
M a k e r s o f B e r k e l e y D B

Introduction to
Berkeley DB XML .

Legal Notice

This documentation is distributed under the terms of the Sleepycat public license. You may review the terms
of this license at: http://www.sleepycat.com/download/oslicense.html

Sleepycat Software, Berkeley DB, Berkeley DB XML and the Sleepycat logo are trademarks or service marks of
Sleepycat Software, Inc. All rights to these marks are reserved. No third-party use is permitted without the
express prior written consent of Sleepycat Software, Inc.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United
States and other countries.

To obtain a copy of this document's original source code, please write to <support@sleepycat.com>.

Published 10/21/2005

http://www.sleepycat.com/download/oslicense.html

Table of Contents
1. Overview .. 1

Basic Concepts .. 1
Running the Shell ... 1
Getting Help .. 4

2. XQuery and Berkeley DB XML .. 7
Adding Data ... 7
Queries Involving Document Structure .. 8
Value Queries .. 10
Introducing Indices ... 11
Reshaping the Result ... 14
Sorting the Result ... 15
Working with Data from Multiple Containers ... 16
Working with Data from a Specific Document .. 19
Using Metadata .. 23
Modifying Documents ... 24
Schema Constraints ... 26
The Berkeley DB XML API .. 28

3. Wrapping Up .. 30
Benefits .. 30
XML Features .. 30
Database Features .. 31
Languages and Platforms .. 31

4. Where to Learn More .. 33
Berkeley DB XML Resources ... 33
XML Resources ... 33
XQuery Resources ... 33

Page ii10/21/2005

Chapter 1. Overview
Welcome to Berkeley DB XML (BDB XML), a native XML database (NXD) engine that provides
support for XQuery access. This document will introduce you to BDB XML's feature set.
After reading this document you should have a good understanding of what BDB XML can
do for you and how it might be used to manage XML data within your systems and
applications. Follow along with the examples and try out BDB XML on your system.

Basic Concepts

Typically, BDB XML is used as a library that is linked directly into your application. In
addition, BDB XML has a command line shell that allows you to work with XML documents
outside of the programming languages that you normally use to interact with BDB XML.
You can use the command line shell as part of your application, as a management tool,
or simply as a means to explore the features of the product as we do here.

In BDB XML, all XML data is stored within files called containers. The BDB XML shell provides
a simple and convenient way to work with these containers and exposes most of the BDB
XML functionality in a friendly, interactive environment, without requiring the use of a
programming language.

Containers are really a collection of XML documents and information about those
documents. For example, containers include any indices that are being maintained for
the documents.

Containers also store XML documents as either whole documents or as nodes. When
containers store whole documents, the XML document is stored all as one unit in the
container exactly as it appeared on the filesystem. When documents are stored as nodes,
the XML document is deconstructed into the smallest pieces – that is, nodes – possible,
and those small chunks are what is stored in the container.

For the node storage case, retrieval of the document still returns the document in the
same formatting state (assuming you didn't modify it) as it was in when it was stored in
the container. The only difference is how the document is physically held within the
container. Note that node storage typically offers better performance than does whole
document storage, and for this reason node storage is the default container type.

Running the Shell

The shell command is located in the <path where BDB XML is installed>/bin directory
and is named dbxml.

To run the shell, simply type dbxml at the command prompt for your operating system.
Assuming that you have the dbxml shell in your operating system's command line path,
you'll then be greeted by the dbxml> prompt.

user> dbxml
dbxml>

Page 110/21/2005

In the examples that follow, you'll see the dbxml> prompt followed by the command that
should be entered. Most commands are simple one line commands. However, some are
more complicated XQuery examples that will span multiple lines. Each example will show
both the command to enter and the resulting output. When the output is too long, ellipsis
(...) will be used to abbreviate the intermediate results.

When using BDB XML you will find that document content is stored in a container. This
is the first basic concept in BDB XML: containers hold collections of XML documents. The
documents within a container may or may not share the same schema.

To begin exploring BDB XML, create a container. Our first example models a simple
phonebook database. The container's name will be phone.dbxml.

dbxml> createContainer phone.dbxml

Creating node storage container with nodes indexed

The command and output in this case was very simple. It was meant to merely confirm
command execution. Note that a file named phone.dbxml was created in your working
directory. This is the new document storage container. Containers hold the XML data,
indices, document metadata, and any other useful information and are managed by BDB
XML. Never edit a container directly, always allow the BDB XML library to manage it for
you. The '.dbxml' extension helps to identify the BDB XML database on disk, but is simply
a naming convention that is not strictly required.

In addition to creating the container, the BDB XML shell also automatically opened it and
made it ready for us to use.☞

This phonebook example's data model uses XML entries of the following format:

<phonebook>
 <name>
 <first>Tom</first>
 <last>Jones</last>
 </name>
 <phone type="home">420-203-2032</phone>
</phonebook>

Now add a few phone book entries to the container in the following manner:

dbxml> putDocument phone1 '<phonebook>
 <name>
 <first>Tom</first>
 <last>Jones</last>
 </name>
 <phone type="home">420-203-2032</phone>
</phonebook>' s

Document added, name = phone1

dbxml> putDocument phone2 '<phonebook>

Page 210/21/2005

Running the Shell

 <name>
 <first>Lisa</first>
 <last>Smith</last>
 </name>
 <phone type="home">420-992-4801</phone>
 <phone type="cell">390-812-4292</phone>
</phonebook>' s

Document added, name = phone2

The XML document content is wrapped in single quote characters and the command is
terminated by an s character. This indicates that we are adding a new document using a☞
string. The single quote characters are used for any command parameter that either contains
spaces or needs to span multiple lines.

Now the container has a few phonebook entries. The following few examples demonstrate
some basic XQuery queries based solely on XPath statements. Subsequent sections will
demonstrate more complex XQuery statements.

XPath is a central part of the XQuery specification. It serves much the same function as the
SELECT statement does in SQL. It is essentially used to identify a subset of data within the
data set.

