects
of the Inventory class (see Inventory.java (page 44) for more information).
ExampleDatabasePut loads the inventory database as follows:

1. Reads the inventory data from a flat text file prepared in advance for this purpose.

2. Uses java.lang.String to create a key based on the item's SKU.

3. Uses an Inventory class instance for the record data. This object is stored on a
DatabaseEntry object using InventoryBinding, a custom tuple binding that we
implemented above.

4. Saves each record to the inventory database.

Vendor information is also stored in a Database dedicated for that purpose. The vendor
data stored in this database are objects of the Vendor class (see Vendor.java (page 46)
for more information). To load this Database, ExampleDatabasePut does the following:

1. Reads the vendor data from a flat text file prepared in advance for this purpose.

2. Uses the vendor's name as the record's key.

3. Uses a Vendor class instance for the record data. This object is stored on a
DatabaseEntry object using com.sleepycat.bind.serial.SerialBinding.

Example 4.4. Stored Class Catalog Management with MyDbEnv

Before we can write ExampleDatabasePut, we need to update MyDbEnv.java to support
the class catalogs that we need for this application.

To do this, we start by importing an additional class to support stored class catalogs:

Page 48Getting Started with JE8/18/2004

Database Record Example

// File MyDbEnv.java
package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.Environment;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.Database;

import java.io.File;

import com.sleepycat.bind.serial.StoredClassCatalog;

We also need to add two additional private data members to this class. One supports the
database used for the class catalog, and the other is used as a handle for the class catalog
itself.

public class MyDbEnv {

 private Environment myEnv;
 private Database vendorDb;
 private Database inventoryDb;

private Database classCatalogDb;

 // Needed for object serialization
 private StoredClassCatalog classCatalog;

 public MyDbEnv() {}

Next we need to update the MyDbEnv.setup() method to open the class catalog database
and create the class catalog.

 public void setup(File envHome, boolean readOnly)
 throws DatabaseException {

 ...
 // Database and environment configuration omitted for brevity
 ...

 // Instantiate the Environment. This opens it and also possibly
 // creates it.
 myEnv = new Environment(envHome, myEnvConfig);

 // Now create and open our databases.
 vendorDb = myEnv.openDatabase(null, "VendorDB", myDbConfig);

 inventoryDb = myEnv.openDatabase(null, "InventoryDB", myDbConfig);

// Open the class catalog db. This is used to
 // optimize class serialization.

Page 49Getting Started with JE8/18/2004

Database Record Example

 classCatalogDb =
 myEnv.openDatabase(null,
 "ClassCatalogDB",
 myDbConfig);

 // Create our class catalog
 classCatalog = new StoredClassCatalog(classCatalogDb);
 }

Next we need a getter method to return the class catalog. Note that we do not provide
a getter for the catalog database itself – our application has no need for that.

// Getter methods
 public Environment getEnvironment() {
 return myEnv;
 }

 public Database getVendorDB() {
 return vendorDb;
 }

 public Database getInventoryDB() {
 return inventoryDb;
 }

public StoredClassCatalog getClassCatalog() {
 return classCatalog;
 }

Finally, we need to update the MyDbEnv.close() method to close the class catalog
database.

 // Close the environment
 public void close() {
 if (myEnv != null) {
 try {
 vendorDb.close();
 inventoryDb.close();

classCatalogDb.close()
 myEnv.close();
 } catch(DatabaseException dbe) {
 System.err.println("Error closing MyDbEnv: " +
 dbe.toString());
 System.exit(-1);
 }
 }
 }
}

Page 50Getting Started with JE8/18/2004

Database Record Example

So far we have identified the data that we want to store in our databases and how we
will convert that data in and out of DatabaseEntry objects for database storage. We have
also updated MyDbEnv to manage our databases for us. Now we write ExampleDatabasePut
to actually put the inventory and vendor data into their respective databases. Because
of the work that we have done so far, this application is actually fairly simple to write.

Example 4.5. ExampleDatabasePut.java

First we need the usual series of import statements:

//File ExampleDatabasePut.java
package com.sleepycat.examples.je.gettingStarted;

// Bind classes used to move class objects in an out of byte arrays.
import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.tuple.TupleBinding;

// Standard JE database imports
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;

// Most of this is used for loading data from a text file for storage
// in the databases.
import java.io.File;
import java.io.FileInputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.ArrayList;

Next comes the class declaration and the private data members that we need for this
class. Most of these are setting up default values for the program.

Note that two DatabaseEntry objects are instantiated here. We will reuse these for every
database operation that this program performs. Also a MyDbEnv object is instantiated here.
We can do this because its constructor never throws an exception. See Stored Class Catalog
Management with MyDbEnv (page 48) for its implementation details.

Finally, the inventory.txt and vendors.txt file can be found in the GettingStarted
examples directory along with the classes described in this extended example.

public class ExampleDatabasePut {

 private static File myDbEnvPath = new File("/tmp/JEDB");
 private static File inventoryFile = new File("./inventory.txt");
 private static File vendorsFile = new File("./vendors.txt");

 // DatabaseEntries used for loading records

Page 51Getting Started with JE8/18/2004

Database Record Example

 private static DatabaseEntry theKey = new DatabaseEntry();
 private static DatabaseEntry theData = new DatabaseEntry();

 // Encapsulates the environment and databases.
 private static MyDbEnv myDbEnv = new MyDbEnv();

Next comes the usage() and main() methods. Notice the exception handling in the main()
method. This is the only place in the application where we catch exceptions. For this
reason, we must catch DatabaseException which is thrown by the com.sleepycat.je.*
classes.

Also notice the call to MyDbEnv.close() in the finally block. This is the only place in the
application where MyDbEnv.close() is called. MyDbEnv.close() is responsible for closing
the Environment and all open Database handles for you.

 private static void usage() {
 System.out.println("ExampleDatabasePut [-h <env directory>]");
 System.out.println(" [-s <selections file>] [-v <vendors file>]");
 System.exit(-1);
 }

 public static void main(String args[]) {
 ExampleDatabasePut edp = new ExampleDatabasePut();
 try {
 edp.run(args);
 } catch (DatabaseException dbe) {
 System.err.println("ExampleDatabasePut: " + dbe.toString());
 dbe.printStackTrace();
 } catch (Exception e) {
 System.err.println("Exception: " + e.toString());
 e.printStackTrace();
 } finally {
 myDbEnv.close();
 }
 System.out.println("All done.");
 }

Next we write the ExampleDatabasePut.run() method. This method is responsible for
initializing all objects. Because our environment and databases are all opened using the
MyDbEnv.setup()method, ExampleDatabasePut.run()method is only responsible for calling
MyDbEnv.setup() and then calling the ExampleDatabasePut methods that actually load the
databases.

 private void run(String args[]) throws DatabaseException {
 // Parse the arguments list
 parseArgs(args);

 myDbEnv.setup(myDbEnvPath, // path to the environment home
 false); // is this environment read-only?

Page 52Getting Started with JE8/18/2004

Database Record Example

 System.out.println("loading vendors db.");
 loadVendorsDb();
 System.out.println("loading inventory db.");
 loadInventoryDb();
 }

This next method loads the vendor database. This method uses serialization to convert
the Vendor object to a DatabaseEntry object.

 private void loadVendorsDb()
 throws DatabaseException {

 // loadFile opens a flat-text file that contains our data
 // and loads it into a list for us to work with. The integer
 // parameter represents the number of fields expected in the
 // file.
 ArrayList vendors = loadFile(vendorsFile, 8);

 // Now load the data into the database. The vendor's name is the
 // key, and the data is a Vendor class object.

 // Need a serial binding for the data
 EntryBinding dataBinding =
 new SerialBinding(myDbEnv.getClassCatalog(), Vendor.class);

 for (int i = 0; i < vendors.size(); i++) {
 String[] sArray = (String[])vendors.get(i);
 Vendor theVendor = new Vendor();
 theVendor.setVendorName(sArray[0]);
 theVendor.setAddress(sArray[1]);
 theVendor.setCity(sArray[2]);
 theVendor.setState(sArray[3]);
 theVendor.setZipcode(sArray[4]);
 theVendor.setBusinessPhoneNumber(sArray[5]);
 theVendor.setRepName(sArray[6]);
 theVendor.setRepPhoneNumber(sArray[7]);

 // The key is the vendor's name.
 // ASSUMES THE VENDOR'S NAME IS UNIQUE!
 String vendorName = theVendor.getVendorName();
 try {
 theKey = new DatabaseEntry(vendorName.getBytes("UTF-8"));
 } catch (IOException willNeverOccur) {}

 // Convert the Vendor object to a DatabaseEntry object
 // using our SerialBinding
 dataBinding.objectToEntry(theVendor, theData);

 // Put it in the database. These puts are transactionally

Page 53Getting Started with JE8/18/2004

Database Record Example

 // protected (we're using autocommit).
 myDbEnv.getVendorDB().put(null, theKey, theData);
 }
 }

Now load the inventory database. This method uses our custom tuple binding (see
InventoryBinding.java (page 47)) to convert the Inventory object to a DatabaseEntry
object.

 private void loadInventoryDb()
 throws DatabaseException {

 // loadFile opens a flat-text file that contains our data
 // and loads it into a list for us to work with. The integer
 // parameter represents the number of fields expected in the
 // file.
 ArrayList inventoryArray = loadFile(inventoryFile, 6);

 // Now load the data into the database. The item's sku is the
 // key, and the data is an Inventory class object.

 // Need a tuple binding for the Inventory class.
 TupleBinding inventoryBinding = new InventoryBinding();

 for (int i = 0; i < inventoryArray.size(); i++) {
 String[] sArray = (String[])inventoryArray.get(i);
 String sku = sArray[1];
 try {
 theKey = new DatabaseEntry(sku.getBytes("UTF-8"));
 } catch (IOException willNeverOccur) {}

 Inventory theInventory = new Inventory();
 theInventory.setItemName(sArray[0]);
 theInventory.setSku(sArray[1]);
 theInventory.setVendorPrice((new Float(sArray[2])).floatValue());
 theInventory.setVendorInventory(
 (new Integer(sArray[3])).intValue());
 theInventory.setCategory(sArray[4]);
 theInventory.setVendor(sArray[5]);

 // Place the Vendor object on the DatabaseEntry object using our
 // the tuple binding we implemented in InventoryBinding.java
 inventoryBinding.objectToEntry(theInventory, theData);

 // Put it in the database.
 myDbEnv.getInventoryDB().put(null, theKey, theData);

 }
 }

Page 54Getting Started with JE8/18/2004

Database Record Example

The remainder of this application provides utility methods to read a flat text file into an
array of strings and parse the command line options. From the perspective of this
document, these things are relatively uninteresting. You can see how they are implemented
by looking at:

JE_HOME/examples/com/sleepycat/examples/je/gettingStarted/examples/
 ExampleDataPut.java

where JE_HOME is the location where you placed your JE distribution.

 private static void parseArgs(String args[]) {
 // Implementation omitted for brevity.
 }

 private ArrayList loadFile(File theFile, int numFields) {
 ArrayList records = new ArrayList();
 // Implementation omitted for brevity.
 return records;
 }

 protected ExampleDatabasePut() {}
}

Page 55Getting Started with JE8/18/2004

Database Record Example

Chapter 5. Using Cursors
Cursors provide a mechanism by which you can iterate over the records in a database.
Using cursors, you can get, put, and delete database records. If a database allows duplicate
records, then cursors are the only mechanism by which you can access anything other
than the first duplicate for a given key.

This chapter introduces cursors. It explains how to open and close them, how to use them
to modify databases, and how to use them with duplicate records.

Opening and Closing Cursors

To use a cursor, you must open it using the Database.openCursor() method. When you
open a cursor, you can optionally pass it a CursorConfig object to set cursor properties.
Currently, the only available property tells the cursor to perform dirty reads. (For a
description of dirty reads, see Configuring Dirty Reads (page 100)).

For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.Environment;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.CursorConfig;
import com.sleepycat.je.Cursor;

import java.io.File;

...
Environment myDbEnvironment = null;
Database myDatabase = null;
Cursor myCursor = null;

try {
 myDbEnvironment = new Environment(new File("/export/dbEnv"), null);
 myDatabase = myDbEnvironment.openDatabase(null, "myDB", null);

 myCursor = myDatabase.openCursor(null, null);
} catch (DatabaseException dbe) {
 // Exception handling goes here ...
}

To close the cursor, call the Cursor.close() method. Note that if you close a database
that has cursors open in it, then it will complain and close any open cursors for you. For
best results, close your cursors from within a finally block.

Page 56Getting Started with JE8/18/2004

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.Environment;
import com.sleepycat.je.Cursor;

...
try {
 ...
} catch ... {
} finally {
 try {
 if (myCursor != null) {
 myCursor.close();
 }

 if (myDatabase != null) {
 myDatabase.close();
 }

 if (myDbEnvironment != null) {
 myDbEnvironment.close();
 }
 } catch(DatabaseException dbe) {
 System.err.println("Error in close: " + dbe.toString());
 }
}

Getting Records Using the Cursor

To iterate over database records, from the first record to the last, simply open the cursor
and then use the Cursor.getNext() method. For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Cursor;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.LockMode;

...

Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity
 ...

Page 57Getting Started with JE8/18/2004

Getting Records Using the Cursor

 // Open the cursor.
 cursor = myDatabase.openCursor(null, null);

 // Cursors need a pair of DatabaseEntry objects to operate. These hold
 // the key and data found at any given position in the database.
 DatabaseEntry foundKey = new DatabaseEntry();
 DatabaseEntry foundData = new DatabaseEntry();

 // To iterate, just call getNext() until the last database record has been
 // read. All cursor operations return an OperationStatus, so just read
 // until we no longer see OperationStatus.SUCCESS
 while (cursor.getNext(foundKey, foundData, LockMode.DEFAULT) ==
 OperationStatus.SUCCESS) {
 // getData() on the DatabaseEntry objects returns the byte array
 // held by that object. We use this to get a String value. If the
 // DatabaseEntry held a byte array representation of some other data
 // type (such as a complex object) then this operation would look
 // considerably different.
 String keyString = new String(foundKey.getData());
 String dataString = new String(foundData.getData());
 System.out.println("Key | Data : " + keyString + " | " +
 dataString + "");
 }
} catch (DatabaseException de) {
 System.err.println("Error accessing database." + de);
} finally {
 // Cursors must be closed.
 cursor.close();
}

To iterate over the database from the last record to the first, instantiate the cursor, and
then use Cursor.getPrev() until you read the first record in the database. For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Cursor;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.LockMode;

...

Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity

Page 58Getting Started with JE8/18/2004

Getting Records Using the Cursor

 ...

