Oracle Berkeley DB XML

Getting Started with
Berkeley DB XML
for C++

Release 2.4

ORACLE
BERKELEY DB

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/xmloslicense.html

Oracle, Berkeley DB, Berkeley DB XML and Sleepycat are trademarks or registered trademarks of Oracle. All
rights to these marks are reserved. No third-party use is permitted without the express prior written consent
of Oracle.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology
Network forum at: http://forums.oracle.com/forums/forum.jspa?forumID=274

Published 2/5/2008

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/xmloslicense.html
http://forums.oracle.com/forums/forum.jspa?forumID=274

Table of Contents

o 1 =T ol \%
Conventions Used in this BOOKcccviiiiiiiiiiiiiiiiiiiiiiiiii i eeenereeeernns \%

For More INfOrmation ...o..eeereeiiiiiiiiii et rererereerenaeerannesanees \%

1. Introduction to Berkeley DB XMLuuueiiiiiiiiiitteeeeiiieeeeeeenrnneeeesessnaneseaaanns 1
L0 = T 1

5T T P 2

D I = = 2

Database FEAtUIES ...cviireiiieie i tiie et reee et rereeeeaeerenaeeranaens 3
Languages and PlatformMsueeeiiiiiiieeeeeiiiiieeeereiiineeeeresernnneeessennnes 4

Getting and Using BDB XML ..iiiinuiitiiiiiiieteeieaiiieeeeeeeenneeeeesensnnssescaennnnes 4
Documentation and SUPPOIt «.viieeeeiiiiiiiiieeeeriiieeeeeeennnneeeeseennnnneees 4

Library DependenCiesuueeiiiieiiieteeieiiieeeeeeeeineeeeeessnesessesennnneees 5

Building and Running BDB XML Applicationscceeiiiiiiineeeieneiineeeennnns 5

2. Exception Handling and DebUZGZiNg ...ccviiiinieiiiiiiiiiiiiiiiiiieeeeeeiineeeeesennnnnns 6
Debugging BDB XML APPLICAtIONS teeuuueeeeereiiueeeereeeieneeeesenrneeeceesennnneeeanns 7

3. XmIManager and CONTATNEIS ..uuueeiiiiiieeeeerreiieeeeeeeenraeeeeesessnneseesessrnnnessasanns 9
D11t L Fo T PP 9
Berkeley DB ENVIrONMENTS vuiiiiiiieeeiiiiiiieeeereaiineeeeeeennneneeeeesnnnneaeees 9
Environment Open FLlags ..ccvvveiiiiiiiiieiiiiiiiiieeeeereiinneeeeeeannnnnes 10

Opening and Closing ENVIroNMENESveeeeiiiiiineiieieiineeeeeeennnnnnes 11

XmlManager Instantiation and Destructionccceevieiiiiniiiiiiinnnneennnn. 12

ManNaging CONTATNETS ..uuveiirieiiiieteeeeranineeeeeeerrneeeeeesesnseeeesessnnsnessesannnns 14
CoNtAINEr Flags .iiiiiiiiiitiiiiiiieeeteeiiieteeeeeenneeeeeeesenneneeeeeennnneeeens 15

CONEATNET TYPES teiiiitettteeeiineeeeeeenreeeeeeeessnneseesessnnsseesesssnnessssenns 16

Deleting and Renaming CONTAINErS ..vvieiiueeeiiieiiiereereeeieeeeeeeennnneenns 18

4. Adding XML Documents t0 CONLAINETS tivviviireeeiiiriiieteeerenieeeeerennrneseeeesnnnnes 19
INpUt Streams and SEriNGS c..uueeiiiiiiiieeieeiiieeeeeeenrneeeeseesnneeeeesennnneaeens 19
AddiNg DOCUMENTES .vviiiiiiiiitttieeeiieteeeeeeirneeeeeeesrnaeeeeeessnnssesesssnnnsssesenns 19
Constructing Documents using Event WIiters ...oovvvveiiiiiiiiiieeeieiiineneeeennnns 23
Setting Metadata coouueeeiiiiiiiiie it eeeiiieeeeeeiieeeeraeeiaeeeeeeannnaaaeens 24

5. Using XQuery With BDB XMLuueeiiiiiiiitttieiiiiteeeereiineeeeeessnneeeeessannnnaeeens 27
XQuery: A Brief INtroduCtionceiiiiiiiiiiiiiiiiiiii it ieeeiieeeeeannnaaes 27
Referencing Portions of Documents using XQUErYcccvveveeieiiiinneeeennnns 28

o T o= Y = 28

NUMENC PrediCates oo ire e e e e e eeenaens 29

Boolean PrediCates ..vveeeiireieiiieiiieiireiieea e et eeeneeeanaes 29

00 311 v 29

Relative Paths ...coceiiriiiiiii i e e e e e e eaae 29

NAMESPACES +etiieineteteeeeiineeeeeeeernneeeeeessrnneeessesennnseseesennnnenes 30

WildCards ...eeereeiiiit i ee ittt e et e et eeeeereaanerannneaanneaans 32

Case INSensitive SEArChesoeviiieiririii e eeireeareiereneeeaneenns 32
Navigation FUNCLIONSueeiiiiiiiiieiiiiiiiieteeeeiiineeeeeeenrnneeeeresnnnnneees 32

(o(o] ({1 o] o 1 | O PP 33

o [0 Tof) I OO 33

Using FLWOR With BDB XML ...uuuetiiiieiiiieeiiteeeiereeeereneerananeaenaens 34
Retrieving BDB XML Documents using XQUETIY ...civvvireeeeeeeerineeeeeeeennnneeeeeanns 34

2/5/2008 Page ii

The QUENY CONTEXE uvvirietieietreitereneeeeaeeeenaeerenaeeesneesesneesannseesnes 3D
Defining NamMESPACES ...vieerttieettreiteeeieeeeaneeeesneeesnneeesnaesanneees 3D

Defining Variablesccvvieiieiiiiiiiiiiiieiiiiieiiieeeieeesneeeesneeeenness 30

Defining the Evaluation TYPe ...cccvviiiiiiiiiiiiiniiiniieeneneeennnneeans 37
Performing QUENIES ...uviirietiiiitieeieteeiieeeenneeeenneeeeneeessneesasneeasnnees 37
Metadata Based QUEIIESccvveiiieiiiniiiniiiiiiiiiiiieiinennecnneese 39
Examining QUery RESULLS ..vvuveirrieiiniiiiiiieiieeeeieeeesneeeenneeecnneeesnneeaness 40
Examining Document Values ...cc.veeiiuiiriieeiiiieereineeenieeeeeneeeesneeennneess 42
Examining Metadata ..cc.vveeeiiiiiiiiiiiiiiiiiiiiiiiiieiiieeiieeeieeeenaeeane.. 44
Using Event REAders ..cvvuviiiiiiiiiiiiiiiiiiieeiiteeeieeeenneeeennneecnneeannss 46

6. Managing Documents in Containersccoeveeiiiiiiiineiirieriieeerreerinnneeseeenenneess 49
Deleting DOCUMENES .uviiietireetieiteeeieeeenieeresneeeenaeeesneeeesneesssnseesnneeaanes 49
Replacing DOCUMENLS ...viiiiuiireietienieeeenueeeenueeesieeeeseeesnneeessnesasnassaanaess D0
Modifying XML DOCUMENLES «.uuueiriintienetenneeeenneeeeneeeeseeeesneeeannseecnsssasnees D1
XQuery Update INtroductioncceeeeeieeiiiiiieiinieenneeeenneeeenneeesnaeeannes 01
Inserting Nodes Using XQuery Updatecccvveiiiiiiniieeeniieeennneeennneess D1
POSItion KEYWOrdS ..ecueiieiniiiiiiiiiiiiieiieeeieeeeeneeeesneeeennseeanaess D2

INSErtion RULES ...eeineiieiiiiiiiiii it ii e st eeneeenes D3

Deleting Nodes Using XQuery Updatecocvviiiiiiiiiiniinnieeieneeranneeans D3
Replacing Nodes Using XQuery Updatecceevveeeiieienineeneneeennnnennns. D4
Replacement RULES ..cveuuiiiiieiiiiiiieiiieeieeiieeeenieeeenneeeaneeeannes DD

Renaming Nodes Using XQuery Updatecceevvviieiiienineeniieeeanneeeanns DD
Updating FUNCLIONS t..ueiiiirtiiiitieiietieeeeeennteeaneeeeseeeenneeessnseesnaeees DD
Transform FUNCLIONS «..eivneiieiiiiiiiiiiii it eit et eeneeeeeenss D6
Resolving Conflicting Updateseveeeiiiiiiiiiiiieiiiieiieeenineeeenneeennnness D7

7. UsSiNG BDB XML INAICES .vveinnttieittieiteeeieeteeneeeeaeeeesneeessnesesnassesnessssnesasnnes I8
NAEX Ty DS tennnttiiittteiteeeeteeaeererneeeeneeeesneesesneesenneessnsesssnsssennssesnees DO
UNTQUENESS +euenetttiiieiieteeteeennaneeeseeasanneessesssnnsesssssssnnsesssssssnnsess DO

Path TYPES uviiiiitiiiii it ieiieeieeiteeeneeeesneeeesnseecnnseesnessanneeess D9
NOAE TYPES 1vveenttieettreateeennteeaieeeeaneeeesneeessnecessassesnassssnassssnasass 00
Element and Attribute Nodesccccevvviiiiiiiiiiiiiiiiiiiiiniienne... 60

Metadata NOdESvvuiiiniiiiiiiiiiiiiiiiieiiiii i e eeieenneeeneee.. 60

KBY TYPES weeitiiiiiiitiiiiiiittteeienateerseeasaneeessesssansessssssannsesssssssanss 00
1)Y= D I 0 1= PR ¢ X
Specifying INdeX Strategiesviiiiiiiiiiiiiiiiiiiiiiiiieeiieeeeeneerenneeeeneeeannes. 01
Specifying INdeX NOAESuiiineiiiiiiiiiiiiieiieeeaiteeenneeeeneeeeseeeanneeeanes 03
Indexer Processing NOTES ...vvuiiiieiiiitiiiitierieereneereneeeeeneeeanneesenneeeanass 0D
Managing BDB XML INAICES «.vvueiiiiniiiiiiiiiiiiiieeieieereneeeesneeessaessenacennnes 06
Adding INAICES tnuvviiiitiiiiiiiiiii ittt it eiiteeiteeeneeeesneesesnessanneesss 0B
Deleting INAICES ..vviiiietiiii it eiiieeieeeeneeeeaeeeesneeesnaeeesnaeeaaneees OF
Replacing INAiCES .uvvuueiiriiiiiiiiiiiieiieeiiteeiteeeneeeeeneeeenneeeanneeass 08
Examining Container INdiCes ...ovviiiiiiiiiiiriiiieiieeeieeeeneeeesneeeannes. 09
Working with Default INdices ...ovvviiiiiiiiiiiiiiiiiiiiiiiiiiiieeiieeeenneenne.. 69
Looking Up Indexed DOCUMENTS ..vvveueeerineereieeeenieeeesieeeanneeecnaeeaanaeeas 70
Verifying Indices using QUEery Plansc.veeeieeieiieeeenieeeeineeesineeeeneeeeeneeennnes 73
QUENY Plans ..ueiiieiiiiitieiietieiteeeieteeeneeeeaneeeenneeeaneesesneeeasnseeanaees 73
Using the dbxml Shell to Examine Query Plansccoeevvveeiiiieennne.. 75

8. Administering Berkeley DB XML Applicationscccceveeiiiniineinnecnneenneenneennness 77
TemMPOrary FileS .uuieeeiiiiitiiiiitieiitieeitteenteeeneeeesneesesneeessneeesnassasneeeanns 17

2/5/2008 Page iii

A Note on Snapshot I1SOlationueeieietiieieiieiiieii et eeeieeeeaeeeenaeennn 78

A. Updating Documents with XmIMOdifyceeereiiiiiiiiiiiiiiiiiiiiieiiieeieeeneeeans 79
Modification Parameters ..uuveeiiieii ittt e et et eeii e eeeaaas 79
Modification MEthodsciiiiiiiiiiiiiiiiiiii it i et eee i eeeaaaas 80
Modification EXampPle ..ceeueiiiiiiiiiiiii it ieeiteeieeeeeneeeenneeeenneeannaeenns 86

2/5/2008 Page iv

Preface

Welcome to Berkeley DB XML (BDB XML). This document introduces BDB XML, version 2.4.
It is intended to provide a rapid introduction to the BDB XML API set and related concepts.
The goal of this document is to provide you with an efficient mechanism with which you
can evaluate BDB XML against your project's technical requirements. As such, this document
is intended for C++ developers and senior software architects who are looking for an
in-process XML data management solution. No prior experience with Sleepycat technologies
is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in nonospaced font, as are net hod names. For example: "The
X Dat abase: : openCont ai ner () method returns an Xm Cont ai ner class object.”

Variable or non-literal text is presented in italics. For example: "Go to your DBXML_HOME
directory."

Program examples are displayed in a monospaced font on a shaded background. For
example:

#i ncl ude "DbXn . hpp"

usi ng nanespace DbXm ;
/'l exception handling omtted for clarity

int main(voi d)
{
/1 Open an Xnl Manager .
Xm Manager nyManager ;
}

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a BDB XML application:

« Introduction to Berkeley DB XML
[http:/ /www.orade.com/technology/documentation/berkeley-db/xml/intro_xml/BerkeleyDBXML-Intro.pdf]

« Berkeley DB XML Getting Started with Transaction Processing for C++
[http:/ Amwww.orade.com/technology/doaumentation/berkeley-cb/ximl/gsg. ximl_ban/ox/BerkeleyDBXML-Txar-OXKpdf]

« Berkeley DB XML C++ API
[http://www.oracle.com/technology/documentation/berkeley-db/xml/api_cxx/frame.html]

2/5/2008

Page v

http://www.oracle.com/technology/documentation/berkeley-db/xml/intro_xml/BerkeleyDBXML-Intro.pdf
http://www.oracle.com/technology/documentation/berkeley-db/xml/gsg_xml_txn/cxx/BerkeleyDBXML-Txn-CXX.pdf
http://www.oracle.com/technology/documentation/berkeley-db/xml/api_cxx/frame.html

2/5/2008 Page vi

Chapter 1. Introduction to Berkeley DB XML

Welcome to Berkeley DB XML (BDB XML). BDB XML is an embedded database specifically
designed for the storage and retrieval of XML-formatted documents. Built on the
award-winning Berkeley DB, BDB XML provides for efficient queries against millions of
XML documents using XQuery. XQuery is a query language designed for the examination
and retrieval of portions of XML documents.

This document introduces BDB XML. It is intended to provide a rapid introduction to the
BDB XML API set and related concepts. The goal of this document is to provide you with
an efficient mechanism with which you can evaluate BDB XML against your project's
technical requirements. As such, this document is intended for C++ developers and senior
software architects who are looking for an in-process XML data management solution. No
prior experience with BDB XML is expected or required.

Note that while this document uses C++ for its examples, the concepts described here
should apply equally to all language bindings in which the BDB XML API is available. Be
aware that a version of this document also exists for the Java language.

Overview

BDB XML is an embedded database that is tuned for managing and querying hundreds,
thousands, or even millions of XML documents. You use BDB XML through a programming
API that allows you to manage, query, and modify your documents via an in-process
database engine. Because BDB XML is an embedded engine, you compile and link it into
your application in the same was as you would any third-party library.

In BDB XML documents are stored in containers, which you create and manage using
Xl Manager objects. Each such object can open multiple containers at a time.

Each container can hold millions of documents. For each document placed in a container,
the container holds all the document data, any metadata that you have created for the
document, and any indices maintained for the documents in the container.

(Metadata is information that you associate with your document that might not readily
fit into the document schema itself. For example, you might use metadata to track the
last time a document was modified instead of maintaining that information from within
the actual document.)

XML documents may be stored in BDB XML containers in one of two ways:
* Whole documents.

Documents are stored in their entirety. This method works best for smaller documents
(that is, documents under a megabyte in size).

e As document nodes.

Documents stored as nodes are broken down into their individual document element
nodes and each such node is then stored as an individual record in the container. Along

2/5/2008 Page 1

Overview

with each such record, BDB XML also stores all node attributes, and the text node, if
any.

This type of storage is best for large XML documents (greater than 1 megabyte in size).

From an APl-usage perspective, there are very few differences between whole document
and node storage containers. For more information, see Container Types (page 16).

Once a document has been placed in a container, you can use XQuery to retrieve one or
more documents. You can also use XQuery to retrieve one or more portions of one or
more documents. Queries are performed using Xnl Manager objects. The queries themselves,
however, limit the scope of the query to a specified list of containers or documents.
documents.

BDB XML supports the entire XQuery specification. You can read the specification here:
http://www.w3.org/TR/xquery/

Also, because XQuery is an extension to XPath 2.0, BDB XML provides full support for that
query language as well.

Finally, BDB XML provides a robust document modification facility that allows you to easily
add, delete, or modify selected portions of documents. This means you can avoid writing
modification code that manipulates (for example) DOM trees — BDB XML can handle all
those details for you.

Benefits

BDB XML provides a series of features that makes it more suitable for storing XML
documents than other common XML storage mechanisms. BDB XML's ability to provide
efficient indexed queries means that it is a far more efficient storage mechanism than
simply storing XML data in the filesystem. And because BDB XML provides the same
transaction protection as does Berkeley DB, it is a much safer choice than is the filesystem
for applications that might have multiple simultaneous readers and writers of the XML
data.

More, because BDB XML stores XML data in its native format, BDB XML enjoys the same
extensible schema that has attracted many developers to XML. It is this flexibility that
makes BDB XML a better choice than relational database offerings that must translate
XML data into internal tables and rows, thus locking the data into a relational database
schema.

XML Features

BDB XML is implemented to conform to the W3C standards for XML, XML Namespaces, and
the XQuery working draft. In addition, it offers the following features specifically designed
to support XML data management and queries:

2/5/2008 Page 2

http://www.w3.org/TR/xquery/

Overview

« Containers. A container is a single file that contains one or more XML documents, and
their metadata and indices. You use containers to add, delete, and modify documents,
and to manage indices.

» Indices. BDB XML indices greatly enhance the performance of queries against the
corresponding XML data set. BDB XML indices are based on the structure of your XML
documents, and as such you declare indices based on the nodes that appear in your
documents as well the data that appears on those nodes.

Note that you can also declare indices against metadata.

* Queries. BDB XML queries are performed using the XQuery 1.0 language. XQuery is a
W3C draft specification (http://www.w3.org/XML/Query
[http://www.w3.org/XML/Query/]).

e Query results. BDB XML retrieves documents that match a given XQuery query. BDB
XML query results are always returned as a set. The set can contain either matching
documents, or a set of values from those matching documents.

