
Oracle Berkeley DB

Getting Started with
Berkeley DB

for C

11g Release 2

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forumID=271

Published 6/25/2010

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

6/25/2010 Getting Started with DB Page iii

Table of Contents
Preface ... v

Conventions Used in this Book .. v
For More Information .. vi

1. Introduction to Berkeley DB ... 1
About This Manual ... 2
Berkeley DB Concepts ... 2
Access Methods .. 4

Selecting Access Methods .. 4
Choosing between BTree and Hash ... 5
Choosing between Queue and Recno .. 5

Database Limits and Portability ... 6
Environments ... 6
Error Returns ... 7
Getting and Using DB .. 7

2. Databases .. 9
Opening Databases .. 9
Closing Databases .. 10
Database Open Flags .. 11
Administrative Methods ... 11
Error Reporting Functions ... 13
Managing Databases in Environments ... 15
Database Example .. 16

3. Database Records ... 21
Using Database Records ... 21
Reading and Writing Database Records ... 22

Writing Records to the Database .. 22
Getting Records from the Database .. 23
Deleting Records ... 25
Data Persistence ... 25

Using C Structures with DB ... 26
C Structures with Pointers ... 28

Database Usage Example ... 30
4. Using Cursors ... 39

Opening and Closing Cursors ... 39
Getting Records Using the Cursor ... 40

Searching for Records ... 41
Working with Duplicate Records ... 44

Putting Records Using Cursors ... 46
Deleting Records Using Cursors .. 48
Replacing Records Using Cursors ... 49
Cursor Example ... 50

5. Secondary Databases ... 56
Opening and Closing Secondary Databases ... 57
Implementing Key Extractors .. 58

Working with Multiple Keys .. 60
Reading Secondary Databases .. 61

6/25/2010 Getting Started with DB Page iv

Deleting Secondary Database Records .. 62
Using Cursors with Secondary Databases ... 64
Database Joins .. 65

Using Join Cursors ... 66
Secondary Database Example .. 68

Secondary Databases with example_database_load 68
Secondary Databases with example_database_read 75

6. Database Configuration ... 79
Setting the Page Size .. 79

Overflow Pages ... 79
Locking .. 80
IO Efficiency .. 80
Page Sizing Advice ... 81

Selecting the Cache Size .. 82
BTree Configuration .. 82

Allowing Duplicate Records .. 82
Sorted Duplicates ... 83
Unsorted Duplicates .. 83
Configuring a Database to Support Duplicates 84

Setting Comparison Functions ... 85
Creating Comparison Functions ... 86

6/25/2010 Getting Started with DB Page v

Preface
Welcome to Berkeley DB (DB). This document introduces Berkeley DB 11g Release 2, which
provides DB library version 11.2.5.0.

This document is intended to provide a rapid introduction to the DB API set and related
concepts. The goal of this document is to provide you with an efficient mechanism with which
you can evaluate DB against your project's technical requirements. As such, this document is
intended for C developers and senior software architects who are looking for an in-process
data management solution. No prior experience with Berkeley DB is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Structure names are represented in monospaced font, as are method names. For example:
"DB->open() is a method on a DB handle."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples are displayed in a monospaced font on a shaded background. For example:

/* File: gettingstarted_common.h */
typedef struct stock_dbs {
 DB *inventory_dbp; /* Database containing inventory information */
 DB *vendor_dbp; /* Database containing vendor information */

 char *db_home_dir; /* Directory containing the database files */
 char *inventory_db_name; /* Name of the inventory database */
 char *vendor_db_name; /* Name of the vendor database */
} STOCK_DBS;

In some situations, programming examples are updated from one chapter to the next. When
this occurs, the new code is presented in monospaced bold font. For example:

typedef struct stock_dbs {
 DB *inventory_dbp; /* Database containing inventory information */
 DB *vendor_dbp; /* Database containing vendor information */
 DB *itemname_sdbp; /* Index based on the item name index */
 char *db_home_dir; /* Directory containing the database files */
 char *itemname_db_name; /* Itemname secondary database */
 char *inventory_db_name; /* Name of the inventory database */
 char *vendor_db_name; /* Name of the vendor database */
} STOCK_DBS;

Note

Finally, notes of interest are represented using a note block such as this.