☞

To retrieve all the last names stored in the container:

dbxml> query '
collection("phone.dbxml")/phonebook/name/last/text()'

2 objects returned for eager expression '
collection("phone.dbxml")/phonebook/name/last/text()'

dbxml> print
Jones
Smith

To find Lisa's home phone number:

dbxml> query '
collection("phone.dbxml")/phonebook[name/first = "Lisa"]/phone[@type =
"home"]/text()'

1 objects returned for eager expression '
collection("phone.dbxml")/phonebook[name/first = "Lisa"]/phone[@type =
"home"]/text()'

dbxml> print
420-992-4801

To find all phone numbers in the 420 area code:

dbxml> query '
collection("phone.dbxml")/phonebook/phone[starts-with(., "420")]/text()'

Page 310/21/2005

Running the Shell

2 objects returned for eager expression '
collection("phone.dbxml")/phonebook/phone[starts-with(., "420")]/text()'

dbxml> print
420-203-2032
420-992-4801

These queries simply retrieve subsets of data, just like a basic SELECT statement would
in a relational database. Each query consists of two parts. The first part of the query
identifies the set of documents to be examined (equivalent to a projection). This is done
with an XQuery navigation function such as collection(). In this example,
collection("phone.dbxml") specifies the container against which we want to apply our
query. The second part is an XPath statement (equivalent to a selection). The first
example's XPath statement was /phonebook/name/last/text() which, based on our
document structure, will retrieve all last names and present them as text.

Understanding XPath is the first step toward understanding XQuery.

You can perform a query against multiple containers using the union operator ("|") with the
collection() function. For example, to query against containers c1.dbxml and c2.dbxml,
you would use the following expression:

☞

(collection("c1.dbxml") | collection("c2.dbxml"))/name/text()

Getting Help

The BDB XML shell has a built in help facility, simply type help at the command line:

dbxml> help

Command Summary

- Comment. Does nothing
abort - Aborts the current transaction
addAlias - Add an alias to the default container
addIndex - Add an index to the default container
append - Append to nodes specified in the query expression
commit - Commits the current transaction, and starts a new one
contextQuery - Execute query expression using the last results as the
 context item
cquery - Execute an expression in the context of the default
 container
createContainer - Creates a new container, which becomes the default
 container
debug - Debug command -- internal use only
delIndex - Delete an index from the default container
getDocuments - Gets document(s) by name from default container

Page 410/21/2005

Getting Help

getMetaData - Get a metadata item from the named document
help - Print help information. Use 'help commandName' for
 extended help
info - Get info on default container
insertAfter - Insert new content after nodes selected by the query
 expression
insertBefore - Insert new content before nodes selected by the query
 expression
listIndexes - List all indexes in the default container
lookupEdgeIndex - Performs an edge index lookup in the default container
lookupIndex - Performs an index lookup in the default container
lookupStats - Look up index statistics on the default container
openContainer - Opens a container, and uses it as the default container
preload - Pre-loads (opens) a container
print - Prints most recent results, optionally to a file
putDocument - Insert a document into the default container
query - Execute an expression in the context of the XmlManager
queryPlan - Prints the query plan for the specified query
 expression
quit - Exit the program
reindexContainer - Reindex a container, optionally changing index type
removeAlias - Remove an alias from the default container
removeContainer - Removes a container
removeDocument - Remove a document from the default container
removeNodes - Remove content from documents specified by the query
 expression
renameNodes - Rename nodes specified by the query expression
run - Runs the given file as a script
setApplyChanges - Modifies "apply changes" state in the default update
 context
setBaseUri - Set the base uri in the default context
setLazy - Sets lazy evaluation on or off in the default context
setMetaData - Set a metadata item on the named document
setNamespace - Create a prefix->namespace binding in the default
 context
setReturnType - Sets the return type on the default context
setTypedVariable - Set a variable to the specified type in the default
 context
setVariable - Set a variable in the default context
setVerbose - Set the verbosity of this shell
transaction - Create a transaction for all subsequent operations to
 use
updateNodes - Update node content based on query expression and new
 content
upgradeContainer - Upgrade a container to the current container format

Any given command has additional detailed help. For example:

Page 510/21/2005

Getting Help

dbxml> help createContainer

createContainer -- Creates a new container, which becomes the default
container

Usage: createContainer <containerName> [n|in|d|id] [[no]validate]
Creates a new default container; the old default is closed.
The default is to create a node storage container, with node indexes.
A second argument of "d" creates a Wholedoc storage container, and
"id" creates a document storage container with node indexes.
A second argument of "n" creates a node storage container, and
"in" creates a node storage container with node indexes.
The optional third argument indicates whether or not to validate
documents on insertion
A containerName of "" creates an in-memory container.
This command uses the XmlManager::createContainer() method.

The help text has valuable information about the command and the API calls that are
used to implement a particular command. This helps you to find the relevant section of
the API documentation where more detail is available and also serves as a way to explore
a commonly used subset of the API calls in an interactive fashion.

Page 610/21/2005

Getting Help

Chapter 2. XQuery and Berkeley DB XML
This section steps through some of the XQuery functionality provided by BDB XML and
then introduces a few of the facilities BDB XML provides that make working with XML
highly efficient. Those unfamiliar with XQuery should first review one of the many excellent
XQuery tutorials listed at the end of this document before proceeding.

Adding Data

In this example, the container will manage a few thousand documents modeling an
imaginary parts database. Begin by using the following command to create a container
called parts.dbxml:

dbxml> createContainer parts.dbxml

Creating node storage container with nodes indexed

A successful response indicates that the container was created on disk, opened, and made
the default container within the current context of the shell. Next populate the container
with 3000 XML documents that have the following basic structure:

<part number="999">
 <description>Description of 999</description>
 <category>9</category>
</part>

Some of the documents will provide additional complexity to the database and have the
following structure:

<part number="990">
 <description>Description of 990</description>
 <category>0</category>
 <parent-part>0</parent-part>
</part>

Use the following putDocument command to insert the sample data into the new parts
container.

dbxml> putDocument "" '
for $i in (0 to 2999)
return
 <part number="{$i}">
 <description>Description of {$i}</description>
 <category>{$i mod 10}</category>
 {
 if (($i mod 10) = 0)
 then <parent-part>{$i mod 3}</parent-part>
 else ""
 }
 </part>' q

Page 710/21/2005

As the query executes, one line will be printed for each document inserted into the
database.

Queries Involving Document Structure

Notice that the parts container can contain documents with different structures. The
ability to manage structured data in a flexible manner is one of the fundamental
differences between XML and relational databases. In this example, a single container
manages documents of two different structures sharing certain common elements. The
fact that the documents partially overlap in structure allows for efficient queries and
common indices. This can be used to model a union of related data. Structural queries
exploit such natural unions in XML data. Here are some example structural queries.