« Storage. If you use node-level storage for you documents (see Container
Types (page 16)), then BDB XML automatically transcodes your documents to Unicode
UTF-8. If you use whole document storage, then the document is stored in whatever
encoding that it uses. Note that in either case, your documents must use an encoding
supported by Xerces before they can be stored in BDB XML containers.

Beyond the encoding, documents are stored (and retrieved) in their native format
with all whitespace preserved.

* Metadata attribute support. Each document stored in BDB XML can have metadata
attributes associated with it. This allows information to be associated with the
document without actually storing that information in the document. For example,
metadata attributes might identify the last accessed and last modified timestamps
for the document.

« Document modification. BDB XML provides a robust mechanism for modifying
documents. Using this mechanism, you can add, replace, and delete nodes from your
document. This mechanism allows you to modify both element and attribute nodes,
as well as processing instructions and comments.

Database Features

Beyond XML-specific features, BDB XML inherits a great many features from Berkeley DB,
which allows BDB XML to provide the same fast, reliable, and scalable database support
as does Berkeley DB. The result is that BDB XML is an ideal candidate for mission-critical
applications that must manage XML data.

Important features that BDB XML inherits from Berkeley DB are:

o In-process data access. BDB XML is compiled and linked in the same way as any library.
It runs in the same process space as your application. The result is database support

2/5/2008 Page 3

http://www.w3.org/XML/Query/

Getting and Using BDB XML

in a small footprint without the IPC-overhead required by traditional client/server-based
database implementations.

« Ability to manage databases up to 256 terabytes in size.

» Database environment support. BDB XML environments support all of the same features
as Berkeley DB environments, including multiple databases, transactions, deadlock
detection, lock and page control, and encryption. In particular, this means that BDB
XML databases can share an environment with Berkeley DB databases, thus allowing
an application to gracefully use both.

» Atomic operations. Complex sequences of read and write access can be grouped
together into a single atomic operation using BDB XML's transaction support. Either
all of the read and write operations within a transaction succeed, or none of them
succeed.

» Isolated operations. Operations performed inside a transaction see all XML documents
as if no other transactions are currently operating on them.

« Recoverability. BDB XML's transaction support ensures that all committed data is
available no matter how the application or system might subsequently fail.

» Concurrent access. Through the combined use of isolation mechanisms built into BDB
XML, plus deadlock handling supplied by the application, multiple threads and processes
can concurrently access the XML data set in a safe manner.

Languages and Platforms

The official BDB XML distribution provides the library in the C++, Java, Perl, Python, PHP,
and Tcl languages. Because BDB XML is available under an open source license, a growing
list of third-parties are providing BDB XML support in languages other than those that are
officially supported.

BDB XML is supported on a very large number of platforms. Check with the BDB XML mailing
lists for the latest news on supported platforms, as well as for information as to whether
your preferred language provides BDB XML support.

Getting and Using BDB XML

BDB XML exists as a library against which you compile and link in the same way as you
would any third-party library. You can download the BDB XML distribution from the BDB
XML product page
[http://www.oracle.com/technology/software/products/berkeley-db/xml/index.html].

Documentation and Support

BDB XML is officially described in the product documentation
[http://www.oracle.com/technology/documentation/berkeley-db/xml/index.html]. For
additional help and for late-breaking news on language and platform support, it is best
to use the BDB XML forums [http://forums.oracle.com/forums/forum.jspa?forumiD=274].

2/5/2008 Page 4

http://www.oracle.com/technology/software/products/berkeley-db/xml/index.html
http://www.oracle.com/technology/software/products/berkeley-db/xml/index.html
http://www.oracle.com/technology/documentation/berkeley-db/xml/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=274

Getting and Using BDB XML

Library Dependencies

BDB XML depends on several external libraries. The result is that build instructions for
BDB XML may change from release to release as its dependencies mature. For this reason
it is best to check with the installation instructions included with your version of Berkeley
DB XML for your library's specific build requirements. These instructions are available
from:

DBXM._HOVE/ docs/ i ndex. htm
where DBXM._HOME is the location where you unpacked the distribution.
That said, BDB XML currently relies on the following libraries:

o Berkeley DB
[http://www.oracle.com/technology/software/products/berkeley-db/db/index.html].
Berkeley DB provides the underlying database support for BDB XML. BDB XML supports
Berkeley DB version 4.3 or later.

« Xerces [http://xml.apache.org/xerces-c/index.html]. Xerces provides the DOM and
SAX support that BDB XML employs for XML data parsing. Xerces 2.7 or later is required
for BDB XML.

« XQilla. BDB XML's XQuery support is provided by this library.

Note that the BDB XML package comes with all of the libraries that are required to build
and use BDB XML.

Building and Running BDB XML Applications

|:| All BDB XML APIs exist in the DbXnl namespace.

For information on how to build and run a BDB XML application for your particular
platform/compiler, see the build instructions that are available through the docs directory
in your BDB XML distribution. Alternatively, you can find up-to-date build instructions
here:

http://www.oracle.com/technology/documentation/berkeley-db/xml/index.html

2/5/2008 Page 5

http://www.oracle.com/technology/software/products/berkeley-db/db/index.html
http://xml.apache.org/xerces-c/index.html
http://www.oracle.com/technology/documentation/berkeley-db/xml/index.html

Chapter 2. Exception Handling and
Debugging

Before continuing, it is helpful to look at exception handling and debugging tools in the
BDB XML API.

All BDB XML operations can throw an exception, and so they should be within atry block.

BDB XML methods throw Xm Excepti on objects. BDB XML always re-throws all underlying
Berkeley DB exceptions as Xn Excepti on, so every exception that can be thrown by BDB
XML is an Xm Excepti on instance.

Xl Except i on is derived from st d: ;: excepti on, so you are only required to catch

std:: exception in order to provide proper exception handling for your BDB XML
applications. Of course, you can choose to catch both types of exceptions if you want to
differentiate between the two in your error handling or messaging code.

Note that if you are using core Berkeley DB operations with your BDB XML application
then you should catch either DoException or std: : excepti on with this code.

The following example illustrates BDB XML exception handling.

Example 2.1. BDB XML Exception Handling
#i ncl ude "DbXn . hpp"

usi ng nanespace DbXm ;
int main(void)
{
/1 Open an Xnl Manager and an Xni Cont ai ner.
X Manager nyManager ;
try {
Xni Cont ai ner nyCont ai ner =
myManager . openCont ai ner (" cont ai ner. dbxm ") ;
} catch (Xnl Exception &xe) {
/1 Error handling goes here
} catch (std::exception &) {
/1 Error handling goes here
}

}

Note that, you can obtain more information on the cause of the Xm Except i on by examining
the underlying error code. Do this using the Xm Excepti on: : get Excepti onCode() method.
See the Berkeley DB XML C++ API reference for details on the exception codes available
through this class.

2/5/2008 Page 6

Debugging BDB XML Applications

Debugging BDB XML Applications

In some cases, the exceptions thrown by your BDB XML application may not contain enough
information to allow you to debug the source of an error. In this case, you can cause BDB
XML to issue more information using the error stream.

In order to set up the error stream, you use set _error_strean() on the underlying Berkeley
DB environment object (see Berkeley DB Environments (page 9) for information on
environments):

Example 2.2. Setting Error Streams
#i ncl ude "DbXm . hpp"

usi ng nanmespace DbXm ;

int main(voi d)

{

/1 Open an Xnl Manager

Xm Manager myManager ;

myManager . get DoEnv() - >set _error_strean{std::cerr);
}

Once you have set up your error stream, you can control the amount of information that
BDB XML reports on that stream using set LogLevel () and set LogCat egory.

set LogLevel () allows you to indicate the level of logging that you want to see (debug,
info, warning, error, or all of these).

set LogCat egory() allows you to indicate the portions of DB XML's subsystems for which
you want logging messages issued (indexer, query processor, optimizer, dictionary,
container, or all of these).

You can call these from anywhere within your DB XML code. For example:

Example 2.3. Setting Log Levels
#incl ude "DbXn . hpp"

usi ng nanespace DbXm ;
int main(void)
{
[/ Open an Xnl Manager and an Xm Cont ai ner.
Xm Manager myManager ;
db. get DoEnv()->set _error_strean(std::cerr);
try {
Xnt Cont ai ner nyCont ai ner = db. openCont ai ner (" cont ai ner. dbxm ") ;
DoXm : : set LogLevel (DoXm :: LEVEL_ALL, true);
DoXm : : set LogCat egor y(DoXm : : CATEGORY_ALL, true);
} catch (Xl Exception &xe) {

2/5/2008 Page 7

Debugging BDB XML Applications

[l Error handling goes here
} catch (std::exception &) {
[l Error handling goes here

}

2/5/2008 Page 8

Chapter 3. XmlIManager and Containers

While containers are the mechanism that you use to store and manage XML documents,
you use Xm Manager objects to create and open Xnl Cont ai ner objects. We therefore start
with the Xm Manager .

XmlIManager

Xl Manager is a high-level class used to manage many of the objects that you use in a BDB
XML application. The following are some of the things you can do with Xm Manager objects:

* Manage containers. This management includes creating, opening, deleting, and
renaming containers (see Managing Containers (page 14)).

» Create input streams used to load XML documents into containers (see Input Streams
and Strings (page 19)).

o Create Xnl Docunent , Xnl Quer yCont ext , and Xm Updat eCont ext objects.
o Prepare and run XQuery queries (see Using XQuery with BDB XML (page 27)).

« Create a transaction object (see the Berkeley DB XML Getting Started with Transaction
Processing guide for details).

Because Xnl Manager is the only way to construct important BDB XML objects, it is central
to your BDB XML application.

Berkeley DB Environments

Before you can instantiate an Xnl Manager object, you have to make some decisions about
your Berkeley DB Environment. BDB XML requires you to use a database environment. You
can use an environment explicitly, or you can allow the Xm Manager constructor to manage
the environment for you.

If you explicitly create an environment, then you can turn on important features in BDB
XML such as logging, transactional support, and support for multithreaded and multiprocess
applications. It also provides you with an on-disk location to store all of your application’s
containers.

If you allow the Xn Manager constructor to implicitly create and/or open an environment
for you, then the environment is only configured to allow multithreaded sharing of the
environment and the underlying databases (DB_PRI VATE is used). All other features are
not enabled for the environment.

The next several sections describe the things you need to know in order to create and
open an environment explicitly. We start with this activity first because it is likely to be
the first thing you will do for all but the most trivial of BDB XML applications.

2/5/2008 Page 9

XmlManager

Environment Open Flags

In order to use an environment, you must first open it. When you do this, there are a
series of flags that you can optionally specify. These flags are bitwise or'd together, and
they have the effect of enabling important subsystems (such as transactional support).

There are a great many environment open flags and these are described in the Berkeley
DB documentation. However, there are a few that you are likely to want to use with your
BDB XML application, so we describe them here:

DB_CREATE

If the environment does not exist at the time that it is opened, then create it. It is an
error to attempt to open a database environment that has not been created.

DB I NI T_LOCK

Initializes the locking subsystem. This subsystem is used when an application employs
multiple threads or processes that are concurrently reading and writing Berkeley DB
databases. In this situation, the locking subsystem, along with a deadlock detector,
helps to prevent concurrent readers/writers from interfering with each other.

Remember that under the covers BDB XML containers are using Berkeley DB databases,
so if you want your containers to be accessible by multiple threads and/or multiple
processes, then you should enable this subsystem.

DB INIT_LOG

Initializes the logging subsystem. This subsystem is used for database recovery from
application or system failures. For more information on normal and catastrophic
recovery, see the Berkeley DB XML Getting Started with Transaction Processing guide.

DB_I NI T_MPOOL

Initializes the shared memory pool subsystem. This subsystem is required for
multithreaded BDB XML applications, and it provides an in-memory cache that can be
shared by all threads and processes participating in this environment.

DB INIT_TXN

Initializes the transaction subsystem. This subsystem provides atomicity for multiple
database access operations. When transactions are in use, recovery is possible if an
error condition occurs for any given operation within the transaction. If this subsystem
is turned on, then the logging subsystem must also be turned on.

We discuss writing transactional applications in the Berkeley DB XML Getting Started
with Transaction Processing guide.

DB_RECOVER

2/5/2008

Page 10

XmlManager

causes normal recovery to be run against the underlying database. Normal recovery
ensures that the database files are consistent relative to the operations recorded in
the log files. This is useful if, for example, your application experienced an ungraceful
shut down and there is consequently an possibility that some write operations were
not flushed to disk.

Recovery can only be run if the logging subsystem is turned on. Also, recovery must
only be run by a single thread of control; typically it is run by the application's master
thread before any other database operations are performed.

Regardless of the flags you decide to set at creation time, it is important to use the same
ones on all subsequent environment opens (the exception to this is DB_CREATE which is
only required to create an environment). In particular, avoid using flags to open
environments that were not used at creation time. This is because different subsystems
require different data structures on disk, and it is therefore illegal to attempt to use
subsystems that were not initialized when the environment was first created.

Opening and Closing Environments

To use an environment, you must first open it. At open time, you must identify the
directory in which it resides and this directory must exist prior to the open attempt. At
open time, you also specify the open flags, properties, if any, that you want to use for
your environment.

When you are done with the environment, you must make sure it is closed. You can either
do this explicitly, or you can have the Xnl Manager object do it for you.

If you are explicitly closing your environment, you must make sure an containers opened
in the environment have been closed before you close your environment.

For information on Xnl Manager instantiation, see XmlManager Instantiation and
Destruction (page 12)

For example:

#incl ude "DbXm . hpp"

u_int32_t env_flags = DB_CREATE | /1 If the environment does not

/] exist, create it.

DB INIT LOCK | // Initialize the [ocking subsystem
DBINT LOG | // Initialize the [ogging subsystem
DB INNT_MPOOL | // Initialize the cache

DB I NI T_TXN; /1 Initialize transactions

std::string envHome("/exportl/testEnv");
DbEnv nyEnv(0);

try {
myEnv. open(envHone. c_str(), env_flags, 0);
} catch(DbException &) {
std::cerr << "Error opening database environnent:

2/5/2008

Page 11

XmlManager

<< envHone << std::endl;
std::cerr << e.what() << std::endl;
} catch(std::exception &) {
std::cerr << "Error opening database environnent: "
<< envHone << std::endl;
std::cerr << e.what() << std::endl;

}

/! Do BDB XML work here

try {
nmyEnv. cl ose(0);

} catch(DbException &) {
std::cerr << "Error closing database environnent: "
<< envHone << std::endl;
std::cerr << e.what() << std::endl;
} catch(std::exception &) {
std::cerr << "Error closing database environnent: "
<< envHone << std::endl;
std::cerr << e.what() << std::endl;

}
XmlIManager Instantiation and Destruction

You create an Xm Manager object by calling its constructor. You destroy a Xnl Manager
object by calling its destructor, either by using the del et e operator or by allowing the
object to go out of scope (if it was created on the stack). Note that Xml Manager is closed
and all of its resources released when the last open handle to the object is destroyed.

To construct an Xnl Manager object, you may or may not provide the destructor with an
open DbEnv object. If you do instantiate Xml Manager with an opened environment handle,
then Xm Manager will close and destroy that DbEnv object for you if you specify
DBXM._ADCOPT_DBENV for the Xm Manager constructor. set

Xl Manager Confi g: : set Adopt Envi ronnment () to true.

If you provide an DbEnv object to the constructor, then you can use that object to use
whatever subsystems that you application may require (see Environment Open Flags
(page 10) for some common subsystems).

If you do not provide an environment object, then Xnl Manager will implicitly create an
environment for you. In this case, the environment will not be configured to use any
subsystems and it is only capable of being shared by multiple threads from within the
same process. Also, in this case you must identify the on-disk location where you want
your containers to reside using one of the following mechanisms:

» Specify the path to the on-disk location in the container's name.

« Specify the environment's data location using the DB_HOVE environment variable.

2/5/2008 Page 12

XmlManager

In either case, you can pass the Xnl Manager constructor a flag argument that controls
that object's behavior with regard to the underlying containers (the flag is NOT passed
directly to the underlying environment or databases). Valid values are:

« DBXM._ALLOW AUTO OPEN

When specified, XQuery queries that reference created but unopened containers will
automatically cause the container to be opened for the duration of the query.

« DBXM._ADOPT_DBENV

When specified, Xn Manager will close and destroy the DbEnv object that it was
instantiated with when the Xm Manager is closed.

o DBXM._ALLOW EXTERNAL_ACCESS

When specified, XQuery queries executed from inside BDB XML can access external
sources (URLs, files, and so forth).

For example, to instantiate an Xnl Manager with a default environment:
#i ncl ude "DbXm . hpp"

usi ng nanmespace DbXm ;
int main(voi d)

{
Xm Manager nyManager; // The manager and underlying
/1 environment are closed when
/1 this goes out of scope.
return(0);
}

And to instantiate an Xm Manager using an explicit environment object:
#i ncl ude "DbXm . hpp"

usi ng namespace DbXm ;
int main(voi d)
{
u_int32_t env_flags = DB_CREATE | // If the environnment does not
Il exist, create it.

DB INNT_LOCK | // Initialize Iocking
DBINTLOG | [/ Initialize |ogging

DB INNT_MPOOL | // Initialize the cache
DB I NI T_TXN, [/ Initialize transactions

std::string envHonme("/export1/testEnv");
DbEnv *myEnv = new DbEnv(0);

2/5/2008 Page 13

Managing Containers

Xm Manager *nmyManager = NULL;

try {
myEnv- >open(envHone. c_str(), env_flags, 0);
myManager =
new Xm Manager (nmyEnv,
DBXM._ADCPT_DBENV); // The manager and
Il environnent is closed
/1 when this object is
/'l destroyed.
} catch(DbException &) {
std::cerr << "Error opening database environnent:
<< envHone << std::endl;
std::cerr << e.what() << std::endl;
} catch (Xl Exception &xe) {
[/ Error handling goes here
std::cerr << "Error opening database environnent:
<< envHone
<< " or opening Xm Manager." << std::endl;
std::cerr << xe.what() << std::endl;

}

try {
if (myManager != NULL) {
del ete nyManager;
}
} catch(DbException &) {
std::cerr << "Error closing database environnent:
<< envHone << std::endl;
std::cerr << e.what() << std::endl;
} catch(Xm Exception &xe) {
std::cerr << "Error closing database environnent:
<< envHone << std::endl;
std::cerr << xe.what() << std::endl;

}
Managing Containers

In BDB XML you store your XML Documents in containers. A container is a file on disk that
contains all the data associated with your documents, including metadata and indices.

To create and open a container, you use Xm Manager : : cr eat eCont ai ner (). Once a container
has been created, you can not use creat eCont ai ner () on it again. Instead, simply open
it using: Xm Manager : : openCont ai ner ().

Note that you can test for the existence of a container using the
Xl Manager : : exi st sCont ai ner () method. This method should be used on closed containers.

2/5/2008 Page 14

Managing Containers

It returns 0 if the named file is not a BDB XML container. Otherwise, it returns the
underlying database format number.

