
M a k e r s o f B e r k e l e y D B

Getting Started
with Berkeley DB XML
for C++ .

Legal Notice

This documentation is distributed under the terms of the Sleepycat public license. You may review the terms
of this license at: http://www.sleepycat.com/download/oslicense.html

Sleepycat Software, Berkeley DB, Berkeley DB XML and the Sleepycat logo are trademarks or service marks of
Sleepycat Software, Inc. All rights to these marks are reserved. No third-party use is permitted without the
express prior written consent of Sleepycat Software, Inc.

To obtain a copy of this document's original source code, please write to <support@sleepycat.com>.

Published 4/19/2005

http://www.sleepycat.com/download/oslicense.html

Table of Contents
Preface ... v

Conventions Used in this Book ... v
1. Introduction to Berkeley DB XML .. 1

Overview .. 1
Benefits ... 2
XML Features ... 2
Database Features ... 3
Languages and Platforms ... 4

Getting and Using BDB XML ... 4
Documentation and Support ... 4
Library Dependencies ... 5
Building and Running BDB XML Applications 5

2. Exception Handling and Debugging ... 6
Debugging BDB XML Applications .. 6

3. XmlManager and Containers ... 8
XmlManager ... 8

Berkeley DB Environments ... 8
Environment Open Flags .. 9
Opening and Closing Environments ... 10

XmlManager Instantiation and Destruction 11
Managing Containers ... 13

Container Flags .. 14
Container Types .. 15
Deleting and Renaming Containers .. 17

4. Adding XML Documents to Containers .. 18
Input Streams and Strings ... 18
Adding Documents .. 18
Setting Metadata .. 21

5. Using XQuery with BDB XML .. 24
XQuery: A Brief Introduction .. 24

Referencing Portions of Documents using XQuery 25
Predicates ... 25

Numeric Predicates .. 26
Boolean Predicates .. 26

Context .. 26
Relative Paths .. 26
Namespaces .. 27

Wildcards .. 29
Navigation Functions .. 29

collection() ... 29
doc() ... 30

Using FLWOR with BDB XML ... 30
Retrieving BDB XML Documents using XQuery .. 31

The Query Context ... 31
Defining Namespaces .. 32
Defining Variables ... 32

Page ii4/19/2005

Defining Return Types .. 33
Defining the Evaluation Type .. 34

Performing Queries .. 35
Metadata Based Queries .. 36

Examining Query Results .. 37
Examining Document Values .. 39
Examining Metadata ... 42

6. Managing Documents in Containers ... 44
Deleting Documents .. 44
Replacing Documents .. 45
Modifying XML Documents ... 46

Modification Parameters .. 46
Modification Methods .. 47

XmlModify::addAppendStep() ... 47
XmlModify::addInsertAfterStep() ... 49
XmlModify::addInsertBeforeStep() ... 50
XmlModify::addRemoveStep() .. 51
XmlModify::addRenameStep() .. 52
XmlModify::addUpdateStep() ... 53

Modification Example .. 54
7. Using BDB XML Indices ... 56

Index Types .. 56
Uniqueness .. 56
Path Types .. 57
Node Types .. 58

Element and Attribute Nodes .. 58
Metadata Nodes .. 58

Key Types .. 58
Syntax Types ... 59
Specifying Index Strategies .. 59

Using Strings to Specify Indices .. 59
Using Enumerated Types to Specify Indices 61

Enumerated Index Types ... 62
Enumerated Index Syntax .. 63
Enumerated Index Example .. 64

Indexer Processing Notes .. 64
Managing BDB XML Indices ... 66

Adding Indices .. 66
Deleting Indices .. 67
Replacing Indices ... 68
Examining Container Indices ... 69
Working with Default Indices ... 70
Looking Up Indexed Documents .. 71

Verifying Indices using Query Plans .. 73
Query Plans ... 74
Using the dbxml Shell to Examine Query Plans 76

8. Using Transactions ... 79
Initializing the Transactional Subsystem .. 80
Transactionally Protecting Container Operations 82

Page iii4/19/2005

Transactions Considerations .. 85
Transaction Disk I/O ... 85
Transaction and Lock Contention .. 85
Index Operations and Transactions .. 86

Page iv4/19/2005

Preface
Welcome to Berkeley DB XML (BDB XML). This document introduces BDB XML, version 2.1.
It is intended to provide a rapid introduction to the BDB XML API set and related concepts.
The goal of this document is to provide you with an efficient mechanism with which you
can evaluate BDB XML against your project's technical requirements. As such, this document
is intended for C++ developers and senior software architects who are looking for an
in-process XML data management solution. No prior experience with Sleepycat technologies
is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "The
XmlDatabase::openContainer() method returns an XmlContainer class object."

Variable or non-literal text is presented in italics. For example: "Go to your DBXML_HOME
directory."

Program examples are displayed in a monospaced font on a shaded background. For
example:

#include "DbXml.hpp"

using namespace DbXml;
// exception handling omitted for clarity

int main(void)
{
 // Open an XmlManager.
 XmlManager myManager;
}

Page v4/19/2005

Page vi4/19/2005

Chapter 1. Introduction to Berkeley DB XML
Welcome to Sleepycat's Berkeley DB XML (BDB XML). BDB XML is an embedded database
specifically designed for the storage and retrieval of XML-formatted documents. Built on
the award-winning Berkeley DB, BDB XML provides for efficient queries against millions
of XML documents using XQuery. XQuery is a query language designed for the examination
and retrieval of portions of XML documents.

This document introduces BDB XML. It is intended to provide a rapid introduction to the
BDB XML API set and related concepts. The goal of this document is to provide you with
an efficient mechanism with which you can evaluate BDB XML against your project's
technical requirements. As such, this document is intended for C++ developers and senior
software architects who are looking for an in-process XML data management solution. No
prior experience with Sleepycat technologies is expected or required.

Note that while this document uses C++ for its examples, the concepts described here
should apply equally to all language bindings in which the BDB XML API is available. Be
aware that a version of this document also exists for the Java language.

Overview

BDB XML is an embedded database that is tuned for managing and querying hundreds,
thousands, or even millions of XML documents. You use BDB XML through a programming
API that allows you to manage, query, and modify your documents via an in-process
database engine. Because BDB XML is an embedded engine, you compile and link it into
your application in the same was as you would any third-party library.

In BDB XML documents are stored in containers, which you create and manage using
XmlManager objects. Each such object can open multiple containers at a time.

Each container can hold millions of documents. For each document placed in a container,
the container holds all the document data, any metadata that you have created for the
document, and any indices maintained for the documents in the container.

(Metadata is information that you associate with your document that might not readily
fit into the document schema itself. For example, you might use metadata to track the
last time a document was modified instead of maintaining that information from within
the actual document.)

XML documents may be stored in BDB XML containers in one of two ways:

• Whole documents.

Documents are stored in their entirety. This method works best for smaller documents
(that is, documents under a megabyte in size).

• As document nodes.

Documents stored as nodes are broken down into their individual document element
nodes and each such node is then stored as an individual record in the container. Along

Page 14/19/2005

with each such record, BDB XML also stores all node attributes, and the text node, if
any.

This type of storage is best for large XML documents (greater than 1 megabyte in size).

From an API-usage perspective, there are very few differences between whole document
and node storage containers. For more information, see Container Types (page 15).

Once a document has been placed in a container, you can use XQuery to retrieve one or
more documents. You can also use XQuery to retrieve one or more portions of one or
more documents. Queries are performed using XmlManager objects. The queries themselves,
however, limit the scope of the query to a specified list of containers or documents.
documents.

BDB XML supports the entire XQuery working draft. At the time of this printing, the draft
is dated July, 2004. However, BDB XML will be updated to track any changes in the working
draft that may occur.

Also, because XQuery is an extension to XPath 2.0, BDB XML provides full support for that
query language as well.

Finally, BDB XML provides a robust document modification facility that allows you to easily
add, delete, or modify selected portions of documents. This means you can avoid writing
modification code that manipulates (for example) DOM trees — BDB XML can handle all
those details for you.

Benefits

BDB XML provides a series of features that makes it more suitable for storing XML
documents than other common XML storage mechanisms. BDB XML's ability to provide
efficient, indexed queries means that it is a far more efficient storage mechanism than
simply storing XML data in the filesystem. And because BDB XML provides the same
transaction protection as does Berkeley DB, it is a much safer choice than is the filesystem
for applications that might have multiple simultaneous readers and writers of the XML
data.

More, because BDB XML stores XML data in its native format, BDB XML enjoys the same
extensible schema that has attracted many developers to XML. It is this flexibility that
makes BDB XML a better choice than relational database offerings that must translate
XML data into internal tables and rows, thus locking the data into a relational database
schema.

XML Features

BDB XML is implemented to conform to the W3C standards for XML, XML Namespaces, and
the XQuery working draft. In addition, it offers the following features specifically designed
to support XML data management and queries:

Page 24/19/2005

Overview

• Containers. A container is a single file that contains one or more XML documents, and
their metadata and indices. You use containers to add, delete, and modify documents,
and to manage indices.

• Indices. BDB XML indices greatly enhance the performance of queries against the
corresponding XML data set. BDB XML indices are based on the structure of your XML
documents, and as such you declare indices based on the nodes that appear in your
documents as well the data that appears on those nodes.

Note that you can also declare indices against metadata.

• Queries. BDB XML queries are performed using the XQuery 1.0 language. XQuery is a
W3C draft specification (http://www.w3.org/XML/Query).

• Query results. BDB XML retrieves documents that match a given XQuery query. BDB
XML query results are always returned as a set. The set can contain either matching
documents, or a set of values from those matching documents.

• Storage. If you use node-level storage for you documents (see Container
Types (page 15)), then BDB XML automatically transcodes your documents to Unicode
UTF-8. If you use whole document storage, then the document is stored in whatever
encoding that it uses. Note that in either case, your documents must use an encoding
supported by Xerces before they can be stored in BDB XML containers.

Beyond the encoding, documents are stored (and retrieved) in their native format
with all whitespace preserved.

• Metadata attribute support. Each document stored in BDB XML can have metadata
attributes associated with it. This allows information to be associated with the
document without actually storing that information in the document. For example,
metadata attributes might identify the last accessed and last modified timestamps
for the document.

• Document modification. BDB XML provides a robust mechanism for modifying
documents. Using this mechanism, you can add, replace, and delete nodes from your
document. This mechanism allows you to modify both element and attribute nodes,
as well as processing instructions and comments.

Database Features

Beyond XML-specific features, BDB XML inherits a great many features from Berkeley DB,
which allows BDB XML to provide the same fast, reliable, and scalable database support
as does Berkeley DB. The result is that BDB XML is an ideal candidate for mission-critical
applications that must manage XML data.

Important features that BDB XML inherits from Berkeley DB are:

• In-process data access. BDB XML is compiled and linked in the same way as any library.
It runs in the same process space as your application. The result is database support
in a small footprint without the IPC-overhead required by traditional client/server-based
database implementations.

Page 34/19/2005

Overview

http://www.w3.org/XML/Query

• Ability to manage databases up to 256 terabytes in size.

• Database environment support. BDB XML environments support all of the same features
as Berkeley DB environments, including multiple databases, transactions, deadlock
detection, lock and page control, and encryption. In particular, this means that BDB
XML databases can share an environment with Berkeley DB databases, thus allowing
an application to gracefully use both.

• Atomic operations. Complex sequences of read and write access can be grouped
together into a single atomic operation using BDB XML's transaction support. Either
all of the read and write operations within a transaction succeed, or none of them
succeed.

• Isolated operations. Operations performed inside a transaction see all XML documents
as if no other transactions are currently operating on them.

• Recoverability. BDB XML's transaction support ensures that all committed data is
available no matter how the application or system might subsequently fail.

• Concurrent access. Through the combined use of isolation mechanisms built into BDB
XML, plus deadlock handling supplied by the application, multiple threads and processes
can concurrently access the XML data set in a safe manner.

Languages and Platforms

The official BDB XML distribution provides the library in the C++, Java, Perl, Python, PHP,
and Tcl languages. Because BDB XML is available under an open source license, a growing
list of third-parties are providing BDB XML support in languages other than those that are
officially supported by Sleepycat.

BDB XML is supported on a very large number of platforms. Check with the BDB XML mailing
lists for the latest news on supported platforms, as well as for information as to whether
your preferred language provides BDB XML support.

Getting and Using BDB XML

BDB XML exists as a library against which you compile and link in the same way as you
would any third-party library. You can download the BDB XML distribution from the
Sleepycat DB XML product page [http://www.sleepycat.com/products/xml.shtml].

Documentation and Support

BDB XML is officially described in the Sleepycat product documentation
[http://www.sleepycat.com/xmldocs/index.html]. For additional help and for
late-breaking news on language and platform support, it is best to use the BDB XML mailing
lists. You can find out how to subscribe to these lists from the Berkeley DB XML product
information page [http://www.sleepycat.com/products/xml.shtml].

Page 44/19/2005

Getting and Using BDB XML

http://www.sleepycat.com/products/xml.shtml
http://www.sleepycat.com/xmldocs/index.html
http://www.sleepycat.com/products/xml.shtml
http://www.sleepycat.com/products/xml.shtml

Library Dependencies

BDB XML depends on several external libraries. The result is that build instructions for
BDB XML may change from release to release as its dependencies mature. For this reason
it is best to check with the installation instructions included with your version of Berkeley
DB XML for your library's specific build requirements. These instructions are available
from:

DBXML_HOME/docs/index.html

where DBXML_HOME is the location where you unpacked the distribution.

That said, BDB XML currently relies on the following libraries:

• Berkeley DB [http://www.sleepycat.com]. Berkeley DB provides the underlying database
support for BDB XML. Currently Berkeley DB version 4.3 is required for BDB XML.

• Xerces [http://xml.apache.org/xerces-c/index.html]. Xerces provides the DOM and
SAX support that BDB XML employs for XML data parsing. Xerces 2.6 is required for
BDB XML.

• Pathan. BDB XML's XQuery support is built on top of pathan.

• XQuery. BDB XML provides a standalone library that implements the XQuery query
language.

Note that the BDB XML package comes with all of the libraries that are required to build
and use BDB XML.

Building and Running BDB XML Applications

All BDB XML APIs exist in the DbXml namespace.☞
For information on how to build and run a BDB XML application for your particular
platform/compiler, see the build instructions that are available through the docs directory
in your BDB XML distribution. Alternatively, you can find up-to-date build instructions
here:

http://www.sleepycat.com/xmldocs/index.html

Page 54/19/2005

Getting and Using BDB XML

http://www.sleepycat.com
http://xml.apache.org/xerces-c/index.html
http://www.sleepycat.com/xmldocs/index.html

Chapter 2. Exception Handling and
Debugging

Before continuing, it is helpful to look at exception handling and debugging tools in the
BDB XML API.

All BDB XML operations can throw an exception, and so they should be within a try block.

BDB XML methods throw XmlException objects. BDB XML always re-throws all underlying
Berkeley DB exceptions as XmlException, so every exception that can be thrown by BDB
XML is an XmlException instance.

XmlException is derived from std::exception, so you are only required to catch
std::exception in order to provide proper exception handling for your BDB XML
applications. Of course, you can choose to catch both types of exceptions if you want to
differentiate between the two in your error handling or messaging code.

Note that if you are using core Berkeley DB operations with your BDB XML application
then you should catch either DbException or std::exception with this code.

The following example illustrates BDB XML exception handling.

Example 2.1. BDB XML Exception Handling

#include "DbXml.hpp"

using namespace DbXml;

int main(void)
{
 // Open an XmlManager and an XmlContainer.
 XmlManager myManager;
 try {
 XmlContainer myContainer =
 myManager.openContainer("container.dbxml");

 // Catches XmlException
 } catch (std::exception &e) {
 // Error handling goes here
 }
}

Debugging BDB XML Applications

In some cases, the exceptions thrown by your BDB XML application may not contain enough
information to allow you to debug the source of an error. In this case, you can cause BDB
XML to issue more information using the error stream.