First select all part records containing parent-part nodes in their document structure.
In english, the following XQuery would read: "from the container named parts select all
part elements that also contain a parent-part element as a direct child of that element".
As XQuery code, it is:

dbxml> query '
collection("parts.dbxml")/part[parent-part]'

300 objects returned for eager expression '
collection("parts.dbxml")/part[parent-part]'

To examine the query results, use the 'print' command:

dbxml> print
<part number="540"><description>Description of 540</description>
<category>0</category><parent-part>0</parent-part></part>
<part number="30"><description>Description of 30</description>
<category>0</category><parent-part>0</parent-part></part>
...
<part number="990"><description>Description of 990</description>
<category>0</category><parent-part>0</parent-part></part>
<part number="480"><description>Description of 480</description>
<category>0</category><parent-part>0</parent-part></part>

To display only the parent-part element without displaying the rest of the document,
the query changes only slightly:

dbxml> query '
collection("parts.dbxml")/part/parent-part'

300 objects returned for eager expression '
collection("parts.dbxml")/part/parent-part'

dbxml> print
<parent-part>0</parent-part>
<parent-part>0</parent-part>
...

Page 810/21/2005

Queries Involving Document
Structure

<parent-part>2</parent-part>
<parent-part>2</parent-part>

Alternately, to retrieve the value of the parent-part element, the query becomes:

dbxml> query '
collection("parts.dbxml")/part/parent-part/text()'

300 objects returned for eager expression '
collection("parts.dbxml")/part/parent-part/text()'

dbxml> print
0
0
...
2
2

Invert the earlier example to select all documents that do not have parent-part elements:

dbxml> query '
collection("parts.dbxml")/part[not(parent-part)]'

2700 objects returned for eager expression '
collection("parts.dbxml")/part[not(parent-part)]'

dbxml> print
<part number="22"><description>Description of 22</description>
<category>2</category></part>
<part number="1995"><description>Description of 1995</description>
<category>5</category></part>
...
<part number="2557"><description>Description of 2557</description>
<category>7</category></part>
<part number="2813"><description>Description of 2813</description>
<category>3</category></part>

Structural queries are somewhat like relational joins, except that they are easier to
express and manage over time. Some structural queries are even impossible or impractical
to model with more traditional relational databases. This is in part due to the nature of
XML as a self describing, yet flexible, data representation. Collections of XML documents
attain commonality based on the similarity in their structures just as much as the similarity
in their content. Essentially, relationships are implicitly expressed within the XML structure
itself. The utility of this feature becomes more apparent when you start combining
structural queries with value based queries.

Page 910/21/2005

Queries Involving Document
Structure

Value Queries

XQuery is equally adept at finding data based on value. The following examples combine
structural queries with restrictions on the values returned in the result.

To select all parts that have a parent-part as a child and also have a parent-part value
of 1:

dbxml> query '
collection("parts.dbxml")/part[parent-part = 1]'

100 objects returned for eager expression '
collection("parts.dbxml")/part[parent-part = 1]'

Notice that the query is identical to the query used in the previous example, except that
it uses '[parent-part = 1]'. The results follow:

dbxml> print
<part number="1840"><description>Description of 1840</description>
<category>0</category><parent-part>1</parent-part></part>
<part number="1330"><description>Description of 1330</description>
<category>0</category><parent-part>1</parent-part></part>
...
<part number="1300"><description>Description of 1300</description>
<category>0</category><parent-part>1</parent-part></part>
<part number="790"><description>Description of 790</description>
<category>0</category><parent-part>1</parent-part></part>

XQuery also provides a full set of expressions that you can use to select documents from
the container. For instance, if we wanted to look up the parts with part numbers 1070
and 1032 we could run the following query:

This query is searching on the value of an attribute rather than the value of an element.
This is an equally valid way to search for documents.☞

dbxml> query '
collection("parts.dbxml")/part[@number = 1070 or @number = 1032]'

2 objects returned for eager expression '
collection("parts.dbxml")/part[@number = 1070 or @number = 1032]'

dbxml> print
<part number="1070"><description>Description of 1070</description>
<category>0</category><parent-part>2</parent-part></part>
<part number="1032"><description>Description of 1032</description>
<category>2</category></part>

Standard inequality operators and other expressions are also available and help to isolate
the required subset of data within a container:

Page 1010/21/2005

Value Queries

dbxml> query '
collection("parts.dbxml")/part[@number > 100 and @number < 105]'

4 objects returned for eager expression '
collection("parts.dbxml")/part[@number > 100 and @number < 105]'

dbxml> print
<part number="101"><description>Description of 101</description>
<category>1</category></part>
<part number="102"><description>Description of 102</description>
<category>2</category></part>
<part number="103"><description>Description of 103</description>
<category>3</category></part>
<part number="104"><description>Description of 104</description>
<category>4</category></part>

Introducing Indices

One major advantage of modern native XML databases is their ability to index the XML
documents they contain. Proper use of indices can significantly reduce the time required
to execute a particular Xquery expression. The previous examples likely executed in a
perceptible amount of time, because BDB XML was evaluating each and every document
in the container against the query. Without indices, BDB XML has no choice but to review
each document in turn. With indices, BDB XML can find a subset of matching documents
with a single, or significantly reduced, set of lookups. By carefully applying BDB XML
indexing strategies we can improve retrieval performance considerably.

To examine the usefulness of our indices, we begin by raising the level of verbosity in the
shell:

dbxml> setVerbose 2 2

The following query execution times are relative to the computer and operating system
used by the author. Your query times will differ as they depend on many qualities of your☞
system. However, the percentage in improvement in query execution time should be relatively
similar.

Recall the first structural query:

query '
collection("parts.dbxml")/part[parent-part]'

Query - Starting eager query execution
Query - parts.dbxml - U : [3000] 256 512 768 1024 1280 1536 1792 2048
2304 2560 2816 257 513 769 1025 1281 1537 1793 2049 2305 ...
Query - Finished eager query execution, time taken = 2495.82ms
300 objects returned for eager expression '
collection("parts.dbxml")/part[parent-part]'

Page 1110/21/2005

Introducing Indices

Notice the query execution time. This query takes almost 2.5 seconds to execute because
the query is examining each document in turn as it searches for the presence of a
parent-part element. To improve our performance, we want to specify an index that
allows BDB XML to identify the subset of documents containing the parent-part element
without actually examining each document.