Alternatively, you can cause a container to be created and opened by calling
openCont ai ner () and pass it the necessary f | ags to allow the container to be created
(see the following section for information on container open flags).

You can open a container multiple times. Each time you open a container, you receive a
reference-counted handle for that container.

You close a container by allowing the container object to go out of scope. Note that the
container is not actually closed until the last handle for the container is off the stack.

For example:
#incl ude "DbXm . hpp"

usi ng nanmespace DbXm ;
int main(voi d)

{
Xm Manager nyManager; // The manager is closed when
/] it goes out of scope.
[/ Open the container. If it does not currently exist,
[/ then create it. This container is closed when the |ast
/1 handle to it goes out of scope.
Xm Cont ai ner nyCont ai ner =
myManager . cr eat eCont ai ner ("/ export/xm / nyCont ai ner . bdbxm ") ;
// Ontain a second handle to the container.
X Cont ai ner nyCont ai ner2 =
myManager . openCont ai ner ("/ export/xm / myCont ai ner . bdbxm ") ;
return(0);
}

Container Flags

When you create or open a container, there are a large number of flags that you can
specify which control various aspects of the container's behavior. The following are the
flags commonly used by BDB XML applications. For a complete listing of the flags available
for use, see the BDB XML API Reference.

As is the case with environment flags, to set multiple flags you must bitwise or them
together:

DB_CREATE | DB_EXCL

. DB_CREATE

2/5/2008 Page 15

Managing Containers

Causes the container and all underlying databases to be created. It is not necessary
to specify this flag on the call to Xnl Manager: : cr eat eCont ai ner () . In addition, you
need specify it for Xnl Manager : : openCont ai ner () . only if the container has not already
been created.

« DB EXCL

Causes the container creation to fail if the container already exists. It is not necessary
to specify this flag on the call to Xnl Manager : : cr eat eCont ai ner () . Note that this flag
should only be used if DB_CREATE is also used.

+ DB RDONLY
The container is opened for read-access only.
o DBXM._ALLOW VALI DATI ON

Causes documents to be validated when they are loaded into the container. The default
behavior is to not validate documents.

« DBXM._| NDEX_NODES

Causes indices for the container to return nodes rather than documents. This is the
default behavior for containers of type NodeCont ai ner .

This flag is only meaningful at container creation time; you cannot change the indexing
level once the container has been created.

For more information on index nodes, see Specifying Index Nodes (page 63).
o DBXM._NO_| NDEX_NODES

Causes indices for the container to return documents rather than nodes. This is the
default behavior for containers of type Wol edocCont ai ner .

This flag is only meaningful at container creation time; you cannot change the indexing
level once the container has been created.

For more information on index nodes, see Specifying Index Nodes (page 63).
o DBXM._TRANSACTI ONAL

The container supports transactions. For more information, see Berkeley DB XML
Getting Started with Transaction Processing guide.

Container Types

At creation time, every container must have a type defined for it. This container type
identifies how XML documents are stored in the container. As such, the container type
can only be determined at container creation time; you cannot change it on subsequent
container opens.

2/5/2008 Page 16

Managing Containers

Containers can have one of the following types specified for them:
» Wholedoc Containers

The container contains entire documents; the documents are stored "as is" without
any manipulation of line breaks or whitespace. To cause the container to hold whole
documents, set Xnl Cont ai ner: : Whol edocCont ai ner on the call to

Xnl Manager : : cr eat eCont ai ner ().

« Node containers

Xnl Docunent s are stored as individual nodes in the container. That is, each record in
the underlying database contains a single leaf node, its attributes and attribute values
if any, and its text nodes, if any. BDB XML also keeps the information it needs to

reassemble the document from the individual nodes stored in the underlying databases.

This is the default, and preferred, container type.

To cause the documents to be stored as individual nodes, set
Xm Cont ai ner: : NodeCont ai ner on the call to Xm Manager : : cr eat eCont ai ner () .

« Default container type.

The default container type is used. You can set the default container type using
X Manager : : set Def aul t Cont ai ner Type() . If you never set a default container type,
then the container will use node-level storage.

Note that NodeCont ai ner is generally faster to query than is Wol edocCont ai ner . On the
other hand, Wol edocCont ai ner provides faster document loading times into the container
than does NodeCont ai ner because BDB XML does not have to deconstruct the document
into its individual leaf nodes. For the same reason, Whol edocCont ai ner is faster at retrieving
whole documents for the same reason — the document does not have to be reassembled.

Because of this, you should use NodeCont ai ner unless one of the following conditions are
true:

» Load performance is more important to you than is query performance.

« You want to frequently retrieve the entire XML document (as opposed to just a portion
of the document).

« Your documents are so small in size that the query advantage offered by NodeCont ai ner
is negligible or vanishes entirely. The size at which this threshold is reached is of
course dependent on the physical resources available to your application (memory,
CPU, disk speeds, and so forth).

Note that you should avoid using Whol edocCont ai ner if your documents tend to be greater
than a megabyte in size. Wiol edocCont ai ner is tuned for small documents and you will
pay increasingly heavy performance penalties as your documents grow larger.

For example:

2/5/2008 Page 17

Managing Containers

#include "DbXn . hpp"

usi ng nanespace DbXm ;
int main(voi d)

{
Xm Manager nyManager; // The manager is closed when

/] it goes out of scope.
myManager . set Def aul t Cont ai ner Type(Xm Cont ai ner: : Whol edocCont ai ner) ;

/] Create and open the container.
X Cont ai ner nyCont ai ner =

myManager . cr eat eCont ai ner ("/ export/xn / nyCont ai ner . bdbxm ") ;
return(0);

}
Deleting and Renaming Containers

You can delete a container using Xm Manager : : removeCont ai ner () . It is an error to attempt
to remove an open container.

You can rename a container using Xm Manager : : r enameCont ai ner (). It is an error to attempt
to rename an open container.

For example:
#incl ude "DbXm . hpp"

usi ng nanmespace DbXm ;
int main(voi d)

{
Xm Manager nyManager; // The manager is closed when
/] it goes out of scope.
/] Assumes the container currently exists.
myManager . r enameCont ai ner ("/ export/xm / myCont ai ner. bdbxm ",
"/ export 2/ xm / myCont ai ner. bdbxm ") ;
myManager . r enoveCont ai ner ("/ export 2/ xn / myCont ai ner . bdbxm ") ;
return(0);
}

2/5/2008 Page 18

Chapter 4. Adding XML Documents to
Containers

To manage XML documents in BDB XML, you must load them into a container. Typically
you will do this by using the Xn Cont ai ner handle directly. You can also load a document
into an Xm Docunent instance, and then load that instance into the container using the
Xnl Cont ai ner handle. This book will mostly use the first, most direct, method.

Input Streams and Strings

When you add a document to a container, you must identify the location where the
document resides. You can do this by using:

« A string object that holds the entire document.

e An input stream that is created from a filename. Use
Xm Manager : : creat eLocal Fi | el nput Strean() to create the input stream.

e Aninput stream created from a URL. In this case, the URL can be any valid URL.
However, if the URL requires network activity in order to access the identified content
(such as is required if you, for example, supply an HTTP URL), then the input stream
is valid only if you have compiled Xerces with socket support.

Use Xm Manager : : creat eURLI nput Strean() to create the input stream.

e Aninput stream that refers to a memory buffer.
Use Xm Manager : : cr eat eMenBuf | nput Strean{) to create the input stream.

e Aninput stream that refers to standard input (the console under Windows systems).
Use Xnl Manager: : creat eSt dI nl nput Strean() to create the input stream.

Note that BDB XML does not validate an input stream until you actually attempt to put
the document to your container. This means that you can create an input stream to an
invalid location or to invalid content, and BDB XML will not throw an exception until you
actually attempt to load data from that location.

We provide an example of creating input streams in the following section.

Adding Documents

To add a document to a container, you use Xnl Cont ai ner: : put Docunent () . When you use
this method, you must:

1. Somehow obtain the document that you want to put into the container. To do this,
you can create an input stream to the content or load the XML document into a string
object. Alternatively, you can create load the document into an Xl Document object
and then provide the Xm Docunent object to Xl Cont ai ner: : put Docunent () . When

2/5/2008 Page 19

Adding Documents

you do this, you can provide the document to the Xnl Docunent object using an input
stream or string, or you can construct the document using an event writer.

2. Provide a name for the document. This name must be unique or BDB XML will throw
Xm Excepti on: : UNI QUE_ERROR.

If you are using an Xnl Docunent object to add the document, use
Xl Docunent : : set Name() to set the document's name. Otherwise, you can set the
name directly on the call to Xn Cont ai ner: : put Docunent () .

Note that if you do not want to explicitly set a name for the document, you can set
a flag, DBXML_CGEN_NAME, on the call to Xn Cont ai ner: : put Docunent () . This causes BDB
XML to generate a unique name for you. The name that it generates is a concatenation
of a unique value, an underscore, and the value that you provide for the document's
name, if any. For example:

nmyDocName_a

where nyDocNane is the name that you set for the document and a is the unique value
generated by BDB XML.

If you do not set a name for the document, but you do specify that a unique name
is to be generated, then dbxm is used as the name's prefix.

dbxn _b

If you do not set a name for the document and if you do not use DBXM._GEN_NAME,
then BDB XML throws Xm Except i on: : UNI QUE_ERROR.

3. Create an Xm Updat eCont ext object. This object encapsulates the context within
which the container is updated. Reusing the same object for a series of puts against
the same container can improve your container's write performance.

Note that the content that you supply to Xm Cont ai ner: : put Docunent () is read and
validated. By default, this includes any schema or DTDs that the document might reference.
Since this can cause you some performance issues, you can cause BDB XML to only examine
the document body itself by passng the DBXM._WELL_FORMED ONLY flag to

Xnl Cont ai ner : : put Docunent () . However, using this flag cause cause parsing errors if the
document references information that might have come from a schema or DTD.

Further, note that while your documents are stored in the container with their shared

text entities (if any) as-is, the underlying XML parser does attempt to expand them for
indexing purposes. Therefore, you must make sure that any entities contained in your

documents are resolvable at load time.

For example, to add a document that is held in a string:
#incl ude "DbXm . hpp"

usi ng nanespace DbXm ;
int main(voi d)

2/5/2008 Page 20

Adding Documents

{
[/ The documnent
std::string docString = "<a_node><b_node>Sone text</b_node></a_node>";
[/ The docunent's nane.
std::string docName = "testDocl";
/] Get a manager object.
Xm Manager nyManager; // The manager is closed when
/] it goes out of scope.
/] Load the docunent in its entirety. The document's formatting is
/] preserved.
myManager . set Def aul t Cont ai ner Type(Xm Cont ai ner: : Whol edocCont ai ner) ;
/] Open the container. The container is closed when it goes
/] out of scope.
X Cont ai ner nyCont ai ner =
myManager . openCont ai ner (" cont ai ner. bdbxm ") ;
/] Need an update context for the put.
X Updat eCont ext theContext = myManager. creat eUpdat eCont ext () ;
[/ Put the docunent
try {
myCont ai ner . put Document (docNane, /1 The document's name
docString, // The actual docunent,
[l in a string.
theContext, // The update context
Il (required).
0); [l Put flags.
} catch (Xl Exception &e) {
[l Error handling goes here. You may want to check
Il for Xm Exception::UNI QUE_ERROR, which is raised
[/ if a document with that nane al ready exists in
Il the container. If this exception is thrown,
[l try the put again with a different name, or
/1 use Xm Mbdify to update the docunent.
}
return(0);
}

To load the document from an input stream, the code is identical except that you use
the appropriate method on Xn Manager to obtain the stream. For example, to load an
XmlDocument directly from a file on disk:

#i ncl ude "DbXn . hpp"

2/5/2008 Page 21

Adding Documents

usi ng nanespace DbXm ;
int main(voi d)

{
[/ The docunent
std::string fileName = "/export/testdocl. xm";
/| The docunent's nane.
std::string docName = "testDocl";
/] Get a manager object.
Xm Manager nyManager; // The manager is closed when
/] it goes out of scope.
/] Load the docunent in its entirety. The document's formatting is
/I preserved.
myManager . set Def aul t Cont ai ner Type(Xm Cont ai ner: : Whol edocCont ai ner) ;
/] Open the container. The container is closed when it goes
/] out of scope.
X Cont ai ner nyCont ai ner =
myManager . openCont ai ner (" cont ai ner. bdbxm ") ;
/] Need an update context for the put.
X Updat eCont ext theContext = myManager. creat eUpdat eCont ext () ;
try {
Il Get the input stream
Xnl I nput St ream *t heStream =
myManager . creat eLocal Fi | el nput Stream(fil eNane);
[/ Put the docunent
myCont ai ner . put Docunment (docNane, /1 The document's name
theStream // The actual docunent.
theContext, // The update context
Il (required).
0); /1 Put flags.
} catch (Xl Exception &e) {
[l Error handling goes here. You may want to check
Il for Xm Exception::UNI QUE_ERRCR, which is raised
[/ if a document with that nane already exists in
Il the container. If this exception is thrown,
[l try the put again with a different name, or
/1 use Xm Mbdify to update the docunent.
}
return(0);
}

2/5/2008 Page 22

Constructing Documents using
Event Writers

Constructing Documents using Event Writers

In the previous section we showed you how to load a document into a container by reading
that document from disk, or by providing the document as a string object. As an
alternative, you can construct your document using an Xml Event Wi t er class object, which
stores the document in an Xml Docunent object. You can then put that Xn Document object
to the container as described in the previous section.

Xm Event Wit er provides methods that allow you to describe the individual, descrete
sections of the document. It is useful if, for example, you are already parsing a document
using a SAX parser and you want to write the information your parser discovers to a
container.

To use an event writer:
1. Create the Xm Docunent instance.
2. Give it a name using the Xml Docunent: : set Name() method.

3. Put the document to your container using the
Xm Cont ai ner: : put Docunment AsEvent Wit er () method. Note that at this point you
have not actually written any document data to the container, since your document
is currently empty.

This method returns an Xm Event Wit er object.

4. Use the Xnl Event Wit er object to start new document. You do this using the
Xm EventWiter::witeStartDocunent () method, which allows you to describe
information about the XML document such as its encoding and it's XML version
identification.

5. Once you have started your document, you can write beginning and end elements,
attributes, processing instructions, text, CDATA, and all the other features that you
might expect to place on an XML document. Xm Event Wi ter provides methods that
allow you to do these things.

6. Once you have have completed your document, close it using the
Xm Event Witer::close() method. This completes the container put operation that
you began in step 3.

For example, suppose you wanted to write the following document to a container:

<a>

<b al="one" b2="two">b node text
<c>c node text</c>

<l a>

Then the following code fragment would accomplish that task:

Il create a new docunent
Xni Docunent doc = nygr. creat eDocunent () ;

2/5/2008 Page 23

Setting Metadata

doc. set Nane(dnane) ;

X EventWiter &witer = cont. put Document AsEvent Witer(doc, uc);
witer.witeStartDocument (NULL, NULL, NULL); // no XM decl

Il Wite the docunment’s root node. It has no prefixes or

Il attributes. This node is not enpty.

witer.witeStartEl ement((const unsigned char *)
fal se);

a", NULL, NULL, O,

I/ Wite a new start element. This time for the "b" node.

[/ 1t has two attributes and its content is also not enpty.

witer.witeStartEl ement ((const unsigned char *)"b", NULL, NULL, 2,
fal se);

[/ Wite the "al" and "b2" attributes on the "b" node

witer.witeAttribute((const unsigned char *)"al", NULL, NULL,
(const unsigned char *)"one", true);

witer.witeAttribute((const unsigned char *)"b2", NULL, NULL,
(const unsigned char *)"tw", true);

[/ Wite the "b" node's content. Note that there are 11

Il characters in this text, and we provide that information

Il to the nmethod. Also, we identify this data as being of type

Il Xm Event Type. Char act ers.

witer.witeText(Characters, (const unsigned char *)"b node text",
11);

/1 End the "b" node

writer.witeEndEl ement ((const unsigned char *)"b", NULL, NULL);

[/ Start the "c" node. There are no attributes on this node.

witer.witeStartEl ement((const unsigned char *)"c", NULL, NULL, O,
fal se);

[/ Wite the "c" node's content

witer.witeText(Characters, (const unsigned char *)"c node text",
11);

/1 End the "c" node and then the "a" (the root) node

writer.witeEndEl ement ((const unsigned char *)"c", NULL, NULL);

writer.witeEndEl ement ((const unsigned char *)"a", NULL, NULL);

/'l End the document
writer.witeEndDocunent();
Il dose the docunent
witer.close();

Setting Metadata

Every XML document stored in BDB XML actually consists of two kinds of information: the
document itself, and metadata.

Metadata can contain an arbitrarily complex set of information. Typically it contains
information about the document that you do not or can not include in the document itself.

2/5/2008 Page 24

Setting Metadata

As an example, you could carry information about the date and time a document was
added to the container, last modified, or possibly an expiration time. Metadata might
also be used to store information about the document that is external to BDB XML, such
as the on-disk location where the document was originally stored, or possibly notes about
the document that might be useful to the document's maintainer.

In other words, metadata can contain anything — BDB XML places no restrictions on what
you can use it for. Further, you can both query and index metadata (see Using BDB XML
Indices (page 58) for more information). It is even possible to have a document in your
container that contains only metadata.

In order to set metadata onto a document, you must:

1.

6.

Optionally (but recommended), create a URI for each piece of metadata (in the form
of a string).

Create an attribute name to use for the metadata, again in the form of a string.

Create the attribute value — the actual metadata information that you want to carry
on the document — either as an Xnl Val ue or as an X Dat a class object.

Set this information on a Xm Docunent object.

Optionally (but commonly) set the actual XML document to the same Xm Docunent
object.

Add the Xm Docunent to the container.

For example:
#incl ude "DbXn . hpp"

usi ng nanespace DbXm ;
int main(voi d)

{

[/ The docunent
std::string fileName = "/export/testdocl. xm";

/] The document's nane.
std::string docName = "testDocl";

[/ URI, attribute nane, and attribute value used for

[/ the metadata. We will carry a timestanp here

[/ (hard coded for clarity purposes).

std::string URI = "http://dbxn Exanpl es/ met adat a";

std::string attrName = "createdOn”;

Xm Val ue attrVal ue(Xm Val ue: : DATE_TI Mg, "2005- 10- 5T04: 18: 36");

/] Get a manager object.
Xm Manager nyManager; // The manager is closed when

2/5/2008

Page 25

Setting Metadata

/] it goes out of scope.