Page 64/19/2005

In order to set up the error stream, you use set_error_stream() on the underlying Berkeley
DB environment object (see Berkeley DB Environments (page 8) for information on
environments):

Example 2.2. Setting Error Streams

#include "DbXml.hpp"

using namespace DbXml;

int main(void)
{
 // Open an XmlManager
 XmlManager myManager;
 myManager.getDbEnv()->set_error_stream(std::cerr);
}

Once you have set up your error stream, you can control the amount of information that
BDB XML reports on that stream using setLogLevel() and setLogCategory.

setLogLevel() allows you to indicate the level of logging that you want to see (debug,
info, warning, error, or all of these).

setLogCategory() allows you to indicate the portions of DB XML's subsystems for which
you want logging messages issued (indexer, query processor, optimizer, dictionary,
container, or all of these).

You can call these from anywhere within your DB XML code. For example:

Example 2.3. Setting Log Levels

#include "DbXml.hpp"

using namespace DbXml;

int main(void)
{
 // Open an XmlManager and an XmlContainer.
 XmlManager myManager;
 db.getDbEnv()->set_error_stream(std::cerr);
 try {
 XmlContainer myContainer = db.openContainer("container.dbxml");
 DbXml::setLogLevel(DbXml::LEVEL_ALL, true);
 DbXml::setLogCategory(DbXml::CATEGORY_ALL, true);

 // Catches XmlException
 } catch (std::exception &e) {
 // Error handling goes here
 }
}

Page 74/19/2005

Debugging BDB XML Applications

Chapter 3. XmlManager and Containers
While containers are the mechanism that you use to store and manage XML documents,
you use XmlManager objects to create and open XmlContainer objects. We therefore start
with the XmlManager.

XmlManager

XmlManager is a high-level class used to manage many of the objects that you use in a BDB
XML application. The following are some of the things you can do with XmlManager objects:

• Manage containers. This management includes creating, opening, deleting, and
renaming containers (see Managing Containers (page 13)).

• Create input streams used to load XML documents into containers (see Input Streams
and Strings (page 18)).

• Create XmlDocument, XmlQueryContext, and XmlUpdateContext objects.

• Prepare and run XQuery queries (see Using XQuery with BDB XML (page 24)).

• Create a transaction object (see Using Transactions (page 79)).

Because XmlManager is the only way to construct important BDB XML objects, it is central
to your BDB XML application.

Berkeley DB Environments

Before you can instantiate an XmlManager object, you have to make some decisions about
your Berkeley DB Environment. BDB XML requires you to use a database environment. You
can use an environment explicitly, or you can allow the XmlManager constructor to manage
the environment for you.

If you explicitly create an environment, then you can turn on important features in BDB
XML such as logging, transactional support, and support for multithreaded and multiprocess
applications. It also provides you with an on-disk location to store all of your application's
containers.

If you allow the XmlManager constructor to implicitly create and/or open an environment
for you, then the environment is only configured to allow multithreaded sharing of the
environment and the underlying databases (DB_PRIVATE is used). All other features are
not enabled for the environment.

The next several sections describe the things you need to know in order to create and
open an environment explicitly. We start with this activity first because it is likely to be
the first thing you will do for all but the most trivial of BDB XML applications.

Page 84/19/2005

Environment Open Flags

In order to use an environment, you must first open it. When you do this, there are a
series of flags that you can optionally specify. These flags are bitwise or'd together, and
they have the effect of enabling important subsystems (such as transactional support).

There are a great many environment open flags and these are described in the Berkeley
DB documentation. However, there are a few that you are likely to want to use with your
BDB XML application, so we describe them here:

• DB_CREATE

If the environment does not exist at the time that it is opened, then create it. It is an
error to attempt to open a database environment that has not been created.

• DB_INIT_LOCK

Initializes the locking subsystem. This subsystem is used when an application employs
multiple threads or processes that are concurrently reading and writing Berkeley DB
databases. In this situation, the locking subsystem, along with a deadlock detector,
helps to prevent concurrent readers/writers from interfering with each other.

Remember that under the covers BDB XML containers are using Berkeley DB databases,
so if you want your containers to be accessible by multiple threads and/or multiple
processes, then you should enable this subsystem.

• DB_INIT_LOG

Initializes the logging subsystem. This subsystem is used for database recovery from
application or system failures. For more information on normal and catastrophic
recovery, see the Berkeley DB Programmer's Reference Guide (available with your
Berkeley DB distribution).

• DB_INIT_MPOOL

Initializes the shared memory pool subsystem. This subsystem is required for
multithreaded BDB XML applications, and it provides an in-memory cache that can be
shared by all threads and processes participating in this environment.

• DB_INIT_TXN

Initializes the transaction subsystem. This subsystem provides atomicity for multiple
database access operations. When transactions are in use, recovery is possible if an
error condition occurs for any given operation within the transaction. If this subsystem
is turned on, then the logging subsystem must also be turned on.

We discuss transactional application in Using Transactions (page 79) later in this
manual.

• DB_RECOVER

Page 94/19/2005

XmlManager

causes normal recovery to be run against the underlying database. Normal recovery
ensures that the database files are consistent relative to the operations recorded in
the log files. This is useful if, for example, your application experienced an ungraceful
shut down and there is consequently an possibility that some write operations were
not flushed to disk.

Recovery can only be run if the logging subsystem is turned on. Also, recovery must
only be run by a single thread of control; typically it is run by the application's master
thread before any other database operations are performed.

Regardless of the flags you decide to set at creation time, it is important to use the same
ones on all subsequent environment opens (the exception to this is DB_CREATE which is
only required to create an environment). In particular, avoid using flags to open
environments that were not used at creation time. This is because different subsystems
require different data structures on disk, and it is therefore illegal to attempt to use
subsystems that were not initialized when the environment was first created.

Opening and Closing Environments

To use an environment, you must first open it. At open time, you must identify the
directory in which it resides and this directory must exist prior to the open attempt. At
open time, you also specify the open flags, properties, if any, that you want to use for
your environment.

When you are done with the environment, you must make sure it is closed. You can either
do this explicitly, or you can have the XmlManager object do it for you.

If you are explicitly closing your environment, you must make sure an containers opened
in the environment have been closed before you close your environment.

For information on XmlManager instantiation, see XmlManager Instantiation and
Destruction (page 11)

For example:

#include "DbXml.hpp"
...
u_int32_t env_flags = DB_CREATE | // If the environment does not
 // exist, create it.
 DB_INIT_LOCK | // Initialize the locking subsystem
 DB_INIT_LOG | // Initialize the logging subsystem
 DB_INIT_MPOOL | // Initialize the cache
 DB_INIT_TXN; // Initialize transactions
std::string envHome("/export1/testEnv");
DbEnv myEnv(0);

try {
 myEnv.open(envHome.c_str(), env_flags, 0);
} catch(DbException &e) {
 std::cerr << "Error opening database environment: "

Page 104/19/2005

XmlManager

 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
} catch(std::exception &e) {
 std::cerr << "Error opening database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
}

// Do BDB XML work here

try {
 myEnv.close(0);
} catch(DbException &e) {
 std::cerr << "Error closing database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
} catch(std::exception &e) {
 std::cerr << "Error closing database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
}

XmlManager Instantiation and Destruction

You create an XmlManager object by calling its constructor. You destroy a XmlManager
object by calling its destructor, either by using the delete operator or by allowing the
object to go out of scope (if it was created on the stack). Note that XmlManager is closed
and all of its resources released when the last open handle to the object is destroyed.

To construct an XmlManager object, you may or may not provide the destructor with an
open DbEnv object. If you do instantiate XmlManager with an opened environment handle,
then XmlManager will close and destroy that DbEnv object for you if you specify
DBXML_ADOPT_DBENV for the XmlManager constructor. set
XmlManagerConfig::setAdoptEnvironment() to true.

If you provide an DbEnv object to the constructor, then you can use that object to use
whatever subsystems that you application may require (see Environment Open Flags
(page 9) for some common subsystems).

If you do not provide an environment object, then XmlManager will implicitly create an
environment for you. In this case, the environment will not be configured to use any
subsystems and it is only capable of being shared by multiple threads from within the
same process. Also, in this case you must identify the on-disk location where you want
your containers to reside using one of the following mechanisms:

• Specify the path to the on-disk location in the container's name.

• Specify the environment's data location using the DB_HOME environment variable.

Page 114/19/2005

XmlManager

In either case, you can pass the XmlManager constructor a flag argument that controls
that object's behavior with regard to the underlying containers (the flag is NOT passed
directly to the underlying environment or databases). Valid values are:

• DBXML_ALLOW_AUTO_OPEN

When specified, XQuery queries that reference created but unopened containers will
automatically cause the container to be opened for the duration of the query.

• DBXML_ADOPT_DBENV

When specified, XmlManager will close and destroy the DbEnv object that it was
instantiated with when the XmlManager is closed.

• DBXML_ALLOW_EXTERNAL_ACCESS

When specified, XQuery queries executed from inside BDB XML can access external
sources (URLs, files, and so forth).

For example, to instantiate an XmlManager with a default environment:

#include "DbXml.hpp"
...

using namespace DbXml;
int main(void)
{
 XmlManager myManager; // The manager and underlying
 // environment are closed when
 // this goes out of scope.

 return(0);
}

And to instantiate an XmlManager using an explicit environment object:

#include "DbXml.hpp"
...

using namespace DbXml;
int main(void)
{
 u_int32_t env_flags = DB_CREATE | // If the environment does not
 // exist, create it.
 DB_INIT_LOCK | // Initialize locking
 DB_INIT_LOG | // Initialize logging
 DB_INIT_MPOOL | // Initialize the cache
 DB_INIT_TXN; // Initialize transactions

 std::string envHome("/export1/testEnv");
 DbEnv myEnv(0);

Page 124/19/2005

XmlManager

 XmlManager *myManager = NULL;

 try {
 myEnv.open(envHome.c_str(), env_flags, 0);
 myManager =
 new XmlManager(myEnv,
 DBXML_ADOPT_DBENV); // The manager and
 // environemnt is closed
 // when this object is
 // destroyed.
 } catch(DbException &e) {
 std::cerr << "Error opening database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
 } catch(std::exception &e) {
 std::cerr << "Error opening database environment: "
 << envHome
 << " or opening XmlManager." << std::endl;
 std::cerr << e.what() << std::endl;
 }

 try {
 if (myManager != NULL) {
 delete myManager;
 }
 } catch(DbException &e) {
 std::cerr << "Error closing database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
 } catch(std::exception &e) {
 std::cerr << "Error closing database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
 }
}

Managing Containers

In BDB XML you store your XML Documents in containers. A container is a file on disk that
contains all the data associated with your documents, including metadata and indices.

To create and open a container, you use XmlManager::createContainer(). Once a container
has been created, you can not use createContainer() on it again. Instead, simply open
it using: XmlManager::openContainer().

Alternatively, you can cause a container to be created and opened by calling
openContainer() and pass it the necessary flags to allow the container to be created
(see the following section for information on container open flags).

Page 134/19/2005

Managing Containers

Note that you can open a container multiple times. Each time you open a container, you
receive a reference-counted handle for that container.

You close a container by allowing the container object to go out of scope. Note that the
container is not actually closed until the last handle for the container is off the stack.

For example:

#include "DbXml.hpp"
...

using namespace DbXml;
int main(void)
{
 XmlManager myManager; // The manager is closed when
 // it goes out of scope.

 // Open the container. If it does not currently exist,
 // then create it. This container is closed when the last
 // handle to it goes out of scope.
 XmlContainer myContainer =
 myManager.createContainer("/export/xml/myContainer.bdbxml");

 // Obtain a second handle to the container.
 XmlContainer myContainer2 =
 myManager.openContainer("/export/xml/myContainer.bdbxml");

 return(0);
}

Container Flags

When you create or open a container, there are a large number of flags that you can
specify which control various aspects of the container's behavior. The following are the
flags commonly used by BDB XML applications. For a complete listing of the flags available
for use, see the BDB XML API Reference.

As is the case with environment flags, to set multiple flags you must bitwise or them
together:

 DB_CREATE | DB_EXCL

• DB_CREATE

Causes the container and all underlying databases to be created. It is not necessary
to specify this flag on the call to XmlManager::createContainer(). In addition, you
need specify it for XmlManager::openContainer(). only if the container has not already
been created.

• DB_EXCL

Page 144/19/2005

Managing Containers

Causes the container creation to fail if the container already exists. It is not necessary
to specify this flag on the call to XmlManager::createContainer(). Note that this flag
should only be used if DB_CREATE is also used.

• DB_RDONLY

The container is opened for read-access only.

• DBXML_ALLOW_VALIDATION

Causes documents to be validated when they are loaded into the container. The default
behavior is to not validate documents.

• DBXML_INDEX_NODES

Causes indices for the container to return nodes rather than documents. The default
is to index at the document level. This flag has no meaning if the container type is
WholedocContainer (see below).

This flag is only meaningful at container creation time; you cannot change the indexing
level once the container has been created.

• DBXML_TRANSACTIONAL

The container supports transactions. For more information, see Using
Transactions (page 79)

Container Types

At creation time, every container must have a type defined for it. This container type
identifies how XML documents are stored in the container. As such, the container type
can only be determined at container creation time; you cannot change it on subsequent
container opens.

Containers can have one of the following types specified for them:

• Wholedoc Containers

The container contains entire documents; the documents are stored "as is" without
any manipulation of line breaks or whitespace. To cause the container to hold whole
documents, set XmlContainer::WholedocContainer on the call to
XmlManager::createContainer().

• Node containers

XmlDocuments are stored as individual nodes in the container. That is, each record in
the underlying database contains a single leaf node, its attributes and attribute values
if any, and its text nodes, if any. BDB XML also keeps the information it needs to
reassemble the document from the individual nodes stored in the underlying databases.

This is the default, and preferred, container type.

Page 154/19/2005

Managing Containers

To cause the documents to be stored as individual nodes, set
XmlContainer::NodeContainer on the call to XmlManager::createContainer().

• Default container type.

The default container type is used. You can set the default container type using
XmlManager::setDefaultContainerType(). If you never set a default container type,
then the container will use node-level storage.

Note that NodeContainer is generally faster to query than is WholedocContainer. On the
other hand, WholedocContainer provides faster document loading times into the container
than does NodeContainer because BDB XML does not have to deconstruct the document
into its individual leaf nodes. For the same reason, WholedocContainer is faster at retrieving
whole documents for the same reason — the document does not have to be reassembled.

Because of this, you should use NodeContainer unless one of the following conditions are
true:

• Load performance is more important to you than is query performance.

• You want to frequently retrieve the entire XML document (as opposed to just a portion
of the document).

• Your documents are so small in size that the query advantage offered by NodeContainer
is negligible or vanishes entirely. The size at which this threshold is reached is of
course dependent on the physical resources available to your application (memory,
CPU, disk speeds, and so forth).

Note that you should avoid using WholedocContainer if your documents tend to be greater
than a megabyte in size. WholedocContainer is tuned for small documents and you will
pay increasingly heavy performance penalties as your documents grow larger.

For example:

#include "DbXml.hpp"
...

using namespace DbXml;
int main(void)
{
 XmlManager myManager; // The manager is closed when
 // it goes out of scope.

 myManager.setDefaultContainerType(XmlContainer::WholedocContainer);

 // Open the container.
 XmlContainer myContainer =
 myManager.createContainer("/export/xml/myContainer.bdbxml");
 return(0);
}

Page 164/19/2005

Managing Containers

Deleting and Renaming Containers

You can delete a container using XmlManager::removeContainer(). It is an error to attempt
to remove an open container.

You can rename a container using XmlManager::renameContainer(). It is an error to attempt
to rename an open container.

For example:

#include "DbXml.hpp"
...

using namespace DbXml;
int main(void)
{
 XmlManager myManager; // The manager is closed when
 // it goes out of scope.