 // Open the cursor.
 cursor = myDatabase.openCursor(null, null);

 // Get the DatabaseEntry objects that the cursor will use.
 DatabaseEntry foundKey = new DatabaseEntry();
 DatabaseEntry foundData = new DatabaseEntry();

 // Iterate from the last record to the first in the database
 while (cursor.getPrev(foundKey, foundData, LockMode.DEFAULT) ==
 OperationStatus.SUCCESS) {

 String theKey = new String(foundKey.getData());
 String theData = new String(foundData.getData());
 System.out.println("Key | Data : " + theKey + " | " + theData + "");
 }
} catch (DatabaseException de) {
 System.err.println("Error accessing database." + de);
} finally {
 // Cursors must be closed.
 cursor.close();
}

Searching for Records

You can use cursors to search for database records. You can search based on just a key,
or you can search based on both the key and the data. You can also perform partial
matches if your database supports sorted duplicate sets. In all cases, the key and data
parameters of these methods are filled with the key and data values of the database
record to which the cursor is positioned as a result of the search.

Also, if the search fails, then cursor's state is left unchanged and OperationStatus.NOTFOUND
is returned.

The following Cursor methods allow you to perform database searches:

• Cursor.getSearchKey()

Moves the cursor to the first record in the database with the specified key.

• Cursor.getSearchKeyRange()

Moves the cursor to the first record in the database whose key is greater than or equal
to the specified key. This comparison is determined by the comparator that you provide
for the database. If no comparator is provided, then the default lexicographical sorting
is used.

For example, suppose you have database records that use the following Strings as
keys:

Page 59Getting Started with JE8/18/2004

Getting Records Using the Cursor

Alabama
Alaska
Arizona

Then providing a search key of Alaska moves the cursor to the second key noted above.
Providing a key of Al moves the cursor to the first key (Alabama), providing a search
key of Alas moves the cursor to the second key (Alaska), and providing a key of Ar
moves the cursor to the last key (Arizona).

• Cursor.getSearchBoth()

Moves the cursor to the first record in the database that uses the specified key and
data.

• Cursor.getSearchBothRange()

Moves the cursor to the first record in the database whose key is greater than or equal
to the specified key. If the database supports duplicate records, then on matching
the key, the cursor is moved to the duplicate record with the smallest data that is
greater than or equal to the specified data.

For example, suppose you have database records that use the following key/data pairs:

Alabama/Athens
Alabama/Florence
Alaska/Anchorage
Alaska/Fairbanks
Arizona/Avondale
Arizona/Florence

then providing:

moves the cursor to ...and a search data of ...a search key of ...

Alabama/FlorenceFlAl

Arizona/FlorenceFlAr

Alaska/FairbanksFaAl

Alabama/AthensAAl

For example, assuming a database containing sorted duplicate records of U.S. States/U.S
Cities key/data pairs (both as Strings), then the following code fragment can be used to
position the cursor to any record in the database and print its key/data values:

Page 60Getting Started with JE8/18/2004

Getting Records Using the Cursor

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Cursor;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.LockMode;

...

// For this example, hard code the search key and data
String searchKey = "Al";
String searchData = "Fa";

Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity
 ...

 // Open the cursor.
 cursor = myDatabase.openCursor(null, null);

 DatabaseEntry theKey =
 new DatabaseEntry(searchKey.getBytes("UTF-8"));
 DatabaseEntry theData =
 new DatabaseEntry(searchData.getBytes("UTF-8"));

 // Open a cursor using a database handle
 cursor = myDatabase.openCursor(null, null);

 // Perform the search
 OperationStatus retVal = cursor.getSearchBothRange(theKey, theData,
 LockMode.DEFAULT);
 // NOTFOUND is returned if a record cannot be found whose key begins
 // with the search key AND whose data begins with the search data.
 if (retVal == OperationStatus.NOTFOUND) {
 System.out.println(searchKey + "/" + searchData +
 " not matched in database " +
 myDatabase.getDatabaseName());
 } else {
 // Upon completing a search, the key and data DatabaseEntry
 // parameters for getSearchBothRange() are populated with the
 // key/data values of the found record.
 String foundKey = new String(theKey.getData());
 String foundData = new String(theData.getData());
 System.out.println("Found record " + foundKey + "/" + foundData +
 "for search key/data: " + searchKey +

Page 61Getting Started with JE8/18/2004

Getting Records Using the Cursor

 "/" + searchData);
 }

} catch (Exception e) {
 // Exception handling goes here
} finally {
 // Make sure to close the cursor
 cursor.close();
}

Working with Duplicate Records

If your database supports duplicate records, then it can potentially contain multiple
records that share the same key. Using normal database get operations, you can only ever
obtain the first such record in a set of duplicate records. To access subsequent duplicates,
use a cursor. The following Cursor methods are interesting when working with databases
that support duplicate records:

• Cursor.getNext(), Cursor.getPrev()

Shows the next/previous record in the database, regardless of whether it is a duplicate
of the current record. For an example of using these methods, see Getting Records
Using the Cursor (page 57).

• Cursor.getSearchBothRange()

Useful for seeking the cursor to a specific record, regardless of whether it is a duplicate
record. See Searching for Records (page 59) for more information.

• Cursor.getNextNoDup(), Cursor.getPrevNoDup()

Gets the next/previous non-duplicate record in the database. This allows you to skip
over all the duplicates in a set of duplicate records. If you call Cursor.getPrevNoDup(),
then the cursor is positioned to the last record for the previous key in the database.
For example, if you have the following records in your database:

Alabama/Athens
Alabama/Florence
Alaska/Anchorage
Alaska/Fairbanks
Arizona/Avondale
Arizona/Florence

and your cursor is positioned to Alaska/Fairbanks, and you then call
Cursor.getPrevNoDup(), then the cursor is positioned to Alabama/Florence. Similarly,
if you call Cursor.getNextNoDup(), then the cursor is positioned to the first record
corresponding to the next key in the database.

If there is no next/previous key in the database, then OperationStatus.NOTFOUND is
returned, and the cursor is left unchanged.

Page 62Getting Started with JE8/18/2004

Getting Records Using the Cursor

• Cursor.getNextDup(), Cursor.getPrevDup()

Gets the next/previous record that shares the current key. If the cursor is positioned
at the last record in the duplicate set and you call Cursor.getNextDup(), then
OperationStatus.NOTFOUND is returned and the cursor is left unchanged. Likewise, if
you call getPrevDup() and the cursor is positioned at the first record in the duplicate
set, then OperationStatus.NOTFOUND is returned and the cursor is left unchanged.

• Cursor.count()

Returns the total number of records that share the current key.

For example, the following code fragment positions a cursor to a key and, if the key
contains duplicate records, displays all the duplicates. Note that the following code
fragment assumes that the database contains only String objects for the keys and data.

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Cursor;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.LockMode;

...

Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity
 ...

 // Create DatabaseEntry objects
 // searchKey is some String.
 DatabaseEntry theKey = new DatabaseEntry(searchKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 // Open a cursor using a database handle
 cursor = myDatabase.openCursor(null, null);

 // Position the cursor
 // Ignoring the return value for clarity
 OperationStatus retVal = cursor.getSearchKey(theKey, theData,
 LockMode.DEFAULT);

 // Count the number of duplicates. If the count is greater than 1,
 // print the duplicates.
 if (cursor.count() > 1) {
 while (retVal == OperationStatus.SUCCESS) {

Page 63Getting Started with JE8/18/2004

Getting Records Using the Cursor

 String keyString = new String(theKey.getData());
 String dataString = new String(theData.getData());
 System.out.println("Key | Data : " + keyString + " | " +
 dataString + "");

 retVal = cursor.getNextDup(theKey, theData, LockMode.DEFAULT);
 }
 }
} catch (Exception e) {
 // Exception handling goes here
} finally {
 // Make sure to close the cursor
 cursor.close();
}

Putting Records Using Cursors

You can use cursors to put records into the database. JE's behavior when putting records
into the database differs depending on whether the database supports duplicate records.
If duplicates are allowed, its behavior also differs depending on whether a comparator is
provided for the database. (Comparators are described in Using Comparators (page 42)).

Note that when putting records to the database using a cursor, the cursor's position in
the database is left unchanged. For example, suppose your database contains keys A, B,
C. Also, suppose that you position your cursor to record B, and you then put record D to
the database. In this case, your cursor remains positioned at record B even while record
D is inserted into the database in the position determined by the sort order set for the
database.

You can use the following methods to put records to the database:

• Cursor.put()

If the provided key does not exist in the database, then the order that the record is
put into the database is determined by the BTree (key) comparator in use by the
database.

If the provided key already exists in the database, and the database does not support
sorted duplicates, then the existing record data is replaced with the data provided
on this method.

If the provided key already exists in the database, and the database does support
sorted duplicates, then the order that the record is inserted into the database is
determined by the duplicate comparator in use by the database.

• Cursor.putNoDupData()

If the provided key and data already exists in the database, then this method returns
OperationStatus.KEYEXIST.

Page 64Getting Started with JE8/18/2004

Putting Records Using Cursors

If the key does not exist, then the order that the record is put into the database is
determined by the BTree (key) comparator in use by the database.

• Cursor.putNoOverwrite()

If the provided key already exists in the database, then this method returns
OperationStatus.KEYEXIST.

If the key does not exist, then the order that the record is put into the database is
determined by the BTree (key) comparator in use by the database.

For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Database;
import com.sleepycat.je.Cursor;
import com.sleepycat.je.OperationStatus;

...

// Create the data to put into the database
String key1str = "My first string";
String data1str = "My first data";
String key2str = "My second string";
String data2str = "My second data";
String data3str = "My third data";

Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity
 ...

 DatabaseEntry key1 = new DatabaseEntry(key1str.getBytes("UTF-8"));
 DatabaseEntry data1 = new DatabaseEntry(data1str.getBytes("UTF-8"));
 DatabaseEntry key2 = new DatabaseEntry(key2str.getBytes("UTF-8"));
 DatabaseEntry data2 = new DatabaseEntry(data2str.getBytes("UTF-8"));
 DatabaseEntry data3 = new DatabaseEntry(data3str.getBytes("UTF-8"));

 // Open a cursor using a database handle
 cursor = myDatabase.openCursor(null, null);

 // Assuming an empty database.

 OperationStatus retVal = cursor.put(key1, data1); // SUCCESS
 retVal = cursor.put(key2, data2); // SUCCESS
 retVal = cursor.put(key2, data3); // SUCCESS if dups allowed,
 // KEYEXIST if not.

Page 65Getting Started with JE8/18/2004

Putting Records Using Cursors

} catch (Exception e) {
 // Exception handling goes here
} finally {
 // Make sure to close the cursor
 cursor.close();
}

Deleting Records Using Cursors

To delete a record using a cursor, simply position the cursor to the record that you want
to delete and then call Cursor.delete(). Note that after deleting a record, the value of
Cursor.getCurrent() is unchanged until such a time as the cursor is moved again. Also,
if you call Cursor.delete() two or more times in a row without repositioning the cursor,
then all subsequent deletes result in a return value of OperationStatus.KEYEMPTY.

For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Database;
import com.sleepycat.je.Cursor;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.LockMode;

...

Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity
 ...
 // Create DatabaseEntry objects
 // searchKey is some String.
 DatabaseEntry theKey = new DatabaseEntry(searchKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 // Open a cursor using a database handle
 cursor = myDatabase.openCursor(null, null);

 // Position the cursor. Ignoring the return value for clarity
 OperationStatus retVal = cursor.getSearchKey(theKey, theData,
 LockMode.DEFAULT);

 // Count the number of records using the given key. If there is only
 // one, delete that record.
 if (cursor.count() == 1) {
 System.out.println("Deleting " +

Page 66Getting Started with JE8/18/2004

Deleting Records Using Cursors

 new String(theKey.getData()) + "|" +
 new String(theData.getData()));
 cursor.delete();
 }
} catch (Exception e) {
 // Exception handling goes here
} finally {
 // Make sure to close the cursor
 cursor.close();
}

Replacing Records Using Cursors

You replace the data for a database record by using Cursor.putCurrent(). This method
takes just one argument — the data that you want to write to the current location in the
database.

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Cursor;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.LockMode;

...
Cursor cursor = null;
try {
 ...
 // Database and environment open omitted for brevity
 ...
 // Create DatabaseEntry objects
 // searchKey is some String.
 DatabaseEntry theKey = new DatabaseEntry(searchKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 // Open a cursor using a database handle
 cursor = myDatabase.openCursor(null, null);

 // Position the cursor. Ignoring the return value for clarity
 OperationStatus retVal = cursor.getSearchKey(theKey, theData,
 LockMode.DEFAULT);

 // Replacement data
 String replaceStr = "My replacement string";
 DatabaseEntry replacementData =
 new DatabaseEntry(replaceStr.getBytes("UTF-8"));
 cursor.putCurrent(replacementData);
} catch (Exception e) {
 // Exception handling goes here

Page 67Getting Started with JE8/18/2004

Replacing Records Using Cursors

} finally {
 // Make sure to close the cursor
 cursor.close();
}

Note that this method cannot be used if the record that you are trying to replace is a
member of a duplicate set. This is because records must be sorted by their data and
replacement would violate that sort order.

If you want to replace the data contained by a duplicate record, delete the record and
create a new record with the desired key and data.

Cursor Example

In Database Example (page 22) we wrote an application that loaded two Database objects
with vendor and inventory information. In this example, we will use those databases to
display all of the items in the inventory database. As a part of showing any given inventory
item, we will look up the vendor who can provide the item and show the vendor's contact
information.

To do this, we create the ExampleInventoryRead application. This application reads and
displays all inventory records by:

1. Opening the environment and then the inventory, vendor, and class catalog Database
objects. We do this using the MyDbEnv class. See Stored Class Catalog Management
with MyDbEnv (page 48) for a description of this class.

2. Obtaining a cursor from the inventory Database.

3. Steps through the Database, displaying each record as it goes.

4. To display the Inventory record, the custom tuple binding that we created in
InventoryBinding.java (page 47) is used.

5. Database.get() is used to obtain the vendor that corresponds to the inventory item.

6. A serial binding is used to convert the DatabaseEntry returned by the get() to a
Vendor object.

7. The contents of the Vendor object are displayed.

We implemented the Vendor class in Vendor.java (page 46). We implemented the Inventory
class in Inventory.java (page 44).

The full implementation of ExampleInventoryRead can be found in:

JE_HOME/examples/com/sleepycat/examples/je/gettingStarted/examples/
 ExampleInventoryRead.java

where JE_HOME is the location where you placed your JE distribution.