6/25/2010 Getting Started with DB Page vi

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a DB application:

• Getting Started with Transaction Processing for C

• Berkeley DB Getting Started with Replicated Applications for C

• Berkeley DB Programmer's Reference Guide

• Berkeley DB Installation and Build Guide

• Berkeley DB Getting Started with the SQL APIs

• Berkeley DB C API

http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/C/Replication_C_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/programmer_reference/BDB_Prog_Reference.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/installation/BDB_Installation.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/bdb-sql/BDB-SQL-Guide.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/api_reference/C/BDB-C_APIReference.pdf

6/25/2010 Getting Started with DB Page 1

Chapter 1. Introduction to Berkeley DB
Welcome to Berkeley DB (DB). DB is a general-purpose embedded database engine that is
capable of providing a wealth of data management services. It is designed from the ground up
for high-throughput applications requiring in-process, bullet-proof management of mission-
critical data. DB can gracefully scale from managing a few bytes to terabytes of data. For the
most part, DB is limited only by your system's available physical resources.

You use DB through a series of programming APIs which give you the ability to read and write
your data, manage your database(s), and perform other more advanced activities such as
managing transactions.

Because DB is an embedded database engine, it is extremely fast. You compile and link it into
your application in the same way as you would any third-party library. This means that DB
runs in the same process space as does your application, allowing you to avoid the high cost of
interprocess communications incurred by stand-alone database servers.

To further improve performance, DB offers an in-memory cache designed to provide rapid
access to your most frequently used data. Once configured, cache usage is transparent. It
requires very little attention on the part of the application developer.

Beyond raw speed, DB is also extremely configurable. It provides several different ways of
organizing your data in its databases. Known as access methods, each such data organization
mechanism provides different characteristics that are appropriate for different data
management profiles. (Note that this manual focuses almost entirely on the BTree access
method as this is the access method used by the vast majority of DB applications).

To further improve its configurability, DB offers many different subsystems, each of which can
be used to extend DB's capabilities. For example, many applications require write-protection
of their data so as to ensure that data is never left in an inconsistent state for any reason
(such as software bugs or hardware failures). For those applications, a transaction subsystem
can be enabled and used to transactional-protect database writes.

The list of operating systems on which DB is available is too long to detail here. Suffice to say
that it is available on all major commercial operating systems, as well as on many embedded
platforms.

Finally, DB is available in a wealth of programming languages. DB is officially supported in C,
C++, and Java, but the library is also available in many other languages, especially scripting
languages such as Perl and Python.

Note

Before going any further, it is important to mention that DB is not a relational
database (although you could use it to build a relational database). Out of the box,
DB does not provide higher-level features such as triggers, or a high-level query
language such as SQL. Instead, DB provides just those minimal APIs required to store
and retrieve your data as efficiently as possible.

Introduction to Berkeley DB

6/25/2010 Getting Started with DB Page 2

About This Manual

This manual introduces DB. As such, this book does not examine intermediate or advanced
features such as threaded library usage or transactional usage. Instead, this manual provides a
step-by-step introduction to DB's basic concepts and library usage.

Specifically, this manual introduces DB environments, databases, database records, and
storage and retrieval of database records. This book also introduces cursors and their usage,
and it describes secondary databases.

For the most part, this manual focuses on the BTree access method. A chapter is given at
the end of this manual that describes some of the concepts involving BTree usage, such as
duplicate record management and comparison routines.

Examples are given throughout this book that are designed to illustrate API usage. At the
end of each chapter, a complete example is given that is designed to reinforce the concepts
covered in that chapter. In addition to being presented in this book, these final programs are
also available in the DB software distribution. You can find them in

DB_INSTALL/examples_c/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

This book uses the C programming languages for its examples. Note that versions of this book
exist for the C++ and Java languages as well.