 // Assumes the container currently exists.
 myManager.renameContainer("/export/xml/myContainer.bdbxml",
 "/export2/xml/myContainer.bdbxml");

 myManager.removeContainer("/export2/xml/myContainer.bdbxml");

 return(0);
}

Page 174/19/2005

Managing Containers

Chapter 4. Adding XML Documents to
Containers

To manage XML documents in BDB XML, you must load them into a container. Typically
you will do this by using the XmlContainer handle directly. You can also load a document
into an XmlDocument instance, and then load that instance into the container using the
XmlContainer handle. This book will mostly use the first, most direct, method.

Input Streams and Strings

When you add a document to a container, you must identify the location where the
document resides. You can do this by using:

• A string object that holds the entire document.

• An input stream that is created from a filename. Use
XmlManager::createLocalFileInputStream() to create the input stream.

• An input stream created from a URL. In this case, the URL can be any valid URL.
However, if the URL requires network activity in order to access the identified content
(such as is required if you, for example, supply an HTTP URL), then the input stream
is valid only if you have compiled Xerces with socket support.

Use XmlManager::createURLInputStream() to create the input stream.

• An input stream that refers to a memory buffer.

Use XmlManager::createMemBufInputStream() to create the input stream.

• An input stream that refers to standard input (the console under Windows systems).

Use XmlManager::createStdInInputStream() to create the input stream.

Note that BDB XML does not validate an input stream until you actually attempt to put
the document to your container. This means that you can create an input stream to an
invalid location or to invalid content, and BDB XML will not throw an exception until you
actually attempt to load data from that location.

We provide an example of creating input streams in the following section.

Adding Documents

To add a document to a container, you use XmlContainer::putDocument(). When you use
this method, you must:

1. Create an input stream to the content, or load the XML document into a string object.
Alternatively, you can create an XmlDocument object, set the input stream or string
to that object, and then provide the XmlDocument object to
XmlContainer::putDocument().

Page 184/19/2005

2. Provide a name for the document. This name must be unique or BDB XML will throw
XmlException::UNIQUE_ERROR.

If you are using an XmlDocument object to add the document, use
XmlDocument::setName() to set the document's name. Otherwise, you can set the
name directly on the call to XmlContainer::putDocument().

Note that if you do not want to explicitly set a name for the document, you can set
a flag, DBXML_GEN_NAME, on the call to XmlContainer::putDocument(). This causes BDB
XML to generate a unique name for you. The name that it generates is a concatenation
of a unique value, an underscore, and the value that you provide for the document's
name, if any. For example:

myDocName_a

where myDocName is the name that you set for the document and a is the unique value
generated by BDB XML.

If you do not set a name for the document, but you do specify that a unique name
is to be generated, then dbxml is used as the name's prefix.

dbxml_b

If you do not set a name for the document and if you do not use DBXML_GEN_NAME,
then BDB XML throws XmlException::UNIQUE_ERROR.

3. Create an XmlUpdateContext object. This object encapsulates the context within
which the container is updated. Reusing the same object for a series of puts against
the same container can improve your container's write performance.

Note that the content that you supply to XmlContainer::putDocument() must contain
well-formed XML. Also, note that while your documents are stored in the container with
their shared text entities (if any) as-is, the underlying XML parser does attempt to expand
them for indexing purposes. Therefore, you must make sure that any entities contained
in your documents are resolvable at load time.

For example, to add a document that is held in a string:

#include "DbXml.hpp"
...

using namespace DbXml;
int main(void)
{
 // The document
 std::string docString = "<a_node><b_node>Some text</b_node></a_node>";

 // The document's name.
 std::string docName = "testDoc1";

 // Get a manager object.

Page 194/19/2005

Adding Documents

 XmlManager myManager; // The manager is closed when
 // it goes out of scope.

 // Load the document in its entirety. The document's formatting is
 // preserved.
 myManager.setDefaultContainerType(XmlContainer::WholedocContainer);

 // Open the container. The container is closed when it goes
 // out of scope.
 XmlContainer myContainer =
 myManager.openContainer("container.bdbxml");

 // Need an update context for the put.
 XmlUpdateContext theContext = myManager.createUpdateContext();

 // Put the document
 try {
 myContainer.putDocument(docName, // The document's name
 docString, // The actual document,
 // in a string.
 theContext, // The update context
 // (required).
 0); // Put flags.
 } catch (XmlException &e) {
 // Error handling goes here. You may want to check
 // for XmlException::UNIQUE_ERROR, which is raised
 // if a document with that name already exists in
 // the container. If this exception is thrown,
 // try the put again with a different name, or
 // use XmlModify to update the document.
 }

 return(0);
}

To load the document from an input stream, the code is identical except that you use
the appropriate method on XmlManager to obtain the stream. For example, to load an
XmlDocument directly from a file on disk:

#include "DbXml.hpp"
...

using namespace DbXml;
int main(void)
{
 // The document
 std::string fileName = "/export/testdoc1.xml";

 // The document's name.

Page 204/19/2005

Adding Documents

 std::string docName = "testDoc1";

 // Get a manager object.
 XmlManager myManager; // The manager is closed when
 // it goes out of scope.

 // Load the document in its entirety. The document's formatting is
 // preserved.
 myManager.setDefaultContainerType(XmlContainer::WholedocContainer);

 // Open the container. The container is closed when it goes
 // out of scope.
 XmlContainer myContainer =
 myManager.openContainer("container.bdbxml");

 // Need an update context for the put.
 XmlUpdateContext theContext = myManager.createUpdateContext();

 try {
 // Get the input stream.
 XmlInputStream *theStream =
 myManager.createLocalFileInputStream(fileName);

 // Put the document
 myContainer.putDocument(docName, // The document's name
 theStream, // The actual document.
 theContext, // The update context
 // (required).
 0); // Put flags.
 } catch (XmlException &e) {
 // Error handling goes here. You may want to check
 // for XmlException::UNIQUE_ERROR, which is raised
 // if a document with that name already exists in
 // the container. If this exception is thrown,
 // try the put again with a different name, or
 // use XmlModify to update the document.
 }

 return(0);
}

Setting Metadata

Every XML document stored in BDB XML actually consists of two kinds of information: the
document itself, and metadata.

Metadata can contain an arbitrarily complex set of information. Typically it contains
information about the document that you do not or can not include in the document itself.
As an example, you could carry information about the date and time a document was

Page 214/19/2005

Setting Metadata

added to the container, last modified, or possibly an expiration time. Metadata might
also be used to store information about the document that is external to BDB XML, such
as the on-disk location where the document was originally stored, or possibly notes about
the document that might be useful to the document's maintainer.

In other words, metadata can contain anything — BDB XML places no restrictions on what
you can use it for. Further, you can both query and index metadata (see Using BDB XML
Indices (page 56) for more information). It is even possible to have a document in your
container that contains only metadata.

In order to set metadata onto a document, you must:

1. Optionally (but recommended), create a URI for each piece of metadata (in the form
of a string).

2. Create an attribute name to use for the metadata, again in the form of a string.

3. Create the attribute value — the actual metadata information that you want to carry
on the document — either as an XmlValue or as an XmlData class object.

4. Set this information on a XmlDocument object.

5. Optionally (but commonly) set the actual XML document to the same XmlDocument
object.

6. Add the XmlDocument to the container.

For example:

#include "DbXml.hpp"
...

using namespace DbXml;
int main(void)
{
 // The document
 std::string fileName = "/export/testdoc1.xml";

 // The document's name.
 std::string docName = "testDoc1";

 // URI, attribute name, and attribute value used for
 // the metadata. We will carry a timestamp here
 // (hard coded for clarity purposes).
 std::string URI = "http://dbxmlExamples/metadata";
 std::string attrName = "createdOn";
 XmlValue attrValue(XmlValue::DATE_TIME, "2005-10-5T04:18:36");

 // Get a manager object.
 XmlManager myManager; // The manager is closed when
 // it goes out of scope.

Page 224/19/2005

Setting Metadata

 // Load the document in its entirety. The document's formatting is
 // preserved.
 myManager.setDefaultContainerType(XmlContainer::WholedocContainer);

 // Open the container. The container is closed when it goes
 // out of scope.
 XmlContainer myContainer =
 myManager.openContainer("container.bdbxml");

 // Need an update context for the put.
 XmlUpdateContext theContext = myManager.createUpdateContext();

 try {
 // Get the input stream.
 XmlInputStream *theStream =
 myManager.createLocalFileInputStream(fileName);

 // Get an XmlDocument
 XmlDocument myDoc = myManager.createDocument();

 // Set the document's name
 myDoc.setName(docName);
 // Set the content
 myDoc.setContentAsXmlInputStream(theStream);
 // Set the metadata
 myDoc.setMetaData(URI, attrName, attrValue);

 // Put the document into the container
 myContainer.putDocument(myDoc, // The actual document.
 theContext, // The update context
 // (required).
 0); // Put flags.
 } catch (XmlException &e) {
 // Error handling goes here. You may want to check
 // for XmlException::UNIQUE_ERROR, which is raised
 // if a document with that name already exists in
 // the container. If this exception is thrown,
 // try the put again with a different name, or
 // use XmlModify to update the document.
 }

 return(0);
}

Page 234/19/2005

Setting Metadata

Chapter 5. Using XQuery with BDB XML
Documents are retrieved from BDB XML containers using XQuery expressions. XQuery is a
language designed to query XML documents. Using XQuery, you can retrieve entire
documents, subsections of documents, or values from one or more individual document
nodes. You can also use XQuery to manipulate or transform values returned by document
queries.

Note that XQuery represents a superset of XPath 2.0, which in turn is based on XPath 1.0.
If you have prior experience with BDB XML 1.x, then you should be familiar with XPath
as that was the query language offered by that library.

BDB XML supports the entire W3 XQuery specification. As of this printing, the specification
is dated July 2004. However, BDB XML will be updated to track any changes in the working
specification that may occur. You can find the XQuery specification at
http://www.w3.org/XML/Query.

Beyond the W3C specifications, there are several good books on the market today that
fully describe XQuery. In addition, there are many freely available resources on the web
that provide a good introduction to the language. Searching for 'XQuery' in the Web search
engine of your choice ought to return a wealth of information and pointers on the language.

That said, this chapter begins with a very thin introduction to XQuery that should be
enough for you to understand any BDB XML concepts required to proceed with usage of
the library. In particular, the next section of this manual highlights those aspects of
XQuery that have unique meanings relative to BDB XML usage. Be aware, however, that
the following introduction is not meant to be complete — a full treatment of XQuery is
beyond the scope of an introductory manual such as this.

We follow this brief introduction to XQuery with a general description of querying
documents stored in BDB XML containers, and examining the results of those queries. See
Retrieving BDB XML Documents using XQuery (page 31) for that information.

XQuery: A Brief Introduction

XQuery can be used to:

1. Query for a document. Note that queries can be formed against an individual
document, or against multiple documents.

2. Query for document subsections, including values found on individual document
nodes.

3. Manipulate and transform the results of a query.

To do this, XQuery views an XML document as a collection of element, text, and attribute
nodes. For example, consider the following XML document:

Page 244/19/2005

http://www.w3.org/XML/Query

Example 5.1. A Simple XML Document

<?xml version="1.0"?>
<Node0>
<Node1 class="myValue1">Node1 text </Node1>
<Node2>
 <Node3>Node3 text</Node3>
 <Node3>Node3 text 2</Node3>
 <Node3>Node3 text 3</Node3>
 <Node4>300</Node4>
 </Node2>
</Node0>

In the above document, <Node0> is the document's root node, and <Node1> is an element
node. Further, the element node, <Node1>, contains a single attribute node whose name
is class and whose value is myValue1. Finally, <Node1> contains a text node whose value
is Node1 text.

Referencing Portions of Documents using XQuery

A document's root can always be referenced using a single forward slash:

/

Subsequent element nodes in the document can be referenced using Unix-style path
notation:

/Node1

To reference an attribute node, prefix the attribute node's name with '@':

/Node1/@class

To return the value contained in a node's text node (remember that not all element nodes
contain a text node), use distinct-values() function:

distinct-values(/Node1)

To return the value assigned to an attribute node, you also use the distinct-values()
function:

distinct-values(/Node1/@class)

Predicates

When you provide an XQuery path, what you receive back is a result set. You can further
filter this result set by using predicates. Predicates are always contained in brackets ([])
and there are two types of predicates that you can use: numeric and boolean.

Page 254/19/2005

XQuery: A Brief Introduction

Numeric Predicates

Numeric predicates allow you to select a node based on its position relative to another
node in the document (that is, based on its context).

For example, consider the document presented in A Simple XML Document (page 25). This
document contains three <Node3> elements. If you simply enter the XQuery expression:

/Node1/Node2/Node3

Only the first <Node3> in the document is returned. To return, say, the second <Node3>
element, use a predicate:

/Node1/Node2/Node3[2]

Boolean Predicates

Boolean predicates filter a query result so that only those elements of the result are kept
if the expression evaluates to true. For example, suppose you want to select a node only
if its text node is equal to some value. Then:

/Node1/Node2[Node3="Node3 text 3"]

Context

The meaning of an XQuery expression can change depending on the current context.
Within XQuery expressions, context is usually only important if you want to use relative
paths or if your documents use namespaces. However, BDB XML only supports relative
paths from within a predicate (see below). Also, do not confuse XQuery contexts with
BDB XML contexts. While BDB XML contexts are related to XQuery contexts, they differ
in that BDB XML contexts are a data structure that allows you to define namespaces,
define variables, and to identify the type of information that is returned as the result of
a query (all of these topics are discussed later in this chapter).

Relative Paths

Just like Unix filesystem paths, any path that does not begin with a slash (/) is relative
to your current location in a document. Your current location in a document is determined
by your context. Thus, if in A Simple XML Document (page 25) your context is set to Node2,
you can refer to Node3 with the simple notation:

Node3

Further, you can refer to a parent node using the following familiar notation:

..

and to the current node using:

.

Page 264/19/2005

XQuery: A Brief Introduction

Remember that BDB XML supports relative paths only from within predicates.☞
Namespaces

Natural language and, therefore, tag names can be imprecise. Two different tags can
have identical names and yet hold entirely different sorts of information. Namespaces
are intended to resolve any such sources of confusion.

Consider the following document:

Example 5.2. XML Documents and Namespaces

<?xml version="1.0"?>
<definition>
 <ring>
 Jewelry that you wear.
 </ring>
 <ring>
 A sound that a telephone makes.
 </ring>
 <ring>
 A circular space for exhibitions.
 </ring>
</definition>

As constructed, this document makes it difficult (though not impossible) to select the
node for, say, a ringing telephone.

To resolve any potential confusion in your schema or supporting code, you can introduce
namespaces to your documents. For example:

Example 5.3. Namespace Declaration

<?xml version="1.0"?>
<definition>
 <jewelry:ring xmlns:jewelry="http://myDefinition.dbxml/jewlery">
 Jewelry that you wear.
 </jewlery:ring>
 <sounds:ring xmlns:sounds="http://myDefinition.dbxml/sounds">
 A sound a telephone makes.
 </sounds:ring>
 <showplaces:ring
 xmlns:showplaces="http://myDefinition.dbxml/showplaces">
 A circular space for exhibitions.
 </showplaces:ring>
</definition>

Now that the document has defined namespaces, you can precisely query any given node:

Page 274/19/2005

XQuery: A Brief Introduction

/definition/sounds:ring

In order to perform queries against a document stored in BDB XML that makes use of
namespaces, you must declare the namespace to your query. You do this using
XmlQueryContext::setNamespace(). See Defining Namespaces (page 32) for more information.

☞

By identifying the namespace to which the node belongs, you are declaring a context for
the query.

The URI used in the namespace definition is not required to actually resolve to anything.
The only criteria is that it be unique within the scope of any document set(s) in which it
might be used.