/] Load the docunent in its entirety. The document's formatting is
/I preserved.
myManager . set Def aul t Cont ai ner Type(Xm Cont ai ner: : Whol edocCont ai ner) ;

/] Open the container. The container is closed when it goes
/] out of scope.
X Cont ai ner nyCont ai ner =

myManager . openCont ai ner (" cont ai ner. bdbxm ") ;

/] Need an update context for the put.
X Updat eCont ext theContext = myManager. creat eUpdat eCont ext () ;

try {
Il Get the input stream

Xnl I nput St ream *t heStream =
myManager . creat eLocal Fi | el nput Streanm(fil eNane);

[/ Get an Xm Document
Xnl Docunent myDoc = nyManager . creat eDocunent () ;

/1 Set the docunent's nane

myDoc. set Nane(docNane) ;

/1 Set the content

myDoc. set Cont ent AsXm | nput St rean(theStrean);
I/ Set the netadata

myDoc. set Met aDat a(URI, attrName, attrValue);

/1 Put the docunent into the container

myCont ai ner . put Document (myDoc, /1 The actual docunment.
theContext, // The update context

Il (required).
0); /1 Put flags.
} catch (Xl Exception &e) {

[l Error handling goes here. You may want to check

Il for Xm Exception::UNI QUE_ERRCR, which is raised

[/ if a document with that nane already exists in

Il the container. If this exception is thrown,

[l try the put again with a different name, or

/1 use Xm Mbdify to update the docunent.

}

return(0);

2/5/2008 Page 26

Chapter 5. Using XQuery with BDB XML

Documents are retrieved from BDB XML containers using XQuery expressions. XQuery is a
language designed to query XML documents. Using XQuery, you can retrieve entire
documents, subsections of documents, or values from one or more individual document
nodes. You can also use XQuery to manipulate or transform values returned by document
queries.

Note that XQuery represents a superset of XPath 2.0, which in turn is based on XPath 1.0.
If you have prior experience with BDB XML 1.x, then you should be familiar with XPath
as that was the query language offered by that library.

BDB XML supports the entire W3 XQuery specification. As of this printing, the specification
is dated July 2004. However, BDB XML will be updated to track any changes in the working
specification that may occur. You can find the XQuery specification at
http://www.w3.org/XML/Query [http://www.w3.org/XML/Query/].

Beyond the W3C specifications, there are several good books on the market today that

fully describe XQuery. In addition, there are many freely available resources on the web
that provide a good introduction to the language. Searching for 'XQuery' in the Web search
engine of your choice ought to return a wealth of information and pointers on the language.

That said, this chapter begins with a very thin introduction to XQuery that should be
enough for you to understand any BDB XML concepts required to proceed with usage of
the library. In particular, the next section of this manual highlights those aspects of
XQuery that have unique meanings relative to BDB XML usage. Be aware, however, that
the following introduction is not meant to be complete — a full treatment of XQuery is
beyond the scope of an introductory manual such as this.

We follow this brief introduction to XQuery with a general description of querying
documents stored in BDB XML containers, and examining the results of those queries. See
Retrieving BDB XML Documents using XQuery (page 34) for that information.

XQuery: A Brief Introduction

XQuery can be used to:

1. Query for a document. Note that queries can be formed against an individual
document, or against multiple documents.

2. Query for document subsections, including values found on individual document
nodes.

3. Manipulate and transform the results of a query.
4. Modify a document (see Modifying XML Documents (page 51) for more information).

To do this, XQuery views an XML document as a collection of element, text, and attribute
nodes. For example, consider the following XML document:

2/5/2008 Page 27

http://www.w3.org/XML/Query/

XQuery: A Brief Introduction

Example 5.1. A Simple XML Document

<?xm version="1.0"?>
<Node0>
<Nodel cl ass="nyVal uel">Nodel text </Nodel>
<Node2>
<Node3>Node3 t ext </ Node3>
<Node3>Node3 text 2</Node3>
<Node3>Node3 t ext 3</Node3>
<Node4>300</ Node4>
</ Node2>
</ Node0>

In the above document, <Node0> is the document’s root node, and <Nodel> is an element
node. Further, the element node, <Nodel>, contains a single attribute node whose name
is cl ass and whose value is myVal uel. Finally, <Nodel> contains a text node whose value
is Nodel text.

Referencing Portions of Documents using XQuery
A document's root can always be referenced using a single forward slash:
/

Subsequent element nodes in the document can be referenced using Unix-style path
notation:

/ Nodel
To reference an attribute node, prefix the attribute node's name with '@:
/ Nodel/ @l ass

To return the value contained in a node's text node (remember that not all element nodes
contain a text node), use di stinct - val ues() function:

di stinct-val ues(/ Nodel)

To return the value assigned to an attribute node, you also use the di sti nct - val ues()
function:

di stinct-val ues(/ Nodel/ @l ass)
Predicates
When you provide an XQuery path, what you receive back is a result set. You can further

filter this result set by using predicates. Predicates are always contained in brackets ([])
and there are two types of predicates that you can use: numeric and boolean.

2/5/2008 Page 28

XQuery: A Brief Introduction

Numeric Predicates

Numeric predicates allow you to select a node based on its position relative to another
node in the document (that is, based on its context).

For example, consider the document presented in A Simple XML Document (page 28). This
document contains three <Node3> elements. If you simply enter the XQuery expression:

/ Nodel/ Node2/ Node3

all <Node3> elements in the document are returned. To return, say, the second <Node3>
element, use a predicate:

/ Node1/ Node2/ Node3[2]
Boolean Predicates

Boolean predicates filter a query result so that only those elements of the result are kept
if the expression evaluates to true. For example, suppose you want to select a node only
if its text node is equal to some value. Then:

/ Nodel/ Node2[Node3="Node3 text 3"]

Context

The meaning of an XQuery expression can change depending on the current context.
Within XQuery expressions, context is usually only important if you want to use relative
paths or if your documents use namespaces. However, BDB XML only supports relative
paths from within a predicate (see below). Also, do not confuse XQuery contexts with
BDB XML contexts. While BDB XML contexts are related to XQuery contexts, they differ
in that BDB XML contexts are a data structure that allows you to define namespaces,
define variables, and to identify the type of information that is returned as the result of
a query (all of these topics are discussed later in this chapter).

Relative Paths

Just like Unix filesystem paths, any path that does not begin with a slash (/) is relative
to your current location in a document. Your current location in a document is determined
by your context. Thus, if in A Simple XML Document (page 28) your context is set to Node2,
you can refer to Node3 with the simple notation:

Node3

Further, you can refer to a parent node using the following familiar notation:

and to the current node using:

2/5/2008 Page 29

XQuery: A Brief Introduction

|:| Remember that BDB XML supports relative paths only from within predicates.

Namespaces

Natural language and, therefore, tag names can be imprecise. Two different tags can
have identical names and yet hold entirely different sorts of information. Namespaces
are intended to resolve any such sources of confusion.

Consider the following document:

Example 5.2. XML Documents and Namespaces

<?xm version="1.0"?>
<definition>

<ring>

Jewel ry that you wear.
</ring>
<ring>

A sound that a tel ephone makes.
</ring>
<ring>

A circul ar space for exhibitions.
</ring>

</ definition>

As constructed, this document makes it difficult (though not impossible) to select the
node for, say, a ringing telephone.

To resolve any potential confusion in your schema or supporting code, you can introduce
namespaces to your documents. For example:

Example 5.3. Namespace Declaration

<?xnl version="1.0"?>
<definition>
<jewelry:ring xmns:jewel ry="http://nyDefinition.dbxm/jewelry">
Jewel ry that you wear.
</jewelry:ring>
<sounds: ring xm ns:sounds="http://nyDefi nition.dbxm /sounds">
A sound a tel ephone nakes.
</ sounds: ring>
<showpl aces: ring
xn ns: showpl aces="http: //nyDefinition.dbxm /showpl aces">
A circul ar space for exhibitions.
</ showpl aces: ri ng>
</definition>

Now that the document has defined namespaces, you can precisely query any given node:

2/5/2008 Page 30

XQuery: A Brief Introduction

/definition/sounds:ring

|:| In order to perform queries against a document stored in BDB XML that makes use of
namespaces, you must declare the namespace to your query. You do this using
Xm Quer yCont ext : : set Namespace() . See Defining Namespaces (page 35) for more information.

By identifying the namespace to which the node belongs, you are declaring a context for
the query.

The URI used in the namespace definition is not required to actually resolve to anything.
The only criteria is that it be unique within the scope of any document set(s) in which it
might be used.

Also, the namespace is only required to be declared once in the document. All subsequent
usages need only use the relevant prefix. For example, we could have added the following
to our previous document:

Example 5.4. Namespace Prefixes

<j ewel ry: di amond>

The centerpiece of many rings.
</jewel ry: di amond>
<showpl aces: di anond>

A place where baseball is played.
</ showpl aces: di anond>

Finally, namespaces can be used with attributes too. For an example:

Example 5.5. Namespaces with Attributes

<cl ubMenber s>
<surveyResul ts school : cl ass="Engl i sh"
xni ns: school ="htt p: // nyExanpl eDef i ni ti ons. dbxn / school "
nunber =" 200"/ >
<surveyResul ts school : cl ass="Mat hemat i cs"
nunber =" 165"/ >
<surveyResul ts social : class="M ddl e"
xni ns: soci al ="http: // nmyExanpl eDefi ni tions. dbxnl / soci al "
nunber =" 543"/ >
</ cl ubMenber s>

Once you have declared a namespace for an attribute, you can query the attribute in the
following way:

/ ¢l ubMenber s/ surveyResul t s/ @chool : cl ass
And to retrieve the value set for the attribute:

di stinct-val ues(/cl ubMenbers/ surveyResul t s/ @chool : cl ass)

2/5/2008 Page 31

XQuery: A Brief Introduction

Wildcards
XQuery allows you to use wildcards when document elements are unknown. For example:
/ Node0/ */ Node6

selects all the Nodeé nodes that are 3 nodes deep in the document and whose path starts
with Node0O. Other wildcard matches are:

Selects all of the nodes in the document:

1*

Selects all of the Node6 nodes that have three ancestors:

[*1*]*] Node6

Selects all the nodes immediately beneath Nodeb5:

/ Node0/ Node5/ *

Selects all of Node5's attributes:

I NodeO/ Node5/ @

Case Insensitive Searches

It is possible to perform a case-insensitive and diacritic insensitive match using BDB XML's
built-in function, dbxnl : cont ai ns() . This function takes two parameters, both strings.
The first identifies the attribute or element that you want to examine, and the second
provides the string you want to match.

For example, the search:

col I ection(' myCol | ection.dbxm ')/book[dbxm :contains(title, "Résumé")]
matches "resume”, "Resume”, "Resumé” and so forth.

Note that searches performed using dbxni : cont ai ns() can be backed by BDB XML's substring
indexes.

Navigation Functions

XQuery provides several functions that can be used for global navigation to a specific
document or collection of documents. From the perspective of this manual, two of these
are interesting because they have specific meaning from within the context of BDB XML

2/5/2008 Page 32

XQuery: A Brief Introduction

collection()

Within XQuery, col | ection() is a function that allows you to create a named sequence.
From within BDB XML, however, it is also used to navigate to a specific container. In this
case, you must identify to col [ection() the literal name of the container. You do this
either by passing the container name directly to the function, or by declaring a default
container name using the Xm QueryCont ext : : set Def aul t Col | ecti on() method.

Note that the container must have already been opened by the Xm Manager in order for
collection to reference that container. The exception to this is if Xm Manager was opened
using the DBXML_ALLON AUTO OPEN f 1 ag.

For example, suppose you want to perform a query against a container named
cont ai ner 1. dbxm . In this case, first open the container using Xnl Manager : : openCont ai ner ()
and then specify the collection() function on the query. For example:

col I ection("containerl.dbxm")/NodeO
Note that this is actually short-hand for:
col I ection("dbxm :/containerl.dbxm ")/ NodeO

dbxnl :/ is the default base URI for BDB XML. You can change the base URI using
X QueryCont ext : : set BaseURI () .

If you want to perform a query against multiple containers, use the union ("|") operator.
For example, to query against containers c1. dbxm and c2. dbxm , you would use the
following expression:

(collection("cl.dbxm ") | collection("c2.dbxm "))/ Node0

See Retrieving BDB XML Documents using XQuery (page 34) for more information on how
to prepare and perform queries.

doc()

XQuery provides the doc() function so that you can trivially navigate to the root of a
named document. doc() is required to take a URI.

To use doc() to navigate to a specific document stored in BDB XML, provide an XQuery
path that uses the dbxni : base URI, and that identifies the container in which the document
can be found. The actual document name that you provide is the same name that was
set for the document when it was added to the container (see Adding Documents (page 19)
for more information).

For example, suppose you have a document named "mydoc1.xml" in container
"container1.dbxml”. Then to perform a query against that specific document, first open
cont ai ner 1. dbxn and then provide a query something like this:

doc("dbxm :/cont ai ner 1. dbxn / nydocl. xm ")/ NodeO

2/5/2008 Page 33

Retrieving BDB XML Documents
using XQuery

See Retrieving BDB XML Documents using XQuery (page 34) for more information on how
to prepare and perform queries.

Using FLWOR with BDB XML

XQuery offers iterative and transformative capabilities through FLWOR (pronounced
"flower") expressions. FLWOR is an acronym that stands for the five major clauses in a
FLWOR expression: for, |et, where, order, by andreturn. Using FLWOR expressions,
you can iterate over sequences (frequently result sets in BDB XML), use variables, and
filter, group, and sort sequences. You can even use FLWOR to perform joins of different
data sources.

For example, suppose you had documents in your container that looked like this:

<product >
<nane>W dget A</ nanme>
<price>0.83</price>
</ product >

In this case, queries against the container for these documents return the documents in
order by their document name. But suppose you wanted to see all such documents in your
container, ordered by price. You can do this with a FLWOR expression:

for $i in collection("myContainer.dbxm")/product
order by $i/price descending
return $i

Note that from within BDB XML, you must provide FLWOR expressions in a single string.
Lines can be separated either by a carriage return ("\n") or by a space. Thus, the above
expression would become:

std::string flwor="for $i in collection('nyContainer.dbxm")/product\n";
flwor += "order by $i/price descending\n";
flwor += "return $i"

Retrieving BDB XML Documents using XQuery

Documents are retrieved from BDB XML when they match an XQuery path expression.
Queries are either performed or prepared using an Xnl Manager object, but the query itself
usually restricts its scope to a single container or document using one of the XQuery
Navigation Functions (page 32).

When you perform a query, you must provide:
1. The XQuery expression to be used for the query contained in a single string object.

2. An Xm QueryCont ext object that identifies contextual information about the query,
such as the namespaces in use and what you want for results (entire documents, or
document values).

2/5/2008 Page 34

Retrieving BDB XML Documents
using XQuery

What you then receive back is a result set that is returned in the form of an Xnl Resul t s
object. You iterate over this result sets in order to obtain the individual documents or
values returned as a result of the query.

The Query Context

Context is a term that is heavily used in both BDB XML and XQuery. While overlap exists
in how the term is used between the two, it is important to understand that differences
exist between what BDB XML means by context and what the XQuery language means by
it.

In XQuery, the context defines aspects of the query that aid in query navigation. For
example, the XQuery context defines things like the namespace(s) and variables used by
the query, the query's focus (which changes over the course of executing the query), and
the functions and collations used by the query. Most thorough descriptions of XQuery will
describe these things in detail.

In BDB XML, however, the context is a physical object (Xm Quer yCont ext) that is used for
very limited things (compared to what is meant by the XQuery context). You can use

Xm Quer yCont ext to control only part of the XQuery context. You also use Xn Quer yCont ext
to control BDB XML's behavior toward the query in ways that have no corresponding concept
for XQuery contexts.

Specifically, you use Xn Quer yCont ext to:
» Define the namespaces to be used by the query.

» Define any variables that might be needed for the query, although, these are not the
same as the variables used by XQuery FLWOR expressions (see Defining
Variables (page 36)).

« Defining whether the query is processed "eagerly” or "lazily" (see Defining the Evaluation
Type (page 37)).

Note that BDB XML also uses the Xn QueryCont ext to identify the query's focus as you
iterate over a result set. See Examining Document Values (page 42) for more information.

Defining Namespaces

In order for you to use a namespace prefix in your query, you must first declare that
namespace to BDB XML. When you do this, you must identify the URI that corresponds to
the prefix, and this URI must match the URI in use on your documents.

You can declare as many hamespaces as are needed for your query.

To declare a namespace, use Xn Quer yCont ext : : set Namespace() . For example:
#incl ude "DbXm . hpp"

usi ng nanmespace DbXm ;

2/5/2008 Page 35

Retrieving BDB XML Documents
using XQuery

/1 Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xl Cont ai ner nyCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

[l Get a query context
X QueryCont ext context = nyManager. creat eQueryContext();

/I Declare a nanespace
cont ext . set Nanespace("fruits", "http://groceryltem bdbxm /fruits");
cont ext . set Nanespace("vegetabl es", "http://groceryltem bdbxm /veget abl es");

|:| If you pass an empty prefix to set Nanespace(), the URI you provide is set as the default URI.

Defining Variables

In XQuery FLWOR expressions, you can set variables using the | et clause. In addition to
this, you can use variables that are defined by BDB XML You define these variables using
X QueryCont ext : : set Vari abl eVal ue() .

You can declare as many variables using Xm Quer yCont ext : : set Vari abl eVal ug() as you
need. Note that the variables that you declare this way can only be used from within a
predicate. For example:

#i ncl ude "DbXn . hpp"

usi ng nanespace DbXm ;

/1 Get a manager object.
Xl Manager myManager ;

/1 Open a contai ner
Xl Cont ai ner nyCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

[l Get a query context
X QueryCont ext context = nyManager. creat eQueryContext();

/1 Declare a variable. Note that this method really wants an Xnl Val ue
/'l object as the variable's argunment. However, we just give it a
/'l string here and allow Xm Val ue's string constructor to create

2/5/2008 Page 36

Retrieving BDB XML Documents
using XQuery

/1 the Xm Val ue object for us.
cont ext . set Vari abl eVal ue("nyVar", "Tarragon");

/1 Declare the query string
std::string nyQuery =
“col I ection("'exanpl eData. dbxm ')/ product[item=$nmyVar]";
Defining the Evaluation Type

The evaluation type defines how much work BDB XML performs as a part of the query,
and how much it defers until the results are evaluated. There are two evaluation types:

Evaluation Type Description
Eager The query is executed and its resultant values are derived and stored
in-memory before the query returns. This is the default.
Lazy Minimal processing is performed before the query returns, and the
remaining processing is deferred until you enumerate over the result
set.

You use Xnl QueryCont ext : : set Eval uati onType() to set a query's return type. For example:
#i ncl ude "DbXm . hpp"

usi ng namespace DbXm ;

/1 Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xm Cont ai ner myCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

Il Get a query context
Xm QueryCont ext context = nyManager. creat eQueryContext();

I/ Set the evaluation type to Lazy.
cont ext . set Eval uati onType(Xm QueryCont ext : : Lazy);

Performing Queries

You perform queries using an Xm Manager object. When you perform a query, you can
either:

1. Perform a one-off query using Xm Manager : : query() . This is useful if you are
performing queries that you know you will never repeat within the process scope.