Berkeley DB Concepts

Before continuing, it is useful to describe some of the larger concepts that you will encounter
when building a DB application.

Conceptually, DB databases contain records. Logically each record represents a single entry
in the database. Each such record contains two pieces of information: a key and a data. This
manual will on occasion describe a a record's key or a record's data when it is necessary to
speak to one or the other portion of a database record.

Because of the key/data pairing used for DB databases, they are sometimes thought of as a
two-column table. However, data (and sometimes keys, depending on the access method) can
hold arbitrarily complex data. Frequently, C structures and other such mechanisms are stored
in the record. This effectively turns a 2-column table into a table with n columns, where n-1
of those columns are provided by the structure's fields.

Note that a DB database is very much like a table in a relational database system in that most
DB applications use more than one database (just as most relational databases use more than
one table).

Unlike relational systems, however, a DB database contains a single collection of records
organized according to a given access method (BTree, Queue, Hash, and so forth). In a
relational database system, the underlying access method is generally hidden from you.

Introduction to Berkeley DB

6/25/2010 Getting Started with DB Page 3

In any case, frequently DB applications are designed so that a single database stores a specific
type of data (just as in a relational database system, a single table holds entries containing
a specific set of fields). Because most applications are required to manage multiple kinds of
data, a DB application will often use multiple databases.

For example, consider an accounting application. This kind of an application may manage data
based on bank accounts, checking accounts, stocks, bonds, loans, and so forth. An accounting
application will also have to manage information about people, banking institutions, customer
accounts, and so on. In a traditional relational database, all of these different kinds of
information would be stored and managed using a (probably very) complex series of tables.
In a DB application, all of this information would instead be divided out and managed using
multiple databases.

DB applications can efficiently use multiple databases using an optional mechanism called an
environment. For more information, see Environments (page 6).

You interact with most DB APIs using special structures that contain pointers to functions.
These callbacks are called methods because they look so much like a method on a C++ class.
The variable that you use to access these methods is often referred to as a handle. For
example, to use a database you will obtain a handle to that database.

Retrieving a record from a database is sometimes called getting the record because the
method that you use to retrieve the records is called get(). Similarly, storing database
records is sometimes called putting the record because you use the put() method to do this.

When you store, or put, a record to a database using its handle, the record is stored according
to whatever sort order is in use by the database. Sorting is mostly performed based on the
key, but sometimes the data is considered too. If you put a record using a key that already
exists in the database, then the existing record is replaced with the new data. However, if
the database supports duplicate records (that is, records with identical keys but different
data), then that new record is stored as a duplicate record and any existing records are not
overwritten.

If a database supports duplicate records, then you can use a database handle to retrieve only
the first record in a set of duplicate records.

In addition to using a database handle, you can also read and write data using a special
mechanism called a cursor. Cursors are essentially iterators that you can use to walk over the
records in a database. You can use cursors to iterate over a database from the first record
to the last, and from the last to the first. You can also use cursors to seek to a record. In the
event that a database supports duplicate records, cursors are the only way you can access all
the records in a set of duplicates.

Finally, DB provides a special kind of a database called a secondary database. Secondary
databases serve as an index into normal databases (called primary database to distinguish
them from secondaries). Secondary databases are interesting because DB records can hold
complex data types, but seeking to a given record is performed only based on that record's
key. If you wanted to be able to seek to a record based on some piece of information that is
not the key, then you enable this through the use of secondary databases.

Introduction to Berkeley DB

6/25/2010 Getting Started with DB Page 4

Access Methods

While this manual will focus primarily on the BTree access method, it is still useful to briefly
describe all of the access methods that DB makes available.

Note that an access method can be selected only when the database is created. Once
selected, actual API usage is generally identical across all access methods. That is, while some
exceptions exist, mechanically you interact with the library in the same way regardless of
which access method you have selected.