Page 68Getting Started with JE8/18/2004

Cursor Example

Example 5.1. ExampleInventoryRead.java

To begin, we import the necessary classes:

// file ExampleInventoryRead.java
package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Cursor;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.OperationStatus;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.tuple.TupleBinding;

import java.io.File;
import java.io.IOException;

Next we declare our class and set up some global variables. Note a MyDbEnv object is
instantiated here. We can do this because its constructor never throws an exception. See
Database Example (page 22) for its implementation details.

public class ExampleInventoryRead {

 private static File myDbEnvPath =
 new File("/tmp/JEDB");

 // Encapsulates the database environment and databases.
 private static MyDbEnv myDbEnv = new MyDbEnv();

 private static TupleBinding inventoryBinding;
 private static EntryBinding vendorBinding;

Next we create the ExampleInventoryRead.usage() and ExampleInventoryRead.main()
methods. We perform almost all of our exception handling from
ExampleInventoryRead.main(), and so we must catch DatabaseException because the
com.sleepycat.je.* APIs throw them.

 private static void usage() {
 System.out.println("ExampleInventoryRead [-h <env directory>]");
 System.exit(0);
 }

 public static void main(String args[]) {
 ExampleInventoryRead eir = new ExampleInventoryRead();
 try {
 eir.run(args);
 } catch (DatabaseException dbe) {

Page 69Getting Started with JE8/18/2004

Cursor Example

 System.err.println("ExampleInventoryRead: " + dbe.toString());
 dbe.printStackTrace();
 } finally {
 myDbEnv.close();
 }
 System.out.println("All done.");
 }

In ExampleInventoryRead.run(), we call MyDbEnv.setup() to open our environment and
databases. Then we create the bindings that we need for using our data objects with
DatabaseEntry objects.

 private void run(String args[]) throws DatabaseException {
 // Parse the arguments list
 parseArgs(args);

 myDbEnv.setup(myDbEnvPath, // path to the environment home
 true); // is this environment read-only?

 // Setup our bindings.
 inventoryBinding = new InventoryBinding();
 vendorBinding =
 new SerialBinding(myDbEnv.getClassCatalog(),
 Vendor.class);
 showAllInventory();
 }

Now we write the loop that displays the Inventory records. We do this by opening a cursor
on the inventory database and iterating over all its contents, displaying each as we go.

 private void showAllInventory()
 throws DatabaseException {
 // Get a cursor
 Cursor cursor = myDbEnv.getInventoryDB().openCursor(null, null);

 // DatabaseEntry objects used for reading records
 DatabaseEntry foundKey = new DatabaseEntry();
 DatabaseEntry foundData = new DatabaseEntry();

 try { // always want to make sure the cursor gets closed.
 while (cursor.getNext(foundKey, foundData,
 LockMode.DEFAULT) == OperationStatus.SUCCESS) {
 Inventory theInventory =
 (Inventory)inventoryBinding.entryToObject(foundData);
 displayInventoryRecord(foundKey, theInventory);
 }
 } catch (Exception e) {
 System.err.println("Error on inventory cursor:");
 System.err.println(e.toString());
 e.printStackTrace();

Page 70Getting Started with JE8/18/2004

Cursor Example

 } finally {
 cursor.close();
 }

 }

We use ExampleInventoryRead.displayInventoryRecord() to actually show the record.
This method first displays all the relevant information from the retrieved Inventory object.
It then uses the vendor database to retrieve and display the vendor. Because the vendor
database is keyed by vendor name, and because each inventory object contains this key,
it is trivial to retrieve the appropriate vendor record.

 private void displayInventoryRecord(DatabaseEntry theKey,
 Inventory theInventory)
 throws DatabaseException {

 String theSKU = new String(theKey.getData());
 System.out.println(theSKU + ":");
 System.out.println("\t " + theInventory.getItemName());
 System.out.println("\t " + theInventory.getCategory());
 System.out.println("\t " + theInventory.getVendor());
 System.out.println("\t\tNumber in stock: " +
 theInventory.getVendorInventory());
 System.out.println("\t\tPrice per unit: " +
 theInventory.getVendorPrice());
 System.out.println("\t\tContact: ");

 DatabaseEntry searchKey = null;
 try {
 searchKey =
 new DatabaseEntry(theInventory.getVendor().getBytes("UTF-8"));
 } catch (IOException willNeverOccur) {}
 DatabaseEntry foundVendor = new DatabaseEntry();

 if (myDbEnv.getVendorDB().get(null, searchKey, foundVendor,
 LockMode.DEFAULT) != OperationStatus.SUCCESS) {
 System.out.println("Could not find vendor: " +
 theInventory.getVendor() + ".");
 System.exit(-1);
 } else {
 Vendor theVendor =
 (Vendor)vendorBinding.entryToObject(foundVendor);
 System.out.println("\t\t " + theVendor.getAddress());
 System.out.println("\t\t " + theVendor.getCity() + ", " +
 theVendor.getState() + " " + theVendor.getZipcode());
 System.out.println("\t\t Business Phone: " +
 theVendor.getBusinessPhoneNumber());
 System.out.println("\t\t Sales Rep: " +
 theVendor.getRepName());

Page 71Getting Started with JE8/18/2004

Cursor Example

 System.out.println("\t\t " +
 theVendor.getRepPhoneNumber());
 }
 }

The remainder of this application provides a utility method used to parse the command
line options. From the perspective of this document, this is relatively uninteresting. You
can see how this is implemented by looking at:

JE_HOME/examples/com/sleepycat/examples/je/gettingStarted/examples/
 ExampleInventoryRead.java

where JE_HOME is the location where you placed your JE distribution.

Page 72Getting Started with JE8/18/2004

Cursor Example

Chapter 6. Secondary Databases
Usually you find database records by means of the record's key. However, the key that
you use for your record will not always contain the information required to provide you
with rapid access to the data that you want to retrieve. For example, suppose your
Database contains records related to users. The key might be a string that is some unique
identifier for the person, such as a user ID. Each record's data, however, would likely
contain a complex object containing details about people such as names, addresses, phone
numbers, and so forth. While your application may frequently want to query a person by
user ID (that is, by the information stored in the key), it may also on occasion want to
location people by, say, their name.

Rather than iterate through all of the records in your database, examining each in turn
for a given person's name, you create indexes based on names and then just search that
index for the name that you want. You can do this using secondary databases. In JE, the
Database that contains your data is called a primary database. A database that provides
an alternative set of keys to access that data is called a secondary database, and these
are managed using SecondaryDatabase class objects. In a secondary database, the keys
are your alternative (or secondary) index, and the data corresponds to a primary record's
key.

You create a secondary database by creating the database, opening it, and then associating
the database with the primary database (that is, the database for which you are creating
the index). As a part of associating the secondary database to the primary, you must
provide a callback that is used to create the secondary database keys. Typically this
callback creates a key based on data found in the primary database record's key or data.

Once opened, JE manages secondary databases for you. Adding or deleting records in
your primary database causes JE to update the secondary as necessary. Further, changing
a record's data in the primary database may cause JE to modify a record in the secondary,
depending on whether the change forces a modification of a key in the secondary database.

Note that you can not write directly to a secondary database. While methods exist on
SecondaryDatabase and SecondaryCursor that appear to allow this, they in fact always
throw UnsupportedOperationException. To change the data referenced by a
SecondaryDatabase record, modify the primary database instead. The exception to this
rule is that delete operations are allowed on the SecondaryDatabase object. See Deleting
Secondary Database Records (page 80) for more information.

Secondary database records are updated/created by JE only if the
SecondaryKeyCreator.createSecondaryKey() method returns true. If false is returned, then☞
JE will not add the key to the secondary database, and in the event of a record update it
will remove any existing key.

See Implementing Key Creators (page 76) for more information on this interface and method.

When you read a record from a secondary database, JE automatically returns the key and
data from the corresponding record in the primary database.

Page 73Getting Started with JE8/18/2004

Opening and Closing Secondary Databases

You manage secondary database opens and closes using the
Environment.openSecondaryDatabase()method. Just as is the case with primary databases,
you must provide Environment.openSecondaryDatabase() with the database's name and,
optionally, other properties such as whether duplicate records are allowed, or whether
the secondary database can be created on open. In addition, you must also provide:

• A handle to the primary database that this secondary database is indexing. Note that
this means that secondary databases are maintained only for the specified Database
handle. If you open the same Database multiple times for write (such as might occur
when opening a database for read-only and read-write in the same application), then
you should open the SecondaryDatabase for each such Database handle.

• A SecondaryConfig object that provides properties specific to a secondary database.
The most important of these is used to identify the key creator for the database. The
key creator is responsible for generating keys for the secondary database. See Secondary
Database Properties (page 79) for details.

So to open (create) a secondary database, you:

1. Open your primary database.

2. Instantiate your key creator.

3. Instantiate your SecondaryConfig object.

4. Set your key creator object on your SecondaryConfig object.

5. Open your secondary database, specifying your primary database and your
SecondaryConfig at that time.

For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.SecondaryConfig;

import java.io.File;

...

DatabaseConfig myDbConfig = new DatabaseConfig();
SecondaryConfig mySecConfig = new SecondaryConfig();

Page 74Getting Started with JE8/18/2004

Opening and Closing Secondary
Databases

myDbConfig.setAllowCreate(true);
mySecConfig.setAllowCreate(true);
// Duplicates are frequently required for secondary databases.
mySecConfig.setSortedDuplicates(true);

// Open the primary
Environment myEnv = null;
Database myDb = null;
SecondaryDatabase mySecDb = null;
try {
 String dbName = "myPrimaryDatabase";

 myEnv = new Environment(new File("/tmp/JEENV"), null);
 myDb = myEnv.openDatabase(null, dbName, myDbConfig);

 // A fake tuple binding that is not actually implemented anywhere.
 // The tuple binding is dependent on the data in use.
 // Tuple bindings are described earlier in this manual.
 TupleBinding myTupleBinding = new MyTupleBinding();

 // Open the secondary.
 // Key creators are described in the next section.
 FullNameKeyCreator keyCreator = new FullNameKeyCreator(myTupleBinding);

 // Get a secondary object and set the key creator on it.
 mySecConfig.setKeyCreator(keyCreator);

 // Perform the actual open
 String secDbName = "mySecondaryDatabase";
 mySecDb = myEnv.openSecondaryDatabase(null, secDbName, myDb,
 mySecConfig);
} catch (DatabaseException de) {
 // Exception handling goes here ...
}

To close a secondary database, call its close() method. Note that for best results, you
should close all the secondary databases associated with a primary database before closing
the primary.

For example:

try {
 if (mySecDb != null) {
 mySecDb.close();
 }

 if (myDb != null) {
 myDb.close();
 }

Page 75Getting Started with JE8/18/2004

Opening and Closing Secondary
Databases

 if (myEnv != null) {
 myEnv.close();
 }
} catch (DatabaseException dbe) {
 // Exception handling goes here
}

Implementing Key Creators

You must provide every secondary database with a class that creates keys from primary
records. You identify this class using the SecondaryConfig.setKeyCreator() method.

You can create keys using whatever data you want. Typically you will base your key on
some information found in a record's data, but you can also use information found in the
primary record's key. How you build your keys is entirely dependent upon the nature of
the index that you want to maintain.

You implement a key creator by writing a class that implements the SecondaryKeyCreator
interface. This interface requires you to implement the
SecondaryKeyCreator.createSecondaryKey() method.

One thing to remember when implementing this method is that you will need a way to
extract the necessary information from the data DatabaseEntry and/or the key
DatabaseEntry that are provided on calls to this method. If you are using complex objects,
then you are probably using the Bind APIs to perform this conversion. The easiest thing
to do is to instantiate the EntryBinding or TupleBinding that you need to perform the
conversion, and then provide this to your key creator's constructor. The Bind APIs are
introduced in Using the BIND APIs (page 31).

Also, SecondaryKeyCreator.createSecondaryKey() returns a boolean. A return value of
false indicates that no secondary key exists, and therefore no record should be added
to the secondary database for that primary record. If a record already exists in the
secondary database, it is deleted.

For example, suppose your primary database uses the following class for its record data:

package com.sleepycat.examples.je.gettingStarted;

public class PersonData {
 private String userID;
 private String surname;
 private String familiarName;

 public PersonData(String userID, String surname, String familiarName) {
 this.userID = userID;
 this.surname = surname;
 this.familiarName = familiarName;
 }

 public String getUserID() {

Page 76Getting Started with JE8/18/2004

Implementing Key Creators

 return userID;
 }

 public String getSurname() {
 return surname;
 }

 public String getFamiliarName() {
 return familiarName;
 }
}

Also, suppose that you have created a custom tuple binding, PersonDataBinding, that you
use to convert PersonData objects to and from DatabaseEntry objects. (Custom tuple
bindings are described in Custom Tuple Bindings (page 38).)

Finally, suppose you want a secondary database that is keyed based on the person's full
name.

Then in this case you might create a key creator as follows:

package com.sleepycat.examples.je.gettingStarted;

import java.io.IOException;
import com.sleepycat.je.SecondaryKeyCreator;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.bind.tuple.TupleBinding;

public class FullNameKeyCreator implements SecondaryKeyCreator {

 private TupleBinding theBinding;

 public FullNameKeyCreator(TupleBinding theBinding1) {
 theBinding = theBinding1;
 }

 public boolean createSecondaryKey(SecondaryDatabase secDb,
 DatabaseEntry keyEntry,
 DatabaseEntry dataEntry,
 DatabaseEntry resultEntry) {

 // If the dataEntry parameter is null, then we can
 // not create the key
 if (dataEntry == null) {
 return false;
 } else { // Create the key
 try {
 PersonData pd =

Page 77Getting Started with JE8/18/2004

Implementing Key Creators

 (PersonData) theBinding.entryToObject(dataEntry);
 String fullName = pd.getFamiliarName() + " " +
 pd.getSurname();
 resultEntry.setData(fullName.getBytes("UTF-8"));
 } catch (IOException willNeverOccur) {}
 }
 return true;
 }
}

Finally, you use this key creator as follows:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.SecondaryConfig;
import com.sleepycat.bind.tuple.TupleBinding;

...
Environment myEnv = null;
Database myDb = null;
SecondaryDatabase mySecDb = null;
try {
 // Environment and primary database open omitted for brevity
...

 TupleBinding myDataBinding = new MyTupleBinding();
 FullNameKeyCreator fnkc = new FullNameKeyCreator(myDataBinding);

 SecondaryConfig mySecConfig = new SecondaryConfig();
 mySecConfig.setKeyCreator(fnkc);

 //Perform the actual open
 String secDbName = "mySecondaryDatabase";
 mySecDb = myEnv.openSecondaryDatabase(null, secDbName, myDb,
 mySecConfig);
} catch (DatabaseException de) {
 // Exception handling goes here
} finally {
 try {
 if (mySecDb != null) {
 mySecDb.close();
 }

 if (myDb != null) {
 myDb.close();

Page 78Getting Started with JE8/18/2004

Implementing Key Creators

 }

 if (myEnv != null) {
 myEnv.close();
 }
 } catch (DatabaseException dbe) {
 // Exception handling goes here
 }
}

Secondary Database Properties

Secondary databases accept SecondaryConfig objects. SecondaryConfig is a subclass of
DatabaseConfig, so it can manage all of the same properties as does DatabaseConfig. See
Database Properties (page 19) for more information.