2/5/2008 Page 37

Retrieving BDB XML Documents
using XQuery

For example, if you are writing a command line utility to perform a query, display
the results, then shut down, you may want to use this method.

2. Perform the same query repeatedly by using Xm Manager : : prepare() to obtain an
Xm Quer yExpr essi on object. You can then run the query repeatedly by calling
Xm Quer yExpr essi on: : execute() .

Creation of a query expression is fairly expensive, so any time you believe you will
perform a given query more than one time, you should use this approach over the
query() method.

Regardless of how you want to run your query, you must restrict the scope of your query
to a container, document, or node. Usually you use one of the XQuery navigation functions
to do this. See Navigation Functions (page 32) for more information.

|:| Note that you can indicate that the query is to be performed lazily. If it is performed lazily,
then only those portions of the document that are actually required to satisfy the query are
returned in the results set immediately. All other portions of the document may then be
retrieved by BDB XML as you iterate over and use the items in the result set.

If you are using node-level storage, then a lazy query may result in only the document being
returned, but not its metadata, or the metadata but not the document itself. In this case,
use Xm Docunent : : fetchAl | Data() to ensure that you have both the document and its
metadata.

To specify laziness for the query, use DBXML_LAZY_DOCS as a flag value to either
Xm Manager : : query() or Xm Quer yExpression:: execute().

Be aware that lazy docs is different from lazy evaluation. Lazy docs determines whether all
document data and document metadata is returned as a result of the query. Lazy evaluation
determines how much query processing is deferred until the results set is actually examined.

For example, the following executes a query against an Xml Cont ai ner using
Xl Manager: : prepare().

#i ncl ude "DbXm . hpp"

usi ng nanmespace DbXm ;

[/ Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xm Cont ai ner myCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

[l Get a query context
Xm QueryCont ext context = nyManager. creat eQueryContext();

2/5/2008 Page 38

Retrieving BDB XML Documents
using XQuery

/I Declare a nanespace
cont ext . set Nanespace("fruits", "http://groceryltemdbxm /fruits");

/1 Declare the query string

std::string nyQuery =
“col l ection("'exanpl eData.dbxm ')/ fruits:product[itenm=$myVar]";

/| Prepare (conpile) the query
Xm Quer yExpressi on ge = myManager . prepare(nyQuery, context);

/1 Run the query. Note that you can performthis query many times

/1 without suffering the overhead of re-creating the query expression.
/1 Notice that the only thing we are changing is the variable val ue,

/1 which allows us to control exactly what gets returned for the query.
Xm Results results = ge.execute(context, 0);

cont ext . set Vari abl eVal ue(nyVar, "Tarragon");
Xm Results results = ge.execute(context);

/1 Do something with the results

cont ext . set Vari abl eVal ue(nyVar, "Oranges");
results = ge.execute(context);

/1 Do something with the results

cont ext . set Vari abl eVal ue(nyVar, "Kiw");
results = ge. execute(context);

Finally, note that when you perform a query, by default BDB XML will read and validate
the document and any attached schema or DTDs. This can cause performance problems,
so to avoid it you can pass the DBXM._WELL_FORMED ONLY flag to

Xm Quer yExpressi on: : execut e() . This can improve performance by causing the scanner
to examine only the XML document itself, but it can also cause parsing errors if the
document references information that might have come from a schema or DTD.

Metadata Based Queries

You can query for documents based on the metadata that you set for them. To do so, do
the following:

« Define a namespace for the query that uses the URI that you set for the metadata
against which you will perform the query. If you did not specify a namespace for your
metadata when you added it to the document, then use an empty string.

o Perform the query using the special dbxnl : met adat a() from within a predicate.

For example, suppose you placed a timestamp in your metadata using the URI
‘htt p: // dbxm Exanpl es/ ti mest anp’ and the attribute name 'ti neSt anp'. Then you can query
for documents that use a specific timestamp as follows:

2/5/2008 Page 39

Examining Query Results

#include "DbXn . hpp"

usi ng nanespace DbXm ;

/1 Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xl Cont ai ner nyCont ai ner =

myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;
std::string col = "collection('exanpleData.dbxm")";

[l Get a query context
X QueryCont ext context = nyManager. creat eQueryContext();

/'l Declare a namespace. The first argunent, 'ts', is the

/1 namespace prefix and in this case it can be anything so
[/ long as it is not reused with another URI w thin the same
[l query.

cont ext . set Nanespace("ts", "http://dbxm Exanpl es/ti mestanp");

/1 Declare the query string
std::string myQuery = col;
myQuery += "/*[dbxm : metadata('ts:tinmeStanmp')=00:28:38]";

/| Prepare (conpile) the query
Xm Quer yExpressi on ge = nmyManager . prepare(nyQuery, context);

/1 Run the query.
Xm Results results = ge.execute(context, 0);

Examining Query Results

When you perform a query against BDB XML, you receive a results set in the form of an
X Resul t s object. To examine the results, you iterate over this result set, retrieving
each element of the set as an Xm Val ue object.

Once you have an individual result element, you can obtain the data encapsulated in the
Xnl Val ue object in a number of ways. For example, you can obtain the information as a
string object using Xm Val ue: : asString() . Alternatively, you could obtain the data as an
Xl Docunent object using Xm Val ue: : asDocunent () .

It is also possible to use DOM-like navigation on the Xn Val ue object since that class offers
navigational methods such as Xm Val ue: : get Fi rst Chil d(), Xnl Val ue: : get Next Si bli ng(),
Xl Val ue: : get Attributes(), and so forth. For details on these and other Xnl Val ue
attributes, see the BDB XML C++ APl Reference documentation.

2/5/2008 Page 40

Examining Query Results

For example, the following code fragment performs a query and then loops over the result
set, obtaining and displaying the document’'s name from an Xnl Docunment object before
displaying the document itself.

#i ncl ude "DbXm . hpp"

usi ng nanmespace DbXm ;

/1 Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xm Cont ai ner myCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

[l Get a query context
Xm QueryCont ext context = nyManager. createQueryContext();

/] Declare a nanespace
cont ext . set Nanespace("fruits", "http://groceryltemdbxm /fruits");

/] Declare the query string. Find all the product docunents
[/ in the fruits namespace.
std::string nyQuery = "collection('exanpl eData.dbxm ")/ fruits:product";

[l Performthe query.
Xm Results results = nyManager. query(myQuery, context);

[/ Show the size of the result set
std::cout << "Found " << results.size() <<
<< nyQuery << """ << std::endl;

docunents for query:

/I Display the result set

Xn Val ue val ue;

while (results.next(value)) {
Xm Docunent theDoc = val ue. asDocument ()
std::string docName = theDoc. get Name();
std::string docString = val ue.asString();

std::cout << "Docunent " << docName << ":" << std::endl;
std::cout << docString << std::endl;
std::cout << " \n" << std::endl;

2/5/2008 Page 41

Examining Query Results

Examining Document Values

It is frequently useful to retrieve a document from BDB XML and then perform follow-on
queries to retrieve individual values from the document itself. You do this by creating
and executing a query, except that you pass the specific Xn Val ue object that you want
to query to the Xm Quer yExpr essi on: : execut e() method. You must then iterate over a
result set exactly as you would when retrieving information from a container.

For example, suppose you have an address book product that manages individual contacts
using XML documents such as:

<cont act >
<fam |iarName>John</fam | i ar Nane>
<sur name>Doe</ sur nang>
<phone wor k="555 555 5555" home="555 666 777" />
<addr ess>
<street>1122 Somewhere Lane</street>
<ci t y>Nowher e</ci ty>
<st at e>M nnesot a</ st at e>
<zipcode>11111</ zi pcode>
</ addr ess>
</ cont act >

Then you could retrieve individual documents and pull data off of them like this:
#i ncl ude "DbXm . hpp"

usi ng nanmespace DbXm ;

/1 Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xm Cont ai ner myCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

/] Declare the query string. Retrieves all the docunents
[l for people with the |ast name ' Doe'.
std::string myQuery = "coll ection('exanpl eData.dbxm ')/contact";

[l Query to get the fanmiliar nane fromthe
/| docunent.
std::string fn = "distinct-values(/contact/famliarName)";

/1 Query to get the surnane fromthe
/| docunent.
std::string sn = "distinct-val ues(/contact/surnane)";

2/5/2008 Page 42

Examining Query Results

/1 \Wrk phone nunber
std::string wkPhone = "distinct-val ues(/contact/phone/ @work)";

[l Get the context for the Xm Manager query
X QueryCont ext manager Cont ext = myManager . cr eat eQuer yCont ext () ;

/] Get a context for the docunent queries
X QueryCont ext docunent Cont ext = myManager . cr eat eQuer yCont ext () ;

/| Prepare the Xm Manager query
X Quer yExpr essi on manager Query =
myManager . prepar e(nyQuery, manager Cont ext);

/1 Prepare the individual document queries
X Quer yExpressi on fnExpr = nyManager . prepare(fn, docunent Context);
X Quer yExpressi on snExpr = nyManager . prepare(sn, docunent Cont ext);
X Quer yExpr essi on wr kPhoneExpr =

myManager . pr epar e(w kPhone, document Cont ext) ;

/I Performthe query.
Xm Resul ts results = manager Query. execut e(manager Cont ext, 0);

/I Display the result set
Xm Val ue val ue;
while (results.next(value)) {
[/ Get the individual values
Xm Results fnResults = fnExpr.execute(val ue, docunment Context);
Xm Resul ts snResults = snExpr.execute(val ue, docunment Context);
Xm Resul ts phoneResults =
wr kPhoneExpr . execut e(val ue, docunent Cont ext);

std::string fnString;

Xn Val ue fnVal ue;

if (fnResults.size() > 0) {
fnResul ts. next (fnVal ue);
fnString = fnVal ue.asString();

} else {
continue;

}

std::string snString;

Xnl Val ue snVal ue;

if (snResults.size() > 0) {
snResul t's. next (snVal ue);
snString = snVal ue. asString();

} else {
continue;

}

2/5/2008

Page 43

Examining Query Results

std::string phoneString;

X Val ue phoneVal ue;

i f (phoneResults.size() > 0) {
phoneResul t s. next (phoneVal ue) ;
phoneString = phoneVal ue. asString();

} else {
continue;
}
std::cout << fnString << " " << snString << ": "

<< phoneString << std::endl;

}

Note that you can use the same basic mechanism to pull information out of very long
documents, except that in this case you need to maintain the query's focus; that is, the
location in the document that the result set item is referencing. For example suppose
you have a document with 2,000 cont act nodes and you want to get the nane attribute
from some particular cont act in the document.

There are several ways to perform this query. You could, for example, ask for the node
based on the value of some other attribute or element in the node:

[document / cont act [cat egor y=" per sonal ' |

Or you could create a result set that holds all of the document's cont act nodes:

/ docunent / cont act

Regardless of how you get your result set, you can then go ahead and query each value
in the result set for information contained in the value. To do this:

1. Make sure you use the same Xm Quer yCont ext object as you used to generate the
result set in the first place. This object will track the result item's focus (that is, the
node’s location in the larger document — the self axis.) for you.

2. Iterate over the result set as normal.

3. Query for document information as described above. However, in this case change
the query so that you reference the self access. That is, for the surname query
described above, you would use the following query instead so as to reference nodes
relative to the current node (notice the self-access (.) in use in the following query):

di stinct-val ues(./surnane)

Examining Metadata

When you retrieve a document from BDB XML, there are two ways to examine the metadata
associated with that document. The first is to use Xm Docunent : : get Met aDat a() . Use this
form if you want to examine the value for a specific metadata value.

2/5/2008 Page 44

Examining Query Results

The second way to examine metadata is to obtain an Xm Met aDat al t er at or object using
Xl Docunent : : get Met aDat al terat or (). You can use this mechanism to loop over and
display every piece of metadata associated with the document.

For example:
#incl ude "DbXm . hpp"

usi ng nanmespace DbXm ;

/] Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xl Cont ai ner nyCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

[l Get a query context
X QueryCont ext context = nyManager. creat eQueryContext();

/] Declare a nanespace
cont ext . set Nanespace("fruits", "http://groceryltemdbxm /fruits");

/I Declare the query string. Find all the product docunments
/1 in the fruits namespace.
std::string myQuery = "collection('exanpl eData.dbxm ')/ fruits:product”;

/1 Performthe query.
Xm Results results = myManager. query(myQuery, context);

/1 Display the result set
Xn Val ue val ue;
while (results.next(value)) {
Xm Docunent theDoc = val ue. asDocunent () ;

[/ Display all of the netadata set for this docunment
Xm Met aDatal terator ndi = theDoc. get MetaDatal terator();
std::string returnedURrl;

std::string returnedNaneg;

X Val ue returnedVal ue;

std::cout << "For document '" << theDoc. getNane()
<< "' found netadata:" << std::endl;

while (ndi.next(returnedUR, returnedName, returnedValue)) {
std::cout << "\tURI: " << returnedURl

2/5/2008 Page 45

Examining Query Results

n

<< ", attribute name: << returnedNane
<< ", value: " << returnedVal ue
<< std::endl;

}

/] Display a single metadata val ue:

std::string URI = "http://dbxn Exanpl es/ti nestanp”;
std::string attrName = "tineStanp";

X Val ue newRet Val ue;

bool gotResult = theDoc. get MetaData(UR, attrName, newRet Val ue);
if (gotResult) {
std::cout << "For URI: " << URI << ", and attribute " << attrName
<< ", found: " << newRetVal ue << std::endl;

}

std::cout <<

n

\n" << std::endl;

}
Using Event Readers

Once you have retrieved a document or node, you can examine that retrieved item using
an event reader. Event readers provide a pull iterface that allows you to move through
a document, or a portion of a document, using an iterator-style interface.

When you iterate over a document or node using an event reader, you are examing
individual objects in the document. In this, the event reader behaves much like a SAX
parser in that it allows you to discover what sort of information you are examining (for
example, a start element, an end element, whitespace, characters, and so forth), and
then retrieve relevant information about that data. (Note, however, that the event reader
interface differs significantly from SAXin that SAX is a push interface while Xm Event Reader
is a pull interface.)

The document events for which you can test using the event reader are:
» StartElement

» EndElement

» Characters

« CDATA

» Comment

» Whitespace

» StartDocument

e« EndDocument

2/5/2008 Page 46

Examining Query Results

» StartEntityReference
o EndEntityReference

e Processinglnstruction
« DTD

In addition for testing for specific portions of a document, you can also retrieve information
about those portions of the document. For example, if you are examining a starting
element, you can retrieve the name of that element. You can also retrieve an attribute
count on that element, and then retrieve information about each attribute based on it's
indexed value in the start node. That is, suppose you have the following document stored
in a container:

<a>

<b al="one" b2="two">b node
<c>c node</c>

</ a>

Then you can examine this document as follows:

try {
/1 Container declaration and open omtted for brevity

std::string docname = "docl";
Xm Docunent xdoc = cont ai ner. get Docunent (docnane) ;

/] Get an Xm Event Reader
Xm Event Reader &reader = xdoc. get Cont ent AsEvent Reader () ;

/] Now iterate over the document el ements, examining only
/] those of interest to us:
whil e (reader.hasNext()) {
Xm Event Type type = reader.next();
if (type == StartEl enment) {
std::cout << "Found start node: " <<
reader. get Local Nane() << std::endl;
std::cout << "There are " << reader.getAttributeCount()
<< " attributes on this node." << endl;
/1 Show all the attributes on the start element node

for (int i =0; i < reader.getAttributeCount(); i++) {
std::cout << "Attribute '" << reader.getAttributelLocal Name(i)
<< "' has a value of '" << reader.getAttributeVal ue(i)
<< """ << endl;
}

}

/1 \Wen we are done, we close the reader to free-up resources.
reader.close();

2/5/2008 Page 47

Examining Query Results

} catch (Xm Exception &e) {
std::cout << "Exception: " << e.what() << std::endl;

}

Running this code fragment yields:

Found start node: a
There are 0 attributes on this node.
Found start node: b
There are 2 attributes on this node.
Attribute 'al' has a value of 'one'
Attribute 'b2' has a value of 'two'
Found start node: ¢
There are 0 attributes on this node.

Note that you can also use event readers on Xn Val ue objects, provided that the object
is an element node. For example:

try {
/1 Container declaration and open omtted for brevity

Il As are the manager, query and Xnl QueryCont ext
/1 declarations.

Xm Resul ts res = ngr.query(myquery, context);
Xm Val ue val ;
while ((val =res.next()) != NULL) {
if (val.isNode() &&
(val . get NodeType() == Xm Manager. ELEMENT_NODE)) {
X Event Reader &reader = val.asEvent Reader();

/] Now iterate over the docunent el enents
while (reader.hasNext()) {
Xm Event Type type = reader.next();

/1 Handl e each event type as required by your
/] application.

}

/1 \When we are done, we close the reader to free-up resources.
reader. cl ose();

}

} catch (Xm Exception &e) {
std::cout << "Exception: " << e.what() << std::endl;

}

2/5/2008 Page 48

Chapter 6. Managing Documents in
Containers

BDB XML provides APIs for deleting, replacing, and modifying documents that are stored
in containers. This chapter discusses these activities.

Deleting Documents

You can delete a document by calling Xm Cont ai ner : : del et eDocunent () . This method can
operate either on a document’'s name or on an Xn Docunent object. You might want to
use an Xm Docunent object to delete a document if you have queried your container for
some documents and you want to delete every document in the results set.

For example:
#i ncl ude "DbXm . hpp"

usi ng namespace DbXm ;

/1 Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xm Cont ai ner myCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

[l Get a query context

X QueryCont ext context = nyManager. creat eQueryContext();

/| Declare a nanespace

cont ext . set Nanespace("fruits", "http://groceryltemdbxm /fruits");

/] Declare the query string. Find all the product docunents
/1 in the fruits nanmespace.
std::string myQuery = "collection('exanpl eData.dbxm ')/ fruits:product";

[/ Performthe query.
Xm Results results = myManager. query(myQuery, context);

/] Delete everything in the results set
Xl Updat eCont ext uc = nyManager . cr eat eUpdat eCont ext () ;
Xm Docunent theDoc = nyManager. creat eDocunent () ;
while (results.next(theDoc)) {

myCont ai ner. del et eDocunent (t heDoc, uc);
}

2/5/2008 Page 49

Replacing Documents

Replacing Documents

You can either replace a document in its entirety as described here, or you can modify
just portions of the document as described in Modifying XML Documents (page 51).

If you already have code in place to perform document modifications, then replacement
is the easiest mechanism to implement. However, replacement requires that at least the
entire replacement document be held in memory. Modification, on the other hand, only
requires that the portion of the document to be modified be held in memory. Depending
on the size of your documents, modification may prove to be significantly faster and less
costly to operate.