The access method that you should choose is gated first by what you want to use as a key, and
then secondly by the performance that you see for a given access method.

The following are the available access methods:

Access Method Description

BTree Data is stored in a sorted, balanced tree structure. Both the key
and the data for BTree records can be arbitrarily complex. That
is, they can contain single values such as an integer or a string, or
complex types such as a structure. Also, although not the default
behavior, it is possible for two records to use keys that compare
as equals. When this occurs, the records are considered to be
duplicates of one another.

Hash Data is stored in an extended linear hash table. Like BTree, the
key and the data used for Hash records can be of arbitrarily
complex data. Also, like BTree, duplicate records are optionally
supported.

Queue Data is stored in a queue as fixed-length records. Each record
uses a logical record number as its key. This access method is
designed for fast inserts at the tail of the queue, and it has a
special operation that deletes and returns a record from the head
of the queue.

This access method is unusual in that it provides record level
locking. This can provide beneficial performance improvements in
applications requiring concurrent access to the queue.

Recno Data is stored in either fixed or variable-length records. Like
Queue, Recno records use logical record numbers as keys.

Selecting Access Methods

To select an access method, you should first consider what you want to use as a key for you
database records. If you want to use arbitrary data (even strings), then you should use either
BTree or Hash. If you want to use logical record numbers (essentially integers) then you should
use Queue or Recno.

Once you have made this decision, you must choose between either BTree or Hash, or Queue
or Recno. This decision is described next.

Introduction to Berkeley DB

6/25/2010 Getting Started with DB Page 5

Choosing between BTree and Hash

For small working datasets that fit entirely in memory, there is no difference between BTree
and Hash. Both will perform just as well as the other. In this situation, you might just as well
use BTree, if for no other reason than the majority of DB applications use BTree.

Note that the main concern here is your working dataset, not your entire dataset. Many
applications maintain large amounts of information but only need to access some small
portion of that data with any frequency. So what you want to consider is the data that you will
routinely use, not the sum total of all the data managed by your application.

However, as your working dataset grows to the point where you cannot fit it all into memory,
then you need to take more care when choosing your access method. Specifically, choose:

• BTree if your keys have some locality of reference. That is, if they sort well and you
can expect that a query for a given key will likely be followed by a query for one of its
neighbors.

• Hash if your dataset is extremely large. For any given access method, DB must maintain a
certain amount of internal information. However, the amount of information that DB must
maintain for BTree is much greater than for Hash. The result is that as your dataset grows,
this internal information can dominate the cache to the point where there is relatively little
space left for application data. As a result, BTree can be forced to perform disk I/O much
more frequently than would Hash given the same amount of data.

Moreover, if your dataset becomes so large that DB will almost certainly have to perform
disk I/O to satisfy a random request, then Hash will definitely out perform BTree because it
has fewer internal records to search through than does BTree.

Choosing between Queue and Recno

Queue or Recno are used when the application wants to use logical record numbers for the
primary database key. Logical record numbers are essentially integers that uniquely identify
the database record. They can be either mutable or fixed, where a mutable record number
is one that might change as database records are stored or deleted. Fixed logical record
numbers never change regardless of what database operations are performed.

When deciding between Queue and Recno, choose:

• Queue if your application requires high degrees of concurrency. Queue provides record-level
locking (as opposed to the page-level locking that the other access methods use), and this
can result in significantly faster throughput for highly concurrent applications.

Note, however, that Queue provides support only for fixed length records. So if the size of
the data that you want to store varies widely from record to record, you should probably
choose an access method other than Queue.

• Recno if you want mutable record numbers. Queue is only capable of providing fixed record
numbers. Also, Recno provides support for databases whose permanent storage is a flat
text file. This is useful for applications looking for fast, temporary storage while the data is
being read or modified.

Introduction to Berkeley DB

6/25/2010 Getting Started with DB Page 6

Database Limits and Portability

Berkeley DB provides support for managing everything from very small databases that fit
entirely in memory, to extremely large databases holding millions of records and terabytes
of data. DB databases can store up to 256 terabytes of data. Individual record keys or record
data can store up to 4 gigabytes of data.