Indices are specified in four parts: path type, node type, key type, and uniqueness. This
query requires an index of the node elements to determine if something is present or
not. Because the pattern is not expected to be unique, we do not want to turn on
uniqueness. Therefore, the BDB XML index type that we should use is
node-element-presence-none.

dbxml> addIndex "" parent-part node-element-presence-none
Adding index type: node-element-presence-none to node: {}:parent-part

dbxml> query '
collection("parts.dbxml")/part[parent-part]'

Query - Starting eager query execution
Query - parts.dbxml - P(parent-part) : [300] 2 12 22 32 42 52 62 72 82 92
102 112 122 132 142 152 162 172 182 192 ...
Query - Finished eager query execution, time taken = 173.084ms
300 objects returned for eager expression '
collection("parts.dbxml")/part[parent-part]'

Our query time improved from 2.5 seconds to just under 1/5th of a second. As containers
grow in size or complexity, indices increase performance even more dramatically.

The previous index will also improve the performance of the value query designed to
search for the value of the parent-part element.

dbxml> query '
collection("parts.dbxml")/part[parent-part = 1]'

Query - Starting eager query execution
Query - parts.dbxml - P(parent-part) : [300] 2 12 22 32 42 52 62 72 82 92
102 112 122 132 142 152 162 172 182 192 ...
Query - Finished eager query execution, time taken = 223.821ms
100 objects returned for eager expression '
collection("parts.dbxml")/part[parent-part = 1]'

This query time also improved from 2.4 seconds to just over 1/5th of a second. Because
the node's content that we are examining involves a number, we can improve our query
performance time even more by indexing that node as a decimal value. To do this, use
node-element-equality-decimal.

dbxml> addIndex "" parent-part node-element-equality-decimal

Adding index type: node-element-equality-decimal to node: {}:parent-part

dbxml> query '

Page 1210/21/2005

Introducing Indices

collection("parts.dbxml")/part[parent-part = 1]'

Query - Starting eager query execution
Query - parts.dbxml - V(parent-part,=,'1') : [100] 12 42 72 102 132 162
192 222 252 282 312 342 372 402 432 462 492 522 552 582 ...
Query - Finished eager query execution, time taken = 69.803ms
100 objects returned for eager expression '
collection("parts.dbxml")/part[parent-part = 1]'

With this second index, the query runs in less than 1/10th of a second, or three times
faster than without the index.

Additional indices will improve performance for the other value queries.

dbxml> query '
collection("parts.dbxml")/part[@number > 100 and @number < 105]'

Query - Starting eager query execution
Query - parts.dbxml - U : [3000] 256 512 768 1024 1280 1536 1792 2048
2304 2560 2816 257 513 769 1025 1281 1537 1793 2049 2305 ...
Query - Finished eager query execution, time taken = 6938.48ms
4 objects returned for eager expression '
collection("parts.dbxml")/part[@number > 100 and @number < 105]'

At almost 7 seconds there is plenty of room for improvement. To improve our range query,
we can provide an index for the number attribute: .

dbxml> addIndex "" number node-attribute-equality-decimal

Adding index type: node-attribute-equality-decimal to node: {}:number

dbxml> query '
collection("parts.dbxml")/part[@number > 100 and @number < 105]'

Query - Starting eager query execution
Query - parts.dbxml - V(@number,>,'100') : [2899] 103 104 105 106 107
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 ...
Query - parts.dbxml - V(@number,<,'105') : [105] 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21 ...
Query - parts.dbxml - n(V(@number,>,'100'),V(@number,<,'105')) : [4]
103 104 105 106
Query - Finished eager query execution, time taken = 29.967ms
4 objects returned for eager expression '
collection("parts.dbxml")/part[@number > 100 and @number < 105]'

This query's execution time has been reduced to less than 1/10 of a second. Proper use
of indices can dramatically effect query performance.

BDB XML provides a wide variety of different index types to improve the performance of
queries.

Page 1310/21/2005

Introducing Indices

Reshaping the Result

XQuery is also useful when reshaping XML content. A common use for this feature is to
restructure data into a display oriented dialect of XML, such as XHTML for presentation
in a web browser.

Again, begin with the same value query seen earlier, modify it using XQuery and generate
an XHTML version of the result suitable for display in a web browser:

dbxml> query '<html><body>

 {
 for $part in
 (collection("parts.dbxml")/part[@number > 100 and @number < 105])
 return
 {$part/description/text()}
 }
 </body></html>'

Query - Starting eager query execution
Query - parts.dbxml - V(@number,>,'100') : [2899] 103 104 105 106 107
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 ...
Query - parts.dbxml - V(@number,<,'105') : [105] 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 ...
Query - parts.dbxml - n(V(@number,<,'105'),V(@number,>,'100')) : [4]
103 104 105 106
Query - Finished eager query execution, time taken = 22.561ms
1 objects returned for eager expression '<html><body>

 {
 for $part in
 (collection("parts.dbxml")/part[@number > 100 and @number < 105])
 return
 {$part/description/text()}
 }
 </body></html>'

dbxml> print
<html><body>
Description of 101
Description of 102
Description of 103
Description of 104
</body></html>

The following shows the previous HTML as displayed in a web browser:

Page 1410/21/2005

Reshaping the Result

This XQuery introduces the XQuery FLWOR expression (For, Let, While, Order by, Return
— sometimes written as FLWR or FLOWR). Note that XPath is still used in the query. Now,
however, it is part of the overall FLWOR structure.

Processing XML data in containers for display in dynamic web sites is best done using the
language APIs most suitable to your web development rather than the command line tool
we're using for examples.

☞

Sorting the Result

The 'O' in FLWOR stands for 'order by'. The previous XQuery expression did not contain
explicit ordering instructions, and so the results were presented based on its order in the
container. Over time, as the document set changes, the data will not maintain a constant
order. Adding an explicit order by clause to the XQuery statement allows us to implement
strict ordering:

dbxml> query '<html><body>

 {
 for $part in
 (collection("parts.dbxml")/part[@number > 100 and @number < 105])
 order by xs:decimal($part/@number) descending
 return
 {$part/description/text()}
 }
 </body></html>'

Query - Starting query execution
Query - parts.dbxml - R(@number,>,'100',<,'105') : [4] 103 104 105 106
Query - Finished eager query execution, time taken = 29.869ms
1 objects returned for eager expression '<html><body>

 {
 for $part in
 (collection("parts.dbxml")/part[@number > 100 and @number < 105])
 order by xs:decimal($part/@number) descending
 return
 {$part/description/text()}
 }
 </body></html>'

Page 1510/21/2005

Sorting the Result

dbxml> print
<html><body>
Description of 104
Description of 103
Description of 102
Description of 101
</body></html>

The following shows the previous HTML as displayed in a web browser:

The parts are now ordered in descending order, as expected.