You can directly replace a document that exists in a container. To do this:

1. Retrieve the document from the container. Either do this using an XQuery query and
iterating through the results set looking for the document that you want to replace,
or use Xnl Cont ai ner: : get Docunent () to retrieve the document by its name. Either
way, make sure you have the document as an Xnl Docunent object.

2. Use Xm Docunent : : set Cont ent () or Xm Docunent : : set Cont ent AsX | nput St rean{) to
set the object's content to the desired value.

3. Use Xnl Cont ai ner: : updat eDocunent () to save the modified document back to the
container.

|:| Alternatively, you can create a new blank document using Xnl Manager : : cr eat eDocument (),
set the document's name to be identical to a document already existing in the container,
set the document's content to the desired content, then call
Xn Cont ai ner: : updat eDocunent () .

For example:
#i ncl ude "DbXm . hpp"

usi ng nanmespace DbXm ;

[/ Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xm Cont ai ner myCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

/1 Docunment to nodify
std::string docName = "docl.xm";
Xl Docunent theDoc = myCont ai ner. get Docurment (docNane) ;

2/5/2008 Page 50

Modifying XML Documents

Il Modify it
t heDoc. set Cont ent (" <a>r andom cont ent </ a></ b>") ;

[/ Put it back into the container
Xl Updat eCont ext uc = nyManager . cr eat eUpdat eCont ext () ;
myCont ai ner . updat eDocument (t heDoc, uc);

Modifying XML Documents

BDB XML allows you to modify documents already stored in its containers using XQuery
Update statements. Also, previous versions of BDB XML provided a document modification
API that has since been deprecated. This API is still available for compatibility purposes,
and you can read about it in Updating Documents with XmlModify (page 79).

XQuery Update statements are a recent addition to the XQuery language. This section
provides a brief introduction to update statements so as to help you get going with them.

XQuery Update Introduction

XQuery Update allows you to insert, delete, replace and rename nodes using built-in
keywords (insert, delete, replace and rename, respectively). You can also perform a node
update by declaring an update function.

XQuery Update does not perform updates (node insertion, deletion, and so forth) until
after the query has completed. This means a couple of things. First, you cannot perform
an update and return the results in the same query.

Also, update statements are order independent, although in some cases conflicting updates
are performed in an order defined by the XQuery Update statement specification).

Finally, updates are generally expected to be performed in isolation from other queries.
You can not, for example, perform a search and then in a subsequent statement perform
an update, all in the same query.

|:| XQuery Update is described in the W3C specification, XQuery Update Facility 1.0. This
specification is currently a working draft. BDB XML implements the version of the specification
dated 28 August 2007 [http://www.w3.0rg/TR/2007/WD-xquery-update-10-20070828/]

Inserting Nodes Using XQuery Update

To insert a node into an existing document, you must identify the node that you want to
insert, and the location in the document where you want the insertion to be performed.
You indicate that you are performing an insertion operation using the XQuery i nsert
keyword.

The general format of this expression is:

insert nodes nodes keyword position

where

2/5/2008 Page 51

http://www.w3.org/TR/2007/WD-xquery-update-10-20070828/

Modifying XML Documents

» nodes is the content that you want to insert. This can be a string, or it can be an
XQuery selection statement.

» keywords indicates how you would like the new content to be inserted.

« position indicates the document and the location in that document where the insertion
is to occur.

Be aware that position must be an XQuery expression that selects exactly one location
in the document. Also, keywords can be one of several keywords that indicate where the
new content is to be inserted relative to the location in the document that is indicated
by position. See the next section for information on the available keywords.

For example, consider the document:

<a>
<bl1>first child</bl>
<b2>second chi | d</b2>
<b3>t hird child</b3>
</ a>

Assuming this document is called 'mydoc.xml’, then you can insert a node, b4 after node
b2 using the following query expression:

insert nodes <b4>inserted chil d</b4> after
doc("dbxm : / cont ai ner. dbxm / nydoc. xm ")/ al b2

The above expression applied to the XML document results in a document like this:

<a>
<b1>first child</bl>
<b2>second chil d</ b2><b4>i nserted chil d</b4>
<b3>t hird chil d</b3>

</ a>

Position Keywords

XQuery Update expressions that add content to a document must first select the location
in the document where the content is to be added, and then it must identify where the
content is to be added relative to the selected location. You do this by specifying the
appropriate keywords to the update expression.

Valid keywords are:
o before

The new content precedes the target node.
o after

The new content follows the target node.

2/5/2008 Page 52

Modifying XML Documents

e as first into

The new content becomes the first child of the target node.
e« as last into

The new content becomes the last child of the target node.
e into

The new content is inserted as the last child of the target node, provided that this
keyword is not used in an update expression that also makes use of the keywords noted
above. It that happens, the node is inserted so that it does not interfere with the
indicated position of the other new nodes.

Note that the behavior described here is an artifact of BDB XML's current
implementation of the XQuery Update specification. The specification does not require
the inserted node to be placed as the last child of the target node, so this behavior
may change for some future release of the product.

Insertion Rules

When inserting elements, the selection expression must be non-updating, and it must not
result in an empty set.

If any form of the i nt o keyword is specified, the selection expression must result in a
single element or document node. Also, if bef ore or after is provided, the selection
expression result must be a single element, text, comment or processing instruction node.

If an attribute node is selected, then the new content must provide an attribute.

Deleting Nodes Using XQuery Update

You can delete zero or more nodes using a del et e nodes query. For example, given the
document named "mydoc.xml” in container "con.dbxml":

<a>
<b1>first child</bl>
<b2>second chil d</ b2><b4>i nserted chil d</b4>
<b3>t hird chil d</b3>

</ a>

The following query deletes the b4 node:

del ete nodes doc("dbxm :/con. dbxm /nydoc. xm ")/ al b4
The selection expression that you provide must be a non-updating expression, and the
result must be a sequence of zero or more nodes. If the selection expression selects a

node that has no parent, then the result is to delete the entire document from the
container.

2/5/2008 Page 53

Modifying XML Documents

Replacing Nodes Using XQuery Update

You can use XQuery Update statements to either replace an entire node, or a node’s value.
To replace a node, use the repl ace node query. For example, given the document named
"mydoc.xml” in container "con.dbxml”:

<a>
<bl1>first child</bl>
<b2>second chi | d</b2>
<b3>t hird chil d</b3>
</ a>

You can replace node b2 with a different node such as <r 1>repl acenent chi |l d</r 1> using
the following query:

repl ace node doc("dbxn :/con.dbxm /mydoc. xm ")/ a/ b2
with <z1>repl acenent node</z1>

The result of this replacement query is:

<a>
<b1>first child</bl>
<z1>repl acenent node</z1>
<b3>third child</b3>

<l a>

The replacement value can also be a selection expression. For example, suppose you had
a second document named repl ace. xni :

<a>
<rep>nore replacenent data</rep>
<[a>

Then you can replace node z1 with the rep node using the following query:

repl ace node doc("dbxn :/con.dbxm /mydoc. xm ")/a/z1
with doc("dbxm :/con.dbxm /replace.xm")/alrep

This results in the document:

<a>
<b1>first child</bl>
<rep>nore replacenent data</rep>
<b3>third child</b3>

<l a>
In addition to the repl ace node ... with ... form, you can also replace node values.
Do this using repl ace val ue of node ... with ... queries.

For example, to replace the value of the rep node, above, use:

2/5/2008 Page 54

Modifying XML Documents

repl ace val ue of node doc("dbxnl :/con.dbxm /nydoc.xm ")/alrep
with "random repl acenent text".

The results of this query is:

<a>
<b1>first child</bl>
<rep>random repl acement text</rep>
<b3>third chil d</hb3>

<l a>

Replacement Rules

When replacing elements, the selection expression used to select the target must be
non-updating, and it must not result in an empty set.

Selection results must consist of a single element, text, comment or processing instruction.
In addition, the selection expression must not select a node without a parent node.

Finally, If you replace an attribute node, its replacement value must not have a namespace
property that conflicts with the namespaces property of the parent node.

Renaming Nodes Using XQuery Update

You can rename a node using r enane node query. For example, given the document named
"mydoc.xml” in container "con.dbxml":

<a>
<b1>first child</bl>
<b2>second chil d</b2>
<b3>t hird chil d</b3>
<l a>

You can rename node b3 to z1 using the following query:

rename node doc("dbxm :/con.dbxm /mydoc. xm *)/a/b3 as "z1"

The selection expression that you provide must be a non-updating expression, and the
result must be non-empty and consist of a single element, attribute, or processing
instruction node.

Updating Functions

You can create a function that performs an update, so long as it is declared to be an
updating function. In addition, this function must not have a return value, and the
argument passed to the function cannot be an update query.

For example, the following query creates a function that renames any element node
passed to it, to the value passed in the second argument. The function is then called for
bl in document nydoc. xm , which is stored in container con. dbxni :

2/5/2008 Page 55

Modifying XML Documents

decl are updating function
| ocal : renaneNode($el em as el enent (),
$rep as xs:string)

{
};

| ocal : renameNode(doc(" dbxm : / con. dbxm / nydoc. xm ")/ a/bl, "aabl")

rename node $el emas $rep

If the prior query is called on a document such as this:

<a>
<bl1>first child</bl>
<b2>second chi | d</b2>
<b3>t hird child</b3>
</ a>

then that document becomes:

<a>
<aab1>first child</aabl>
<b2>second chil d</b2>
<b3>third chil d</b3>

</ a>

Transform Functions

While it is true that you cannot run an update query and simultaneously return the results,
there is a way to almost do the same thing. You do this by making a copy of the nodes
that you want to modify, then perform the modifications against that copy. The result
of the modification is returned to you. This type of an operation is called a transformation.

Note that when you perform a transformation, the original nodes that you copied are not
modified. For this reason, transformations are often limited only to situations where you
want to modify a query result — for reporting purposes, for example.

To run a transformation, use the

1. copy keyword to copy the nodes of interest

2. nodi fy keyword to perform the XQuery Update against the newly copied nodes
3. return keyword to return the result of the transformation.

For example, given the following XML document (which is identified as document
mydoc. xn , and is stored in container con. dbxm):

<a>
<aabl>first child</aabl>
<b2>second chi | d</b2>
<b3>t hird child</b3>

</ a>

2/5/2008 Page 56

Modifying XML Documents

then the following transformation:

copy $c := doc("dbxm :/con. dbxm /nydoc.xm ")/a
nodi fy (del ete nodes $c/aabl,
repl ace value of node $c/b2 with "replacement val ue")
return $c

results in the following document:

<a>
<b2>repl acenent val ue</ b2>
<b3>third chil d</hb3>

<l a>

Resolving Conflicting Updates

Modifications that you specify as a part of an update query are not actually made until
after the query is completed. The order in which update statements are made may or
may not be relevant when it comes time to apply the update. As a result, it's possible to
request an update that on its own is acceptable, but when used with other update
statement may result in an error.

Keep the following rules in mind as you use update expressions:
1. And exception is raised if:
a. Two or more renane expressions target the same node.
b. Two or more repl ace expressions or repl ace val ue of expressions target the
same node.
2. The following expressions are made effective, in the following order:

a. Allinsert into,insert attributes andreplace val ue expressions in the order
they are supplied.

b. Allinsert before,insert after,insert as first, andinsert as |ast
expressions in the order they are supplied.

c. Allrepl ace expressions.
d. Allreplace val ue of expressions.
e. All del et e expressions.
Note that atomicity of the expression is guaranteed; either the entire expression is made

effective with regard to the original document, or no aspect of the expression is made
effective.

2/5/2008 Page 57

Chapter 7. Using BDB XML Indices

BDB XML provides a robust and flexible indexing mechanism that can greatly improve the
performance of your BDB XML queries. Designing your indexing strategy is one of the most
important aspects of designing a BDB XML-based application.

To make the most effective usage of BDB XML indices, design your indices for your most
frequently occurring XQuery queries. Be aware that BDB XML indices can be updated or
deleted in-place so if you find that your application's queries have changed over time,
then you can modify your indices to meet your application's shifting requirements.

|:| The time it takes to re-index a container is proportional to the container's size. Re-indexing
a container can be an extremely expensive and time-consuming operation. If you have large
containers in use in a production setting, you should not expect container re-indexing to be

a routine operation.

You can define indices for both document content and for metadata. You can also define
default indices that are used for portions of your documents for which no other index is
defined.

When you declare an index, you must identify its type and its syntax. There are two ways
that you can provide this information. One way is to provide a string that identifies the
type and syntax for the index. The other way is to use enumerated types to do that same
thing.

Most of BDB XML's APIs that you use to manage indices allow you to use either form for
declaring indices. A few methods, however, only support the string approach.

See Syntax Types (page 61) for information on specifying the index syntax.

Index Types
The index type is defined by the following four types of information:

« Uniqueness (page 58)

Path Types (page 59)
+ Node Types (page 60)
* Key Types (page 60)
Uniqueness

Uniqueness indicates whether the indexed value must be unique within the container.
For example, you can index an attribute and declare that index to be unique. This means
the value indexed for the attribute must be unique within the container.

By default, indexed values are not unique; you must explicitly declare uniqueness for
your indexing strategy in order for it to be enforced.

2/5/2008 Page 58

Index Types

Path Types

If you think of an XML document as a tree of nodes, then there are two types of path
elements in the tree. One type is just a node, such as an element or attribute within the
document. The other type is any location in a path where two nodes meet. The path type,
then, identifies the path element type that you want indexed. Path type node indicates
that you want to index a single node in the path. Path type edge indicates that you want
to index the portion of the path where two nodes meet.

Of the two of these, the BDB XML query processor prefers edge-type indices because they
are more specific than an node-type index. This means that the query processor will use
a edge-type index over a node-type if both indices provide similar information.

Consider the following document:

<vendor type="whol esal e">
<name>Tri County Produce</name>
<address>309 S. Miin Street</address>
<city>M ddl e Town</city>
<st at e>M\</ st at e>
<zi pcode>55432</ zi pcode>
<phonenunber >763 555 5761</ phonenunber >
<sal esrep>
<nanme>Mort Duf r esne</ name>
<phonenunber >763 555 5765</ phonenunber >
</ sal esrep>
</ vendor >

Suppose you want to declare an index for the name node in the preceding document. In

that case:
Path Type Description

node There are two locations in the document where the nane node appears.
The first of these has a value of "TriCounty Produce,” while the second
has a value of "Mort Dufresne.” The result is that the nane node will require
two index entries, each with a different value. Queries based on a nane
node may have to examine both index entries in order to satisfy the query.

edge There are two edge nodes in the document that involve the nane node:

/ vendor/ nane
and
sal esrep/ name

Indices that use this path type are more specific because queries that
cross these edge boundaries only have to examine one index entry for the
document instead of two.

2/5/2008 Page 59

Index Types

Given this, use:

« node path types to improve queries where there can be no overlap in the node name.
That is, if the query is based on an element or attribute that appears on only one
context within the document, then use node path types.

In the preceding sample document, you would want to use node-type indices with the
address, city, state, zi pcode, and sal esrep elements because they appear in only
one context within the document.

» edge path types to improve query performance when a node name is used in multiple
contexts within the document. In the preceding document, use edge path types for
the name and phonenunber elements because they appear in multiple (2) contexts within
the document.

Node Types

BDB XML can index three types of nodes: el enent , attri but e, or met adat a. Metadata nodes
are, of course, indices set for a document's metadata content.

Element and Attribute Nodes

Element and attribute nodes are only found in document content. In the following
document:

<vendor type="whol esal ">
<nane>Tri County Produce</nanme>
</ vendor >

vendor and nane are element nodes, while t ype is an attribute node.

Use the element node type to improve queries that test the value of an element node.
Use the attribute node type to improve any query that examines an attribute or attribute
value.

Metadata Nodes

Metadata nodes are found only in a document's metadata content. This indices improve
the performance of querying for documents based on metadata information. If you are
declaring a metadata node, you cannot use a path type of edge.

Key Types
The Key type identifies what sort of test the index supports. You can use one of three
key types:

Key Type Description

equality |Improves the performances of tests that look for nodes with a specific
value.

2/5/2008 Page 60

Syntax Types

Key Type Description

presence |Improves the performance of tests that look for the existence of an node,
regardless of its value.

substring |Improves the performance of tests that look for a node whose value
contains a given substring. This key type is best used when your queries
use the XQuery cont ai ns() substring function.

Syntax Types

Beyond the index type, you must also identify the syntax type. The syntax describes what
sort of data the index will contain, and it is mostly used to determine how indexed values
are compared. There are a large number of syntax types available to you, such as
substring, bool ean, or date.

See the next section for a complete list of syntax types available to you.

Specifying Index Strategies

The combined index type and syntax type is called the index strategy. To specify an index,
you declare it using a string that specifies your index strategy. This string is formatted
as follows:

[uni que] -{path type}-{node type}-{key type}-{syntax type}

where:

uni que is the actual value that you provide in this position on the string. If you provide
this value, then indexed values must be unique. If you do not want indexed values to
be unique, provide nothing for this position in the string.

See Uniqueness (page 58) for more information.

{path type} identifies the path type. Valid values are:

e node

» edge

See Path Types (page 59) for more information.

{node type} identifies the type of node being indexed. Valid values are:
« elenent

o attribute

e netadata

If metadata is specified, then {path type} must be node.

2/5/2008

Page 61

Specifying Index Strategies

See Node Types (page 60) for more information.

{key type} identifies the sort of test that the index supports. The following key types
are supported:

e presence

e equality

e substring

See Key Types (page 60) for more information.

{syntax type} identifies the syntax to use for the indexed value. Specify one of the
following values:

e none
+ anyUR

» base64Bi nary

e bool ean

« date

o dateTinme

o dayTinmeDuration
e decim

« double

e duration

« float

« gDay

e ghonth

» gMont hDay

e gYear

» gYearMnth

» hexBinary

e NOTATION

2/5/2008

Page 62

Specifying Index Nodes

« Q\ane
e string

o tine

» yearMnthDuration
e untypedAtomc

Note that if the key type is presence, then the syntax type should be none. Also, for
queries that examine numerical data without specifying the cast explicitly, use doubl e
instead of deci mal for the index. This is because the XQuery specification requires
implict casts of numerical data to be performed as a doubl e.

The following are some example index strategies:
e node- el ement - presence- none

Index an element node for presence queries. That is, queries that test whether the
node exists in the document.

e Uni que- node- et adat a- equal i ty-string

Index a metadata node for equality string compares. The value provided for this node
must be unique within the container.

This strategy is actually used by default for all documents in a container. It is used to
index the document's name.

o edge-attribute-equality-float

Defines an equality float index for an attribute's edge. Improves performance for
queries that examine whether a specific element/®attribute path is equal to a float
value.

Also, be aware that you can specify multiple indices at a time by providing a
space-separated list of index strategies in the string. For example, you can specify two
index strategies at a time using:

"node- el ement - presence-none edge-attribute-equality-float"

Specifying Index Nodes

It is possible to have BDB XML build indices at a node granularity rather than a document
granularity. The difference is that document granularity is good for retrieving large
documents while node granularity is good for retrieving nodes from within documents.