DB's databases store data in a binary format that is portable across platforms, even of
differing endian-ness. Be aware, however, that portability aside, some performance issues
can crop up in the event that you are using little endian architecture. See Setting Comparison
Functions (page 85) for more information.

Also, DB's databases and data structures are designed for concurrent access — they are thread-
safe, and they share well across multiple processes. That said, in order to allow multiple
processes to share databases and the cache, DB makes use of mechanisms that do not work
well on network-shared drives (NFS or Windows networks shares, for example). For this
reason, you cannot place your DB databases and environments on network-mounted drives.

Environments

This manual is meant as an introduction to the Berkeley DB library. Consequently, it describes
how to build a very simple, single-threaded application and so this manual omits a great many
powerful aspects of the DB database engine that are not required by simple applications. One
of these is important enough that it warrants a brief overview here: environments.

While environments are frequently not used by applications running in embedded
environments where every byte counts, they will be used by virtually any other DB application
requiring anything other than the bare minimum functionality.

An environment is essentially an encapsulation of one or more databases. You open an
environment and then you open databases in that environment. When you do so, the
databases are created/located in a location relative to the environment's home directory.

Environments offer a great many features that a stand-alone DB database cannot offer:

• Multi-database files.

It is possible in DB to contain multiple databases in a single physical file on disk. This is
desirable for those application that open more than a few handful of databases. However,
in order to have more than one database contained in a single physical file, your application
must use an environment.

• Multi-thread and multi-process support

When you use an environment, resources such as the in-memory cache and locks can be
shared by all of the databases opened in the environment. The environment allows you to
enable subsystems that are designed to allow multiple threads and/or processes to access
DB databases. For example, you use an environment to enable the concurrent data store
(CDS), the locking subsystem, and/or the shared memory buffer pool.

• Transactional processing

Introduction to Berkeley DB

6/25/2010 Getting Started with DB Page 7

DB offers a transactional subsystem that allows for full ACID-protection of your database
writes. You use environments to enable the transactional subsystem, and then subsequently
to obtain transaction IDs.

• High availability (replication) support

DB offers a replication subsystem that enables single-master database replication with
multiple read-only copies of the replicated data. You use environments to enable and then
manage this subsystem.

• Logging subsystem

DB offers write-ahead logging for applications that want to obtain a high-degree of
recoverability in the face of an application or system crash. Once enabled, the logging
subsystem allows the application to perform two kinds of recovery ("normal" and
"catastrophic") through the use of the information contained in the log files.

For more information on these topics, see the Berkeley DB Getting Started with Transaction
Processing guide and the Berkeley DB Getting Started with Replicated Applications guide.

Error Returns

Before continuing, it is useful to spend a few moments on error returns in DB.

The DB interfaces always return a value of 0 on success. If the operation does not succeed for
any reason, the return value will be non-zero.

If a system error occurred (for example, DB ran out of disk space, or permission to access a
file was denied, or an illegal argument was specified to one of the interfaces), DB returns an
errno value. All of the possible values of errno are greater than 0.

If the operation did not fail due to a system error, but was not successful either, DB returns
a special error value. For example, if you tried to retrieve data from the database and the
record for which you are searching does not exist, DB would return DB_NOTFOUND, a special
error value that means the requested key does not appear in the database. All of the possible
special error values are less than 0.

DB also offers programmatic support for displaying error return values. First, the db_strerror
function returns a pointer to the error message corresponding to any DB error return, similar
to the ANSI C strerror function, but is able to handle both system error returns and DB-
specific return values.

Second, there are two error functions, DB->err and DB->errx. These functions work like the
ANSI C printf function, taking a printf-style format string and argument list, and optionally
appending the standard error string to a message constructed from the format string and other
arguments.