Working with Data from Multiple Containers

An application may use one or more containers. BDB XML and XQuery provides excellent
support for this situation. First, create a second container and add some additional data.
A few simple documents will be enough to demonstrate this feature. To begin, we add
them the new container:

dbxml> createContainer components.dbxml

Creating node storage container with nodes indexed

dbxml> putDocument component1 '<component number="1">
<uses-part>89</uses-part>
<uses-part>150</uses-part>
<uses-part>899</uses-part>
</component>'

Document added, name = component1

dbxml> putDocument component2 '<component number="2">
<uses-part>901</uses-part>
<uses-part>87</uses-part>
<uses-part>189</uses-part>
</component>'

Document added, name = component2

dbxml> preload parts.dbxml

Page 1610/21/2005

Working with Data from Multiple
Containers

dbxml> preload components.dbxml

These new documents are intended to represent a larger component consisting of several
of the parts defined earlier. To output an XHTML view of all the components and their
associated parts across containers, use:

dbxml> query '<html><body>

 {
 for $component in collection("components.dbxml")/component
 return

 Component number: {$component/@number/text()}

 {
 for $part-ref in $component/uses-part
 return
 for $part in collection("parts.dbxml")/part[@number =
 $part-ref cast as xs:decimal]
 return
 <p>{$part/description/text()}</p>
 }

 }

</body></html>'

Query - Starting query execution
Query - components.dbxml - U : [2] 2 3
Query - parts.dbxml - V(@number,=,'89') : [1] 91
Query - parts.dbxml - V(@number,=,'150') : [1] 152
Query - parts.dbxml - V(@number,=,'899') : [1] 901
Query - parts.dbxml - V(@number,=,'901') : [1] 903
Query - parts.dbxml - V(@number,=,'87') : [1] 89
Query - parts.dbxml - V(@number,=,'189') : [1] 191
Query - Finished eager query execution, time taken = 19.495ms
1 objects returned for eager expression '<html><body>

 {
 for $component in collection("components.dbxml")/component
 return

 Component number: {$component/@number/text()}

 {
 for $part-ref in $component/uses-part
 return
 for $part in collection("parts.dbxml")/part[@number =
 $part-ref cast as xs:decimal]
 return

Page 1710/21/2005

Working with Data from Multiple
Containers

 <p>{$part/description/text()}</p>
 }

 }

</body></html>'

This query will take advantage of one of the indices we created earlier. XQuery assigns the
variable $part-ref the very general XPath number type. The index we defined earlier applies☞
only to decimal values which is a more specific numeric type than number. To get the query
to use that index we need to provide some help to the query optimizer by using the cast
as xs:decimal clause. This provides more specific type information about the data we are
comparing. If we do not use this, the query optimizer cannot use the decimal index because
the type XQuery is using and the type of the index is using do not match.

The output of the query, reformatted for readability, is:

dbxml> print
<html><body>

 Component number: 1

 <p>Description of 89</p>
 <p>Description of 150</p>
 <p>Description of 899</p>

 Component number: 2

 <p>Description of 901</p>
 <p>Description of 87</p>
 <p>Description of 189</p>

</body></html>

The following shows the previous HTML as displayed in a web browser:

Page 1810/21/2005

Working with Data from Multiple
Containers

The BDB XML container model provides a great deal of flexibility because there is no
specific XML schema associated with a container. XML documents of varying structures
can coexist in a single container . Alternatively, separate containers can contain XML
documents that are identical along conceptual lines, or for other purposes. Container
and document organization should be tailored to the needs of your application.

Working with Data from a Specific Document

Previous queries have executed against all the documents in a container, but there are
cases where access to data in a single document is the goal. It is possible to isolate a
single document component based on the name we assigned to it, and then perform
XQuery expressions against it alone.

For example, to select the number attribute from a document named component1 in the
components.dbxml container:

dbxml> query '
doc("components.dbxml/component1")/component/@number'

Query - Starting query execution
Query - components.dbxml - D('component1',U) : [1] 2
Query - components.dbxml - U : [2] 2 3
Query - components.dbxml - D('component1',U) : [1] 2
Query - Finished query execution, time taken = 3.574ms
1 objects returned for eager expression '
doc("components.dbxml/component1")/component/@number'

dbxml> print
{}number="1"

The doc function shown here can be used to access XML data external to any BDB XML
managed container. For instance, to integrate with a web service that returns XML over☞

Page 1910/21/2005

Working with Data from a
Specific Document

HTTP use the doc function to execute that web service and then use the resulting data as
part of an XQuery query.

A web service that is able to look up the price of a particular part could be knit into a
HTML page as it's built in a single XQuery FLWOR . Sleepycat has such a simulated service
set up to support this example. There is an XML file provided by a web server at
xml.sleepycat.com. It is possible to access that pricing data using the doc function in an
XQuery. The URL for the prices file is http://xml.sleepycat.com/intro2xml/prices.xml.
The content of that file will provide the prices of the parts that make up our components.