Also, the namespace is only required to be declared once in the document. All subsequent
usages need only use the relevant prefix. For example, we could have added the following
to our previous document:

Example 5.4. Namespace Prefixes

<jewelry:diamond>
 The centerpiece of many rings.
</jewlery:diamond>
<showplaces:diamond>
 A place where baseball is played.
</showplaces:diamond>

Finally, namespaces can be used with attributes too. For an example:

Example 5.5. Namespaces with Attributes

<clubMembers>
 <surveyResults school:class="English"
 xmlns:school="http://myExampleDefinitions.dbxml/school"
 number="200"/>
 <surveyResults school:class="Mathematics"
 number="165"/>
 <surveyResults social:class="Middle"
 xmlns:social="http://myExampleDefinitions.dbxml/social"
 number="543"/>
</clubMembers>

Once you have declared a namespace for an attribute, you can query the attribute in the
following way:

/clubMembers/surveyResults/@school:class

And to retrieve the value set for the attribute:

distinct-values(/clubMembers/surveyResults/@school:class)

Page 284/19/2005

XQuery: A Brief Introduction

Wildcards

XQuery allows you to use wildcards when document elements are unknown. For example:

/Node0/*/Node6

selects all the Node6 nodes that are 3 nodes deep in the document and whose path starts
with Node0. Other wildcard matches are:

• Selects all of the nodes in the document:

//*

• Selects all of the Node6 nodes that have three ancestors:

/*/*/*/Node6

• Selects all the nodes immediately beneath Node5:

/Node0/Node5/*

• Selects all of Node5's attributes:

/Node0/Node5/@*

Navigation Functions

XQuery provides several functions that can be used for global navigation to a specific
document or collection of documents. From the perspective of this manual, two of these
are interesting because they have specific meaning from within the context of BDB XML

collection()

Within XQuery, collection() is a function that allows you to create a named sequence.
From within BDB XML, however, it is also used to navigate to a specific container. In this
case, you must pass collection() the literal name of the container. Note that the
container must have already been opened by the XmlManager in order for collection to
reference that container. The exception to this is if XmlManager was opened using the
DBXML_ALLOW_AUTO_OPEN flag.

For example, suppose you want to perform a query against a container named
container1.dbxml. In this case, first open the container using XmlManager::openContainer()
and then specify the collection() function on the query. For example:

collection("container1.dbxml")/Node0

Note that this is actually short-hand for:

Page 294/19/2005

XQuery: A Brief Introduction

collection("dbxml:/container1.dbxml")/Node0

dbxml:/ is the default base URI for BDB XML. You an change the base URI using
XmlQueryContext::setBaseURI().

See Retrieving BDB XML Documents using XQuery (page 31) for more information on how
to prepare and perform queries.

doc()

XQuery provides the doc() function so that you can trivially navigate to the root of a
named document. doc() is required to take a URI.

To use doc() to navigate to a specific document stored in BDB XML, provide an XQuery
path that uses the dbxml: base URI, and that identifies the container in which the document
can be found. The actual document name that you provide is the same name that was
set for the document when it was added to the container (see Adding Documents (page 18)
for more information).

For example, suppose you have a document named "mydoc1.xml" in container
"container1.dbxml". Then to perform a query against that specific document, first open
container1.dbxml and then provide a query something like this:

doc("dbxml:/container1.dbxml/mydoc1.xml")/Node0

See Retrieving BDB XML Documents using XQuery (page 31) for more information on how
to prepare and perform queries.

Using FLWOR with BDB XML

XQuery offers iterative and transformative capabilities through FLWOR (pronounced
"flower") expressions. FLWOR is an acronym that stands for the five major clauses in a
FLWOR expression: for, let, where, order, by and return. Using FLWOR expressions,
you can iterate over sequences (frequently result sets in BDB XML), use variables, and
filter, group, and sort sequences. You can even use FLWOR to perform joins of different
data sources.

For example, suppose you had documents in your container that looked like this:

<product>
 <name>Widget A</name>
 <price>0.83</price>
</product>

In this case, queries against the container for these documents return the documents in
order by their document name. But suppose you wanted to see all such documents in your
container, ordered by price. You can do this with a FLWOR expression:

for $i in collection("myContainer.dbxml")/product
order by $i/price descending
return $i

Page 304/19/2005

XQuery: A Brief Introduction

Note that from within BDB XML, you must provide FLWOR expressions in a single string.
Lines can be separated either by a carriage return ("\n") or by a space. Thus, the above
expression would become:

std::string flwor="for $i in collection('myContainer.dbxml')/product\n";
flwor += "order by $i/price descending\n";
flwor += "return $i"

Retrieving BDB XML Documents using XQuery

Documents are retrieved from BDB XML when they match an XQuery path expression.
Queries are either performed or prepared using an XmlManager object, but the query itself
usually restricts its scope to a single container or document using one of the XQuery
Navigation Functions (page 29).

When you perform a query, you must provide:

1. The XQuery expression to be used for the query contained in a single string object.

2. An XmlQueryContext object that identifies contextual information about the query,
such as the namespaces in use and what you want for results (entire documents, or
document values).

What you then receive back is a result set that is returned in the form of an XmlResults
object. You iterate over this result sets in order to obtain the individual documents or
values returned as a result of the query.

The Query Context

Context is a term that is heavily used in both BDB XML and XQuery. While overlap exists
in how the term is used between the two, it is important to understand that differences
exist between what BDB XML means by context and what the XQuery language means by
it.

In XQuery, the context defines aspects of the query that aid in query navigation. For
example, the XQuery context defines things like the namespace(s) and variables used by
the query, the query's focus (which changes over the course of executing the query), and
the functions and collations used by the query. Most thorough descriptions of XQuery will
describe these things in detail.

In BDB XML, however, the context is a physical object (XmlQueryContext) that is used for
very limited things (compared to what is meant by the XQuery context). You can use
XmlQueryContext to control only part of the XQuery context. You also use XmlQueryContext
to control BDB XML's behavior toward the query in ways that have no corresponding concept
for XQuery contexts.

Specifically, you use XmlQueryContext to:

• Define the namespaces to be used by the query.

Page 314/19/2005

Retrieving BDB XML Documents
using XQuery

• Define any variables that might be needed for the query, although, these are not the
same as the variables used by XQuery FLWOR expressions (see Defining
Variables (page 32)).

• Define the return type. That is, the type of information returned as a result of the
query (see Defining Return Types (page 33)).

• Defining whether the query is processed "eagerly" or "lazily" (see Defining the Evaluation
Type (page 34)).

Note that BDB XML also uses the XmlQueryContext to identify the query's focus as you
iterate over a result set. See Examining Document Values (page 39) for more information.

Defining Namespaces

In order for you to use a namespace prefix in your query, you must first declare that
namespace to BDB XML. When you do this, you must identify the URI that corresponds to
the prefix, and this URI must match the URI in use on your documents.

You can declare as many namespaces as are needed for your query.

To declare a namespace, use XmlQueryContext::setNamespace(). For example:

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Get a query context
XmlQueryContext context = myManager.createQueryContext();

// Declare a namespace
context.setNamespace("fruits", "http://groceryItem.bdbxml/fruits");
context.setNamespace("vegetables", "http://groceryItem.bdbxml/vegetables");

Defining Variables

In XQuery FLWOR expressions, you can set variables using the let clause. In addition to
this, you can use variables that are defined by BDB XML You define these variables using
XmlQueryContext::setVariableValue().

Page 324/19/2005

Retrieving BDB XML Documents
using XQuery

You can declare as many variables using XmlQueryContext::setVariableValue() as you
need. Note that the variables that you declare this way can only be used from within a
predicate. For example:

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Get a query context
XmlQueryContext context = myManager.createQueryContext();

// Declare a variable
context.setVariableValue("myVar", "Tarragon");

// Declare the query string
std::string myQuery =
 "collection('exampleData.dbxml')/product[item=$myVar]";

Defining Return Types

When you perform a BDB XML query, you can define the type of data that you want
returned. The return types that you are most likely to use are:

DescriptionReturn Type

The value returned is a copy of the value found in the actual
document.

DeadValues

The value returned is a reference to the actual document stored in
BDB XML. This is the default return type.

LiveValues

You use XmlQueryContext::setReturnType() to set a query's return type. For example:

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.

Page 334/19/2005

Retrieving BDB XML Documents
using XQuery

XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Get a query context
XmlQueryContext context = myManager.createQueryContext();

// Set the return type to DeadValues
context.setReturnType(XmlQueryContext::DeadValues);

Defining the Evaluation Type

The evaluation type defines how much work BDB XML performs as a part of the query,
and how much it defers until the results are evaluated. There are two evaluation types:

DescriptionEvaluation Type

The query is executed and its resultant values are derived and stored
in-memory before the query returns. This is the default.

Eager

Minimal processing is performed before the query returns, and the
remaining processing is deferred until you enumerate over the result
set.

Lazy

You use XmlQueryContext::setEvaluationType() to set a query's return type. For example:

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Get a query context
XmlQueryContext context = myManager.createQueryContext();

// Set the evaluation type to Lazy.
context.setEvaluationType(XmlQueryContext::Lazy);

Page 344/19/2005

Retrieving BDB XML Documents
using XQuery

Performing Queries

You perform queries using an XmlManager object. When you perform a query, you can
either:

1. Perform a one-off query using XmlManager::query(). This is useful if you are
performing queries that you know you will never repeat within the process scope.
For example, if you are writing a command line utility to perform a query, display
the results, then shut down, you may want to use this method.

2. Perform the same query repeatedly by using XmlManager::prepare() to obtain an
XmlQueryExpression object. You can then run the query repeatedly by calling
XmlQueryExpression::execute().

Creation of a query expression is fairly expensive, so any time you believe you will
perform a given query more than one time, you should use this approach over the
query() method.

Regardless of how you want to run your query, you must restrict the scope of your query
to a container, document, or node. Usually you use one of the XQuery navigation functions
to do this. See Navigation Functions (page 29) for information on the navigation functions.

Note that you can indicate that the query is to be performed lazily. If it is performed lazily,
then only those portions of the document that are actually required to satisfy the query are☞
returned in the results set immediately. All other portions of the document may then be
retrieved by BDB XML as you iterate over and use the items in the result set.

If you are using node-level storage, then a lazy query may result in only the document being
returned, but not its metadata, or the metadata but not the document itself. In this case,
XmlDocument::fetchAllData() to ensure that you have both the document and its metadata.

To specify laziness for the query, use DBXML_LAZY_DOCS as a flag value to either
XmlManager::query() or XmlQueryExpression::execute().

Be aware that lazy docs is different from lazy evaluation. Lazy docs determines whether all
document data and document metadata is returned as a result of the query. Lazy evaluation
determines how much query processing is deferred until the results set is actually examined.

For example, the following executes a query against an XmlContainer using
XmlManager::query(). XmlManager.query().

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container

Page 354/19/2005

Retrieving BDB XML Documents
using XQuery

XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Get a query context
XmlQueryContext context = myManager.createQueryContext();

// Declare a namespace
context.setNamespace("fruits", "http://groceryItem.dbxml/fruits");

// Declare the query string
std::string myQuery =
 "collection('exampleData.dbxml')/fruits:product[item=$myVar]";

// Prepare (compile) the query
XmlQueryExpression qe = myManager.prepare(myQuery, context);

// Run the query. Note that you can perform this query many times
// without suffering the overhead of re-creating the query expression.
// Notice that the only thing we are changing is the variable value,
// which allows us to control exactly what gets returned for the query.
XmlResults results = qe.execute(context, 0);

context.setVariableValue(myVar, "Tarragon");
XmlResults results = qe.execute(context);

// Do something with the results

context.setVariableValue(myVar, "Oranges");
results = qe.execute(context);

// Do something with the results

context.setVariableValue(myVar, "Kiwi");
results = qe.execute(context);

Metadata Based Queries

You can query for documents based on the metadata that you set for them. To do so, do
the following:

• Define a namespace for the query that uses the URI that you set for the metadata
against which you will perform the query. If you did not specify a namespace for your
metadata when you added it to the document, then use an empty string.

• Perform the query using the special dbxml:metadata() from within a predicate.

For example, suppose you placed a timestamp in your metadata using the URI
'http://dbxmlExamples/timestamp' and the attribute name 'timeStamp'. Then you can query
for documents that use a specific timestamp as follows:

Page 364/19/2005

Retrieving BDB XML Documents
using XQuery

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");
std::string col = "collection('exampleData.dbxml')";

// Get a query context
XmlQueryContext context = myManager.createQueryContext();

// Declare a namespace. The first argument, 'ts', is the
// namespace prefix and in this case it can be anything so
// long as it is not reused with another URI within the same
// query.
context.setNamespace("ts", "http://dbxmlExamples/timestamp");

// Declare the query string
std::string myQuery = col;
myQuery += "/*[dbxml:metadata('ts:timeStamp')='00:28:38']";

// Prepare (compile) the query
XmlQueryExpression qe = myManager.prepare(myQuery, context);

// Run the query.
XmlResults results = qe.execute(context, 0);

Examining Query Results

When you perform a query against BDB XML, you receive a results set in the form of an
XmlResults object. To examine the results, you iterate over this result set, retrieving
each element of the set as an XmlValue object.

Once you have an individual result element, you can obtain the data encapsulated in the
XmlValue object in a number of ways. For example, you can obtain the information as a
string object using XmlValue::asString(). Alternatively, you could obtain the data as an
XmlDocument object using XmlValue::asDocument().

It is also possible to use DOM-like navigation on the XmlValue object since that class offers
navigational methods such as XmlValue::getFirstChild(), XmlValue::getNextSibling(),
XmlValue::getAttributes(), and so forth. For details on these and other XmlValue
attributes, see the BDB XML C++ API Reference documentation.

Page 374/19/2005

Examining Query Results

For example, the following code fragment performs a query and then loops over the result
set, obtaining and displaying the document's name from an XmlDocument object before
displaying the document itself.

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Get a query context
XmlQueryContext context = myManager.createQueryContext();

// Declare a namespace
context.setNamespace("fruits", "http://groceryItem.dbxml/fruits");

// Declare the query string. Find all the product documents
// in the fruits namespace.
std::string myQuery = "collection('exampleData.dbxml')/fruits:product";

// Perform the query.
XmlResults results = myManager.query(myQuery, context);

// Show the size of the result set
std::cout << "Found " << results.size() << " documents for query: '"
 << myQuery << "'" << std::endl;

// Display the result set
XmlValue value;
while (results.next(value)) {
 XmlDocument theDoc = value.asDocument();
 std::string docName = theDoc.getName();
 std::string docString = value.asString();

 std::cout << "Document " << docName << ":" << std::endl;
 std::cout << docString << std::endl;
 std::cout << "===============================\n" << std::endl;
}

Page 384/19/2005

Examining Query Results

Examining Document Values

It is frequently useful to retrieve a document from BDB XML and then perform follow-on
queries to retrieve individual values from the document itself. You do this by creating
and executing a query, except that you pass the specific XmlValue object that you want
to query to the XmlQueryExpression::execute() method. You must then iterate over a
result set exactly as you would when retrieving information from a container.