Getting and Using DB

You can obtain DB by visiting the Berkeley DB download page: http://www.oracle.com/
technology/software/products/berkeley-db/db/index.html.

http://www.oracle.com/technology/software/products/berkeley-db/db/index.html
http://www.oracle.com/technology/software/products/berkeley-db/db/index.html

Introduction to Berkeley DB

6/25/2010 Getting Started with DB Page 8

To install DB, untar or unzip the distribution to the directory of your choice. You will then
need to build the product binaries. For information on building DB, see DB_INSTALL/docs/
index.html, where DB_INSTALL is the directory where you unpacked DB. On that page, you
will find links to platform-specific build instructions.

That page also contains links to more documentation for DB. In particular, you will find
links for the Berkeley DB Programmer's Reference Guide as well as the API reference
documentation.

6/25/2010 Getting Started with DB Page 9

Chapter 2. Databases
In Berkeley DB, a database is a collection of records. Records, in turn, consist of key/data
pairings.

Conceptually, you can think of a database as containing a two-column table where column 1
contains a key and column 2 contains data. Both the key and the data are managed using DBT
structures (see Database Records (page 21) for details on this structure). So, fundamentally,
using a DB database involves putting, getting, and deleting database records, which in turns
involves efficiently managing information contained in DBT structures. The next several
chapters of this book are dedicated to those activities.

Opening Databases

To open a database, you must first use the db_create() function to initialize a DB handle.
Once you have initialized the DB handle, you use its open() method to open the database.

Note that by default, DB does not create databases if they do not already exist. To override
this behavior, specify the DB_CREATE flag on the open() method.

The following code fragment illustrates a database open:

#include <db.h>

...

DB *dbp; /* DB structure handle */
u_int32_t flags; /* database open flags */
int ret; /* function return value */

/* Initialize the structure. This
 * database is not opened in an environment,
 * so the environment pointer is NULL. */
ret = db_create(&dbp, NULL, 0);
if (ret != 0) {
 /* Error handling goes here */
}

/* Database open flags */
flags = DB_CREATE; /* If the database does not exist,
 * create it.*/

/* open the database */
ret = dbp->open(dbp, /* DB structure pointer */
 NULL, /* Transaction pointer */
 "my_db.db", /* On-disk file that holds the database. */
 NULL, /* Optional logical database name */
 DB_BTREE, /* Database access method */
 flags, /* Open flags */

Databases

6/25/2010 Getting Started with DB Page 10

 0); /* File mode (using defaults) */
if (ret != 0) {
 /* Error handling goes here */
}

Closing Databases

Once you are done using the database, you must close it. You use the DB->close() method to
do this.

Closing a database causes it to become unusable until it is opened again. It is recommended
that you close any open cursors before closing your database. Active cursors during a database
close can cause unexpected results, especially if any of those cursors are writing to the
database. You should always make sure that all your database accesses have completed before
closing your database.

Cursors are described in Using Cursors (page 39) later in this manual.

Be aware that when you close the last open handle for a database, then by default its cache
is flushed to disk. This means that any information that has been modified in the cache is
guaranteed to be written to disk when the last handle is closed. You can manually perform
this operation using the DB->sync() method, but for normal shutdown operations it is not
necessary. For more information about syncing your cache, see Data Persistence (page 25).

The following code fragment illustrates a database close:

#include <db.h>
...
DB *dbp; /* DB struct handle */
...

/*
 * Database open and access operations
 * happen here.
 */

...

/* When we're done with the database, close it. */
if (dbp != NULL)
 dbp->close(dbp, 0);

Databases

6/25/2010 Getting Started with DB Page 11

Database Open Flags

The following are the flags that you may want to use at database open time. Note that this
list is not exhaustive — it includes only those flags likely to be of interest for introductory,
single-threaded database applications. For a complete list of the flags available to you, see
the Berkeley DB C API guide.

Note

To specify more than one flag on the call to DB->open(), you must bitwise inclusively
OR them together:

u_int32_t open_flags = DB_CREATE | DB_EXCL;

• DB_CREATE

If the database does not currently exist, create it. By default, the database open fails if the
database does not already exist.