The contents of http://xml.sleepycat.com/intro2xml/prices.xml. looks something like
this:

<prices>
 <part number="87">29.95</part>
 <part number="89">19.95</part>
 <part number="150">24.95</part>
 <part number="189">5.00</part>
 <part number="899">9.95</part>
 <part number="901">15.00</part>
</prices>

With that done, we can enhance our earlier parts query to add prices for all the parts.
At the same time we'll also convert it to use an HTML table to display the data.

dbxml> query '<html><body>

 {
 for $component in collection("dbxml:components.dbxml")/component
 return

 Component number: {$component/@number/text()}

 <table>
 {
 for $part-ref in $component/uses-part
 return
 for $part in collection("dbxml:parts.dbxml")/part[@number =
 $part-ref cast as xs:decimal]
 return
 <tr><td>{$part/description/text()}</td>
 <td>{
 doc("http://xml.sleepycat.com/intro2xml/prices.xml")//part[
 @number = $part/@number]/text()
 }</td></tr>
 }
 </table>

 }

</body></html>'

Page 2010/21/2005

Working with Data from a
Specific Document

Query - Starting query execution
Query - components.dbxml - U : [2] 2 3
Query - parts.dbxml - V(@number,=,'89') : [1] 91
Query - parts.dbxml - V(@number,=,'150') : [1] 152
Query - parts.dbxml - V(@number,=,'899') : [1] 901
Query - parts.dbxml - V(@number,=,'901') : [1] 903
Query - parts.dbxml - V(@number,=,'87') : [1] 89
Query - parts.dbxml - V(@number,=,'189') : [1] 191
Query - Finished query execution, time taken = 2098.29ms
1 objects returned for eager expression '<html><body>

 {
 for $component in collection("dbxml:components.dbxml")/component
 return

 Component number: {$component/@number/text()}

 <table>
 {
 for $part-ref in $component/uses-part
 return
 for $part in collection("dbxml:parts.dbxml")/part[@number =
 $part-ref cast as xs:decimal]
 return
 <tr><td>{$part/description/text()}</td>
 <td>{
 doc("http://xml.sleepycat.com/intro2xml/prices.xml")//part[
 @number = $part/@number]/text()
 }</td></tr>
 }
 </table>

 }

</body></html>'

And the result with formatting for readability:

dbxml> print
<html>
 <body>

 Component number: 1

 <table>
 <tr>
 <td>Description of 89</td>
 <td>19.95</td>

Page 2110/21/2005

Working with Data from a
Specific Document

 </tr>
 <tr>
 <td>Description of 150</td>
 <td>24.95</td>
 </tr>
 <tr>
 <td>Description of 899</td>
 <td>9.95</td>
 </tr>
 </table>

 Component number: 2

 <table>
 <tr>
 <td>Description of 901</td>
 <td>15.00</td>
 </tr>
 <tr>
 <td>Description of 87</td>
 <td>29.95</td>
 </tr>
 <tr>
 <td>Description of 189</td>
 <td>5.00</td>
 </tr>
 </table>

 </body>
</html>

The following shows the previous HTML as displayed in a web browser:

Page 2210/21/2005

Working with Data from a
Specific Document

This ability to bring in data from outside BDB XML as part of any query from a web service
or other source of XML data provides tremendous power and flexibility when building
applications.

Using Metadata

Metadata is data about data. That is, it provides additional information about a document
that isn't really part of that document. For example, documents added to the
components.dbxml container were given a name. Each name represents metadata about
each individual document. Other common metadata might include the time a document
was modified or the name of the person who modified it. In addition, there are cases
when modifying the actual document is not possible and additional data is required to
track desired information about the document. As an example, you may be required to
keep track of what user last altered a document within a container, and you may need
to do this in a way that does not modify the document itself. For this reason, BDB XML
stores metadata separately from the document, while still allowing you to perform indexed
searches against the metadata as if it were actually part of the document.

To add custom metadata to a document, use the setMetaData command.

dbxml> openContainer components.dbxml

dbxml> setMetaData component1 '' modifyuser string john

MetaData item 'modifyuser' added to document component1

dbxml> setMetaData component2 '' modifyuser string mary

MetaData item 'modifyuser' added to document component2

Metadata is essentially contained within its own, unique namespace (dbxml:metadata),
so queries against metadata must identify this namespace:

Page 2310/21/2005

Using Metadata

dbxml> query '
collection("components.dbxml")/component[dbxml:metadata("modifyuser")="john"]'

1 objects returned for eager expression '
collection("components.dbxml")/component[dbxml:metadata("modifyuser")="john"]'

dbxml> print
<component number="1">
<uses-part>89</uses-part>
<uses-part>150</uses-part>
<uses-part>899</uses-part>
</component>

Notice how the metadata doesn't actually appear in the result document. The metadata
is not part of the document; it exists only within the container and with respect to a
particular document. If you retrieve the document from BDB XML and transfer it to another
system, the metadata will not be included. This is useful when you need to preserve the
original state of a document, but also want to track some additional information while
it's stored within BDB XML.

Modifying Documents

XQuery as a language does not yet define any way to modify documents stored within an
XML database. When it does, BDB XML will add support for this functionality. Meanwhile,
BDB XML does include an excellent API for document modification. Using this API it is
possible to add new data into an existing document, modify (replace) existing data in the
document, and delete data from a document.

In the BDB XML shell, modifications occur in two steps. First, you select the set of
documents you want to work with. In this example only the component1 document is
selected:

dbxml> query doc('components.dbxml/component1')

1 objects returned for eager expression 'doc('components.dbxml/component1')'

Second, specify the modification to make against the query result. For our example, there
are many possible modification operations. For this example, we'll simply add a new
uses-part element to the document:

dbxml> append ./component element uses-part '12'

Appending into nodes: ./component an object of type: element with name:
uses-part and content: 12

1 modifications made.

dbxml> print
<?xml version="1.0" encoding="UTF-8" standalone="no" ?><component number="1">
<uses-part>89</uses-part>

Page 2410/21/2005

Modifying Documents

<uses-part>150</uses-part>
<uses-part>899</uses-part>
<uses-part>12</uses-part></component>

The append command executes relative to the context of the previous query. That context
contains the entire component1 document because we used the doc function to select it.
However, modifications only work against nodes within the document so we had to select
the root node of the document with the ./component XPath statement.