In addition to the DatabaseConfig properties, SecondaryConfig also allows you to manage
the following properties:

• SecondaryConfig.setAllowPopulate()

If true, the secondary database can be autopopulated. This means that on open, if
the secondary database is empty then the primary database is read in its entirety and
additions/modifications to the secondary's records occur automatically.

• SecondaryConfig.setKeyCreator()

Identifies the key creator object to be used for secondary key creation. See
Implementing Key Creators (page 76) for more information.

Reading Secondary Databases

Like a primary database, you can read records from your secondary database either by
using the SecondaryDatabase.get() method, or by using a SecondaryCursor. The main
difference between reading secondary and primary databases is that when you read a
secondary database record, the secondary record's data is not returned to you. Instead,
the primary key and data corresponding to the secondary key are returned to you.

For example, assuming your secondary database contains keys related to a person's full
name:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.LockMode;

...
try {

Page 79Getting Started with JE8/18/2004

Secondary Database Properties

 // Omitting all database and environment opens
 ...

 String searchName = "John Doe";
 DatabaseEntry searchKey =
 new DatabaseEntry(searchName.getBytes("UTF-8"));
 DatabaseEntry primaryKey = new DatabaseEntry();
 DatabaseEntry primaryData = new DatabaseEntry();

 // Get the primary key and data for the user 'John Doe'.
 OperationStatus retVal = mySecondaryDatabase.get(null, searchKey,
 primaryKey,
 primaryData,
 LockMode.DEFAULT);
} catch (Exception e) {
 // Exception handling goes here
}

Note that, just like Database.get(), if your secondary database supports duplicate records
then SecondaryDatabase.get() only return the first record found in a matching duplicates
set. If you want to see all the records related to a specific secondary key, then use a
SecondaryCursor (described in Using Secondary Cursors (page 81)).

Deleting Secondary Database Records

In general, you can not modify a secondary database directly. In order to modify a
secondary database, you should modify the primary database and simply allow JE to
manage the secondary modifications for you.

However, as a convenience, you can delete a SecondaryDatabase record directly. Doing
so causes the associated primary key/data pair to be deleted. This in turn causes JE to
delete all SecondaryDatabase records that reference the primary record.

You can use the SecondaryDatabase.delete() method to delete a secondary database
record. Note that if your SecondaryDatabase supports duplicate records, then only the
first record in the matching duplicates set is deleted by this method. To delete all the
duplicate records that use a given key, use a SecondaryCursor. Note that if your contains
duplicate records, then deleting a record from the set of duplicates causes all of the
duplicates to be deleted as well.

SecondaryDatabase.delete() causes the previously describe delete operations to occur only
if:☞
• the SecondaryKeyCreator.createSecondaryKey() method returns true (see Implementing

Key Creators (page 76) for information on this interface and method).

• the primary database is opened for write access.

If either of these conditions are not met, then no delete operations can be performed on
the secondary database.

Page 80Getting Started with JE8/18/2004

Deleting Secondary Database
Records

For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.SecondaryDatabase;

...
try {
 // Omitting all database and environment opens
 ...

 String searchName = "John Doe";
 DatabaseEntry searchKey =
 new DatabaseEntry(searchName.getBytes("UTF-8"));

 // Delete the first secondary record that uses "John Doe" as
 // a key. This causes the primary record referenced by this secondary
 // record to be deleted.
 OperationStatus retVal = mySecondaryDatabase.delete(null, searchKey);
} catch (Exception e) {
 // Exception handling goes here
}

Using Secondary Cursors

Just like cursors on a primary database, you can use secondary cursors to iterate over the
records in a secondary database. Like normal cursors, you can also use secondary cursors
to search for specific records in a database, to seek to the first or last record in the
database, to get the next duplicate record, to get the next non-duplicate record, and so
forth. For a complete description on cursors and their capabilities, see Using
Cursors (page 56).

However, when you use secondary cursors:

• Any data returned is the data contained on the primary database record referenced
by the secondary record.

• SecondaryCursor.getSearchBoth() and related methods do not search based on a
key/data pair. Instead, you search based on a secondary key and a primary key. The
data returned is the primary data that most closely matches the two keys provided
for the search.

For example, suppose you are using the databases, classes, and key creators described
in Implementing Key Creators (page 76). Then the following searches for a person's name
in the secondary database, and deletes all secondary and primary records that use that
name.

Page 81Getting Started with JE8/18/2004

Using Secondary Cursors

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.SecondaryCursor;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.LockMode;

...
try {
 // Database and environment opens omitted for brevity
 ...

 String secondaryName = "John Doe";
 DatabaseEntry secondaryKey =
 new DatabaseEntry(secondaryName.getBytes("UTF-8"));

 DatabaseEntry foundData = new DatabaseEntry();

 SecondaryCursor mySecCursor =
 mySecondaryDatabase.openSecondaryCursor(null, null);

 OperationStatus retVal = mySecCursor.getSearchKey(secondaryKey,
 foundData,
 LockMode.DEFAULT);
 while (retVal == OperationStatus.SUCCESS) {
 mySecCursor.delete();
 retVal = mySecCursor.getNextDup(secondaryKey,
 foundData,
 LockMode.DEFAULT);
 }
} catch (Exception e) {
 // Exception handling goes here
}

Database Joins

If you have two or more secondary databases associated with a primary database, then
you can retrieve primary records based on the union of multiple secondary entries. You
do this using a JoinCursor.

Throughout this document we have presented a class that stores inventory information
on grocery items. That class is fairly simple with a limited number of data members, few
of which would be interesting from a query perspective. But suppose, instead, that we
were storing information on something with many more queryable characteristics, such
as an automobile. In that case, you may be storing information such as color, number of
doors, fuel mileage, automobile type, number of passengers, make, model, and year, to
name just a few.

Page 82Getting Started with JE8/18/2004

Database Joins

In this case, you would still likely be using some unique value to key your primary entries
(in the United States, the automobile's VIN would be ideal for this purpose). You would
then create a class that identifies all the characteristics of the automobiles in your
inventory. You would also have to create some mechanism by which you would move
instances of this class in and out of Java byte arrays. We described the concepts and
mechanisms by which you can perform these activities in Database Records (page 25).

To query this data, you might then create multiple secondary databases, one for each of
the characteristics that you want to query. For example, you might create a secondary
for color, another for number of doors, another for number of passengers, and so forth.
Of course, you will need a unique key creator for each such secondary database. You do
all of this using the concepts and techniques described throughout this chapter.

Once you have created this primary database and all interesting secondaries, what you
have is the ability to retrieve automobile records based on a single characteristic. You
can, for example, find all the automobiles that are red. Or you can find all the automobiles
that have four doors. Or all the automobiles that are minivans.

The next most natural step, then, is to form compound queries, or joins. For example,
you might want to find all the automobiles that are red, and that were built by Toyota,
and that are minivans. You can do this using a JoinCursor class instance.

Using Join Cursors

To use a join cursor:

• Open two or more secondary cursors. These cursors must be obtained from secondary
databases that are associated with the same primary database.

• Position each such cursor to the secondary key value in which you are interested. For
example, to build on the previous description, the cursor for the color database is
positioned to the red records while the cursor for the model database is positioned
to the minivan records, and the cursor for the make database is positioned to Toyota.

• Create an array of secondary cursors, and place in it each of the cursors that are
participating in your join query.

• Obtain a join cursor. You do this using the Database.join() method. You must pass
this method the array of secondary cursors that you opened and positioned in the
previous steps.

• Iterate over the set of matching records using JoinCursor.getNext() until
OperationStatus is not SUCCESS.

• Close your join cursor.

• If you are done with them, close all your secondary cursors.

For example:

Page 83Getting Started with JE8/18/2004

Database Joins

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.JoinCursor;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.OperationStatus;
import com.sleepycat.je.SecondaryCursor;
import com.sleepycat.je.SecondaryDatabase;

...

// Database and secondary database opens omitted for brevity.
// Assume a primary database handle:
// automotiveDB
// Assume 3 secondary database handles:
// automotiveColorDB -- index based on automobile color
// automotiveTypeDB -- index based on automobile type
// automotiveMakeDB -- index based on the manufacturer

// Query strings:
String theColor = "red";
String theType = "minivan";
String theMake = "Toyota";

// Secondary cursors used for the query:
SecondaryCursor colorSecCursor = null;
SecondaryCursor typeSecCursor = null;
SecondaryCursor makeSecCursor = null;

// The join cursor
JoinCursor joinCursor = null;

// These are needed for our queries
DatabaseEntry foundKey = new DatabaseEntry();
DatabaseEntry foundData = new DatabaseEntry();

// All cursor operations are enclosed in a try block to ensure that they
// get closed in the event of an exception.

try {
 // Database entries used for the query:
 DatabaseEntry color = new DatabaseEntry(theColor.getBytes("UTF-8"));
 DatabaseEntry type = new DatabaseEntry(theType.getBytes("UTF-8"));
 DatabaseEntry make = new DatabaseEntry(theMake.getBytes("UTF-8"));

 colorSecCursor = automotiveColorDB.openSecondaryCursor(null, null);
 typeSecCursor = automotiveTypeDB.openSecondaryCursor(null, null);

Page 84Getting Started with JE8/18/2004

Database Joins

 makeSecCursor = automotiveMakeDB.openSecondaryCursor(null, null);

 // Position all our secondary cursors to our query values.
 OperationStatus colorRet =
 colorSecCursor.getSearchKey(color, foundData, LockMode.DEFAULT);
 OperationStatus typeRet =
 typeSecCursor.getSearchKey(type, foundData, LockMode.DEFAULT);
 OperationStatus makeRet =
 makeSecCursor.getSearchKey(make, foundData, LockMode.DEFAULT);

 // If all our searches returned successfully, we can proceed
 if (colorRet == OperationStatus.SUCCESS &&
 typeRet == OperationStatus.SUCCESS &&
 makeRet == OperationStatus.SUCCESS) {

 // Get a secondary cursor array and populate it with our
 // positioned cursors
 SecondaryCursor[] cursorArray = {colorSecCursor,
 typeSecCursor,
 makeSecCursor};

 // Create the join cursor
 joinCursor = automotiveDB.join(cursorArray, null);

 // Now iterate over the results, handling each in turn
 while (joinCursor.getNext(foundKey, foundData, LockMode.DEFAULT) ==
 OperationStatus.SUCCESS) {

 // Do something with the key and data retrieved in
 // foundKey and foundData
 }
 }
} catch (DatabaseException dbe) {
 // Error reporting goes here
} catch (Exception e) {
 // Error reporting goes here
} finally {
 try {
 // Make sure to close out all our cursors
 if (colorSecCursor != null) {
 colorSecCursor.close();
 }
 if (typeSecCursor != null) {
 typeSecCursor.close();
 }
 if (makeSecCursor != null) {
 makeSecCursor.close();
 }
 if (joinCursor != null) {

Page 85Getting Started with JE8/18/2004

Database Joins

 joinCursor.close();
 }
 } catch (DatabaseException dbe) {
 // Error reporting goes here
 }
}

JoinCursor Properties

You can set JoinCursor properties using the JoinConfig class. Currently there is just one
property that you can set:

• JoinConfig.setNoSort()

Specifies whether automatic sorting of input cursors is disabled. The cursors are sorted
from the one that refers to the least number of data items to the one that refers to
the most.

If the data is structured so that cursors with many data items also share many common
elements, higher performance will result from listing those cursors before cursors with
fewer data items. Turning off sorting permits applications to specify cursors in the
proper order given this scenario.

Default value is false (automatic cursor sorting is performed).

For example:

// All database and environments omitted
JoinConfig config = new JoinConfig();
config.setNoSort(true);
JoinCursor joinCursor = myDb.join(cursorArray, config);

Secondary Database Example

In previous chapters in this book, we built applications that load and display several JE
databases. In this example, we will extend those examples to use secondary databases.
Specifically:

• In Stored Class Catalog Management with MyDbEnv (page 48) we built a class that we
can use to open and manage a JE Environment and one or more Database objects. In
Opening Secondary Databases with MyDbEnv (page 88) we will extend that class to
also open and manage a SecondaryDatabase.

• In Cursor Example (page 68) we built an application to display our inventory database
(and related vendor information). In Using Secondary Databases with
ExampleInventoryRead (page 91) we will extend that application to show inventory
records based on the index we cause to be loaded using ExampleDatabasePut.

Before we can use a secondary database, we must implement a class to extract secondary
keys for us. We use ItemNameKeyCreator for this purpose.

Page 86Getting Started with JE8/18/2004

Secondary Database Example

Example 6.1. ItemNameKeyCreator.java

This class assumes the primary database uses Inventory objects for the record data. The
Inventory class is described in Inventory.java (page 44).

In our key creator class, we make use of a custom tuple binding called InventoryBinding.
This class is described in InventoryBinding.java (page 47).

You can find the following class in:

JE_HOME/examples/com/sleepycat/examples/je/gettingStarted/examples/
 ItemNameKeyCreator.java

where JE_HOME is the location where you placed your JE distribution.

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.SecondaryKeyCreator;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.bind.tuple.TupleBinding;

import java.io.IOException;

public class ItemNameKeyCreator implements SecondaryKeyCreator {

 private TupleBinding theBinding;

 // Use the constructor to set the tuple binding
 ItemNameKeyCreator(TupleBinding binding) {
 theBinding = binding;
 }

 // Abstract method that we must implement
 public boolean createSecondaryKey(SecondaryDatabase secDb,
 DatabaseEntry keyEntry, // From the primary
 DatabaseEntry dataEntry, // From the primary
 DatabaseEntry resultEntry) // set the key data on this.
 throws DatabaseException {

 if (dataEntry == null) {
 throw new DatabaseException("Missing primary record data " +
 "in key creator.");
 }

 try {
 // Convert dataEntry to an Inventory object
 Inventory inventoryItem =
 (Inventory) theBinding.entryToObject(dataEntry);

Page 87Getting Started with JE8/18/2004

Secondary Database Example

 // Get the item name and use that as the key
 String theItem = inventoryItem.getItemName();
 resultEntry.setData(theItem.getBytes("UTF-8"));
 } catch (IOException willNeverOccur) {}
 return true;
 }
}

Now that we have a key creator, we can use it to generate keys for a secondary database.
We will now extend MyDbEnv to manage a secondary database, and to use
ItemNameKeyCreator to generate keys for that secondary database.

Opening Secondary Databases with MyDbEnv

In Stored Class Catalog Management with MyDbEnv (page 48) we built MyDbEnv as an
example of a class that encapsulates Environment and Database opens and closes. We will
now extend that class to manage a SecondaryDatabase.

Example 6.2. SecondaryDatabase Management with MyDbEnv

We start by importing two additional classes needed to support secondary databases. We
also add a global variable to use as a handle for our secondary database.