• DB_EXCL

Exclusive database creation. Causes the database open to fail if the database already exists.
This flag is only meaningful when used with DB_CREATE.

• DB_RDONLY

Open the database for read operations only. Causes any subsequent database write
operations to fail.

• DB_TRUNCATE

Physically truncate (empty) the on-disk file that contains the database. Causes DB to delete
all databases physically contained in that file.

Administrative Methods

The following DB methods may be useful to you when managing DB databases:

• DB->get_open_flags()

Returns the current open flags. It is an error to use this method on an unopened database.

#include <db.h>
...
DB *dbp;
u_int32_t open_flags;

/* Database open and subsequent operations omitted for clarity */

dbp->get_open_flags(dbp, &open_flags);

• DB->remove()

Databases

6/25/2010 Getting Started with DB Page 12

Removes the specified database. If no value is given for the database parameter, then the
entire file referenced by this method is removed.

Never remove a database that has handles opened for it. Never remove a file that contains
databases with opened handles.

#include <db.h>
...
DB *dbp;

/* Database handle creation omitted for clarity */

dbp->remove(dbp, /* Database pointer */
 "mydb.db", /* Database file to remove */
 NULL, /* Database to remove. This is
 * NULL so the entire file is
 * removed. */
 0); /* Flags. None used. */

• DB->rename()

Renames the specified database. If no value is given for the database parameter, then the
entire file referenced by this method is renamed.

Never rename a database that has handles opened for it. Never rename a file that contains
databases with opened handles.

#include <db.h>
...
DB *dbp;

/* Database handle creation omitted for clarity */

dbp->rename(dbp, /* Database pointer */
 "mydb.db", /* Database file to rename */
 NULL, /* Database to rename. This is
 * NULL so the entire file is
 * renamed. */
 "newdb.db", /* New database file name */
 0); /* Flags. None used. */

Databases

6/25/2010 Getting Started with DB Page 13

Error Reporting Functions

To simplify error reporting and handling, the DB structure offers several useful methods.

• set_errcall()

Defines the function that is called when an error message is issued by DB. The error
prefix and message are passed to this callback. It is up to the application to display this
information correctly.

• set_errfile()

Sets the C library FILE * to be used for displaying error messages issued by the DB library.

• set_errpfx()

Sets the prefix used for any error messages issued by the DB library.

• err()

Issues an error message. The error message is sent to the callback function as defined by
set_errcall. If that method has not been used, then the error message is sent to the
file defined by set_errfile(). If none of these methods have been used, then the error
message is sent to standard error.

The error message consists of the prefix string (as defined by set_errpfx()), an optional
printf-style formatted message, the error message, and a trailing newline.

• errx()

Behaves identically to err() except that the DB message text associated with the supplied
error value is not appended to the error string.

In addition, you can use the db_strerror() function to directly return the error string that
corresponds to a particular error number.

For example, to send all error messages for a given database handle to a callback for
handling, first create your callback. Do something like this:

/*
 * Function called to handle any database error messages
 * issued by DB.
 */
void
my_error_handler(const char *error_prefix, char *msg)
{
 /*
 * Put your code to handle the error prefix and error
 * message here. Note that one or both of these parameters
 * may be NULL depending on how the error message is issued
 * and how the DB handle is configured.

Databases

6/25/2010 Getting Started with DB Page 14

 */
}

And then register the callback as follows:

#include <db.h>
#include <stdio.h>

...