Modifications can be made against the result of any query regardless of the number of
documents returned.

dbxml> query '
collection("components.dbxml")/component'

2 objects returned for eager expression '
collection("components.dbxml")/component'

The query selected all the documents in the container. Now, insert a new uses-part
element after the last uses-part element in each document.

dbxml> insertAfter ./uses-part[last()] element uses-part '15'

Inserting after nodes: ./uses-part[last()] an object of type: element with
name: uses-part and content: 15

2 modifications made.

dbxml> print
<component number="1">
<uses-part>89</uses-part>
<uses-part>150</uses-part>
<uses-part>899</uses-part>
<uses-part>12</uses-part><uses-part>15</uses-part></component>
<component number="2">
<uses-part>901</uses-part>
<uses-part>87</uses-part>
<uses-part>189</uses-part><uses-part>15</uses-part>
</component>

The modification becomes part of the current context . This allows for cascading
modifications. Taking advantage of this, the following will remove the nodes added in
the last step using the removeNodes command.

dbxml> removeNodes 'uses-part[. = 15]'
Removing nodes: uses-part[. = 15]

2 modifications made.

dbxml> print
<component number="1">

Page 2510/21/2005

Modifying Documents

<uses-part>89</uses-part>
<uses-part>150</uses-part>
<uses-part>899</uses-part>
<uses-part>12</uses-part></component>
<component number="2">
<uses-part>901</uses-part>
<uses-part>87</uses-part>
<uses-part>189</uses-part>
</component>

Such modifications can also be performed on attributes, processing instructions, comments
and text nodes by altering the parameters to the modification operation. The following
adds a version attribute to the root node of each component.

dbxml> append . attribute version '1.0'
Appending into nodes: . an object of type: attribute with name: version and
content: 1.0

2 modifications made.

dbxml> print
<component number="1" version="1.0">
<uses-part>89</uses-part>
<uses-part>150</uses-part>
<uses-part>899</uses-part>
<uses-part>12</uses-part></component>
<component number="2" version="1.0">
<uses-part>901</uses-part>
<uses-part>87</uses-part>
<uses-part>189</uses-part>
</component>

Modification operations provide a powerful and simple mechanism for altering XML data
without the overhead of removing that data from the database. Large documents can be
quickly and easily manipulated when combining this feature with node level storage (the
default).

Schema Constraints

XML documents can optionally be validated against a schema to enforce document
similarity. Most databases support schema constraints, but BDB XML has the unique ability
to store collections of data with schemas that vary from document to document if desired.
This is an added level of functionality not commonly found in XML databases.

Recall our phonebook example. The documents for that example had the following
structure:

<phonebook>
 <name>
 <first>Tom</first>

Page 2610/21/2005

Schema Constraints

 <last>Jones</last>
 </name>
 <phone type="home">420-203-2032</phone>
</phonebook>

Three things are required to validate this document within BDB XML. First, a schema is
required. Because the subject of XML schemas are well beyond the scope of this document,
we simply provide one for you here. There are many excellent books and tutorial web
sites on the subject, and we suggest you review some of that material if you are not
familiar with XML schemas.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="phonebook">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" minOccurs="1" maxOccurs="1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="first" type="xs:string"/>
 <xs:element name="last" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="phone" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

This schema is available over the network using the URL
http://xml.sleepycat.com/intro2xml/phonebook.xsd.

Second, we need to create a container with validation enabled.

dbxml> createContainer validate.dbxml d validate
Creating document storage container, with validation

Third, we need to attach the schema to a document and insert it into the container.

dbxml> putDocument phone1 '
<phonebook xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=

Page 2710/21/2005

Schema Constraints

 "http://xml.sleepycat.com/intro2xml/phonebook.xsd">
 <name>
 <first>Tom</first>
 <last>Jones</last>
 </name>
 <phone type="home">420-203-2032</phone>
</phonebook>' s

Document added, name = phone1

That document was successfully added because it conforms to the schema. Now, try to
add an invalid document.

dbxml> putDocument phone2 '
<phonebook xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://xml.sleepycat.com/intro2xml/phonebook.xsd">
 <name>
 <first>Tom</first>
 <last>Jones</last>
 </name>
 <phone type="home">420-203-2032</phone>
 <cell-phone>430-201-2033</cell-phone>
</phonebook>' s

stdin:67: putDocument failed, Error: XML Indexer: Parse error in document at
line, 10, char 17. Parser message: Unknown element 'cell-phone'

Since the schema doesn't define the cell-phone element and we have schema validation
enabled, BDB XML won't allow the document to be added to the container.

XML schemas provide a powerful tool for constraining the structure and content of XML
documents.

The Berkeley DB XML API

The Berkeley DB XML command line shell is a tool and not an end-user application, it has
been useful in exploring the features of this system. Applications will be built using the
programming language APIs. In this final example, we implement our first example, the
phonebook example, in C++.

#include <string>
#include <fstream>
#include "dbxml/DbXml.hpp"

using namespace std;
using namespace DbXml;

int
main(int argc, char **argv)

Page 2810/21/2005

The Berkeley DB XML API

{
 try {
 XmlManager mgr;

 // Create the phonebook container
 XmlContainer cont = mgr.createContainer("phone.dbxml");

 // Add the phonebook entries to the container
 XmlUpdateContext uc = mgr.createUpdateContext();
 cont.putDocument("phone1", "<phonebook><name><first>Tom</first>
<last>Jones</last></name><phone type=\"home\">420-203-2032</phone>
</phonebook>", uc);
 cont.putDocument("phone2", "<phonebook><name><first>Lisa</first>
<last>Smith</last></name><phone type=\"home\">420-992-4801</phone>
<phone type=\"cell\">390-812-4292</phone></phonebook>",
uc);

 // Run an XQuery against the phonebook container
 XmlQueryContext qc = mgr.createQueryContext();
 XmlResults res =
 mgr.query("collection('phone.dbxml')/phonebook[name/first = 'Lisa']/
phone[@type = 'home']/text()", qc);

 // Print out the result of the query
 XmlValue value;
 while (res.next(value))
 cout << "Value: " << value.asString() << endl;
 } catch (XmlException &e) {
 std::cout << "Exception: " << e.what() << std::endl;
 }
 return 0;
}

While this example is in C++, the BDB XML API is similar across all supported languages.
This makes it easy to transfer knowledge about the API between languages and can enable
useful scenarios such as prototyping the application in Python and then implementing the
final version in Java or C++. Because of the similarity across languages porting, the BDB
XML code is relatively simple.

Page 2910/21/2005

The Berkeley DB XML API

Chapter 3. Wrapping Up
As you explore BDB XML further and begin to write applications, you should read the
"Getting Started Guide for Berkeley DB XML". That guide contains much more detail about
all the topics covered in this introduction and more. BDB XML has many more advanced
features that are of interest when building real applications.