For example, suppose you have an address book product that manages individual contacts
using XML documents such as:

<contact>
 <familiarName>John</familiarName>
 <surname>Doe</surname>
 <phone work="555 555 5555" home="555 666 777" />
 <address>
 <street>1122 Somewhere Lane</street>
 <city>Nowhere</city>
 <state>Minnesota</state>
 <zipcode>11111</zipcode>
 </address>
</contact>

Then you could retrieve individual documents and pull data off of them like this:

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Declare the query string. Retrieves all the documents
// for people with the last name 'Doe'.
std::string myQuery = "collection('exampleData.dbxml')/contact";

// Query to get the familiar name from the
// document.
std::string fn = "distinct-values(/contact/familiarName)";

// Query to get the surname from the
// document.
std::string sn = "distinct-values(/contact/surname)";

Page 394/19/2005

Examining Query Results

// Work phone number
std::string wrkPhone = "distinct-values(/contact/phone/@work)";

// Get the context for the XmlManager query
XmlQueryContext managerContext = myManager.createQueryContext();

// Get a context for the document queries
XmlQueryContext documentContext = myManager.createQueryContext();
// documentContext can be DeadValue
documentContext.setReturnType(XmlQueryContext::DeadValues);

// Prepare the XmlManager query
XmlQueryExpression managerQuery =
 myManager.prepare(myQuery, managerContext);

// Prepare the individual document queries
XmlQueryExpression fnExpr = myManager.prepare(fn, documentContext);
XmlQueryExpression snExpr = myManager.prepare(sn, documentContext);
XmlQueryExpression wrkPhoneExpr =
 myManager.prepare(wrkPhone, documentContext);

// Perform the query.
XmlResults results = managerQuery.execute(managerContext, 0);

// Display the result set
XmlValue value;
while (results.next(value)) {
 // Get the individual values
 XmlResults fnResults = fnExpr.execute(value, documentContext);
 XmlResults snResults = snExpr.execute(value, documentContext);
 XmlResults phoneResults =
 wrkPhoneExpr.execute(value, documentContext);

 std::string fnString;
 XmlValue fnValue;
 if (fnResults.size() > 0) {
 fnResults.next(fnValue);
 fnString = fnValue.asString();
 } else {
 continue;
 }

 std::string snString;
 XmlValue snValue;
 if (snResults.size() > 0) {
 snResults.next(snValue);
 snString = snValue.asString();
 } else {

Page 404/19/2005

Examining Query Results

 continue;
 }

 std::string phoneString;
 XmlValue phoneValue;
 if (phoneResults.size() > 0) {
 phoneResults.next(phoneValue);
 phoneString = phoneValue.asString();
 } else {
 continue;
 }

 std::cout << fnString << " " << snString << ": "
 << phoneString << std::endl;

}

Note that you can use the same basic mechanism to pull information out of very long
documents, except that in this case you need to maintain the query's focus; that is, the
location in the document that the result set item is referencing. For example suppose
you have a document with 2,000 contact nodes and you want to get the name attribute
from some particular contact in the document.

There are several ways to perform this query. You could, for example, ask for the node
based on the value of some other attribute or element in the node:

/document/contact[category='personal']

Or you could create a result set that holds all of the document's contact nodes:

/document/contact

Regardless of how you get your result set, you can then go ahead and query each value
in the result set for information contained in the value. To do this:

1. Make sure you use the same XmlQueryContext object as you used to generate the
result set in the first place. This object will track the result item's focus (that is, the
node's location in the larger document — the self axis.) for you.

2. Iterate over the result set as normal.

3. Query for document information as described above. However, in this case change
the query so that you reference the self access. That is, for the surname query
described above, you would use the following query instead so as to reference nodes
relative to the current node (notice the self-access (.) in use in the following query):

distinct-values(./surname)

Page 414/19/2005

Examining Query Results

Examining Metadata

When you retrieve a document from BDB XML, there are two ways to examine the metadata
associated with that document. The first is to use XmlDocument::getMetaData(). Use this
form if you want to examine the value for a specific metadata value.

The second way to examine metadata is to obtain an XmlMetaDataIterator object using
XmlDocument::getMetaDataIterator(). You can use this mechanism to loop over and
display every piece of metadata associated with the document.

For example:

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Get a query context
XmlQueryContext context = myManager.createQueryContext();

// Declare a namespace
context.setNamespace("fruits", "http://groceryItem.dbxml/fruits");

// Declare the query string. Find all the product documents
// in the fruits namespace.
std::string myQuery = "collection('exampleData.dbxml')/fruits:product";

// Perform the query.
XmlResults results = myManager.query(myQuery, context);

// Display the result set
XmlValue value;
while (results.next(value)) {
 XmlDocument theDoc = value.asDocument();

 // Display all of the metadata set for this document
 XmlMetaDataIterator mdi = theDoc.getMetaDataIterator();
 std::string returnedURI;
 std::string returnedName;
 XmlValue returnedValue;

Page 424/19/2005

Examining Query Results

 std::cout << "For document '" << theDoc.getName()
 << "' found metadata:" << std::endl;

 while (mdi.next(returnedURI, returnedName, returnedValue)) {
 std::cout << "\tURI: " << returnedURI
 << ", attribute name: " << returnedName
 << ", value: " << returnedValue
 << std::endl;
 }

 // Display a single metadata value:
 std::string URI = "http://dbxmlExamples/timestamp";
 std::string attrName = "timeStamp";
 XmlValue newRetValue;

 bool gotResult = theDoc.getMetaData(URI, attrName, newRetValue);
 if (gotResult) {
 std::cout << "For URI: " << URI << ", and attribute " << attrName
 << ", found: " << newRetValue << std::endl;
 }

 std::cout << "===============================\n" << std::endl;
}

Page 434/19/2005

Examining Query Results

Chapter 6. Managing Documents in
Containers

BDB XML provides APIs for deleting, replacing, and modifying documents that are stored
in containers. This chapter discusses these activities.

Deleting Documents

You can delete a document by calling XmlContainer::deleteDocument(). This method can
operate either on a document's name or on an XmlDocument object. You might want to
use an XmlDocument object to delete a document if you have queried your container for
some documents and you want to delete every document in the results set.

For example:

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Get a query context
XmlQueryContext context = myManager.createQueryContext();

// Declare a namespace
context.setNamespace("fruits", "http://groceryItem.dbxml/fruits");

// Declare the query string. Find all the product documents
// in the fruits namespace.
std::string myQuery = "collection('exampleData.dbxml')/fruits:product";

// Perform the query.
XmlResults results = myManager.query(myQuery, context);

// Delete everything in the results set

XmlUpdateContext uc = myManager.createUpdateContext();
XmlDocument theDoc = myManager.createDocument();
while (results.next(theDoc)) {

Page 444/19/2005

 myContainer.deleteDocument(theDoc, uc);
}

Replacing Documents

You can either replace a document in its entirety as described here, or you can modify
just portions of the document as described in Modifying XML Documents (page 46).

If you already have code in place to perform document modifications, then replacement
is the easiest mechanism to implement. However, replacement requires that at least the
entire replacement document be held in memory. Modification, on the other hand, only
requires that the portion of the document to be modified be held in memory. Depending
on the size of your documents, modification may prove to be significantly faster and less
costly to operate.

You can directly replace a document that exists in a container. To do this:

1. Retrieve the document from the container. Either do this using an XQuery query and
iterating through the results set looking for the document that you want to replace,
or use XmlContainer::getDocument() to retrieve the document by its name. Either
way, make sure you have the document as an XmlDocument object.

2. Use one of XmlDocument::setContent(), XmlDocument::setContentAsDOM(), or
XmlDocument::setContentAsXmlInputStream() to set the object's content to the
desired value.

3. Use XmlContainer::updateDocument() to save the modified document back to the
container.

Alternatively, you can create a new blank document using XmlManager::createDocument(),
set the document's name to be identical to a document already existing in the container,☞
set the document's content to the desired content, then call
XmlContainer::updateDocument().

For example:

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

Page 454/19/2005

Replacing Documents

// Document to modify
std::string docName = "doc1.xml";
XmlDocument theDoc = myContainer.getDocument(docName);

// Modify it
theDoc.setContent("<a>random content");

// Put it back into the container
XmlUpdateContext uc = myManager.createUpdateContext();
myContainer.updateDocument(theDoc, uc);

Modifying XML Documents

BDB XML provides a mechanism with which you can modify documents stored in your
containers, without using the document update procedure described in the previous
section. You do this using XmlModify objects.

By using XmlModify, you can avoid the need to hold the entire replacement document in
memory.

Essentially, you use XmlModify methods to identify a series of modification steps to be
taken against a document. These steps allow you to add, delete, rename, and replace
document nodes. You can also manipulate comments and processing instructions.

Once you have finished identifying the modification steps that you want to perform, you
use XmlModify::execute() to apply the modifications to either a single document (by
passing it an XmlValue object), or a set of documents (by passing it an XmlResults object).

Modification Parameters

There are a common set of parameters to the XmlModify modification methods that are
worth examining before proceeding. These arguments have roughly the same meaning,
regardless of the modification action being requested. They appear on the modification
methods in the following order:

• XmlQueryExpression selectionExpr

This parameter contains an XQuery expression that selects the portion of the document
to be modified. For example, if you want to rename a node, then this expression would
select the node that you want to rename.

• XmlObject type

This parameter identifies the type of information you are inserting into the document.
That is, you use this parameter to indicate whether you are inserting an element node,
an attribute node, text node, a processing instruction, or a comment. See the API
Reference documentation for information on how to specify these types.

• std::string name

Page 464/19/2005

Modifying XML Documents

Identifies the name of the information you are inserting. For example, if you are
inserting an element or attribute node, then this provides the name of that node. The
value of this parameter is ignored if you are inserting a text or comment node.

• std::string content

Identifies the content that you are inserting. If you are inserting an element node,
then this must contain either a text node, or a valid child content for the node. For
attribute nodes, this contains the value to which the parameter is equal. For processing
instructions, this contains all of the information that appears in the processing
instruction other than the processing instruction's name.

Modification Methods

XmlModify provides a series of methods that you use to identify how a document is to be
modified. To define your document modification, you call these methods as many times
as is required. When XmlModify::execute() is called, the documents are modified according
to the instructions provided in the order that they were provided.

The XmlModify modification methods are:

• XmlModify::addAppendStep() (page 47)

• XmlModify::addInsertAfterStep() (page 49)

• XmlModify::addInsertBeforeStep() (page 50)

• XmlModify::addRemoveStep() (page 51)

• XmlModify::addRenameStep() (page 52)

• XmlModify::addUpdateStep() (page 53)

XmlModify::addAppendStep()

Appends the provided content to the targeted node's content.

If you are appending an element node, then the new node is by default appended
immediately after the targeted node's last child node. Note, however, that this method
provides a location parameter that identifies the index of the child node at which the
append operation is to be performed. Note also that if the location parameter is specified,
then the new node is inserted immediately prior to the identified child node.

For example, consider the following document:

<a>
 <b1>first child</b1>
 <b2>second child</b2>
 <b3>third child</b3>

For this document, if you:

Page 474/19/2005

Modifying XML Documents

• Provide an XQuery selection expression of:

/a

• Indicate you are inserting an element node.

• Provide a name of "b4".

• Provide "my inserted child".

• Leave the location parameter blank.

Then when the modification is executed against the document, the resulting document
is:

<a>
 <b1>first child</b1>
 <b2>second child</b2>
 <b3>third child</b3>
 <b4>my inserted child</b4>

However, if you give the location parameter a value of "0" (modify at the first child node),
then the resulting document is:

<a>
 <b4>my inserted child</b4>
 <b1>first child</b1>
 <b2>second child</b2>
 <b3>third child</b3>

If you indicate that the type of information to be inserted is an attribute node, then the
location parameter is always ignored and the new attribute is inserted at the node selected
by the selection expression. So for a selection expression of

/a

The resulting document is:

<a b4="my inserted child">
 <b1>first child</b1>
 <b2>second child</b2>
 <b3>third child</b3>

If you indicate that the type of information to be inserted is a comment node, and you
leave the location parameter blank, then the resulting document is:

<a>
 <b1>first child</b1>
 <b2>second child</b2>

Page 484/19/2005

Modifying XML Documents

 <b3>third child</b3>
<!-- my inserted child -->

If you indicate a location of 0, then the resulting document is:

<a>
<!-- my inserted child -->
 <b1>first child</b1>
 <b2>second child</b2>
 <b3>third child</b3>

And finally, if you are inserting a text node with no location parameter, the resulting
document is:

<a>
 <b1>first child</b1>
 <b2>second child</b2>
 <b3>third childmy inserted child</b3>

Note that the selection expression you provide here must not select an attribute node or
an exception is thrown when the modification is executed.

XmlModify::addInsertAfterStep()

Inserts the identified content after the selected node. Note that the node that you target
for this operation cannot select the document root node or an attribute node, or an
exception is thrown.

If you are inserting an element node, then the new node is inserted after the closing tag
of the targeted node.

For example, consider the following document:

<a>

 text node

For this document, if you:

• Provide an XQuery selection expression of:

/a/b

• Indicate you are inserting an element node.

• Provide a name of "b2".

Page 494/19/2005

Modifying XML Documents

• Provide "my inserted node".

Then when the modification is executed against the document, the resulting document
is:

<a>

 text node

<b2>my inserted node</b2>

If you are inserting an attribute, then the new attribute is placed on the selected node's
parent node. So for this example, the resulting document would be:

<a b2="my inserted node">

 text node

XmlModify::addInsertBeforeStep()

Identical to XmlModify::addInsertAfterStep() (page 49), except that element nodes,
text, comments, and processing instructions are inserted prior to the node selected by
the selection expression.

Again, you cannot select the root node or an attribute node or an exception is thrown
when this instruction is executed.

For example, consider the following document:

<a>

 text node

For this document, if you:

• Provide an XQuery selection expression of:

/a/b

• Indicate you are inserting an element node.

• Provide a name of "b2".

• Provide "my inserted node".

Then when the modification is executed against the document, the resulting document
is:

Page 504/19/2005

Modifying XML Documents

<a>
<b2>my inserted node</b2>

 text node

Attribute insertion is handled identically to XmlModify::addInsertAfterStep(). If you are
inserting an attribute, then the new attribute is placed on the selected node's parent
node. So for this example, the resulting document would be:

<a b2="my inserted node">

 text node

XmlModify::addRemoveStep()

Removes the node targeted by the selection expression. For example, if you have the
following document:

<a>

 <c>
 text node
 </c>

and you provide a selection expression of:

/a/b/c

then the resulting document is:

<a>

Similarly, if you have the following document:

<a>

 <c attr1="foo">
 text node
 </c>

and you provide a selection expression of:

/a/b/c/@attr1

Page 514/19/2005

Modifying XML Documents

then the resulting document is:

<a>

 <c>
 text node
 </c>

Again, it is an error to target the document's root node with this method.

XmlModify::addRenameStep()

This method renames the selected node. For example, if you have the following document:

<a>

 <c attr1="foo">
 text node
 </c>

and you provide a selection expression of:

/a

and you provide a new name of 'z', then the resulting document is:

<z>

 <c attr1="foo">
 text node
 </c>

</z>

Similarly, a selection expression of:

/a/b/c/@attr1

and a new name of 'z' leaves you with:

<a>

 <c z="foo">
 text node
 </c>

Page 524/19/2005

Modifying XML Documents

XmlModify::addUpdateStep()

This method updates (replaces) the contents of the targeted node with with new content.
If an element node is targeted, the content here is expected to be a text node. For
example, given the following document:

<a>

 <c attr1="foo">
 text node
 </c>

providing a selection expression of:

/a

and replacement content:

Update content

Then the resulting document is:

<a>
Update content

If, however, you provide replacement content of:

<z>Update content</z>

(which includes the reserved characters '<' and '>'), then the method translates this into
content that is appropriate for a text node. In this case, the resulting document is:

<a>
<z>Update content</z>

Similarly, providing a selection expression of:

/a/b/c/@attr1

and replacement content:

Update content

results in the following document:

<a>

 <c attr1="Update content">
 text node
 </c>

Page 534/19/2005

Modifying XML Documents

Modification Example

To illustrate document modification, we will:

1. Retrieve a document named "doc1.xml" from a container.

2. Rename an attribute node called 'attr1' to 'myAttribute'.

3. Add a child node called "newChild" to node "node2".

4. Remove a node called "removeNode".

5. Update the contents of attribute node 'myAttribute' with the string "replacement
content".

The document that we will update is as follows:

<sampleDocument>
 <node1 attr1="an attribute node" />
 <removeNode>Some content to remove</removeNode>
 <node2 />
</sampleDocument>

Notice that in performing the modification, we are not required to explicitly save the
modified document back into the container; that is done for us under the covers.