// File MyDbEnv.java

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.SecondaryConfig;
import com.sleepycat.je.Environment;
import com.sleepycat.je.Database;
import com.sleepycat.je.SecondaryDatabase;
import com.sleepycat.je.DatabaseException;

import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.bind.serial.StoredClassCatalog;

import java.io.File;

public class MyDbEnv {

 private Environment myEnv;

 // The databases that our application uses
 private Database vendorDb;
 private Database inventoryDb;
 private Database classCatalogDb;

private SecondaryDatabase itemNameIndexDb;

Page 88Getting Started with JE8/18/2004

Secondary Database Example

 // Needed for object serialization
 private StoredClassCatalog classCatalog;

 // Our constructor does nothing
 public MyDbEnv() {}

Next we update the MyDbEnv.setup() method to open the secondary database. As a part
of this, we have to pass an ItemNameKeyCreator object on the call to open the secondary
database. Also, in order to instantiate ItemNameKeyCreator, we need an InventoryBinding
object (we described this class in InventoryBinding.java (page 47)). We do all this work
together inside of MyDbEnv.setup().

 public void setup(File envHome, boolean readOnly)
 throws DatabaseException {

 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 DatabaseConfig myDbConfig = new DatabaseConfig();

SecondaryConfig mySecConfig = new SecondaryConfig();

 // If the environment is read-only, then
 // make the databases read-only too.
 myEnvConfig.setReadOnly(readOnly);
 myDbConfig.setReadOnly(readOnly);

mySecConfig.setReadOnly(readOnly);

 // If the environment is opened for write, then we want to be
 // able to create the environment and databases if
 // they do not exist.
 myEnvConfig.setAllowCreate(!readOnly);
 myDbConfig.setAllowCreate(!readOnly);

mySecConfig.setAllowCreate(!readOnly);

 ...
 // Environment and database opens omitted for brevity
 ...

// Open the secondary database. We use this to create a
 // secondary index for the inventory database

 // We want to maintain an index for the inventory entries based
 // on the item name. So, instantiate the appropriate key creator
 // and open a secondary database.
 ItemNameKeyCreator keyCreator =
 new ItemNameKeyCreator(new InventoryBinding());

 // Set up the secondary properties
 mySecConfig.setAllowPopulate(true); // Allow autopopulate
 mySecConfig.setKeyCreator(keyCreator);

Page 89Getting Started with JE8/18/2004

Secondary Database Example

 // Need to allow duplicates for our secondary database
 mySecConfig.setSortedDuplicates(true);

 // Now open it
 itemNameIndexDb =
 myEnv.openSecondaryDatabase(
 null,
 "itemNameIndex", // Index name
 inventoryDb, // Primary database handle. This is
 // the db that we're indexing.
 mySecConfig); // The secondary config
 }

Next we need an additional getter method for returning the secondary database.

 public SecondaryDatabase getNameIndexDB() {
 return itemNameIndexDb;
 }

Finally, we need to update the MyDbEnv.close() method to close the new secondary
database. We want to make sure that the secondary is closed before the primaries. While
this is not necessary for this example because our closes are single-threaded, it is still a
good habit to adopt.

 public void close() {
 if (myEnv != null) {
 try {
 //Close the secondary before closing the primaries

itemNameIndexDb.close();
 vendorDb.close();
 inventoryDb.close();
 classCatalogDb.close();

 // Finally, close the environment.
 myEnv.close();
 } catch(DatabaseException dbe) {
 System.err.println("Error closing MyDbEnv: " +
 dbe.toString());
 System.exit(-1);
 }
 }
 }
}

That completes our update to MyDbEnv. You can find the complete class implementation
in:

JE_HOME/examples/com/sleepycat/examples/je/gettingStarted/examples/MyDbEnv.java

where JE_HOME is the location where you placed your JE distribution.

Page 90Getting Started with JE8/18/2004

Secondary Database Example

Because we performed all our secondary database configuration management in MyDbEnv,
we do not need to modify ExampleDatabasePut at all in order to create our secondary
indices. When ExampleDatabasePut calls MyDbEnv.setup(), all of the necessary work is
performed for us.

However, we still need to take advantage of the new secondary indices. We do this by
updating ExampleInventoryRead to allow us to query for an inventory record based on its
name. Remember that the primary key for an inventory record is the item's SKU. The
item's name is contained in the Inventory object that is stored as each record's data in
the inventory database. But our new secondary index now allows us to easily query based
on the item's name.

Using Secondary Databases with ExampleInventoryRead

In the previous section we changed MyDbEnv to cause a secondary database to be built
using inventory item names as the secondary keys. In this section, we will update
ExampleInventoryRead to allow us to query our inventory records based on the item name.
To do this, we will modify ExampleInventoryRead to accept a new command line switch,
-s, whose argument is the name of an inventory item. If the switch is present on the
command line call to ExampleInventoryRead, then the application will use the secondary
database to look up and display all the inventory records with that item name. Note that
we use a SecondaryCursor to seek to the item name key and then display all matching
records.

Remember that you can find the following class in:

JE_HOME/examples/com/sleepycat/examples/je/gettingStarted/examples/
 ExampleInventoryRead.java

where JE_HOME is the location where you placed your JE distribution.

Example 6.3. SecondaryDatabase usage with ExampleInventoryRead

First we need to import a few additional classes in order to use secondary databases and
cursors:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Database;
import com.sleepycat.je.SecondaryCursor;
import com.sleepycat.je.Cursor;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.OperationStatus;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.tuple.TupleBinding;

Page 91Getting Started with JE8/18/2004

Secondary Database Example

import java.io.File;
import java.io.IOException;

Next we add a single global variable:

 public class ExampleInventoryRead {

 private static File myDbEnvPath =
 new File("/tmp/JEDB");

 // Encapsulates the database environment and databases.
 private static MyDbEnv myDbEnv = new MyDbEnv();

 private static TupleBinding inventoryBinding;
 private static EntryBinding vendorBinding;

// The item to locate if the -s switch is used
 private static String locateItem;

Next we update ExampleInventoryRead.run() to check to see if the locateItem global
variable a value. If it does, then we show just those records related to the item name
passed on the -s switch.

 private void run(String args[])
 throws DatabaseException {
 // Parse the arguments list
 parseArgs(args);

 myDbEnv.setup(myDbEnvPath, // path to the environment home
 true); // is this environment read-only?

 // Setup our bindings.
 inventoryBinding = new InventoryBinding();
 vendorBinding =
 new SerialBinding(myDbEnv.getClassCatalog(),
 Vendor.class);

if (locateItem != null) {
 showItem();
 } else {
 showAllInventory();

}
 }

Finally, we need to implement ExampleInventoryRead.showItem(). This is a fairly simple
method that opens a secondary cursor, and then displays every primary record that is
related to the secondary key identified by the locateItem global variable.

Page 92Getting Started with JE8/18/2004

Secondary Database Example

 private void showItem() throws DatabaseException {
 SecondaryCursor secCursor = null;
 try {
 // searchKey is the key that we want to find in the
 // secondary db.
 DatabaseEntry searchKey =
 new DatabaseEntry(locateItem.getBytes("UTF-8"));

 // foundKey and foundData are populated from the primary
 // entry that is associated with the secondary db key.
 DatabaseEntry foundKey = new DatabaseEntry();
 DatabaseEntry foundData = new DatabaseEntry();

 // open a secondary cursor
 secCursor =
 myDbEnv.getNameIndexDB().openSecondaryCursor(null, null);

 // Search for the secondary database entry.
 OperationStatus retVal =
 secCursor.getSearchKey(searchKey, foundKey,
 foundData, LockMode.DEFAULT);

 // Display the entry, if one is found. Repeat until no more
 // secondary duplicate entries are found
 while(retVal == OperationStatus.SUCCESS) {
 Inventory theInventory =
 (Inventory)inventoryBinding.entryToObject(foundData);
 displayInventoryRecord(foundKey, theInventory);
 retVal = secCursor.getNextDup(searchKey, foundKey,
 foundData, LockMode.DEFAULT);
 }
 } catch (Exception e) {
 System.err.println("Error on inventory secondary cursor:");
 System.err.println(e.toString());
 e.printStackTrace();
 } finally {
 if (secCursor != null) {
 secCursor.close();
 }
 }
 }

The only other thing left to do is to update ExampleInventoryRead.parseArgs() to support
the -s command line switch. To see how this is done, see:

JE_HOME/examples/com/sleepycat/examples/je/gettingStarted/examples/
ExampleInventoryRead.java

where JE_HOME is the location where you placed your JE distribution.

Page 93Getting Started with JE8/18/2004

Secondary Database Example

Chapter 7. Transactions
Transactions cause one or more database operations to be treated as a single unit of
work. Either all of the operations succeed, or all of them fail. To use transactions, you
specify when a transaction begins and ends, and you specify what operations are performed
within the transaction. You also define when a transaction should abort (fail) in your error
handling code.

JE offers full ACID coverage through its transactions. That is, JE's transactions offer:

• Atomicity.

Multiple database operations (most importantly, write operations) are treated as a
single unit of work. In the event that you abort a transaction while it is in progress,
then all write operations performed during the transaction are discarded. In this event,
your database is left in the state it was in before the transaction began, regardless of
the number or type of write operations that you may have performed during the course
of the transaction.

Note that JE transactions can span one one or more Database handles. However,
transactions can not span Environment handles.

• Consistency.

Your JE databases will never see a partially completed transactions, no matter what
happens to your application. This is true even if your application crashes while there
are in-progress transactions. If the application or system fails, then either all of the
database changes appear when the application next runs, or none of them appear.

• Isolation.

While a transaction is in progress, your databases will appear as if there are no other
operations occurring outside of the transaction. That is, operations wrapped inside a
transaction will always have a clean and consistent view of your databases. They never
have to contend with partially updated records.

Further, by default database read activity will return only that data that has been
committed to databases. Data that has changed as the result of an on-going transaction
are hidden from readers external to the transaction. Note that you can override this
behavior by configuring your cursors to perform dirty reads.

• Durability.

Once committed, to your databases your modifications will persist even in the event
of an application or system failure.

In general you should use transactions whenever you are performing write operations.
However, transaction usage does result in a performance penalty. Applications that are
IO-bound might want to avoid them, especially if your databases are easily recreated
such as what might occur if you are using JE as a non-persistent caching mechanism.

Page 94Getting Started with JE8/18/2004

Enabling and Starting Transactions

Before you can transactionally protect your database modifications, you must:

1. Enable transactions for your Environment. You do this using the
EnvironmentConfig.setTransactional() method, or through the
je.env.isTransactional je.properties parameter.

2. Enable transactions for your Database. You do this using the
DatabaseConfig.setTransactional() method.

3. Open your Database from within a transaction. For best results, you should commit
the transaction used to open your database as soon as the open operation completes.
Using autocommit is an excellent way of ensuring that this happens (see below).

Once you have enabled transactions for a given environment and database, then all
database modifications performed for that Database handle must be transactionally
protected. Similarly, if you open an environment or database without enabling transactions,
then you can not use transactions to protect modifications performed for that Environment
or Databasehandle. Finally, read operations never require transactional protection
regardless of whether transactions are enabled for the environment. However, remember
that you do suffer at least a small performance penalty when using transactions. If possible,
you should avoid transactionally protecting read-only operations.

You start a transaction using the Environment.beginTransaction() method. You can
commit a transaction using the Transaction.commit() method.

For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.Transaction;

import java.io.File;

...

Database myDb = null;
Environment myEnv = null;
try {
 EnvironmentConfig myEnvConfig = new EnvironmentConfig();
 DatabaseConfig myDbConfig = new DatabaseConfig();
 myEnvConfig.setTransactional(true);
 myDbConfig.setTransactional(true);

Page 95Getting Started with JE8/18/2004

Enabling and Starting
Transactions

 myEnv = new Environment(new File("/my/env/home"),
 myEnvConfig);

 Transaction txn = myEnv.beginTransaction(null, null);
 myDb = myEnv.openDatabase(txn, "myDbName", myDbConfig);
 txn.commit();
} catch (DatabaseException de) {
 // Exception handling goes here
}

Committing and Aborting Transactions

When you have completed all database operations that you want to perform from within
a transaction, you must commit the transaction. Committing the transaction causes the
database modifications to be permanently written to the database. In most cases,
committing the transaction also causes the database modifications to be flushed to stable
storage.

Once a transaction has been committed, you can no longer use that same transaction
handle for subsequent database operations.

Use one of the following methods to commit a transaction:

• Transaction.commit()

Ends the transaction and writes the modifications to your database(s). The database
changes may or may not be flushed to stable storage depending on the transaction
commit behavior configured for your environment. By default, the changes are flushed
to stable storage. This behavior is configurable using
EnvironmentMutableConfig.setTxnNoSync().

• Transaction.commitSync()

Ends the transaction and writes the modifications to your database(s). The database
modifications are flushed to stable storage.

• Transaction.commitNoSync()

Ends the transaction and writes the modifications to your database(s). The database
modifications are not necessarily flushed to stable storage. This method is faster than
Transaction.commit(), but also more dangerous. Use of this method might mean losing
the durability aspect of the transactional subsystem, as an application or system crash
could cause the loss of any modifications held only in memory.

Aborting Transactions

If for some reason you do not want to commit a transaction, then call Transaction.abort().
Aborting the transaction causes JE to discard all modifications made to the database
during the course of the transaction.

Page 96Getting Started with JE8/18/2004

Committing and Aborting
Transactions

Most frequently you will want to call Transaction.abort() as a part of your exception
handling activity. The circumstances that require you to call Transaction.abort() will
vary depending on your application's activities. Certainly any time your application catches
a DatabaseException, the transaction should probably be aborted.

Note that any time your application receives a DeadlockException, you must close any
cursors opened for the transaction, abort the transaction and, optionally, start over again.
For more information, see Transactions and Deadlocks (page 103).

For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.Transaction;

...

Database myDb = null;
Environment myEnv = null;
Transaction txn = null;

try {
 // Environment open omitted ...
 txn = myEnv.beginTransaction(null, null);
 myDb = myEnv.openDatabase(txn, "myDbName", null);
 txn.commit();
} catch (DatabaseException dbe) {
 if (txn != null) {
 try {
 txn.abort();
 } catch (DatabaseException txnError) {
 // Error reporting goes here
 }
 }
}

Using Autocommit

If your application does not require atomicity for multiple database operations, then you
can use JE's autocommit feature to transactionally protect your database operations.
Essentially, autocommit is a convenience feature that causes JE to automatically use a
transaction for those write operations that do not provide a transaction handle.

To use autocommit:

1. Open your environment and database such that they support transactions. See Enabling
and Starting Transactions (page 95) for a description of how to do this.

Page 97Getting Started with JE8/18/2004

Committing and Aborting
Transactions

2. Do not provide a transaction handle for the database put or delete operation. Instead,
simply specify null for the transaction parameter. If you are using a cursor, do not
provide a transaction handle when you open the cursor.