Indexing nodes can only be performed if your containers are performing node-level storage.
You should consider using node indices if you have a few large documents stored in your

2/5/2008 Page 63

Specifying Index Nodes

containers and you will be performing queries intended to retrieve subsections of those
documents. Otherwise, you should use document level indexes.

Because node indices can actually be harmful to your application’s performance, depending
on the actual read/write activity on your containers, expect to experiment with your
indexing strategy to find out whether node or document indexes work best for you.

Node indices contain a little more information, so they may take more space on disk and
could also potentially take longer to write. For example, consider the following document:

<names>
<nane>j oe</ nane>
<nane>j oe</ nane>
<name>fr ed</ nane>
</ names>

If you are using document-level indexing, then there is one index entry for each unique
value occurring in the document for a given index. So if you have a string index on the
nane element, the above document would result in two index entries; one for j oe and
another for fred.

However, for node-level indices, there is one index entry for each node regardless of
whether it is unique. Therefore, given an a string index on the nanme element, the above
document would result in three index entries.

Given this, imagine that the document in use had 1000 nane elements, 500 of which
contained j oe and 500 of which contained fred. For document-level indexing, you would
still only have two index entries, while for node-level indexing you would have 1000 index
entries per stored document. Whether the considerably larger size of the node-level index
is worthwhile is something that you would have to evaluate based on the number of
documents you are storing and the nature of your query patterns.

Note that by default, containers of type NodeCont ai ner use node-level indexes. Containers
of type Whol edocCont ai ner use document level indexes by default. You can change the
default indexing strategy for a container by setting the DBXM._| NDEX_NODES and
DBXM._NO | NDEX_NODES flags for the container. changing the

Xl Cont ai ner Confi g. set I ndexNodes() property to either true (for node-level indexes) or
fal se (for document-level indexes).

You can tell whether a container is using node-level indices using the method. If the
container is creating node-level indices, this method will return t rue.

You can switch between node-level indices and document-level indices using

Xl Manager : : r ei ndexCont ai ner () . Specify DBXM._| NDEX_NODES to cause a the container
to use node-level indices. To switch from node-level to document-level indices, use
DBXM._NO | NDEX_NODES. Note that this method causes your container to be completely
re-indexed. Therefore, for containers containing large amount of data, or large numbers
of indices, or both, this method should not be used routinely as it may take some time
to write the new indices.

2/5/2008 Page 64

Indexer Processing Notes

Indexer Processing Notes

As you design your indexing strategy, keep the following in mind:

As with all indexing mechanisms, the more indices that you maintain the slower your
write performance will be. Substring indices are particularly heavy relative to write
performance.

The indexer does not follow external references to document type definitions and
external entities. References to external entities are removed from the character
data. Pay particular attention to this when using equality and substring indices as
element and attribute values (as indexed) may differ from what you expect.

The indexer substitutes internal entity references with their replacement text.

The indexer concatenates character data mixed with child data into a single value.
For example, as indexed the fragment:

<nodel>
This is some text with sone
<inline>inline </inline> data
</ nodel>

has two elements. <node1> has the value:
"This is some text with some data"
while <inline> has the value:
"inline”
The indexer expands CDATA sections. For example, the fragment:

<nodel>
Reserved XML characters are <!'[CDATA['<', '>', and '&]]>
</ nodel>

is indexed as if <node1> has the value:

"Reserved XML characters are '<', >', and '&"

The indexer replaces namespace prefixes with the namespace URI to which they refer.
For example, the cl ass attribute in the following code fragment:

<nodel nyPrefix:class="test"
xI ms: nyPrefix="http://dbxnm Exanpl es/testPrefix />
is indexed as

<nodel http://dbxm Exanpl es/test Prefix:class="test"
xI ms: myPrefix="http://dbxnl Exanpl es/testPrefix />

2/5/2008

Page 65

Managing BDB XML Indices

This normalization ensures that documents containing the same element types, but
with different prefixes for the same namespace, are indexed as if they were identical.

Managing BDB XML Indices

Indices are set for a container using the container's index specification. You can specify
an index either against a specific node and hamespace, or you can define default indices
that are applied to every node in the container.

You add, delete, and replace indices using the container's index specification. You can
also iterate through the specification, so as to examine each of the indices declared for
the container. Finally, if you want to retrieve all the indices maintained for a named
node, you can use the index specification to find and retrieve them.

An API exists that allows you to retrieve all of the documents or nodes referenced by a
given index.

|:| For simple programs, managing the index specification and then setting it to the container
(as is illustrated in the following examples) can be tedious. For this reason, BDB XML also
provides index management functions directly on the container. Which set of functions your
application uses is entirely up to your requirements and personal tastes.

|:| Performing index modifications (for example, adding and replacing indices) on a container
that already contains documents can be a very expensive operation — especially if the
container holds a large number of documents, or very large documents, or both. This is
because indexing a container requires BDB XML to traverse every document in the container.

If you are considering re-indexing a large container, be aware that the operation can take
a long time to complete.

Adding Indices
To add an index to a container:
1. Retrieve the index specification from the container.

2. Use Xnl I ndexSpeci fication:: addl ndex() to add the index to the container. You must
provide to this method the namespace and node name to which the index is applied.
You must also identify the indexing strategy.

If the index already exists for the specified node, then the method silently does
nothing.

3. Set the updated index specification back to the container.

For example:
#i ncl ude "DbXm . hpp"

usi ng nanespace DbXm ;

2/5/2008 Page 66

Managing BDB XML Indices

/1 Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xl Cont ai ner nyCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

[l Get the index specification
X I ndexSpecification is = myContainer. getlndexSpecification();

[/ Add the index. We're indexing "nodel" using the default
/'l namespace.

i s.addl ndex("", "nodel", "node-el ement-presence-none");

/1 Save the index specification back to the container.
Xl Updat eCont ext uc = nyManager . cr eat eUpdat eCont ext () ;
myCont ai ner. set | ndexSpeci fication(is, uc);

Deleting Indices
To delete an index from a container:
1. Retrieve the index specification from the container.

2. Use Xm I ndexSpeci fication::del etel ndex() to delete the index from the index
specification.

3. Set the updated index specification back to the container.

For example:
#i ncl ude "DbXm . hpp"

usi ng nanmespace DbXm ;

/1 Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xm Cont ai ner myCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

[l Get the index specification
X I ndexSpeci fication is = myContainer. get | ndexSpecification();

2/5/2008 Page 67

Managing BDB XML Indices

/] Delete the index. W're deleting the index from"nodel" in

/1 the default namespace that has the syntax strategy identified
Il above.

i s.del etel ndex(

, "nodel", "node-el ement - presence-none");

/1 Save the index specification back to the container.
Xl Updat eCont ext uc = nyManager . cr eat eUpdat eCont ext () ;
myCont ai ner. set I ndexSpeci fication(is, uc);

Replacing Indices

You can replace the indices maintained for a specific node by using

Xl I ndexSpeci fication::replacel ndex(). When you replace the index for a specified
node, all of the current indices for that node are deleted and the replacement index
strategies that you provide are used in their place.

Note that all the indices for a specific node can be retrieved and specified as a space
separated list in a single string. So if you set a node-element-equality-string and a
node-element-presence index for a given node, then it's indices are identified as:

"node- el ement - equal i ty-string node-el enent - presence”

For example:
#i ncl ude "DbXn . hpp"

usi ng nanespace DbXm ;

/] Get a manager object.
Xl Manager myManager ;

/1 Open a contai ner
Xl Cont ai ner nyCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

/] Get the index specification
Xl I ndexSpeci fication is = nmyContai ner. get | ndexSpecification();

/'l Replace the index.
std::string idxString =

"node- el ement - equal i ty-string node-el ement - presence";
i s.replacelndex("", "nodel", idxString);

/1 Save the index specification back to the container.
Xl Updat eCont ext uc = nyManager . cr eat eUpdat eCont ext () ;
myCont ai ner. set | ndexSpeci fication(is, uc);

2/5/2008 Page 68

Managing BDB XML Indices

Examining Container Indices

You can iterate over all the indices in a container using Xnl | ndexSpeci fi cation:: next().
You can retrieve indices using either the string or enumerated format.

For example:
#i ncl ude "DbXm . hpp"

usi ng nanmespace DbXm ;

/1 Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xm Cont ai ner myCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

/1 Get the index specification
Xl I ndexSpeci fication is = myContai ner. get|ndexSpecification();

[l Iterate over all of the indices in the container. Note
/1 that we could use the enunerated types to retrieve
/1 the indices as well.
std::string uri, nane, index;
int count = 0;
whi | e(is.next(uri,nane,index)) {
/1 Print the index strategy to the console:

std::cout << "For node: '" << nane << "' found:\n"
<< "\tURI: " << uri
<< "\tlndex: " << index << std::endl;

count ++;

}

std::cout << count <<

indices found." << std::endl;

Working with Default Indices

Default indices are indices that are applied to all applicable nodes in the container that
are not otherwise indexed. For example, if you declare a default index for a metadata
node, then all metadata nodes will be indexed according to that indexing strategy, unless
some other indexing strategy is explicitly set for them. In this way, you can avoid the
labor of specifying a given indexing strategy for all occurrences of a specific kind of a
node.

You add, delete, and replace default indices using:

e Xm I ndexSpecification::addDefaul tIndex()

2/5/2008 Page 69

Managing BDB XML Indices

e Xm I ndexSpecification::deleteDefaul tlndex()
e Xn I ndexSpecification::replaceDefaul tlndex()

When you work with a default index, you identify only the indexing strategy; you do not
identify a URI or node name to which the strategy is to be applied.

Note that just as is the case with other indexing methods, you can use either strings or
enumerated types to identify the index strategy.

For example, to add a default index to a container:
#incl ude "DbXm . hpp"

usi ng nanmespace DbXm ;

/] Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xl Cont ai ner nyCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

/] Get the index specification
X I ndexSpeci fication is = myContainer. get | ndexSpecification();

/1 Declare the syntax type:
X Val ue: : Type syntaxType = Xnl Val ue: : STRI NG

/1 Add the default index.
i s. addDef aul t I ndex(" node- net adat a- equal i ty-string");

/1 Save the index specification back to the container.
Xl Updat eCont ext uc = nyManager . cr eat eUpdat eCont ext () ;
myCont ai ner. set | ndexSpeci fication(is, uc);

Looking Up Indexed Documents

You can retrieve all of the values referenced by an index using an Xm | ndexLookup object,
which is returned by the Xm Manager : : cr eat el ndexLookup() method. Xm | ndexLookup
allows you to obtain an Xm Resul t s object that contains all of the nodes or documents
for which the identified index has keys. Whether nodes or documents is return depends
on several factors:

» If your container is of type Wol edocCont ai ner, then by default entire documents are
always returned in this method's results set.

2/5/2008 Page 70

Managing BDB XML Indices

« If your container is of type NodeCont ai ner then by default this method returns the
nodes to which the index’s keys refer.

For example, every container is created with a default index that ensures the uniqueness
of the document names in your container. The:

o URlis http://ww. sl eepycat. com 2002/ dbxni .
» Node name is nane.
« Indexing strategy is uni que- node- net adat a- equal i ty-string.

Given this, you can efficiently retrieve every document in the container using
Xl I ndexLookup. as follows:

#i ncl ude "DbXm . hpp"

usi ng nanmespace DbXm ;

/1 Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xm Cont ai ner myCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

Xm QueryContext qc = myManager. creat eQueryCont ext () ;

/1 Lookup the index

std::string uri = "http://ww:.sl eepycat.com 2002/ doxm ";
std::string name = "name";

std::string idxStrategy = "uni que-node- net adat a- equal i ty-string";

[l Get the Xm IndexLookup Qbject
Xm | ndexLookup xi| = nyManager. creat el ndexLookup(nyCont ai ner, uri, nane,
i dxStrategy);

/1 Now look it up. This returns every document in the container.
Xm Results res = xil.execute(qc);

Il lterate over the results set, printing each document in it
Xl Docunent thedoc = myManager . creat eDocunent () ;
while (res.next(thedoc)) {
std::string dumysString;
std::cout << thedoc.getNang() << ": "
<< thedoc. get Cont ent (dummyString) << std::endl;

2/5/2008 Page 71

Managing BDB XML Indices

In the event that you want to lookup an edge index, you must provide the lookup method
with both the node and the parent node that together comprise the XML edge.

For example, suppose you have the following document in your container:

<nydoc>
<nodel>
<node2>
node2 1
</ node2>
<node2>
node2 2
</ node2>
</ nodel>
</ mydoc>

Further suppose you indexed the presence of the node1/node2 edges. In this case, you
can lookup the values referred to by this index by doing the following:

#i ncl ude "DbXm . hpp"

usi ng namespace DbXm ;

/1 Get a manager object.
X Manager myManager ;

/1 Open a contai ner
Xm Cont ai ner myCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

Xm QueryContext qc = myManager. creat eQuer yCont ext () ;

/1 Node to | ookup

std::string uri ="";
std::string name = "node2";

/1 Parent node to | ookup

std::string parentURIl ="";
std::string parentName = "nodel";

std::string idxStrategy = "edge-el enent - presence";
[l Get the Xm IndexLookup Object
X | ndexLookup xi| = nyManager. creat el ndexLookup(nyCont ai ner, uri, nane,

i dxStrategy);

/1 ldentify the parent node

2/5/2008 Page 72

Verifying Indices using Query
Plans

xi|.setParent(parent URI, parentNane);

/1 Now | ook it up.
Xm Results res = xil.execute(qc);

/] lterate over the results set, printing each value in it
Xm Val ue ret Val ue;
while (res.next(retValue)) {
std::cout << "Found: " << retValue.asString() << std::endl;
}

Verifying Indices using Query Plans

When designing your indexing strategy, you should create indices to improve the
performance of your most frequently occurring queries. Without indices, BDB XML must
walk every document in the container in order to satisfy the query. For containers that
contain large numbers of documents, or very large documents, or both, this can be a
time-consuming process.

However, when you set the appropriate index(es) for your container, the same query that
otherwise takes minutes to complete can now complete in a time potentially measured

in milliseconds. So setting the appropriate indices for your container is a key ingredient
to improving your application's performance.

That said, the question then becomes, how do you know that a given index is actually
being used by a given query? That is, how do you do this without loading the container
with enough data that it is noticeably faster to complete a query with an index set than
it is to complete the query without the index?

The way to do this is to examine BDB XML's query plan for the query to see if it intends
to use an index for the query. And the best and easiest way to examine a query plan is
by using the dbxml command line utility.

Query Plans

The query plan is literally BDB XML's plan for how it will satisfy a query. When you use
Xl Manager : : prepare(), one of the things you are doing is regenerating a query plan so
that BDB XML does not have to continually re-create it every time you run the query.

Printed out, the query plan looks like an XML document that describes the steps the query
processor will take to fulfill a specific query.

For example, suppose your container holds documents that look like the following:

<a>
<docld id="aaUivth" />

<c>nodel</ c>
<d>node2</ d>

2/5/2008 Page 73

Verifying Indices using Query
Plans

</ b>
<l a>

Also, suppose you will frequently want to retrieve the document based on the value set
for the i d parameter on the docl d node. That is, you will frequently perform queries that
look like this:

col I ection("myContainer.dbxm")/al/docld] @d="bar"]

In this case, if you print out the query plan (we describe how to do this below), you will
see something like this:

<XQuery>
<Quer yPl anToAST>
<NodePredi cateFi | ter QP uri="" name="+#t np5" >
<Step@P axis="child" name="docld" nodeType="el ement">
<Step@ axi s="child" nane="a" nodeType="el ement">
<Sequenti al ScanQP cont ai ner ="nyCont ai ner. dbxm "
nodeType="docunent"/ >
</ St epQP>
</ St epQP>
<Val ueFi | ter QP conparison="eq" general ="true">
<StepQP axis="attribute" name="id" nodeType="attribute">
<Vari abl eQP nane="#t np5"/>
</ St epQP>
<Sequence>
<AnyAt oni cTypeConstructor val ue="bar"
typeuri="http://ww. w3. org/ 2001/ XM_Schema" typename="string"/>
</ Sequence>
</ Val ueFi | ter QP>
</ NodePr edi cat eFi | t er QP>
</ QueryPl anToAST>
</ XQuery>

While a complete description of the query plan is outside the scope of this manual, notice
that there is no element specified in the query plan that includes an i ndex attribute. This
attribute can appear on different element nodes, depending on the nature of the query
and the actual index that the query wants to use. For example, queries that use indexes
which example the value of a node might specify a Val ueQP node.

<Val ueQP cont ai ner="nyCont ai ner . doxm "
i ndex="node-attribute-equality-string" operation="eq" child="id"
val ue="bar"/>

Other indexes that simply test for the presence of a node would specify the index on a
Presence@ element:

<PresenceQP contai ner="parts. dbxm "
i ndex="node- el enent - pr esence-none" operation="eq"
chil d="parent-part"/>

2/5/2008 Page 74

Verifying Indices using Query
Plans

Using the dbxml Shell to Examine Query Plans

dbxml is a command line utility that allows you to gracefully interact with your BDB XML
containers. You can perform a great many operations on your containers and documents
using this utility, but of interest to the current discussion is the utility's ability to allow

you add and delete indices to your containers, to query for documents, and to examine

query plans.

The dbxnl shell is described in the Introduction to Berkeley DB XML guide.

Note that while you can create containers and load XML documents into those containers
using dbxml, we assume here that you have already performed these activities using some
other mechanism.