Benefits

When choosing a XML database for your application, consider all the qualities you've
observed of BDB XML. Also consider the foundations of this technology. The Berkeley DB
database engine is a proven scalable transactional system with all the mature features
you'd expect and likely require in your application. Berkeley DB XML's layers on top of
that solid foundation provide efficient XQuery access, indexed queries, and whole or node
level document storage organized within containers. W3C XML schemas can be used to
validate individual documents or all documents stored within BDB XML containers. Schema
validation is enabled per container and the schema used is specified as part of the
document being stored. This provides great flexibility in how you utilize schemas, including
allowing you to store XML with no associated schema.

Moreover, because BDB XML is a native XML database that stores XML data in its native
format, it maintains the same extensible structure that has attracted many developers
to XML. It is this flexibility that makes BDB XML a better choice than relational database
offerings that must translate XML data into internal tables and rows, thus locking the
data into a static schema while paying a heavy penalty in processing overhead when
documents are reconstituted from tables and rows.

XML Features

BDB XML is implemented to conform to the W3C standards for XML, XML Namespaces, and
the latest available XQuery standards. The following additional features specifically
designed to support XML data management and queries go above and beyond any existing
standard, and serve to set BDB XML further ahead of similar solutions:

• Containers: a single file that contains one or more XML documents, and their metadata
and indices.

• Indices: quickly identify subsets of documents that match specific queries, thus allowing
for improved query performance against the corresponding XML data set.

• Integrity: documents are stored (and retrieved) in their native format with all
whitespace preserved.

• Metadata: each document stored in BDB XML can have "data about the data" associated
with the document.

• Modification: a mechanism for modifying documents, which allows for addition,
replacement, and deletion of document nodes and elements.

Page 3010/21/2005

Database Features

Berkeley DB XML inherits a great many features from Berkeley DB. These features put it
years ahead of the competition and makes it an ideal candidate for mission-critical
applications that must manage XML data.

Important features that BDB XML inherits from Berkeley DB are:

• In-process data access. BDB XML is compiled in the same way as any library. It runs in
the same process space as your application. The result is database support in a small
footprint without the IPC-overhead required by traditional client/server-based database
implementations.

• Ability to manage databases up to 256 terabytes in size.

• Database environment support. BDB XML environments support all of the same features
as Berkeley DB environments, including multiple databases, shared data cache,
transactions, deadlock detection, lock and page control, and encryption. In particular,
this means that BDB XML databases can share an environment with Berkeley DB
databases, thus allowing an application to gracefully use both.

• Atomic operations. Complex sequences of read and write access can be grouped
together into a single atomic operation using BDB XML's transaction support. Either
all of the read and write operations within a transaction succeed, or none of them
succeed.

• Isolated operations. Operations performed inside a transaction see all XML documents
as if no other transactions are currently operating on them.

• Recoverability. BDB XML's transaction support ensures that all committed data is
available no matter how the application or system might subsequently fail.

• Concurrent access. Through the combined use of isolation mechanisms built into BDB
XML, plus deadlock handling supplied by the application, multiple threads and processes
can concurrently access the XML data set in a safe manner.

• Replication. BDB XML provides the ability to distribute updates made to a master
database to multiple replica databases. This provides the application with the ability
to support fail-over for High Availability applications, as well as scalability for load
balancing of queries across multiple systems.

Languages and Platforms

The official BDB XML distribution provides the library in the C++, Java, Perl, Python, PHP,
and Tcl languages. Because BDB XML is available under an open source license, a growing
list of third-parties are providing BDB XML support in languages other than those that are
officially supported by Sleepycat.

Page 3110/21/2005

Database Features

BDB XML is supported on a very large number of platforms. Check with the BDB XML mailing
lists for the latest news on supported platforms, as well as for information as to whether
your preferred language provides BDB XML support.

Page 3210/21/2005

Languages and Platforms

Chapter 4. Where to Learn More

Berkeley DB XML Resources

• Berkeley DB XML product information page
[http://www.sleepycat.com/products/xml.shtml]

• Sleepycat product documentation [http://www.sleepycat.com/xmldocs/index.html]

• BDB XML C++ Getting Started Guide
[http://www.sleepycat.com/xmldocs/gsg_xml/cxx/index.html]

• BDB XML Java Getting Started Guide
[http://www.sleepycat.com/xmldocs/gsg_xml/java/index.html]

• BDB XML Programmers Reference Guide
[http://www.sleepycat.com/xmldocs/ref_xml/toc.html]

XML Resources

• XML Specification [http://www.w3.org/TR/2004/REC-xml-20040204/]

• Namespaces in XML Specification [http://www.w3.org/TR/REC-xml-names/]

• O'Reilly's XML.com [http://www.xml.com]

• IBM developerWorks XML [http://www-128.ibm.com/developerworks/xml/]

XQuery Resources

• XQuery 1.0 Specification [http://www.w3.org/TR/xquery/]

• XPath 2.0 Specification [http://www.w3.org/TR/xpath20/]

• XML.com What is XQuery [http://www.xml.com/pub/a/2002/10/16/xquery.html]

• XML.com Practical XQuery Column [http://www.xml.com/pub/at/28]

• IBM developerWorks An introduction to XQuery
[http://www-106.ibm.com/developerworks/xml/library/x-xquery.html]

Page 3310/21/2005

http://www.sleepycat.com/products/xml.shtml
http://www.sleepycat.com/xmldocs/index.html
http://www.sleepycat.com/xmldocs/gsg_xml/cxx/index.html
http://www.sleepycat.com/xmldocs/gsg_xml/java/index.html
http://www.sleepycat.com/xmldocs/ref_xml/toc.html
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/REC-xml-names/
http://www.xml.com
http://www-128.ibm.com/developerworks/xml/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath20/
http://www.xml.com/pub/a/2002/10/16/xquery.html
http://www.xml.com/pub/at/28
http://www-106.ibm.com/developerworks/xml/library/x-xquery.html

	Introducing Berkeley DB XML
	Chapter 1. Overview
	Basic Concepts
	Running the Shell
	Getting Help

	Chapter 2. XQuery and Berkeley DB XML
	Adding Data
	Queries Involving Document Structure
	Value Queries
	Introducing Indices
	Reshaping the Result
	Sorting the Result
	Working with Data from Multiple Containers
	Working with Data from a Specific Document
	Using Metadata
	Modifying Documents
	Schema Constraints
	The Berkeley DB XML API

	Chapter 3. Wrapping Up
	Benefits
	XML Features
	Database Features
	Languages and Platforms

	Chapter 4. Where to Learn More
	Berkeley DB XML Resources
	XML Resources
	XQuery Resources