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

XmlQueryContext qc = myManager.createQueryContext();
XmlUpdateContext uc = myManager.createUpdateContext();
XmlModify mod = myManager.createModify();

// Build the modification object.
// Rename the attribute node from 'attr1' to 'myAttribute'.
XmlQueryExpression select =
 myManager.prepare("/sampleDocument/node1/@attr1", qc);

Page 544/19/2005

Modifying XML Documents

mod.addRenameStep(select, "myAttribute");

// Add '<newChild>' node to '<node2>'
std::string newChildContent = "<c1>some content</c1>";
select = myManager.prepare("/sampleDocument/node2", qc);
mod.addAppendStep(select,
 XmlModify::Element,
 "newChild",
 newChildContent);

// Remove <removeNode> from the document
select = myManager.prepare("/sampleDocument/removeNode", qc);
mod.addRemoveStep(select);

// Replace the contents of /sampleDocument/node1/@myAttribute. Notice
// the attribute was renamed from attr1 in the first step of this
// modification. Modifications are performed in the specified order.
std::string attrContent = "replacement content";
select = myManager.prepare("/sampleDocument/node1/@myAttribute", qc);
mod.addUpdateStep(select, attrContent);

// Now retrieve the document we want to modify from the container.
// Notice that we could have performed a query against the container,
// and then handed the entire result set to this method. In that case,
// every document contained in the result set is modified.
XmlDocument retDoc = myContainer.getDocument("doc1.xml");
XmlValue docValue(retDoc);
mod.execute(docValue, qc, uc);

// Show that the modification was performed
// and written to the container.
XmlDocument retDoc2 = myContainer.getDocument("doc1.xml");
std::string doc1String;
std::cout << retDoc2.getName() << ":\n"
 << retDoc2.getContent(doc1String)
 << "\n\n" << std::endl;

When we run this code, the program displays the modified document which is now:

doc1.xml:
<sampleDocument>
 <node1 myAttribute="replacement content" />

 <node2><newChild><c1>some content</c1></newChild></node2>
</sampleDocument>

Page 554/19/2005

Modifying XML Documents

Chapter 7. Using BDB XML Indices
BDB XML provides a robust and flexible indexing mechanism that can greatly improve the
performance of your BDB XML queries. Designing your indexing strategy is one of the most
important aspects of designing a BDB XML-based application.

To make the most effective usage of BDB XML indices, design your indices for your most
frequently occurring XQuery queries. Be aware that BDB XML indices can be updated or
deleted in-place so if you find that your application's queries have changed over time,
then you can modify your indices to meet your application's shifting requirements.

The time it takes to re-index a container is proportional to the container's size. Re-indexing
a container can be an extremely expensive and time-consuming operation. If you have large☞
containers in use in a production setting, you should not expect container re-indexing to be
a routine operation.

You can define indices for both document content and for metadata. You can also define
default indices that are used for portions of your documents for which no other index is
defined.

When you declare an index, you must identify its type and its syntax. There are two ways
that you can provide this information. One way is to provide a string that identifies the
type and syntax for the index. The other way is to use enumerated types to do that same
thing.

Most of BDB XML's APIs that you use to manage indices allow you to use either form for
declaring indices. A few methods, however, only support the string approach.

See Syntax Types (page 59) for information on specifying the index syntax.

Index Types

The index type is defined by the following four types of information:

• Uniqueness (page 56)

• Path Types (page 57)

• Node Types (page 58)

• Key Types (page 58)

Uniqueness

Uniqueness indicates whether the indexed value must be unique within the container.
For example, you can index an attribute and declare that index to be unique. This means
the value indexed for the attribute must be unique within the container.

By default, indexed values are not unique; you must explicitly declare uniqueness for
your indexing strategy in order for it to be enforced.

Page 564/19/2005

Path Types

If you think of an XML document as a tree of nodes, then there are two types of path
elements in the tree. One type is just a node, such as an element or attribute within the
document. The other type is any location in a path where two nodes meet. The path type,
then, identifies the path element type that you want indexed. Path type node indicates
that you want to index a single node in the path. Path type edge indicates that you want
to index the portion of the path where two nodes meet.

Of the two of these, the BDB XML query processor prefers edge-type indices because they
are more specific than an node-type index. This means that the query processor will use
a edge-type index over a node-type if both indices provide similar information.

Consider the following document:

<vendor type="wholesale">
 <name>TriCounty Produce</name>
 <address>309 S. Main Street</address>
 <city>Middle Town</city>
 <state>MN</state>
 <zipcode>55432</zipcode>
 <phonenumber>763 555 5761</phonenumber>
 <salesrep>
 <name>Mort Dufresne</name>
 <phonenumber>763 555 5765</phonenumber>
 </salesrep>
</vendor>

Suppose you want to declare an index for the name node in the preceding document. In
that case:

DescriptionPath Type

There are two locations in the document where the name node appears.
The first of these has a value of "TriCounty Produce," while the second
has a value of "Mort Dufresne." The result is that the name node will require
two index entries, each with a different value. Queries based on a name
node may have to examine both index entries in order to satisfy the query.

node

There are two edge nodes in the document that involve the name node:

/vendor/name

and

salesrep/name

Indices that use this path type are more specific because queries that
cross these edge boundaries only have to examine one index entry for the
document instead of two.

edge

Page 574/19/2005

Index Types

Given this, use:

• node path types to improve queries where there can be no overlap in the node name.
That is, if the query is based on an element or attribute that appears on only one
context within the document, then use node path types.

In the preceding sample document, you would want to use node-type indices with the
address, city, state, zipcode, and salesrep elements because they appear in only
one context within the document.

• edge path types to improve query performance when a node name is used in multiple
contexts within the document. In the preceding document, use edge path types for
the name and phonenumber elements because they appear in multiple (2) contexts within
the document.

Node Types

BDB XML can index three types of nodes: element, attribute, or metadata. Metadata nodes
are, of course, indices set for a document's metadata content.

Element and Attribute Nodes

Element and attribute nodes are only found in document content. In the following
document:

<vendor type="wholesale">
 <name>TriCounty Produce</name>
</vendor>

vendor and name are element nodes, while type is an attribute node.

Use the element node type to improve queries that test the value of an element node.
Use the attribute node type to improve any query that examines an attribute or attribute
value.

Metadata Nodes

Metadata nodes are found only in a document's metadata content. This indices improve
the performance of querying for documents based on metadata information. If you are
declaring a metadata node, you cannot use a path type of edge.

Key Types

The Key type identifies what sort of test the index supports. You can use one of three
key types:

DescriptionKey Type

Improves the performances of tests that look for nodes with a specific
value.

equality

Page 584/19/2005

Index Types

DescriptionKey Type

Improves the performance of tests that look for the existence of an node,
regardless of its value.

presence

Improves the performance of tests that look for a node whose value
contains a given substring. This key type is best used when your queries
use the XQuery contains() substring function.

substring

Syntax Types

Beyond the index type, you must also identify the syntax type. The syntax describes what
sort of data the index will contain, and it is mostly used to determine how indexed values
are compared. There are a large number of syntax types available to you, such as
substring, boolean, or date.

For a complete list of the syntax types available to you, see Using Strings to Specify
Indices (page 59) or Using Enumerated Types to Specify Indices (page 61).

Specifying Index Strategies

The combined index type and syntax type is called the index strategy. There are two
ways that you can specify an index by using a string or by specifying enumerated types.
Most of the APIs that you use to manage indices support both mechanisms, however, a
few support only strings.

Using Strings to Specify Indices

The string that you use to specify an indexing strategy is formatted as follows:

[unique]-{path type}-{node type}-{key type}-{syntax type}

where:

• unique is the actual value that you provide in this position on the string. If you provide
this value, then indexed values must be unique. If you do not want indexed values to
be unique, provide nothing for this position in the string.

See Uniqueness (page 56) for more information.

• {path type} identifies the path type. Valid values are:

• node

• edge

See Path Types (page 57) for more information.

• {node type} identifies the type of node being indexed. Valid values are:

• element

Page 594/19/2005

Syntax Types

• attribute

• metadata

If metadata is specified, then {path type} must be node.

See Node Types (page 58) for more information.

• {key type} identifies the sort of test that the index supports. The following key types
are supported:

• presence

• equality

• substring

See Key Types (page 58) for more information.

• {syntax type} identifies the syntax to use for the indexed value. Specify one of the
following values:

• none

• anyURI

• base64Binary

• boolean

• date

• dateTime

• dayTimeDuration

• decimal

• double

• duration

• float

• gDay

• gMonth

• gMonthDay

• gYear

Page 604/19/2005

Specifying Index Strategies

• gYearMonth

• hexBinary

• NOTATION

• QName

• string

• time

• yearMonthDuration

• untypedAtomic

Note that if the key type is presence, then the syntax type should be none.

The following are some example index strategies:

• node-element-presence-none

Index an element node for presence queries. That is, queries that test whether the
node exists in the document.

• unique-node-metadata-equality-string

Index a metadata node for equality string compares. The value provided for this node
must be unique within the container.

This strategy is actually used by default for all documents in a container. It is used to
index the document's name.

• edge-attribute-equality-float

Defines an equality float index for an attribute's edge. Improves performance for
queries that examine whether a specific element/@attribute path is equal to a float
value.

Also, be aware that you can specify multiple indices at a time by providing a
space-separated list of index strategies in the string. For example, you can specify two
index strategies at a time using:

"node-element-presence-none edge-attribute-equality-float"

Using Enumerated Types to Specify Indices

When you use enumerated types to specify index strategies, the API will provide two
parameters. The first defines the index type, and the second defines the index syntax.

You specify the index syntax using an XmlValue::Type value. See Enumerated Index
Syntax (page 63) for more information.

Page 614/19/2005

Specifying Index Strategies

Be aware that, unlike index strategies specified as strings, you cannot specify multiple
index strategies in a single API call when you are using enumerated types.

Enumerated Index Types

To specify an index type, you provide a series of XmlIndexSpecification::Type values
or'd together. Each value that you provide identifies a specific aspect of the index type:
uniqueness, path type, node type, and key type. To specify:

• uniqueness, provide XmlIndexSpecification::UNIQUE_ON to the index type value. If
you provide nothing, then uniqueness is not enforced. For code readability purposes,
you can optionally use XmlIndexSpecification::UNIQUE_OFF to suppress uniqueness
as well.

• the path type, use one of:

• XmlIndexSpecification::PATH_NODE

• XmlIndexSpecification::PATH_EDGE

• the node type, use one of:

• XmlIndexSpecification::NODE_ELEMENT

• XmlIndexSpecification::NODE_ATTRIBUTE

• XmlIndexSpecification::NODE_METADATA

Note that if XmlIndexSpecification::NODE_METADATA is used, then
XmlIndexSpecification::PATH_NODE must also be used.

• the key type, use one of:

• XmlIndexSpecification::KEY_PRESENCE

• XmlIndexSpecification::KEY_EQUALITY

• XmlIndexSpecification::KEY_SUBSTRING.

For example, to specify the type, or the values together like this:

XmlIndexSpecification::UNIQUE_ON |
XmlIndexSpecification::PATH_NODE |
XmlIndexSpecification::NODE_ATTRIBUTE |
XmlIndexSpecification::KEY_EQUALITY

See Enumerated Index Example (page 64) for an example of how to use these types.

Page 624/19/2005

Specifying Index Strategies

Enumerated Index Syntax

To identify the syntax type for the index strategy using enumerated types, use
XmlValue::Type values. The following values are available for you to use:

• XmlValue::NONE

• XmlValue::NODE

• XmlValue::ANY_SIMPLE_TYPE

• XmlValue::ANY_URI

• XmlValue::BASE_64_BINARY

• XmlValue::BOOLEAN

• XmlValue::DATE

• XmlValue::DATE_TIME

• XmlValue::DAY_TIME_DURATION

• XmlValue::DECIMAL

• XmlValue::DOUBLE

• XmlValue::DURATION

• XmlValue::FLOAT

• XmlValue::G_DAY

• XmlValue::G_MONTH

• XmlValue::G_MONTH_DAY

• XmlValue::G_YEAR

• XmlValue::G_YEAR_MONTH

• XmlValue::HEX_BINARY

• XmlValue::NOTATION

• XmlValue::QNAME

• XmlValue::STRING

• XmlValue::TIME

• XmlValue::YEAR_MONTH_DURATION

Page 634/19/2005

Specifying Index Strategies

• XmlValue::UNTYPED_ATOMIC

Enumerated Index Example

Methods that accept numerated types for specifying index strategies always have a
parameter for the index type and a parameter for the index syntax. The following are
examples of the values you would give to these parameters when specifying an index
strategy:

• String equivalent: node-element-presence-none

For index type:

XmlIndexSpecification::PATH_NODE |
XmlIndexSpecification::NODE_ELEMENT |
XmlIndexSpecification::KEY_PRESENCE

For parameter type:

XmlValue::NONE

• String equivalent: unique-node-metadata-equality-string

XmlIndexSpecification::UNIQUE_ON |
XmlIndexSpecification::PATH_NODE |
XmlIndexSpecification::NODE_METADATA |
XmlIndexSpecification::KEY_EQUALITY

For parameter type:

XmlValue::STRING

• edge-attribute-equality-float

XmlIndexSpecification::EDGE_NODE |
XmlIndexSpecification::NODE_ATTRIBUTE |
XmlIndexSpecification::KEY_EQUALITY

For parameter type:

XmlValue::FLOAT

Indexer Processing Notes

As you design your indexing strategy, keep the following in mind:

• As with all indexing mechanisms, the more indices that you maintain the slower your
write performance will be. Substring indices are particularly heavy relative to write
performance.

Page 644/19/2005

Indexer Processing Notes

• The indexer does not follow external references to document type definitions and
external entities. References to external entities are removed from the character
data. Pay particular attention to this when using equality and substring indices as
element and attribute values (as indexed) may differ from what you expect.

• The indexer substitutes internal entity references with their replacement text.

• The indexer concatenates character data mixed with child data into a single value.
For example, as indexed the fragment:

<node1>
 This is some text with some
 <inline>inline </inline> data.
</node1>

has two elements. <node1> has the value:

"This is some text with some data"

while <inline> has the value:

"inline"

• The indexer expands CDATA sections. For example, the fragment:

<node1>
 Reserved XML characters are <![CDATA['<', '>', and '&']]>
</node1>

is indexed as if <node1> has the value:

"Reserved XML characters are '<', '>', and '&'"

• The indexer replaces namespace prefixes with the namespace URI to which they refer.
For example, the class attribute in the following code fragment:

<node1 myPrefix:class="test"
xlmns:myPrefix="http://dbxmlExamples/testPrefix />

is indexed as

<node1 http://dbxmlExamples/testPrefix:class="test"
xlmns:myPrefix="http://dbxmlExamples/testPrefix />

This normalization ensures that documents containing the same element types, but
with different prefixes for the same namespace, are indexed as if they were identical.

Page 654/19/2005

Indexer Processing Notes

Managing BDB XML Indices

Indices are set for a container using the container's index specification. You can specify
an index either against a specific node and namespace, or you can define default indices
that are applied to every node in the container.

You add, delete, and replace indices using the container's index specification. You can
also iterate through the specification, so as to examine each of the indices declared for
the container. Finally, if you want to retrieve all the indices maintained for a named
node, you can use the index specification to find and retrieve them.

An API exists that allows you to retrieve all of the documents or nodes referenced by a
given index.

For simple programs, managing the index specification and then setting it to the container
(as is illustrated in the following examples) can be tedious. For this reason, BDB XML also☞
provides index management functions directly on the container. Which set of functions your
application uses is entirely up to your requirements and personal tastes.

Performing index modifications (for example, adding and replacing indices) on a container
that already contains documents can be a very expensive operation — especially if the☞
container holds a large number of documents, or very large documents, or both. This is
because indexing a container requires BDB XML to traverse every document in the container.

If you are considering re-indexing a large container, be aware that the operation can take
a long time to complete.

Adding Indices

To add an index to a container:

1. Retrieve the index specification from the container.

2. Use XmlIndexSpecification::addIndex() to add the index to the container. You must
provide to this method the namespace and node name to which the index is applied.
You must also identify the indexing strategy.

If the index already exists for the specified node, then the method silently does
nothing.

3. Set the updated index specification back to the container.

For example:

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.