Note that when you use autocommit, there is no opportunity for you to explicitly abort
the operation. JE, however, will abort the operation if it encounters an error during the
write.

For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.Database;

import java.io.File;

...

// Open the environment and database such that transactions
// are supported
EnvironmentConfig myEnvConfig = new EnvironmentConfig();
DatabaseConfig myDbConfig = new DatabaseConfig();
myEnvConfig.setTransactional(true);
myDbConfig.setTransactional(true);

Database myDb = null;
Environment myEnv = null;

try {
 myEnv =
 new Environment(new File("/my/env/home"), myEnvConfig);

 // This database is opened from within a transaction using autocommit
 // because the database configuration specifies transactions.
 // As a result follow-on database operations can use transactions.
 myDb = myEnv.openDatabase(null, "myDbName", myDbConfig);

 String aKey = "myFirstKey";
 String aData = "myFirstData";

 DatabaseEntry theKey = new DatabaseEntry(aKey.getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry(aData.getBytes("UTF-8"));

 // This database put is also transactionally protected
 // using autocommit.
 myDb.put(null, theKey, theData);

Page 98Getting Started with JE8/18/2004

Committing and Aborting
Transactions

} catch (Exception e) {
 // Exception handling goes here.
}

Transactional Cursors

You transactionally protect a cursor by opening it using a transaction. All operations
performed with that cursor are subsequently performed within the scope of that
transaction. You must be sure to close the cursor before committing the transaction.

For example:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.Cursor;
import com.sleepycat.je.Transaction;

...

Cursor cursor = null;
Database myDb = null;
Environment myEnv = null;
Transaction txn = null;

try {
 ...
 // Environment and database opens omitted for brevity
 ...
 DatabaseEntry key1 =
 new DatabaseEntry((new String("key1")).getBytes("UTF-8"));
 DatabaseEntry data1 =
 new DatabaseEntry((new String("data1")).getBytes("UTF-8"));
 DatabaseEntry key2 =
 new DatabaseEntry((new String("key2")).getBytes("UTF-8"));
 DatabaseEntry data2 =
 new DatabaseEntry((new String("data2")).getBytes("UTF-8"));

 // Start a transaction
 txn = myEnv.beginTransaction(null, null);
 // Open a cursor using the transaction
 cursor = myDb.openCursor(txn, null);

 // Put the data. This is transactionally protected
 cursor.put(key1, data1);
 cursor.put(key2, data2);

Page 99Getting Started with JE8/18/2004

Transactional Cursors

} catch (Exception e) {
 // If an error occurs, close the cursor and abort.
 // None of the write operations performed by this cursor
 // will appear in the Database.
 System.err.println("Error putting data: " + e.toString());
 try {
 if (cursor != null) {
 cursor.close();
 cursor = null;
 }

 if (txn != null) {
 txn.abort();
 txn = null;
 }
 } catch (DatabaseException dbe) {
 // Error reporting goes here
 }
} finally {
 try {
 // Close the cursor and then commit the transaction
 if (cursor != null) {
 cursor.close();
 }

 if (txn != null) {
 txn.commit();
 }
 } catch (DatabaseException dbe) {
 // Error reporting goes here
 }
}

Configuring Dirty Reads

You can configure JE to use degree 1 isolation (see Transactions and Concurrency (page 103))
by configuring it to perform dirty reads. Dirty reads allows a reader to see modifications
made but not committed by a transaction in which the read is not being performed.

Dirty reads can improve your application's performance by avoiding lock contention
between the reader and other threads that are writing to the database. However, they
are also dangerous because there is a possibility that the data returned as a part of a
dirty read will disappear as the result of an abort on the part of the transaction who is
holding the write lock.

Concurrency and transactions are described in more detail in Transactions and
Concurrency (page 103).

Page 100Getting Started with JE8/18/2004

Configuring Dirty Reads

You can configure the default dirty read behavior for a transaction using
TransactionConfig.setDirtyRead():

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Environment;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.Transaction;
import com.sleepycat.je.TransactionConfig;

...

Database myDb = null;
Environment myEnv = null;
Transaction txn = null;

try {

 // Environment and database open omitted

 ...

 TransactionConfig tc = new TransactionConfig();
 tc.setDirtyRead(true); // Dirty reads will be performed
 txn = myEnv.beginTransaction(null, tc);

 DatabaseEntry theKey =
 new DatabaseEntry((new String("theKey")).getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 myDb.get(txn, theKey, theData, LockMode.DEFAULT);
} catch (Exception e) {
 // Exception handling goes here
}

You can also configure the dirty read behavior on a read-by-read basis by specifying
LockMode.DIRTY_READ:

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Environment;
import com.sleepycat.je.LockMode;
import com.sleepycat.je.Transaction;

...

Page 101Getting Started with JE8/18/2004

Configuring Dirty Reads

Database myDb = null;
Environment myEnv = null;
Transaction txn = null;

try {

 // Environment and database open omitted

 ...

 txn = myEnv.beginTransaction(null, null);

 DatabaseEntry theKey =
 new DatabaseEntry((new String("theKey")).getBytes("UTF-8"));
 DatabaseEntry theData = new DatabaseEntry();

 myDb.get(txn, theKey, theData, LockMode.DIRTY_READ);
} catch (Exception e) {
 // Exception handling goes here
}

When using cursors, you can specify the dirty read behavior as described above, or you
can specify it using CursorConfig.setDirtyRead():

package com.sleepycat.examples.je.gettingStarted;

import com.sleepycat.je.Database;
import com.sleepycat.je.Environment;
import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.Cursor;
import com.sleepycat.je.CursorConfig;
import com.sleepycat.je.Transaction;
import com.sleepycat.je.LockMode;

...

Cursor cursor = null;
Database myDb = null;
Environment myEnv = null;
Transaction txn = null;

try {

 // Environment and database open omitted

 ...

 DatabaseEntry theKey =
 new DatabaseEntry((new String("theKey")).getBytes("UTF-8"));

Page 102Getting Started with JE8/18/2004

Configuring Dirty Reads

 DatabaseEntry theData = new DatabaseEntry();

 // Start a transaction
 txn = myEnv.beginTransaction(null, null);

 // Open a cursor using the transaction
 CursorConfig cc = new CursorConfig();
 cc.setDirtyRead(true); // Perform dirty reads
 cursor = myDb.openCursor(txn, cc);

 cursor.getSearchKey(theKey, theData, LockMode.DEFAULT);
} catch (Exception e) {
 // Exception handling goes here
}

Transactions and Concurrency

Multi-threaded transactional systems measure the protection that they offer to the data
accessed by their threads of control in terms of degrees of isolation. In general, a
transaction system can support up to 4 degrees of isolation. Briefly:

• Degree 0 isolation means that one transaction will never overwrite another transaction's
dirty data. Dirty data is data that a transaction has modified but not yet committed
to the underlying data store.

• Degree 1 isolation means that degree 0 is observed, plus a transaction is guaranteed
to not commit any modifications until the transaction ends.

• Degree 2 isolation means that degree 1 is observed, plus no transaction will ever see
data dirtied by another transaction.

• Degree 3 isolation means that degree 2 is observed, plus the data read by a transaction,
T, will never be dirtied by another transaction before T completes.

By default, JE transactions offer degree 3 isolation. You can optionally configure JE to
use degree 1 isolation by configuring JE to to perform dirty reads. See Configuring Dirty
Reads (page 100) for more information.

Transactions and Deadlocks

Transactions acquire locks on database records throughout their lifetimes, and they do
not release those locks until commit or abort time. This is how JE provides isolation for
its transactions. When a transaction locks a record for write access, no other transaction
can access that record for write (and by default for read) until the lock is released. When
a record is locked for read access, no other transaction can lock it for write access.

The result of this locking activity is that two threads of control can deadlock – that is,
attempt to simultaneously lock the same record. When this happens, a DeadlockException
is thrown for one of the deadlocked threads.

Page 103Getting Started with JE8/18/2004

Transactions and Concurrency

When a thread catches a DeadlockException, then that thread must release its locks in
order to resolve the deadlock. The thread releases its locks by closing any cursors involved
in the transaction and then aborting the transaction. The thread may then optionally
begin a new transaction and retry the operation that it just aborted.

Performance Considerations

Any number of operations on any number of Database handles can be included in a single
transaction. When many operations are grouped together in a transaction, then that is
considered to be a complex transaction. There is a trade-off between the number of
operations included in a complex transaction and your application's throughput as well
as the possibility of deadlock.

Because transactions acquire locks throughout their lifetimes, the likelihood of a deadlock
occurring increases as the number of operations performed by a transaction increases.
The likelihood of deadlock occurring also increases as the number of threads performing
database operations increases. If your transactions become complex enough and the
number of threads operating on your databases increases high enough, your application
can find itself spending more time resolving deadlocks that it does performing useful
work.

JE applications will only see deadlocks when multiple transactions attempt simultaneous
access of the same database records. JE performs record-level locking only. You can have☞
multiple simultaneous complex transactions without any deadlock concerns so long as the
number of records simultaneously accessed by those transactions is small.

On the other hand, a transaction commit usually results in synchronous disk I/O (this is
not true for Transaction.commitNoSync() – see Committing and Aborting
Transactions (page 96) for details). As a result, having longer-lived transactions or more
operations in a transaction can improve your application's performance by avoiding disk
I/O.

Obviously you will have to study the workload expected of your application in order to
decide on how to best resolve the trade-off between reduced disk I/O and the potential
for deadlocks. Consider the following as you study this problem:

• If you do decide to use complex transactions, then try to avoid running multiple
complex transactions that perform simultaneous access of the same database records.
Instead, try to organize your transactions so that they do not overlap in the records
that they want to access. If this is not feasible, then limit yourself to a small number
of threads running complex transactions so as to avoid deadlock problems. How many
threads you can have accessing overlapping sets of database records will depend on
the length and complexity of your transactions. Ultimately, only performance and
stress testing can help you determine the mixture of numbers of threads versus
transactional complexity that is appropriate for your application.

• Try to access your Database handles, and the records in your databases, in the same
order for all transactions. Accessing databases and records in different order in multiple
transactions greatly increases the likelihood of deadlocks.

Page 104Getting Started with JE8/18/2004

Transactions and Concurrency

• Most likely your application will have at least one (and probably many) threads that
perform read-only operations. You should avoid using transactions for operations that
just perform reads as transactionally protecting read-only operations can cause
performance problems. For example, a transactionally protected cursor walking your
database will eventually lock all of the records in your database. In this situation,
your other threads have to wait until the read-only transaction completes before they
can obtain a lock for their own operations.

Note, however, that read-only operations occurring in an application with one or more
threads performing writes should be prepared to catch and respond to deadlock
exceptions. By default read-only operations lock records that they are reading for the
duration of that read. The exception to this is if you are performing dirty reads. See
Configuring Dirty Reads (page 100) for more information.

Also, if your read operations are not transactionally protected, then there is no
guarantee as to the stability of the records read in the database. Repeatedly reading
the same record can cause different data to return if there are other threads writing
and committing changes to the database. If your read operations require stability for
their reads, then you must transactionally protect them.

Transactions Example

In Secondary Database Example (page 86) we updated the MyDbEnv example class to support
secondary databases. We will now update it to support opening environments and databases
such that transactions can be used. We will then update ExampleDatabasePut to
transactionally protect its database writes.

Note that we will not update ExampleInventoryRead in this example. That application
only performs single-threaded reads and there is nothing to be gained by transactionally
protecting those reads.

Example 7.1. Transaction Management with MyDbEnv

All of updates to MyDbEnv are performed in the MyDbEnv.setup(). What we do is determine
if the environment is open for write access. If it is, then we open our databases to support
transactions. Doing this is required if transactions are to be used with them. Once the
databases are configured to supported transactions, then autocommit is automatically
used to perform the database opens from within a transactions. This, in turn, allows
subsequent operations performed on those databases to use transactions.

Note that we could have chosen to open all our databases with a single transaction, but
autocommit is the easiest way for us to enable transactional usage of our databases.

In other words, the only thing we have to do here is enable transactions for our
environment, and then we enable transactions for our databases.

 public void setup(File envHome, boolean readOnly)
 throws DatabaseException {

 EnvironmentConfig myEnvConfig = new EnvironmentConfig();

Page 105Getting Started with JE8/18/2004

Transactions Example

 DatabaseConfig myDbConfig = new DatabaseConfig();
 SecondaryConfig mySecConfig = new SecondaryConfig();

 // If the environment is read-only, then
 // make the databases read-only too.
 myEnvConfig.setReadOnly(readOnly);
 myDbConfig.setReadOnly(readOnly);
 mySecConfig.setReadOnly(readOnly);

 // If the environment is opened for write, then we want to be
 // able to create the environment and databases if
 // they do not exist.
 myEnvConfig.setAllowCreate(!readOnly);
 myDbConfig.setAllowCreate(!readOnly);
 mySecConfig.setAllowCreate(!readOnly);

// Allow transactions if we are writing to the database
 myEnvConfig.setTransactional(!readOnly);
 myDbConfig.setTransactional(!readOnly);
 mySecConfig.setTransactional(!readOnly);

This completes our update to MyDbEnv. Again, you can see the complete implementation
for this class:

JE_HOME/examples/com/sleepycat/examples/je/gettingStarted/examples/
 MyDbEnv.java

where JE_HOME is the location where you placed your JE distribution.

Next we want to take advantage of transactions when we load our inventory and vendor
databases. To do this, we have to modify ExampleDatabasePut to use transactions with
our database puts.

Example 7.2. Using Transactions in ExampleDatabasePut

We start by importing the requisite new class:

package com.sleepycat.examples.je.gettingStarted;

import java.io.File;
import java.io.FileInputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.FileNotFoundException;
import java.util.ArrayList;

import com.sleepycat.je.DatabaseEntry;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Transaction;

Page 106Getting Started with JE8/18/2004

Transactions Example

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.tuple.TupleBinding;

In this example, we choose to allow ExampleDatabasePut.loadVendorsDb() to use
autocommit to transactionally protect each record that we put into the database. What
this means is, we do not actually have to change ExampleDatabasePut.loadVendorsDb()
because the simple action of enabling transactions for that database is enough to cause
autocommit to be used for all modifications to the database that do not explicitly provide
a Transaction object.

For our inventory data, however, we want to load everything inside a single transaction.
This means we need to explicitly commit the transaction when we get done loading our
data, we also have to explicitly abort the transaction in the event of an error:

 private void loadInventoryDb()
 throws DatabaseException {

 // loadFile opens a flat-text file that contains our data
 // and loads it into a list for us to work with. The integer
 // parameter represents the number of fields expected in the
 // file.
 ArrayList inventoryArray = loadFile(inventoryFile, 6);

 // Now load the data into the database. The item's sku is the
 // key, and the data is an Inventory class object.