In order to examine query plans using dbxml, do the following (the following assumes the
container already exists and contains documents):

> dbxn
dbxm > openCont ai ner myCont ai ner. dbxmni

Next, examine your query plan using the gPlan command. Note that we assume your
container only has the standard, default index that all containers have when they are
first created.

dbxm > gPlan ' col | ection("nyCont ai ner. dbxm ")/ a/ docl d[@d="aaUi vth"]'
<XQuery>
<Quer yPl anToAST>
<NodePredi cateFi | ter QP uri="" name="+#t np5" >
<StepQP axi s="child" name="docld" nodeType="el ement">
<Step@ axi s="child" nane="a" nodeType="el enment">
<Sequenti al Scan@ cont ai ner ="nyCont ai ner. dbxm "
nodeType="docunent"/>
</ St epQP>
</ St epQP>
<Val ueFi | ter QP conparison="eq" general ="true">
<StepQP axis="attribute" name="id" nodeType="attribute">
<Variabl eQP nane="#t np5"/>
</ St epQP>
<Sequence>
<AnyAt oni cTypeConstructor val ue="aaUi vt h"
typeuri="http://ww. w3. org/ 2001/ XM_Schena"
typenane="string"/>
</ Sequence>
</ Val ueFi | ter QP>
</ NodePr edi cat eFi | t er QP>
</ QueryPl anToAST>
</ XQuery>

2/5/2008 Page 75

Verifying Indices using Query
Plans

Notice that this query plan does not make use of an index. No index is identified anywhere
in the query plan, and it calls for only a sequential scan. Now add the index that you want
to test.

dbxm > addindex "" id "node-attribute-equality-string"
Addi ng index type: node-attribute-equality-string to node: {}:id

Now try the query plan again. Notice that there's a Val ueQP element that specifies our
newly added index using a i ndex attribute.

dbxm > qgpl an col | ection("nyCont ai ner. dbxm ")/a/docl d[@d="aali vth']
<XQuery>
<Quer yPl anToAST>
<Parent Of Attri but eJoi nQP>
<Val ueQP cont ai ner ="nyCont ai ner . doxm "
i ndex="node-attribute-equality-string" operation="eq"
child="id" val ue="aalivth"/>
<StepQP axi s="child" name="docld" nodeType="el ement ">
<StepQ@ axi s="child" nane="a" nodeType="el ement">
<Sequenti al Scan@QP cont ai ner ="nyCont ai ner. dbxm "
nodeType="docunent"/ >
</ St epQP>
</ St epQP>
</ Parent Of Attri but eJoi nQP>
</ Quer yPl anToAST>
</ XQuery>

You are done testing your index. To exit dbxml, use the quit command:

dbxm > qui t

2/5/2008 Page 76

Chapter 8. Administering Berkeley DB XML
Applications

This book has until now been an introduction on how to use the BDB XML API to add a
native XML database to your application. But having written that application, there's some
administrative concerns that you should keep in mind as your application moves into
production. These concerns are described in this chapter.

Temporary Files

All Berkeley DB XML applications are capable of writing temporary files to disk. This
happens when the disk cache fills up and so BDB XML is forced to write overflow pages.
For the most part, these temporary files can be safely ignored.

However, for some class of applications, the presence of the temporary overflow files
can be problematic. You can prevent temporary files from being created on your hard
drive by creating your disk cache large enough that it can contain your entire working set
of data. You do this using the DbEnv: : set _cachesi ze() method prior to opening your
environment.

|:| It is always safe to delete temporary overflow files written by BDB XML after the application
has shutdown.

Temporary database files are placed in the directory identified by the

DbEnv: : set _tenp_dir() method. If this method is not called by the application, then the
application will use the directory identified on an environment variable, if your application
is configured to do this. Assuming that it is appropriately configured, then the following
environment variables are checked to see if they have been set. The following order of

precedence matters; the first of the following environment variables found to be set is

used to determine the location of the temporary directory:

1. TMPDIR

2. TEWP

3. TWP

4. TenpFol der
5. TMPDIR

If none of these environment variables are set, BDB XML checks the value returned by
the Get TenpPat h interface to see if that is set. If not, then the default location identified
above are attempted.

|:| Environment variables are not used by BDB XML applications unless the DB_USE_ENVI RON or
DB_USE_ENVI RON_ROOT flags are set when the environment is opened.

2/5/2008 Page 77

A Note on Snapshot Isolation

If no other method of determining the location of the temporary file directory can be
found, then BDB XML will resort to using built-in default values. That is, the first of the
following locations found to exist is used, if a temporary file directory is not otherwise
identified for BDB XML:

1. The directory /var/tnp
2. The directory /usr/tnp
3. The directory /tenp

4. The directory /tnp

5. The directory C./tenp

6. The directory C./tnp

A Note on Snapshot Isolation

Snapshot isolation, or multi-version concurrency control, can be configured when you are
using transactions with your BDB XML application. While transactions are not described
in this manual, since snapshot isolation is so commonly used for BDB XML applications, it
is worth mentioning here that use of Snapshot Isolation means you must:

» Increase the maximum number of concurrent transactions supported by the
environment.

« Increase the size of your disk cache.

This is because snapshot isolation causes your BDB XML transactional application to use
much larger amounts of resources than does a normal transactional application.

For more information, see the Berkeley DB XML Getting Started with Transaction Processing
guide.

2/5/2008 Page 78

Appendix A. Updating
Documents with XmiModify

The best way to update or modify a document from within BDB XML is to use XQuery
Update statements. See Modifying XML Documents (page 51) for an introduction to that
topic.

However, in the past BDB XML offered the XmlModify API for modifying existing documents.
Though deprecated, this API is still available in the library. This appendix provides an
introduction to it.

Essentially, you can use Xn Mdi fy methods to identify a series of modification steps to
be taken against a document. These steps allow you to add, delete, rename, and replace
document nodes. You can also manipulate comments and processing instructions.

Once you have finished identifying the modification steps that you want to perform, you
use Xnl Modi fy: : execut e() to apply the modifications to either a single document (by
passing it an Xm Val ue object), or a set of documents (by passing it an Xnl Resul t s object).

Modification Parameters

There are a common set of parameters to the Xn Mdi f y modification methods that are
worth examining before proceeding. These arguments have roughly the same meaning,

regardless of the modification action being requested. They appear on the modification
methods in the following order:

o Xm Quer yExpression sel ecti onExpr

This parameter contains an XQuery expression that selects the portion of the document
to be modified. For example, if you want to rename a node, then this expression would
select the node that you want to rename.

o X Qvj ect type

This parameter identifies the type of information you are inserting into the document.
That is, you use this parameter to indicate whether you are inserting an element node,
an attribute node, text node, a processing instruction, or a comment. See the API
Reference documentation for information on how to specify these types.

e std::string name

Identifies the name of the information you are inserting. For example, if you are
inserting an element or attribute node, then this provides the name of that node. The
value of this parameter is ignored if you are inserting a text or comment node.

e std::string content

2/5/2008 Page 79

Modification Methods

Identifies the content that you are inserting. If you are inserting an element node,
then this must contain either a text node, or a valid child content for the node. For
attribute nodes, this contains the value to which the parameter is equal. For processing
instructions, this contains all of the information that appears in the processing
instruction other than the processing instruction’'s name.

Modification Methods

Xm Modi fy provides a series of methods that you use to identify how a document is to be
modified. To define your document modification, you call these methods as many times
as is required. When Xn Modi fy: : execut e() is called, the documents are modified according
to the instructions provided in the order that they were provided.

The Xm Modi fy modification methods are:

o XmlModify::addAppendStep() (page 80)

o XmlModify::addInsertAfterStep() (page 82)

o XmlModify::addInsertBeforeStep() (page 83)

« XmlModify::addRemoveStep() (page 84)

« XmlModify::addRenameStep() (page 85)

o XmlModify::addUpdateStep() (page 85)
XmlIModify::addAppendStep()

Appends the provided content to the targeted node's content.

If you are appending an element node, then the new node is by default appended
immediately after the targeted node’s last child node. Note, however, that this method
provides a location parameter that identifies the index of the child node at which the
append operation is to be performed. Note also that if the location parameter is specified,
then the new node is inserted immediately prior to the identified child node.

For example, consider the following document:

<a>
<bl>first child</bl>
<b2>second chi | d</b2>
<b3>third chil d</b3>
</ a>

For this document, if you:

» Provide an XQuery selection expression of:

/a

2/5/2008 Page 80

Modification Methods

« Indicate you are inserting an element node.
» Provide a name of "b4".

« Provide "my inserted child".

» Leave the location parameter blank.

Then when the modification is executed against the document, the resulting document
is:

<a>
<bl1>first child</bl>
<b2>second chi | d</b2>
<b3>t hird child</b3>
<b4>ny inserted chil d</b4>
<l a>

However, if you give the location parameter a value of "0" (modify at the first child node),
then the resulting document is:

<a>
<b4>ny inserted chil d</b4>
<bl>first child</bl>
<b2>second chil d</b2>
<b3>third chil d</b3>

<l a>

If you indicate that the type of information to be inserted is an attribute node, then the
location parameter is always ignored and the new attribute is inserted at the node selected
by the selection expression. So for a selection expression of

/a

The resulting document is:

<a b4="ny inserted child">
<b1>first child</bl>
<b2>second chil d</b2>
<b3>third chil d</b3>

<l a>

If you indicate that the type of information to be inserted is a comment node, and you
leave the location parameter blank, then the resulting document is:

<a>
<bl>first child</bl>
<b2>second chi | d</b2>
<b3>third chil d</b3>
<I-- ny inserted child -->
<l a>

If you indicate a location of 0, then the resulting document is:

2/5/2008 Page 81

Modification Methods

<a>

<I-- ny inserted child -->
<b1>first child</bl>
<b2>second chil d</b2>
<b3>t hird child</b3>

<l a>

And finally, if you are inserting a text node with no location parameter, the resulting
document is:

<a>

<b1>first child</bl>

<b2>second chil d</b2>

<b3>third childnmy inserted child</b3>
<l a>

Note that the selection expression you provide here must not select an attribute node or
an exception is thrown when the modification is executed.

XmlIModify::addInsertAfterStep()

Inserts the identified content after the selected node. Note that the node that you target
for this operation cannot select the document root node or an attribute node, or an
exception is thrown.

If you are inserting an element node, then the new node is inserted after the closing tag
of the targeted node.
For example, consider the following document:

<a>

text node
</ b>
</ a>

For this document, if you:

« Provide an XQuery selection expression of:
/alb

Indicate you are inserting an element node.
e Provide a name of "b2".
» Provide "my inserted node".

Then when the modification is executed against the document, the resulting document
is:

2/5/2008 Page 82

Modification Methods

<a>

text node
</ b>
<b2>ny inserted node</b2>
<l a>

If you are inserting an attribute, then the new attribute is placed on the selected node's
parent node. So for this example, the resulting document would be:

<a b2="ny inserted node">
<bh>
text node

</ b>
</ a>

XmlIModify::addInsertBeforeStep()

Identical to XmlModify::addInsertAfterStep() (page 82), except that element nodes,
text, comments, and processing instructions are inserted prior to the node selected by
the selection expression.

Again, you cannot select the root node or an attribute node or an exception is thrown
when this instruction is executed.
For example, consider the following document:

<a>
<h>
text node
</ b>
<l a>

For this document, if you:

» Provide an XQuery selection expression of:
/alb

Indicate you are inserting an element node.

» Provide a name of "b2".

« Provide "my inserted node".

Then when the modification is executed against the document, the resulting document

1S2

<a>
<b2>ny inserted node</b2>
<h>
text node

2/5/2008 Page 83

Modification Methods

<[b>
<l a>

Attribute insertion is handled identically to Xm Modi fy: : addl nsert After Step() . If you are
inserting an attribute, then the new attribute is placed on the selected node's parent
node. So for this example, the resulting document would be:

<a b2="ny inserted node">
<h>
text node
</ b>
<l a>

XmlIModify::addRemoveStep()

Removes the node targeted by the selection expression. For example, if you have the
following document:

<a>
<h>
<c>
text node
</c>
</ b>
<l a>

and you provide a selection expression of:
lalblc

then the resulting document is:

<a>
</ b>
</ a>

Similarly, if you have the following document:

<a>
<h>
<c attr1="foo0">
text node
</c>
</ b>
<l a>

and you provide a selection expression of:
lalblc/@ttrl

then the resulting document is:

<a>

2/5/2008 Page 84

Modification Methods

<c>
text node
</ c>
</ b>
</ a>

Again, it is an error to target the document's root node with this method.
XmlIModify::addRenameStep()

This method renames the selected node. For example, if you have the following document:

<a>

<c attr1="foo0">
text node
</ c>
<[b>
<l a>

and you provide a selection expression of:

/a

and you provide a new name of 'z, then the resulting document is:

<z>

<c attrl1="foo0">
text node
</c>
</ b>
<[z>

Similarly, a selection expression of:
lalblc/l@ttrl

and a new name of 'z’ leaves you with:

<a>

<c z="foo">
text node
</ c>
</ b>
</ a>

XmlIModify::addUpdateStep()

This method updates (replaces) the contents of the targeted node with new content. If
an element node is targeted, the content here is expected to be a text node. For example,
given the following document:

2/5/2008 Page 85

Modification Example

<a>

<c attr1="foo">
text node
</ c>
<[b>
<l a>

providing a selection expression of:

/a

and replacement content:

Updat e cont ent

Then the resulting document is:

<a>

Updat e cont ent

<l a>
If, however, you provide replacement content of:

<z>Updat e content</z>

(which includes the reserved characters '<' and '>'), then the method translates this into
content that is appropriate for a text node. In this case, the resulting document is:

<a>
&l t;z>Update content&t;/z>
<[a>

Similarly, providing a selection expression of:
[alblc/l@ttrl

and replacement content:

Updat e cont ent

results in the following document:

<a>
<h>
<c attr1="Update content">
text node
</c>
</ b>
<l a>

Modification Example

To illustrate document modification, we will:

2/5/2008 Page 86

Modification Example

Retrieve a document named "doc1.xml" from a container.
Rename an attribute node called 'attr1’ to 'myAttribute’.
Add a child node called "newChild" to node "node2".

Remove a node called "removeNode".

content”.

The document that we will update is as follows:

<sanpl eDocunent >
<nodel attrl="an attribute node" />
<renoveNode>Sone content to remove</renoveNode>
<node2 />

</ sanpl eDocunent >

Update the contents of attribute node 'myAttribute’ with the string "replacement

Notice that in performing the modification, we are not required to explicitly save the
modified document back into the container; that is done for us under the covers.

#incl ude "DbXn . hpp"

usi ng nanespace DbXm ;

/1 Get a manager object.
X Manager nyManager ;

/1 Open a contai ner
Xl Cont ai ner nyCont ai ner =
myManager . openCont ai ner (" exanpl eDat a. dbxm ") ;

Xm QueryContext qc = myManager. creat eQueryCont ext () ;
Xl Updat eCont ext uc = nyManager . cr eat eUpdat eCont ext () ;
Xm Modi fy nod = nyManager. creat eModi fy();

[/ Build the modification object.
/1 Rename the attribute node from'attrl to 'nyAttribute'.
X Quer yExpr essi on sel ect =

myManager . prepar e("/ sanpl eDocunent / nodel/ @ttr1", qc);
mod. addRenaneSt ep(sel ect, "nyAttribute");

[/ Add ' <newChild>" node to '<node2>'
std::string newChildContent = "<cl>some content</cl>";
sel ect = nyManager . prepare("/sanpl eDocunent/node2", qc);
mod. addAppendSt ep(sel ect

X Modi fy: : El enent,

2/5/2008

Page 87

Modification Example

"newchi | d",
newChi | dCont ent) ;

Il Renove <renmoveNode> from the document
sel ect = nyManager . prepare("/sanmpl eDocunent/renmoveNode", qc);
mod. addRenoveSt ep(sel ect) ;

/'l Replace the contents of /sanpl eDocunent/nodel/ @yAttribute. Notice
[l the attribute was renaned fromattrl in the first step of this

/1 nodification. Mdifications are perforned in the specified order.
std::string attrContent = "repl acement content”;

sel ect = nyManager . prepare("/sanmpl eDocunent/ nodel/ @yAttribute", qc);
mod. addUpdat eSt ep(sel ect, attrContent);

/1 Now retrieve the document we want to nodify fromthe container.

/1 Notice that we could have perforned a query against the container,
/1 and then handed the entire result set to this nethod. In that case,
/'l every docunment contained in the result set is nodified.

Xl Docunent retDoc = myContai ner. get Document ("docl. xm ");

Xl Val ue docVal ue(retDoc);

mod. execut e(docVal ue, qc, uc);

/1 Show that the nodification was perforned
[/ and witten to the container.
Xl Docunent retDoc2 = nyCont ai ner. get Docunent ("docl. xm");
std::string doclString;
std::cout << retDoc2.getNange() << ":\n"
<< retDoc2. get Cont ent (doc1Stri ng)
<< "\n\n" << std::endl;

When we run this code, the program displays the modified document which is now:

docl. xm :
<sanpl eDocunent >
<nodel nyAttribute="replacenent content" />

<node2><newChi | d><c1>some cont ent </ c1></ newChi | d></ node2>
</ sanpl eDocunent >

2/5/2008 Page 88

	Getting Started with Berkeley DB XML
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information

	Chapter 1. Introduction to Berkeley DB XML
	Overview
	Benefits
	XML Features
	Database Features
	Languages and Platforms

	Getting and Using BDB XML
	Documentation and Support
	Library Dependencies
	Building and Running BDB XML Applications

	Chapter 2. Exception Handling and Debugging
	Debugging BDB XML Applications

	Chapter 3. XmlManager and Containers
	XmlManager
	Berkeley DB Environments
	Environment Open Flags
	Opening and Closing Environments

	XmlManager Instantiation and Destruction

	Managing Containers
	Container Flags
	Container Types
	Deleting and Renaming Containers

	Chapter 4. Adding XML Documents to Containers
	Input Streams and Strings
	Adding Documents
	Constructing Documents using Event Writers
	Setting Metadata

	Chapter 5. Using XQuery with BDB XML
	XQuery: A Brief Introduction
	Referencing Portions of Documents using XQuery
	Predicates
	Numeric Predicates
	Boolean Predicates

	Context
	Relative Paths
	Namespaces

	Wildcards
	Case Insensitive Searches
	Navigation Functions
	collection()
	doc()

	Using FLWOR with BDB XML

	Retrieving BDB XML Documents using XQuery
	The Query Context
	Defining Namespaces
	Defining Variables
	Defining the Evaluation Type

	Performing Queries
	Metadata Based Queries

	Examining Query Results
	Examining Document Values
	Examining Metadata
	Using Event Readers

	Chapter 6. Managing Documents in Containers
	Deleting Documents
	Replacing Documents
	Modifying XML Documents
	XQuery Update Introduction
	Inserting Nodes Using XQuery Update
	Position Keywords
	Insertion Rules

	Deleting Nodes Using XQuery Update
	Replacing Nodes Using XQuery Update
	Replacement Rules

	Renaming Nodes Using XQuery Update
	Updating Functions
	Transform Functions
	Resolving Conflicting Updates

	Chapter 7. Using BDB XML Indices
	Index Types
	Uniqueness
	Path Types
	Node Types
	Element and Attribute Nodes
	Metadata Nodes

	Key Types

	Syntax Types
	Specifying Index Strategies
	Specifying Index Nodes
	Indexer Processing Notes
	Managing BDB XML Indices
	Adding Indices
	Deleting Indices
	Replacing Indices
	Examining Container Indices
	Working with Default Indices
	Looking Up Indexed Documents

	Verifying Indices using Query Plans
	Query Plans
	Using the dbxml Shell to Examine Query Plans

	Chapter 8. Administering Berkeley DB XML Applications
	Temporary Files
	A Note on Snapshot Isolation

	Appendix A. Updating Documents with XmlModify
	Modification Parameters
	Modification Methods
	XmlModify::addAppendStep()
	XmlModify::addInsertAfterStep()
	XmlModify::addInsertBeforeStep()
	XmlModify::addRemoveStep()
	XmlModify::addRenameStep()
	XmlModify::addUpdateStep()

	Modification Example