Page 664/19/2005

Managing BDB XML Indices

XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Get the index specification
XmlIndexSpecification is = myContainer.getIndexSpecification();

// Get the index type and syntax. This is the equivalent of
// "node-element-presence-none"
// index strategy

XmlIndexSpecification::Type idxType =
 (XmlIndexSpecification::Type)
 (XmlIndexSpecification::PATH_NODE |
 XmlIndexSpecification::NODE_ELEMENT |
 XmlIndexSpecification::KEY_PRESENCE);

// The syntax must be NONE because this is a presence
// index.
XmlValue::Type syntaxType = XmlValue::NONE;

// Add the index. We're indexing "node1" using the default
// namespace. Note that we could also do this using:
// is.addIndex("", "node1", "node-element-presence-none");
is.addIndex("", "node1", idxType, syntaxType);

// Save the index specification back to the container.
XmlUpdateContext uc = myManager.createUpdateContext();
myContainer.setIndexSpecification(is, uc);

Deleting Indices

To delete an index from a container:

1. Retrieve the index specification from the container.

2. Use XmlIndexSpecification::deleteIndex() to delete the index from the index
specification.

3. Set the updated index specification back to the container.

For example:

#include "DbXml.hpp"
...

using namespace DbXml;

Page 674/19/2005

Managing BDB XML Indices

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Get the index specification
XmlIndexSpecification is = myContainer.getIndexSpecification();

// We will delete the equivalent of:
// XmlIndexSpecification::Type idxType =
// (XmlIndexSpecification::Type)
// (XmlIndexSpecification::PATH_NODE |
// XmlIndexSpecification::NODE_ELEMENT |
// XmlIndexSpecification::KEY_PRESENCE);
// XmlValue::Type syntaxType = XmlValue::NONE;

// Delete the index. We're deleting the index from "node1" in
// the default namespace that has the syntax strategy identified
// above. Note that we could also do this using:
// is.deleteIndex("", "node1", idxType, syntaxType);
is.deleteIndex("", "node1", "node-element-presence-none");

// Save the index specification back to the container.
XmlUpdateContext uc = myManager.createUpdateContext();
myContainer.setIndexSpecification(is, uc);

Replacing Indices

You can replace the indices maintained for a specific node by using
XmlIndexSpecification::replaceIndex(). When you replace the index for a specified
node, all of the current indices for that node are deleted and the replacement index
strategies that you provide are used in their place.

Note that all the indices for a specific node can be retrieved and specified as a space
separated list in a single string. So if you set a node-element-equality-string and a
node-element-presence index for a given node, then it's indices are identified as:

"node-element-equality-string node-element-presence"

For example:

#include "DbXml.hpp"
...

using namespace DbXml;

Page 684/19/2005

Managing BDB XML Indices

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Get the index specification
XmlIndexSpecification is = myContainer.getIndexSpecification();

// Replace the index.
std::string idxString =
 "node-element-equality-string node-element-presence";
is.replaceIndex("", "node1", idxString);

// Save the index specification back to the container.
XmlUpdateContext uc = myManager.createUpdateContext();
myContainer.setIndexSpecification(is, uc);

Examining Container Indices

You can iterate over all the indices in a container using XmlIndexSpecification::next().
You can retrieve indices using either the string or enumerated format.

For example:

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Get the index specification
XmlIndexSpecification is = myContainer.getIndexSpecification();

// Iterate over all of the indices in the container. Note
// that we could use the enumerated types to retrieve
// the indices as well.
std::string uri, name, index;

Page 694/19/2005

Managing BDB XML Indices

int count = 0;
while(is.next(uri,name,index)) {
 // Print the index strategy to the console:
 std::cout << "For node: '" << name << "' found:\n"
 << "\tURI: " << uri
 << "\tIndex: " << index << std::endl;
 count ++;
}
std::cout << count << " indices found." << std::endl;

Working with Default Indices

Default indices are indices that are applied to all applicable nodes in the container that
are not otherwise indexed. For example, if you declare a default index for a metadata
node, then all metadata nodes will be indexed according to that indexing strategy, unless
some other indexing strategy is explicitly set for them. In this way, you can avoid the
labor of specifying a given indexing strategy for all occurrences of a specific kind of a
node.

You add, delete, and replace default indices using:

• XmlIndexSpecification::addDefaultIndex()

• XmlIndexSpecification::deleteDefaultIndex()

• XmlIndexSpecification::replaceDefaultIndex()

When you work with a default index, you identify only the indexing strategy; you do not
identify a URI or node name to which the strategy is to be applied.

Note that just as is the case with other indexing methods, you can use either strings or
enumerated types to identify the index strategy.

For example, to add a default index to a container:

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

// Get the index specification

Page 704/19/2005

Managing BDB XML Indices

XmlIndexSpecification is = myContainer.getIndexSpecification();

// Get the index type and syntax. This is the equivalent of
// "node-metadata-equality-string"
// index strategy
XmlIndexSpecification::Type idxType =
 (XmlIndexSpecification::Type)
 (XmlIndexSpecification::PATH_NODE |
 XmlIndexSpecification::NODE_METADATA |
 XmlIndexSpecification::KEY_EQUALITY);

// Declare the syntax type:
XmlValue::Type syntaxType = XmlValue::STRING;

// Add the default index. Note that we could also do this using:
// is.addDefaultIndex("node-metadata-equality-string");
is.addDefaultIndex(idxType, syntaxType);

// Save the index specification back to the container.
XmlUpdateContext uc = myManager.createUpdateContext();
myContainer.setIndexSpecification(is, uc);

Looking Up Indexed Documents

You can retrieve all of the values referenced by an index using
XmlContainer::lookupIndex(). This method returns an XmlResults object that contains
all of the nodes or documents for which the identified index has keys. Whether nodes or
documents is return depends on several factors:

• If your container is of type WholedocContainer, then entire documents are always
returned in this method's results set.

• If your container is of type NodeContainer, and if you specified DBXML_INDEX_NODES
when you created your container, then this method returns the nodes to which the
index's keys refer.

For example, every container is created with a default index that ensures the uniqueness
of the document names in your container. The:

• URI is http://www.sleepycat.com/2002/dbxml.

• Node name is name.

• Indexing strategy is unique-node-metadata-equality-string.

Given this, you can efficiently retrieve every document in the container using
XmlContainer::lookupIndex() as follows:

#include "DbXml.hpp"
...

Page 714/19/2005

Managing BDB XML Indices

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

XmlQueryContext qc = myManager.createQueryContext();

// Lookup the index
std::string uri = "http://www.sleepycat.com/2002/dbxml";
std::string name = "name";
std::string idxStrategy = "unique-node-metadata-equality-string";

// Now look it up. This returns every document in the container.
XmlResults res = myContainer.lookupIndex(qc, uri, name, idxStrategy);

// Iterate over the results set, printing each document in it
XmlDocument thedoc = myManager.createDocument();
while (res.next(thedoc)) {
 std::string dummyString;
 std::cout << thedoc.getName() << ": "
 << thedoc.getContent(dummyString) << std::endl;
}

In the event that you want to lookup an edge index, you must provide the lookup method
with both the node and the parent node that together comprise the XML edge.

For example, suppose you have the following document in your container:

<mydoc>
 <node1>
 <node2>
 node2 1
 </node2>
 <node2>
 node2 2
 </node2>
 </node1>
</mydoc>

Further suppose you indexed the presence of the node1/node2 edges. In this case, you
can lookup the values referred to by this index by doing the following:

Page 724/19/2005

Managing BDB XML Indices

#include "DbXml.hpp"
...

using namespace DbXml;

...

// Get a manager object.
XmlManager myManager;

// Open a container
XmlContainer myContainer =
 myManager.openContainer("exampleData.dbxml");

XmlQueryContext qc = myManager.createQueryContext();

// Node to lookup
std::string uri = "";
std::string name = "node2";

// Parent node to lookup
std::string parentURI = "";
std::string parentName = "node1";

std::string idxStrategy = "edge-element-presence";

// Now look it up.
XmlResults res = myContainer.lookupIndex(qc, uri, name,
 parentURI, parentName, idxStrategy);

// Iterate over the results set, printing each value in it
XmlValue retValue;
while (res.next(retValue)) {
 std::cout << "Found: " << retValue.asString() << std::endl;
}

Verifying Indices using Query Plans

When designing your indexing strategy, you should create indices to improve the
performance of your most frequently occurring queries. Without indices, BDB XML must
walk every document in the container in order to satisfy the query. For containers that
contain large numbers of documents, or very large documents, or both, this can be a
time-consuming process.

However, when you set the appropriate index(es) for your container, the same query that
otherwise takes minutes to complete can now complete in milliseconds. So setting the
appropriate indices for your container is a key ingredient to improving your application's
performance.

Page 734/19/2005

Verifying Indices using Query
Plans

That said, the question then becomes, how do you know that a given index is actually
being used by a given query? That is, how do you do this without loading the container
with enough data that it is noticeably faster to complete a query with an index set than
it is to complete the query without the index?

The way to do this is to examine BDB XML's query plan for the query to see if it intends
to use an index for the query. And the best and easiest way to examine a query plan is
by using the dbxml command line utility.

Query Plans

The query plan is literally BDB XML's plan for how it will satisfy a query. When you use
XmlManager::prepare(), one of the things you are doing is regenerating a query plan so
that BDB XML does not have to continually re-create it every time you run the query.

Printed out, the query plan looks like an XML document that describes the steps the query
processor will take to fulfill a specific query.

For example, suppose your container holds documents that look like the following:

<a>
 <docId id="aaUivth" />

 <c>node1</c>
 <d>node2</d>

Also, suppose you will frequently want to retrieve the document based on the value set
for the id parameter on the docId node. That is, you will frequently perform queries that
look like this:

collection("myContainer.dbxml")/a/docId[@id='bar']

In this case, if you print out the query plan (we describe how to do this below), you will
see something like this:

<XQuery>
 <Navigation>
 <QueryPlanFunction result="collection">

<OQPlan>U</OQPlan>
 <ImpliedSchema>
 <root nodeType="*">
 <child name="a">
 <child name="docId">
 <attribute name="id" nodeType="*">
 <equals/>
 </attribute>
 <descendant uri="*" name="*" nodeType="*"/>
 </child>
 </child>

Page 744/19/2005

Verifying Indices using Query
Plans

 </root>
 </ImpliedSchema>
 </QueryPlanFunction>
 <Step axis="child" name="a" nodeType="element"/>
 <Step axis="child" name="docId" nodeType="element">
 <Predicates>
 <Operator name="equal">
 <Step axis="attribute" name="id" nodeType="attribute"/>
 <Sequence>
 <AnyAtomicTypeConstructor value="aaUivth"
 typeuri="http://www.w3.org/2001/XMLSchema"
 typename="string"/>
 </Sequence>
 </Operator>
 </Predicates>
 </Step>
 </Navigation>
</XQuery>

While a complete description of the query plan is outside the scope of this manual, we
draw your attention to the highlighted element near the top of the query plan:

<OQPlan>U</OQPlan>

This is the part of the query plan that identifies what, if any, indices will be consulted
in order to satisfy the query. Because the text value for this element is only U, this query
plan is not using an index in order to satisfy the query. This means that BDB XML will have
to examine every document in the container in order satisfy the query.

Now suppose you add an index designed to support this query:

• URI is "".

• Node name is id.

• Indexing strategy is "node-attribute-equality-string"

The query plan for:

collection("myContainer.dbxml")/a/docId[@id='bar']

now reads:

<XQuery>
 <Navigation>
 <QueryPlanFunction result="collection">

<OQPlan>V(node-attribute-equality-string,@id,=,'aaUivth')</OQPlan>
 <ImpliedSchema>
 <root nodeType="*">
 <child name="a">
 <child name="docId">

Page 754/19/2005

Verifying Indices using Query
Plans

 <attribute name="id" nodeType="*">
 <equals/>
 </attribute>
 <descendant uri="*" name="*" nodeType="*"/>
 </child>
 </child>
 </root>
 </ImpliedSchema>
 </QueryPlanFunction>
 <Step axis="child" name="a" nodeType="element"/>
 <Step axis="child" name="docId" nodeType="element">
 <Predicates>
 <Operator name="equal">
 <Step axis="attribute" name="id" nodeType="attribute"/>
 <Sequence>
 <AnyAtomicTypeConstructor
 value="aaUivth"
 typeuri="http://www.w3.org/2001/XMLSchema"
 typename="string"/>
 </Sequence>
 </Operator>
 </Predicates>
 </Step>
 </Navigation>
</XQuery>

Notice that the OQPlan element now shows our index. This indicates that the BDB XML
query processor will use that index in order to satisfy the query.

Using the dbxml Shell to Examine Query Plans

dbxml is a command line utility that allows you to gracefully interact with your BDB XML
containers. You can perform a great many operations on your containers and documents
using this utility, but of interest to the current discussion is the utility's ability to allow
you add and delete indices to your containers, to query for documents, and to examine
query plans.

The BDB XML command line utilities, including dbxml, are described here:
http://www.sleepycat.com/xmldocs/utility/index.html

Note that while you can create containers and load XML documents into those containers
using dbxml, we assume here that you have already performed these activities using some
other mechanism.

In order to examine query plans using dbxml, do the following:

> dbxml -h myEnvironment

dbxml>

Page 764/19/2005

Verifying Indices using Query
Plans

http://www.sleepycat.com/xmldocs/utility/index.html

To begin, open your container:

dbxml> open myContainer.dbxml

Next, examine your query plan using the qplan command. Note that we assume your
container only has the standard, default index that all containers have when they are
first created.

dbxml> qplan collection("myContainer.dbxml")/a/docId[@id='aaUivth']
<XQuery>
 <Navigation>
 <QueryPlanFunction result="collection">
 <OQPlan>U</OQPlan>
 <ImpliedSchema>
 <root nodeType="*">
 <child name="a">
 <child name="docId">
 <attribute name="id" nodeType="*">
 <equals/>
 </attribute>
 <descendant uri="*" name="*" nodeType="*"/>
 </child>
 </child>
 </root>
 </ImpliedSchema>
 </QueryPlanFunction>
 <Step axis="child" name="a" nodeType="element"/>
 <Step axis="child" name="docId" nodeType="element">
 <Predicates>
 <Operator name="equal">
 <Step axis="attribute" name="id" nodeType="attribute"/>
 <Sequence>
 <AnyAtomicTypeConstructor value="aaUivth"
 typeuri="http://www.w3.org/2001/XMLSchema"
 typename="string"/>
 </Sequence>
 </Operator>
 </Predicates>
 </Step>
 </Navigation>
</XQuery>

Notice that this query plan does not make use of an index (the OQPlan element is empty.)
Now add the index that you want to test.

dbxml> addindex "" id "node-attribute-equality-string"
Adding index type: node-attribute-equality-string to node: {}:id

Now you can try the query plan again. Notice that now OQPlan is referencing our new
index.

Page 774/19/2005

Verifying Indices using Query
Plans

dbxml> qplan collection("myContainer.dbxml")/a/docId[@id='aaUivth']
<XQuery>
 <Navigation>
 <QueryPlanFunction result="collection">
 <OQPlan>
 V(node-attribute-equality-string,@id,=,'aaUivth')
 </OQPlan>
 <ImpliedSchema>
 <root nodeType="*">
 <child name="a">
 <child name="docId">
 <attribute name="id" nodeType="*">
 <equals/>
 </attribute>
 <descendant uri="*" name="*" nodeType="*"/>
 </child>
 </child>
 </root>
 </ImpliedSchema>
 </QueryPlanFunction>
 <Step axis="child" name="a" nodeType="element"/>
 <Step axis="child" name="docId" nodeType="element">
 <Predicates>
 <Operator name="equal">
 <Step axis="attribute" name="id" nodeType="attribute"/>
 <Sequence>
 <AnyAtomicTypeConstructor value="aaUivth"
 typeuri="http://www.w3.org/2001/XMLSchema"
 typename="string"/>
 </Sequence>
 </Operator>
 </Predicates>
 </Step>
 </Navigation>
</XQuery>

You are done testing your index. To exit dbxml, use the quit command:

dbxml> quit

Page 784/19/2005

Verifying Indices using Query
Plans

Chapter 8. Using Transactions
Transactions allow you to treat one or more operations on one or more containers as a
single unit of work. The BDB XML transactional subsystem is simply a wrapper around
Berkeley DB's transactional subsystem. This means that you BDB XML offers the same,
full, ACID protection as does Berkeley DB. That is, BDB XML transactions offer you:

• Atomicity.