 // Need a tuple binding for the Inventory class.
 TupleBinding inventoryBinding = new InventoryBinding();

// Start a transaction. All inventory items get loaded using a
 // single transaction.
 Transaction txn = myDbEnv.getEnv().beginTransaction(null, null);

 for (int i = 0; i < inventoryArray.size(); i++) {
 String[] sArray = (String[])inventoryArray.get(i);
 String sku = sArray[1];
 theKey = new DatabaseEntry(sku.getBytes("UTF-8"));

 Inventory theInventory = new Inventory();
 theInventory.setItemName(sArray[0]);
 theInventory.setSku(sArray[1]);
 theInventory.setVendorPrice((new Float(sArray[2])).floatValue());
 theInventory.setVendorInventory(
 (new Integer(sArray[3])).intValue());
 theInventory.setCategory(sArray[4]);
 theInventory.setVendor(sArray[5]);

 // Place the Vendor object on the DatabaseEntry object using our

Page 107Getting Started with JE8/18/2004

Transactions Example

 // the tuple binding we implemented in InventoryBinding.java
 inventoryBinding.objectToEntry(theInventory, theData);

 // Put it in the database. Note that this causes our
 // secondary database to be automatically updated for us.
 try {

myDbEnv.getInventoryDB().put(txn, theKey, theData);
 } catch (DatabaseException dbe) {
 System.out.println("Error putting entry " + sku.getBytes());
 txn.abort();
 throw dbe;
 }
 }
 // Commit the transaction. The data is now safely written to the
 // inventory database.

txn.commit();
 }

Page 108Getting Started with JE8/18/2004

Transactions Example

Chapter 8. Backing up and Restoring
Berkeley DB Java Edition Applications

Fundamentally, you backup your databases by copying JE log files off to a safe storage
location. To restore your database from a backup, you copy those files to an appropriate
directory on disk and reopen your JE application

Beyond these simple activities, there are some differing backup strategies that you may
want to consider. These topics are described in this chapter.

Databases and Log Files

Before describing JE backup and restore, it is necessary to describe some of JE's internal
workings. In particular, a high-level understanding of JE log files and the in-memory cache
is required. You also need to understand a little about how JE is using its internal data
structures in order to understand why checkpoints and/or syncs are required.

If you are an impatient reader, then you can skip this section so long as you understand
that:

• JE databases are stored in log files contained in your environment directory.

• Every time a JE environment is opened, normal recovery is run.

• For transactional applications, checkpoints should be run in order to bound normal
recovery time. Checkpoints are normally run by the checkpointer thread. See The
Checkpointer Thread (page 117) for information on managing this thread.

• For non-transactional applications, environment syncs must be performed if you want
to guarantee the persistence of your database modifications. Environment syncs are
manually performed by the application developer. See Data Persistence (page 30) for
details.

Log File Overview

Your JE database is stored on-disk in a series of log files. JE uses no-overwrite log files,
which is to say that JE only ever appends data to the end of a log file. It will never delete
or modify an existing log file record.

JE log files are named NNNNNNNN.jdb where NNNNNNNN is an 8-digit hexadecimal number
that increases by 1 (starting from 00000000) for each log file written to disk.

JE creates a new log file whenever the current log file has reached a pre-configured size
(10000000 bytes by default). This size is controlled by the je.log.fileMax properties
parameter. See The JE Properties File (page 115) for information on setting JE properties.

Page 109Getting Started with JE8/18/2004

Cleaning the Log Files

Because JE uses no-overwrite log files, the logs must be compacted or cleaned so as to
conserve disk space.

JE uses the cleaner background thread to perform this task. When it runs, the cleaner
thread picks a log file (generally the earliest active one) and scans each log record in it.
If the record is no longer active in the database tree, the cleaner does nothing. If the
record is still active in the tree, then the cleaner copies the record forward to a newer
log file.

Once a log file is no longer needed (that is, it no longer contains active records), then
the cleaner thread deletes the log file for you. Or, optionally, the cleaner thread can
simply rename the discarded log file with a del suffix.

JE uses a minimum log utilization property to determine how much cleaning to perform.
The log files contain both obsolete and utilized records. Obsolete records are records
that are no longer in use, either because they have been modified or because they have
been deleted. Utilized records are those records that are currently in use. The
je.cleaner.minUtilization property identifies the minimum percentage of log space
that must be used by utilized records. If this minimum percentage is not met, then obsolete
records are deleted until the minimum percentage is met.

For information on managing the cleaner thread, see The Cleaner Thread (page 116).

The BTree

JE databases are internally organized as a BTree. In order to operate, JE requires the
complete BTree be available to it.

When database records are created, modified, or deleted, the modifications are
represented in the BTree's leaf nodes. Beyond leaf node changes, database record
modifications can also cause changes to other BTree nodes and structures.

Database Modifications

When a write operation is performed in JE, the modified data is written to leaf nodes
contained in the in-memory cache. If your JE writes are performed without transactions,
then the in-memory cache is the only location guaranteed to receive a database
modification without further intervention on the part of the application developer.

If your writes are transactionally protected, then every time a transaction is committed
the leaf nodes (and only the leaf nodes) modified by that transaction are written to the
JE log files on disk.

Page 110Getting Started with JE8/18/2004

Databases and Log Files

Syncs

As stated above, database modifications performed without a transaction are guaranteed
to only ever exist in the in-memory cache. For some class of applications, this is ideal.
By not writing these modifications to the on-disk logs, the application can avoid most of
the overhead caused by disk I/O.

However, if the application requires its data to persist across process runs, then the
developer must manually sync database modifications to the on-disk log files (again, this
is only necessary for non-transactional applications). This is done using Environment.sync().

Note that syncing the cache causes JE to write all modified objects in the cache to disk.
This is probably the most expensive operation that you can perform in JE. Even so, if your
application requires database data to be persistent across application runs, then the
cache must be synced at least before the environment is closed.

Normal Recovery

Because of the way that JE organizes and manages its BTrees, all it needs is leaf nodes
in order to recreate the rest of the BTree. Essentially, this is what normal recovery is
doing – recreating any missing parts of the internal BTree from leaf node information
stored in the log files.

Checkpoints

Recreating the BTree (that is, running normal recovery) can become expensive if over
time all that is ever written to disk is BTree leaf nodes. So in order to limit the time
required for normal recovery, JE runs checkpoints. Checkpoints write to your log files all
the internal BTree nodes and structures modified as a part of transactional operations.
This means that your log files contain a complete BTree up to the moment in time when
the checkpoint was run. This means that normal recovery only needs to recreate the
portion of the BTree that has been modified since the time of the last checkpoint.

Checkpoints write more information to disk than do transaction commits, and so they are
more expensive from a disk I/O perspective. Therefore, one of the performance tuning
activities that you should perform is to determine how frequently to run checkpoints.
You have to balance the cost of the checkpoints against the time it will take your
application to restart due to the cost of running normal recovery.

Checkpoints are normally performed by the checkpointer background thread. See The
Checkpointer Thread (page 117) for information on managing this thread.

Page 111Getting Started with JE8/18/2004

Databases and Log Files

Performing Backups

This section describes how to backup your JE database(s) such that catastrophic recovery
is possible.

To backup your database, you can either take a complete backup or a partial backup. A
partial backup is performed while database write operations are in progress.

Do not confuse complete and partial backups with the concept of a full and incremental
backup. Both a complete and a partial backup are full backups – you back up the entire
database. The only difference between them is how much of the contents of the in-memory
cache are contained in them. On the other hand, an incremental backup is a backup of
just those log files modified or created since the time of the last backup. Most backup
software is capable of performing both full and incremental backups for you.

Performing a Partial Backup

To perform a partial backup of your JE databases, simply copy all log files (*.jdb files)
from your environment directory to your archival location or backup media. You do not
have to stop any database operations in order to do this.

Note that if your application is not using transactions, then any modifications made to
the database since the time of the last environment sync are not guaranteed to be
contained in these log files. In this case, you may want to consider running a complete
backup in order to guarantee the availability of all modifications made to your database.

Performing a Complete Backup

A complete backup guarantees that you have captured the database in its entirety,
including all contents of your in-memory cache, at the moment that the backup was
taken. To do this, you must make sure that no write operations are in progress and all
database modifications have been written to your log files on disk. To obtain a complete
backup:

1. Stop writing your databases. If you are using transactions, commit or abort all on-going
transactions.

2. If you are not using transactions, run Environment.sync() so as to ensure that all
database modifications are written to disk.

3. If you are using transactions, then optionally run a checkpoint. Doing this can shorten
the time required to restore your database from this back up.

4. Copy all log files (*.jdb) from your environment directory to your archival location
or backup media.

You can now resume normal database operations.

Page 112Getting Started with JE8/18/2004

Performing Backups

Performing Catastrophic Recovery

Catastrophic recovery is necessary whenever your environment and/or database have
been lost or corrupted due to a system failure (disk failure, for example). Catastrophic
recovery is also required if normal recovery fails for any reason.

In order to perform catastrophic recovery, you must have a full back up of your databases.
You will use this backup to restore your database. See Performing Backups (page 112) for
information on running back ups.

To perform catastrophic recovery:

1. Shut down your application.

2. Delete the contents of your environment home directory (the one that experienced
a catastrophic failure), if there is anything there.

3. Copy your most recent full backup into your environment home directory.

4. If you are using a backup utility that runs incremental backups of your environment
directory, copy any log files generated since the time of your last full backup. Be
sure to restore all log files in the order that they were written. The order is important
because it is possible the same log file appears in multiple archives, and you want
to run recovery using the most recent version of each log file.

5. Open the environment as normal. JE's normal recovery will run, which will bring your
database to a consistent state relative to the changed data found in your log files.

You are now done restoring your database.

Hot Standby

As a final backup/recovery strategy, you can create a hot failover. Note that using hot
failovers requires your application to be able to specify its environment home directory
at application startup time. Most application developers allow the environment home
directory to be identified using a command line option or a configuration or properties
file. If your application has its environment home hard-coded into it, then you can stop
reading this section. Hot standbys cannot be used by this class of application.

You create a hot standby by periodically backing up your database to an alternative
location on disk. Usually this alternative location is on a separate physical drive from
where you normally keep your database, but if multiple drives are not available then you
should at least put the hot failover on a separate disk partition.

You failover to your hot standby by causing your application to reopen its environment
using the hot standby location.

Note that a hot standby should not be used as a substitute for backing up and archiving
your data to a safe location away from your operating environment. Even if your data is

Page 113Getting Started with JE8/18/2004

Performing Catastrophic
Recovery

spread across multiple physical disks, a truly serious catastrophe (fires, malevolent
software viruses, cheap IDE controllers, and so forth) can still cause you to lose your data.

To create and maintain a hot failover:

1. Copy all log files (*.jdb) from your environment directory to the location where you
want to keep your standby. Either a complete or a partial backup can be used for
this purpose, but typically a hot standby is initially created by taking a complete
backup of your database. This ensures that you have captured the contents of your
in-memory cache.

2. Periodically copy to your standby directory any log files that were changed or created
since the time of your last copy. Most backup software is capable of performing this
kind of an incremental backup for you.

Note that the frequency of your incremental copies determines the amount of data
that is at risk due to catastrophic failures. For example, if you perform the incremental
copy once an hour then at most your hot standby is an hour behind your production
database, and so you are risking at most an hours worth of database changes.

3. Remove any *.jdb files from the hot standby directory that have been removed or
renamed to .del files in the primary directory. This is not necessary for consistency,
but will help to reduce disk space consumed by the hot standby.

Page 114Getting Started with JE8/18/2004

Hot Standby

Chapter 9. Administering Berkeley DB Java
Edition Applications

There are a series of tools and parameters of interest to the administrator of a Berkeley
DB Java Edition database. These tools and parameters are useful for tuning your JE
database's behavior once it is in a production setting, and they are described here. This
chapter, however, does not describe backing up and restoring your JE databases. See
Backing up and Restoring Berkeley DB Java Edition Applications (page 109) for information
on how to perform those procedures.

The JE Properties File

JE applications can be controlled through a Java properties file. This file must be placed
in your environment home directory and it must be named je.properties.

The parameters set in this file take precedence over the configuration behavior coded
into the JE application by your application developers.

Usually you will use this file to control the behavior of JE's background threads, and to
control the size of your in-memory cache. These topics, and the properties parameters
related to them, are described in this chapter. Beyond the properties described here,
there are other properties identified throughout this manual that may be of interest to
you. However, the definitive identification of all the property parameters available to
you is in the sample example.properties located in the directory where your JE distribution
was unpacked.

Managing the Background Threads

JE uses some background threads to keep your database resources with in preconfigured
limits. If they are going to run, the background threads are started once per application
per process. That is, if your application opens the same environment multiple times, the
background threads will be started just once for that process. See the following list for
the default conditions that gate whether an individual thread is run. Note that you can
prevent a background thread from running by using the appropriate je.properties
parameter, but this is not recommended for production use and those parameters are
not described here.

The background threads are:

• Cleaner thread.

Responsible for cleaning and deleting unused log files. See The Cleaner Thread (page 116)
for more information.

This thread is run only if the environment is opened for write access.

Page 115Getting Started with JE8/18/2004

• Compressor thread.

Responsible for cleaning up the internal BTree as database records are deleted. The
compressor thread ensures that the BTree does not contain unused nodes. There is no
need for you to manage the compressor and so it is not described further in this manual.

This thread is run only if the environment is opened for write access.

• Evictor thread.

Removes database records out of the in-memory cache in the event that the cache
has reached a predefined maximum size. See The Evictor Thread (page 117) for more
information.

This thread always runs.

• Checkpointer thread.

Responsible for running checkpoints on your environment. See The Checkpointer
Thread (page 117) for more information.

This thread is run only if the environment is configured to support transactions.

The Cleaner Thread

The cleaner thread is responsible for cleaning, or compacting, your log files for you. Log
file cleaning is described in Cleaning the Log Files (page 110).

The following two properties may be of interest to you when managing the cleaner thread:

• je.cleaner.minUtilization

Identifies the percentage of the log file space that must be used for utilized records.
If the percentage of log file space used by utilized records is too low, then the cleaner
removes obsolete records until this threshold is reached. Default is 50%.

• je.cleaner.expunge

Identifies the cleaner's behavior in the event that it is able to remove a log file. If
true, the log files that have been cleaned are deleted from the file system. If false,
the log files that have been cleaned are renamed from NNNNNNNN.jdb to NNNNNNNN.del.
You are then responsible for deleting the renamed files.

Note that the cleaner thread runs only if the environment is opened for write access.

Page 116Getting Started with JE8/18/2004

Managing the Background
Threads

The Evictor Thread

JE limits the size of its cache based on values set for the environment. Once the size of
the cache reaches the defined limit, the evictor thread evicts parts of the cache to free
up cache space. Note that any modified records evicted from the cache are written to
the backing files on disk. The evictor thread evicts the least used portions of the cache.