Multiple container operations (most importantly, write operations) are treated as a
single unit of work. In the event that you abort a transaction, all write operations
performed during the transaction are discarded. In this event, your container is left
in the state it was in before the transaction began, regardless of the number or type
of write operations that you may have performed during the course of the transaction.

Note that BDB XML transactions can span one or more Container handles. Also,
transactions can span both containers and Berkeley DB databases, provided they exist
within the same environment.

• Consistency.

Your BDB XML containers will never see a partially completed transactions, no matter
what happens to your application. This is true even if your application crashes while
there are in-progress transactions. If the application or system fails, then either all
of the container changes appear when the application next runs, or none of them
appear.

• Isolation.

While a transaction is in progress, your containers will appear to the transaction as if
there are no other operations are occurring outside of the transaction. That is,
operations wrapped inside a transaction will always have a clean and consistent view
of your databases. They never have to contend with partially updated records (unless
you want them to).

• Durability.

Once committed to your containers, your modifications will persist even in the event
of an application or system failure. Note that durability is available only if your
application performs a sync when it commits a transaction.

Transactionally processing is covered in great detail in the Berkeley DB Programmer's
Reference Guide. All of the concepts and topics described there are relevant to
transactionally protecting an BDB XML application.

The next few sections describe topics that are specific to transactionally protecting a
BDB XML application.

Page 794/19/2005

Initializing the Transactional Subsystem

In order to use transactions, you must turn on the transactional subsystem. You do this
when you open your XmlManager by setting the appropriate flags for the manager. You
must also turn on transactions for your container when you open it, again through the
use of the appropriate flags.

Note that if you do not enable transactions when you first create your environment, then
you cannot subsequently use transactions. Also, if your environment is not opened to
support transactions, then your containers cannot be opened to support transactions.
Finally, you cannot transactionally protect your container operations unless your
environment and containers are configured to support transactions.

One final point: the default XmlManager constructor does not enable the transactional
subsystem for its underlying environment, and there is no way to pass the appropriate
flags to that environment using the default constructor. Instead, you must construct your
own DbEnv object, passing it the flags required to enable transactions, and then hand
that DbEnv object to the XmlManager constructor.

In order to enable transactions, you must enable the memory pool (the cache), the logging
subsystem, the locking subsystem, and the transactional subsystem. For example:

#include "DbXml.hpp"
...

using namespace DbXml;
int main(void)
{
 u_int32_t env_flags = DB_CREATE | // If the environment does not
 // exist, create it.
 DB_INIT_LOCK | // Initialize locking
 DB_INIT_LOG | // Initialize logging
 DB_INIT_MPOOL | // Initialize the cache
 DB_INIT_TXN; // Initialize transactions

 std::string envHome("/export1/testEnv");
 DbEnv myEnv(0);
 XmlManager *myManager = NULL;

 try {
 myEnv.open(envHome.c_str(), env_flags, 0);
 myManager = new XmlManager(myEnv, 0);
 } catch(DbException &e) {
 std::cerr << "Error opening database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
 } catch(std::exception &e) {
 std::cerr << "Error opening database environment: "
 << envHome

Page 804/19/2005

Initializing the Transactional
Subsystem

 << " or opening XmlManager." << std::endl;
 std::cerr << e.what() << std::endl;
 }

 try {
 if (myManager != NULL) {
 delete myManager;
 }
 myEnv.close(0);
 } catch(DbException &e) {
 std::cerr << "Error closing database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
 } catch(std::exception &e) {
 std::cerr << "Error closing database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
 }
}

Once you have enabled transactions for your environment and your manager, you must
enable transactions for the containers that you open. You do this by providing the
DBXML_TRANSACTIONAL flag when you create or open the container.

The following code updates the previous example to also open a container. The new code
is shown in bold.

#include "DbXml.hpp"
...

using namespace DbXml;
int main(void)
{
 u_int32_t env_flags = DB_CREATE | // If the environment does not
 // exist, create it.
 DB_INIT_LOCK | // Initialize locking
 DB_INIT_LOG | // Initialize logging
 DB_INIT_MPOOL | // Initialize the cache
 DB_INIT_TXN; // Initialize transactions

 std::string envHome("/export1/testEnv");
 DbEnv myEnv(0);
 XmlManager *myManager = NULL;

 try {
 myEnv.open(envHome.c_str(), env_flags, 0);
 myManager = new XmlManager(myEnv);

u_int32_t containerFlags =

Page 814/19/2005

Initializing the Transactional
Subsystem

 DB_CREATE | // If the container does not exist,
 // create it.
 DB_TRANSACTIONAL; // Enable transactions.

 std::string containerName = "myContainer.dbxml";
 XmlContainer myContainer =
 XmlManager.openContainer(containerName, containerFlags);

 } catch(DbException &e) {
 std::cerr << "Error opening database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
 } catch(std::exception &e) {
 std::cerr << "Error opening database environment: "
 << envHome
 << " or opening XmlManager." << std::endl;
 std::cerr << e.what() << std::endl;
 }

 try {
 if (myManager != NULL) {
 delete myManager;
 }
 myEnv.close(0);
 } catch(DbException &e) {
 std::cerr << "Error closing database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
 } catch(std::exception &e) {
 std::cerr << "Error closing database environment: "
 << envHome << std::endl;
 std::cerr << e.what() << std::endl;
 }
}

Transactionally Protecting Container Operations

To transactionally protect one or more container operations, do the following:

1. Open your environment and containers such that they support transactions, as
described in the previous section.

2. Create an XmlTransaction object. These objects are created using
XmlManager::createTransaction().

3. Perform your operations, handing the XmlTransaction object to each container read
and write method that is participating in the transaction.

Page 824/19/2005

Transactionally Protecting
Container Operations

Be aware that you can use the same XmlTransaction for read and write operations
performed on different containers and databases, provided that those containers and
databases all exist in the same environment; there is no limit to the number of
containers and databases that can participate in the transaction.

4. When you have performed all of your transaction's operations, call
XmlManager::commit() to commit the transaction. This causes the write operations
performed under the protection of the transaction to be written to the files backing
your containers and databases on disk.

Once committed, the XmlTransaction object is no longer valid. That is, you cannot
reuse it. If you want to perform another transaction, you must instantiate another
XmlTransaction object.

5. If the operations participating in your transaction should throw an exception or
otherwise indicate an operational failure, terminate the transaction by calling
XmlManager::abort(). This causes all of the write operations performed under the
control of the transaction to be discarded.

As is the case with XmlManager::commit(), an aborted XmlTransaction object is no
longer valid and can not be reused.

Note that when you create an XmlTransaction object, you can create a transaction based
on an existing DbEnv object. If you do this, then the following rules apply:☞
• Any handle for a transaction object can commit or abort that transaction. Once committed

or aborted, all handles to the transaction are no longer valid.

• If the XmlTransaction object goes out of scope without being committed or aborted,
then the external DbEnv object that was used to create it is still valid and the underlying
transaction is still active (until such a time as the transaction is either committed or
aborted in some other location in your code).

• Likewise, if the parent DbEnv object goes out scope while the XmlTransaction object is
still active, then the underlying transaction is still active until such a time as the
XmlTransaction object calls either commit or abort.

• If all XmlTransaction objects go out of scope and there are no in-scope DbEnv objects,
then the underlying transaction is automatically aborted.

Never perform both transactional and non-transactional writes on the same container. Doing
so can cause your underlying databases to no longer be recoverable in the event that recovery
is needed.

☞

If you open a container transactionally, and you do not provide a transaction for your write
operations, BDB XML will automatically transactionally protect that write for you. However,
if you perform writes to a transactional container, close the container and then open it
without transactional support, then the writes to that container are not protected by a
transaction.

The following provides an example of how to create, use, commit, and abort a transaction:

Page 834/19/2005

Transactionally Protecting
Container Operations

#include "DbXml.hpp"
...

using namespace DbXml;
int main(void)
{
 ...
 // Environment, manager, and container opens omitted
 // for brevity
 ...

 std::string file1 = "doc1.xml";
 std::string file2 = "doc2.xml";
 XmlTransaction txn = myManager.createTransaction();
 try {
 // Need an update context for the put.
 XmlUpdateContext theContext = myManager.createUpdateContext();

 // Get the first input stream.
 XmlInputStream *theStream =
 myManager.createLocalFileInputStream(file1);

 // Put the first document
 myContainer.putDocument(txn, // the transaction object
 file1, // The document's name
 theStream, // The actual document.
 theContext, // The update context
 // (required).
 0); // Put flags.

 // Get the second input stream.
 theStream = myManager.createLocalFileInputStream(file2);

 // Put the second document
 myContainer.putDocument(txn, // the transaction object
 file2, // The document's name
 theStream, // The actual document.
 theContext, // The update context
 // (required).
 0); // Put flags.
 // Finished. Now commit the transaction.
 txn.commit();

 } catch(XmlException &e) {
 std::cerr << "Error in transaction: "
 << e.what() << "\n"
 << "Aborting." << std::endl;
 txn.abort();
 }

Page 844/19/2005

Transactionally Protecting
Container Operations

}

Transactions Considerations

Transactionally protecting your container operations is an important ingredient to ensuring
the integrity of your containers and databases. However, be aware that transactions may
impact your application's performance.

The Berkeley DB Programmer's Reference Guide contains a couple of sections that can
help you understand the performance impact transactions can have on your application.
See the following sections in the Berkeley DB Programmers Reference Guide for this
information:

• Transaction Tuning (http://www.sleepycat.com/docs/ref/transapp/tune.html)

• Transaction throughput
(http://www.sleepycat.com/docs/ref/transapp/throughput.html)

The next several section in this guide provides a rough introduction to this information.

There are two areas of consideration where it comes to transactional performance. The
first is disk I/O and the second has to do with lock contention.

Transaction Disk I/O

Normally when you perform a write to a BDB XML container, the write is not written to
disk until a sync is called on the in-memory cache. This syncing occurs either when you
force it by using DbEnv::sync, or when your environment is closed. (Note that you can
suppress the sync when you close your environment, but this is not the normal case.)

When you transactionally protect your database writes, however, the data modified by
the write is written to disk every time the transaction is committed. For applications that
run for extremely long periods of time, and which perform relatively few write operations,
this can will improve your application's performance because the commit only writes
those portions of the cache that were dirtied (written) by the transaction. A full sync,
on the other hand, writes the entire cache to disk which is considerably more expensive
than the partial write performed by a commit.

Transaction and Lock Contention

Because transactions guarantee isolation from all other threads of control, they must
perform locking, and hold those locks for the duration of the transaction. Holding these
locks may cause other thread of control to have to wait in order to be able to access the
locked data. How much this affects your application will depend on its data access
patterns.

Additionally, with transactional applications, it is possible that conflicting lock requests
from different threads of control can cause a deadlock to occur. To understand more
about deadlocks and how to handle them, please refer to the Deadlock detection section

Page 854/19/2005

Transactions Considerations

http://www.sleepycat.com/docs/ref/transapp/tune.html
http://www.sleepycat.com/docs/ref/transapp/throughput.html

of the Berkeley DB Programmer's Reference Guide (available at:
http://www.sleepycat.com/docs/ref/transapp/deadlock.html).

The performance penalty that you might pay due to the additional locking required by
your transactions is dependent on a number of factors:

• The amount of time that your transaction lives. If your transaction is short-lived (the
ideal situation), then there is less chance that it will be holding a lock required by
another transaction.

• The number of operations performed by the transaction. A transaction that must read
and write hundreds of documents will hold considerably more locks for potentially
longer periods of time than an application that reads and writes only a few documents.

• The number of transactions (typically this means threads of control) in existence at
any given time. The more transactions there are, the greater the chance for deadlock
contention.

Given this, for best results try to use only short-lived transactions. Also, try to keep the
number of operations performed by your transactions small, or try to keep the number
of transactions in existence small.

Index Operations and Transactions

One final thing to consider when using transactions with BDB XML has to do with re-indexing
containers. If you are performing index add, delete, or replace operations on a very large
container (tens of thousands of documents or greater), and you are using transactions to
protect these operations, then the operation can potentially fail with the following error
message:

Lock table is out of available locks

When you perform an index operation on a container, you are reading and writing every
document node in the container. This means that you are asking Berkeley DB to read and
write every record in the underlying database.

Every time Berkeley DB performs a read or a write operation, it acquires one or more
locks on the database pages on which it is operating. Normally, Berkeley DB releases those
locks once it has completed the operation. However, as discussed above, when you use
transactions to protect write operations, Berkeley DB holds all locks that it acquires until
the transaction completes (is either committed or aborted).

Locks are a finite resource, and so Berkeley DB maintains an internal data structure that
identifies how many locks it can use at any given time. By default, this number is 1,000
locks.

The end result is, if you are performing index operations on large containers and you are
using transactions to protect those operations, you can run out of locks. When this happens,
Berkeley DB fails the operation with the above noted error message.

Page 864/19/2005

Transactions Considerations

http://www.sleepycat.com/docs/ref/transapp/deadlock.html

To work around this problem, you must increase the number of locks available to Berkeley
DB. You do this with DbEnv::set_lk_max_locks(). See the online Berkeley DB
documentation for more information.

Page 874/19/2005

Transactions Considerations

	Getting Started with Berkeley DB XML
	Preface
	Conventions Used in this Book

	Chapter 1. Introduction to Berkeley DB XML
	Overview
	Benefits
	XML Features
	Database Features
	Languages and Platforms

	Getting and Using BDB XML
	Documentation and Support
	Library Dependencies
	Building and Running BDB XML Applications

	Chapter 2. Exception Handling and Debugging
	Debugging BDB XML Applications

	Chapter 3. XmlManager and Containers
	XmlManager
	Berkeley DB Environments
	Environment Open Flags
	Opening and Closing Environments

	XmlManager Instantiation and Destruction

	Managing Containers
	Container Flags
	Container Types
	Deleting and Renaming Containers

	Chapter 4. Adding XML Documents to Containers
	Input Streams and Strings
	Adding Documents
	Setting Metadata

	Chapter 5. Using XQuery with BDB XML
	XQuery: A Brief Introduction
	Referencing Portions of Documents using XQuery
	Predicates
	Numeric Predicates
	Boolean Predicates

	Context
	Relative Paths
	Namespaces

	Wildcards
	Navigation Functions
	collection()
	doc()

	Using FLWOR with BDB XML

	Retrieving BDB XML Documents using XQuery
	The Query Context
	Defining Namespaces
	Defining Variables
	Defining Return Types
	Defining the Evaluation Type

	Performing Queries
	Metadata Based Queries

	Examining Query Results
	Examining Document Values
	Examining Metadata

	Chapter 6. Managing Documents in Containers
	Deleting Documents
	Replacing Documents
	Modifying XML Documents
	Modification Parameters
	Modification Methods
	XmlModify::addAppendStep()
	XmlModify::addInsertAfterStep()
	XmlModify::addInsertBeforeStep()
	XmlModify::addRemoveStep()
	XmlModify::addRenameStep()
	XmlModify::addUpdateStep()

	Modification Example

	Chapter 7. Using BDB XML Indices
	Index Types
	Uniqueness
	Path Types
	Node Types
	Element and Attribute Nodes
	Metadata Nodes

	Key Types

	Syntax Types
	Specifying Index Strategies
	Using Strings to Specify Indices
	Using Enumerated Types to Specify Indices
	Enumerated Index Types
	Enumerated Index Syntax
	Enumerated Index Example

	Indexer Processing Notes
	Managing BDB XML Indices
	Adding Indices
	Deleting Indices
	Replacing Indices
	Examining Container Indices
	Working with Default Indices
	Looking Up Indexed Documents

	Verifying Indices using Query Plans
	Query Plans
	Using the dbxml Shell to Examine Query Plans

	Chapter 8. Using Transactions
	Initializing the Transactional Subsystem
	Transactionally Protecting Container Operations
	Transactions Considerations
	Transaction Disk I/O
	Transaction and Lock Contention
	Index Operations and Transactions