To control the amount of memory that your cache can use, use the je.maxMemoryPercent
or je.maxMemory properties. For advice on sizing your cache, see Sizing the Cache (page 117).

Please see the example.properties file that is available in your JE source distribution for
the default value set for this parameter.

Note that this thread always runs.

The Checkpointer Thread

Automatically runs checkpoints. Checkpoints are described in Checkpoints (page 111).

Currently, the only checkpointer property that you may want to manage is
je.checkpointer.bytesInterval. This property identifies how much JE's log files can grow
before a checkpoint is run. Value is specified in bytes. Decreasing this value causes the
checkpointer thread to run checkpoints more frequently. This will improve the time that
it takes to run recovery, but it also increases the system resources (notably, I/O) required
by JE.

Sizing the Cache

By default, your cache is limited to a percentage of the JVM maximum memory as specified
by the -Xmx parameter. You can change this percentage by using the je.maxMemoryPercent
property or through EnvironmentConfig.setCachePercent(). That is, the maximum amount
of memory available to your cache is normally calculated as:

je.maxMemoryPercent * JVM_maximum_memory

You can find out what the value for this property is by using
EnvironmentConfig.setCachePercent().

Note that you can cause JE to use a fixed maximum cache size by using je.maxMemory or
by using EnvironmentConfig.setCacheSize().

Also, not every JVM is capable of identifying the amount of memory requested via the
-Xmx parameter. For those JVMs you must use je.maxMemory to change your maximum
cache size. The default maximum memory available to your cache in this case is 38M.

Of the amount of memory allowed for your cache, 93% is used for the internal BTree and
the other 7% is used for internal buffers. When your application first starts up, the 7% for
buffers is immediately allocated. The remainder of the cache grows lazily as your
application reads and writes data.

Page 117Getting Started with JE8/18/2004

Sizing the Cache

In order for your application to start up successfully, the Java virtual machine must have
enough memory available to it (as identified by the -Xmx command line switch) for both
your application and 7% of your maximum cache value. In order for your application to
run continuously (all the while loading data into the cache), you must make sure your
JVM has enough memory for your application plus the maximum cache size.

The best way to determine how large your cache needs to be is to put your application
into a production environment and watch to see how much disk I/O is occurring. If the
application is going to disk quite a lot to retrieve database records, then you should
increase the size of your cache (provided that you have enough memory to do so).

In order to determine how frequently your application is going to disk for database records
not found in the cache, you can examine the value returned by
EnvironmentStats.getNCacheMiss().

EnvironmentStats.getNCacheMiss() identifies the total number of requests for database
objects that were not serviceable from the cache. This value is cumulative since the
application started. The faster this number grows, the more your application is going to
disk to service database operations. Upon application startup you can expect this value
to grow quite rapidly. However, as time passes and your cache is seeded with your most
frequently accessed database records, what you want is for this number's growth to be
zero or at least very small.

Note that this statistic can only be collected from within the application itself. This means
that it is up to the application developer to provide a mechanism by which this statistic
can be accessed from outside the application.

For more information on collecting this statistic, see Environment Statistics (page 13).

The Command Line Tools

JE ships with several command line tools that you can use to help you manage your
databases. They are:

• DbDump

Dumps a database to a user-readable format.

• DbLoad

Loads a database from the output produced by DbDump

• DbVerify

Verifies the structure of a database.

Page 118Getting Started with JE8/18/2004

The Command Line Tools

DbDump

Dumps a database to a flat-text representation. Options are:

-h

Identifies the environment's directory. This parameter is required.

-s

Identifies the database to be dumped. If this option is not specified, then the -l
is required.

-p

Prints database records in human-readable format.

-l

Lists the databases contained in the environment. If the -s is not provided, then
this argument is required.

-f

Identifies the file to which the output from this command is written. The console
(standard out) is used by default.

-V

Prints the database version number and then quits. All other command line options
are ignored.

For example:

> java com.sleepycat.je.util.DbDump -h . -p -s VendorDB
VERSION=3
format=print
type=btree
database=VendorDB
dupsort=false
HEADER=END
 Mom's Kitchen
 sr\01\01xpt\00\0d53 Yerman Ct.t\00\0c763 554 9200t\00\0bMiddle Townt\00
 \0eMaggie Kultgent\00\10763 554 9200 x12t\00\02MNt\00\0dMom's Kitchent\00
 \0555432
 Off the Vine
 sr\01\01xpt\00\10133 American Ct.t\00\0c563 121 3800t\00\0aCentennialt\00
 \08Bob Kingt\00\10563 121 3800 x54t\00\02IAt\00\0cOff the Vinet\00\0552002
 Simply Fresh
 sr\01\01xpt\00\1115612 Bogart Lanet\00\0c420 333 3912t\00\08Harrigant\00
 \0fCheryl Swedbergt\00\0c420 333 3952t\00\02WIt\00\0cSimply Fresht\00\0
 553704
 The Baking Pan
 sr\01\01xpt\00\0e1415 53rd Ave.t\00\0c320 442 2277t\00\07Dutchint\00\09
 Mike Roant\00\0c320 442 6879t\00\02MNt\00\0eThe Baking Pant\00\0556304
 The Pantry

Page 119Getting Started with JE8/18/2004

The Command Line Tools

 sr\01\01xpt\00\111206 N. Creek Wayt\00\0c763 555 3391t\00\0bMiddle Town
 t\00\0fSully Beckstromt\00\0c763 555 3391t\00\02MNt\00\0aThe Pantryt\00
 \0555432
 TriCounty Produce
 sr\01\01xpt\00\12309 S. Main Streett\00\0c763 555 5761t\00\0bMiddle Townt
 \00\0dMort Dufresnet\00\0c763 555 5765t\00\02MNt\00\11TriCounty Producet
 \00\0555432
DATA=END
>

DbLoad

Loads a database from the output produced by DbDump. Options are:

-h

Identifies the environment's directory. This parameter is required.

-s

Overrides the database name, causing the data to be loaded into a database that
uses the name supplied to this parameter.

-c

Specifies configuration options. The options supplied here override the
corresponding options that appear in the data that is being loaded. This option
takes values of the form name=value, where name is the configuration option
that you are overriding and value is the new value for the option.

The following options can be specified:

• database

The name of the database to be loaded. This option duplicates the functionality
of this command's -s command line option.

• dupsort

Indicates whether duplicates are allowed in the database. A value of true
allows duplicates in the database.

-f

Identifies the file from which the database is to be loaded.

-n

Do not overwrite existing keys in the database when loading into an already
existing database. If a key/data pair cannot be loaded into the database for this
reason, a warning message is displayed on the standard error output, and the
key/data pair are skipped

Page 120Getting Started with JE8/18/2004

The Command Line Tools

-T

Causes a flat text file to be loaded into the database.

The input must be paired lines of text, where the first line of the pair is the key
item, and the second line of the pair is its corresponding data item.

A simple escape mechanism, where newline and backslash (\) characters are
special, is applied to the text input. Newline characters are interpreted as record
separators. Backslash characters in the text will be interpreted in one of two
ways: If the backslash character precedes another backslash character, the pair
will be interpreted as a literal backslash. If the backslash character precedes any
other character, the two characters following the backslash will be interpreted
as a hexadecimal specification of a single character; for example, \0a is a newline
character in the ASCII character set.

For this reason, any backslash or newline characters that naturally occur in the
text input must be escaped to avoid misinterpretation by db_load.

-V

Prints the database version number and then quits. All other command line options
are ignored.

For example:

> java com.sleepycat.je.util.DbDump -h . -s VendorDB -f vendordb.txt
> java com.sleepycat.je.util.DbLoad -h . -f vendordb.txt
>

DbVerify

Examines the identified database for errors. Options are:

-h

Identifies the environment's directory. This parameter is required.

-s

Identifies the database to be verified. This parameter is required.

-q

Suppress the printing of any error descriptions. Instead, simply exit success or
failure.

-V

Prints the database version number and then quits. All other command line options
are ignored.

For example:

Page 121Getting Started with JE8/18/2004

The Command Line Tools

> java com.sleepycat.je.util.DbVerify -h . -s VendorDB

<DbVerify name="VendorDB">
<TreeInfo INcount="1" BINcount="1" LNcount="6" DeletedLNcount="0"
DupCountLNCount="0" MaxDepth="65538" RootId="15"/>
<NodeInfo count="8">
<node id="21"/>
<node id="20"/>
<node id="19"/>
<node id="18"/>
<node id="17"/>
<node id="16"/>
<node id="15"/>
<node id="14"/>
</NodeInfo>
</DbVerify>

Page 122Getting Started with JE8/18/2004

The Command Line Tools

Appendix A. Concurrent
Processing in Berkeley DB Java
Edition

An in-depth description of concurrent processing in JE is beyond the scope of this manual.
However, there are a few things that you should be aware of as you explore JE. Note that
many of these topics are described in greater detail in other parts of this book. This
section is intended only to summarize JE concurrent processing.

This appendix first describes concurrency with multithreaded applications. It then goes
on to describe Multiprocess Applications (page 124).

Multithreaded Applications

Note the following if you are writing an application that will use multiple threads for
reading and writing JE databases:

• JE database and environment handles are free-threaded (that is, are thread safe), so
from a mechanical perspective you do not have to synchronize access to them when
they are used by multiple threads of control.

• It is dangerous to close environments, databases and cursors when other database
operations are in progress. So if you are going to share handles for these objects across
threads, you should architect your application such that there is no possibility of a
thread closing a handle when another thread is using that handle.

• If a transaction is shared across threads, it is safe to call transaction.abort() from
any thread. However, be aware that any thread that attempts a database operation
using an aborted transaction will throw a DatabaseException. You should architect
your application such that your threads are able to gracefully deal with some other
thread aborting the current transaction.

• If a transaction is shared across threads, make sure that transaction.commit() can
never be called until all threads participating in the transaction have completed their
database operations.

• JE always performs locking and deadlock detection. Locking is performed at the
database record level. In the event that a deadlock is detected, DeadlockException
is thrown.

• A non-transactional operation that reads a record locks it for the duration of the read.
While locked for read, a write lock can not be obtained on that record. However,
another read lock can be obtained for that record. This means that for threaded
applications, multiple threads can simultaneously read a record, but no thread can
write to the record while a read is in progress.

Page 123Getting Started with JE8/18/2004

Note that if you are performing dirty reads, then no locking is performed for that read.
Instead, JE uses internal mechanisms to ensure that the data you are reading is
consistent (that is, it will not change mid-read).

Finally, it is possible to specify that you want a write lock for your read operation.
You do this using LockMode.RMW. Use RMW when you know that your read will subsequently
be followed up with a write operation. Doing so can help to avoid deadlocks.

• An operation that writes to a record obtains a write lock on that record. While the
write lock is in progress, no other locks can be obtained for that record (either read
or write).

• All locks, read or write, obtained from within a transaction are held until the
transaction is either committed or aborted.

This means that the longer a transaction lives, the more likely other threads in your
application are to run into deadlocks. That is, write operations performed outside of
the scope of the transaction will not be able to obtain a lock on those records while
the transaction is in progress. Also, by default, reads performed outside the scope of
the transaction will not be able to lock records written by the transaction. However,
this behavior can be overridden by configuring your reader to perform dirty reads.

Multiprocess Applications

Note the following if you are writing an application that wants to access JE databases
from multiple processes:

• In JE, you must use environments. Further, a database can be opened for write access
only if the environment is opened for write access. Finally, only one process may have
an environment opened for write access at a time.

• If your process attempts to open an environment for write, and another process has
already opened that environment for write, then the open will fail. In this event, the
process must either exit or open the environment as read-only.

• A process that opens an environment for read-only receives a snapshot of the data in
that environment. If another process modifies the environment's databases in any way,
the read-only version of the data will not be updated until the read-only process closes
and reopens the environment (and by extension all databases in that environment).

Page 124Getting Started with JE8/18/2004

Multiprocess Applications

	Getting Started with Berkeley DB Java Edition
	Table of Contents
	Preface
	Conventions Used in this Book

	Chapter 1. Introduction to Berkeley DB Java Edition
	Features
	The JE Application
	Databases and Database Environments
	Database Records
	Putting and Getting Database Records
	Duplicate Data
	Replacing and Deleting Entries
	Secondary Databases
	Transactions
	JE Resources
	Application Considerations

	JE Backup and Restore
	Getting and Using JE
	JE Exceptions

	Chapter 2. Database Environments
	Opening Database Environments
	Closing Database Environments
	Environment Properties
	The EnvironmentConfig Class
	EnvironmentMutableConfig

	Environment Statistics
	Database Environment Example

	Chapter 3. Databases
	Opening Databases
	Closing Databases

	Database Properties
	Administrative Methods
	Database Example

	Chapter 4. Database Records
	Using Database Records
	Reading and Writing Database Records
	Writing Records to the Database
	Getting Records from the Database
	Deleting Records
	Data Persistence

	Using the BIND APIs
	Numerical and String Objects
	Serializeable Complex Objects
	Usage Caveats
	Serializing Objects
	Deserializing Objects

	Custom Tuple Bindings

	Using Comparators
	Writing Comparators
	Setting Comparators

	Database Record Example

	Chapter 5. Using Cursors
	Opening and Closing Cursors
	Getting Records Using the Cursor
	Searching for Records
	Working with Duplicate Records

	Putting Records Using Cursors
	Deleting Records Using Cursors
	Replacing Records Using Cursors
	Cursor Example

	Chapter 6. Secondary Databases
	Opening and Closing Secondary Databases
	Implementing Key Creators
	Secondary Database Properties
	Reading Secondary Databases
	Deleting Secondary Database Records
	Using Secondary Cursors
	Database Joins
	Using Join Cursors
	JoinCursor Properties

	Secondary Database Example
	Opening Secondary Databases with MyDbEnv
	Using Secondary Databases with ExampleInventoryRead

	Chapter 7. Transactions
	Enabling and Starting Transactions
	Committing and Aborting Transactions
	Aborting Transactions
	Using Autocommit

	Transactional Cursors
	Configuring Dirty Reads
	Transactions and Concurrency
	Transactions and Deadlocks
	Performance Considerations

	Transactions Example

	Chapter 8. Backing up and Restoring Berkeley DB Java Edition Applications
	Databases and Log Files
	Log File Overview
	Cleaning the Log Files
	The BTree
	Database Modifications
	Syncs
	Normal Recovery
	Checkpoints

	Performing Backups
	Performing a Partial Backup
	Performing a Complete Backup

	Performing Catastrophic Recovery
	Hot Standby

	Chapter 9. Administering Berkeley DB Java Edition Applications
	The JE Properties File
	Managing the Background Threads
	The Cleaner Thread
	The Evictor Thread
	The Checkpointer Thread

	Sizing the Cache
	The Command Line Tools
	DbDump
	DbLoad
	DbVerify

	Appendix A. Concurrent Processing in Berkeley DB Java Edition
	Multithreaded Applications
	Multiprocess Applications