DB *dbp;
int ret;

/*
 * Create a database and initialize it for error
 * reporting.
 */
ret = db_create(&dbp, NULL, 0);
if (ret != 0) {
 fprintf(stderr, "%s: %s\n", "my_program",
 db_strerror(ret));
 return(ret);
}

/* Set up error handling for this database */
dbp->set_errcall(dbp, my_error_handler);
dbp->set_errpfx(dbp, "my_example_program");

And to issue an error message:

ret = dbp->open(dbp,
 NULL,
 "mydb.db",
 NULL,
 DB_BTREE,
 DB_CREATE,
 0);
if (ret != 0) {
 dbp->err(dbp, ret,
 "Database open failed: %s", "mydb.db");
 return(ret);
}

Databases

6/25/2010 Getting Started with DB Page 15

Managing Databases in Environments

In Environments (page 6), we introduced environments. While environments are not used in
the example built in this book, they are so commonly used for a wide class of DB applications
that it is necessary to show their basic usage, if only from a completeness perspective.

To use an environment, you must first create the environment handle using , and then open
it. At open time, you must identify the directory in which it resides. This directory must
exist prior to the open attempt. You can also identify open properties, such as whether the
environment can be created if it does not already exist.

You will also need to initialize the in-memory cache when you open your environment.

For example, to create an environment handle and open an environment:

#include <db.h>
...
DB_ENV *myEnv; /* Env structure handle */
DB *dbp; /* DB structure handle */
u_int32_t db_flags; /* database open flags */
u_int32_t env_flags; /* env open flags */
int ret; /* function return value */

/*
 Create an environment object and initialize it for error
 reporting.
*/
ret = db_env_create(&myEnv, 0);
if (ret != 0) {
 fprintf(stderr, "Error creating env handle: %s\n", db_strerror(ret));
 return -1;
}

/* Open the environment. */
env_flags = DB_CREATE | /* If the environment does not exist,
 * create it. */
 DB_INIT_MPOOL; /* Initialize the in-memory cache. */

ret = myEnv->open(myEnv, /* DB_ENV ptr */
 "/export1/testEnv", /* env home directory */
 env_flags, /* Open flags */
 0); /* File mode (default) */
if (ret != 0) {
 fprintf(stderr, "Environment open failed: %s", db_strerror(ret));
 return -1;
}

Once an environment is opened, you can open databases in it. Note that by default databases
are stored in the environment's home directory, or relative to that directory if you provide any
sort of a path in the database's file name:

Databases

6/25/2010 Getting Started with DB Page 16

/*
 * Initialize the DB structure. Pass the pointer
 * to the environment in which this DB is opened.
 */
ret = db_create(&dbp, myEnv, 0);
if (ret != 0) {
 /* Error handling goes here */
}

/* Database open flags */
db_flags = DB_CREATE; /* If the database does not exist,
 * create it.*/

/* open the database */
ret = dbp->open(dbp, /* DB structure pointer */
 NULL, /* Transaction pointer */
 "my_db.db", /* On-disk file that holds the database. */
 NULL, /* Optional logical database name */
 DB_BTREE, /* Database access method */
 db_flags, /* Open flags */
 0); /* File mode (using defaults) */
if (ret != 0) {
 /* Error handling goes here */
}

When you are done with an environment, you must close it. It is recommended that before
closing an environment, you close any open databases.
/*
* Close the database and environment
*/

if (dbp != NULL) {
 dbp->close(dbp, 0);
}

if (myEnv != NULL) {
 myEnv->close(myEnv, 0);
}

Database Example

Throughout this book we will build a couple of applications that load and retrieve inventory
data from DB databases. While we are not yet ready to begin reading from or writing to our
databases, we can at least create some important structures and functions that we will use to
manage our databases.

Note that subsequent examples in this book will build on this code to perform the more
interesting work of writing to and reading from the databases.

Note that you can find the complete implementation of these functions in:

Databases

6/25/2010 Getting Started with DB Page 17

DB_INSTALL/examples_c/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

Example 2.1. The stock_db Structure

To begin, we create a structure that we will use to hold all our database pointers and
database names:

/* File: gettingstarted_common.h */
#include <db.h>

typedef struct stock_dbs {
 DB *inventory_dbp; /* Database containing inventory information */
 DB *vendor_dbp; /* Database containing vendor information */

 char *db_home_dir; /* Directory containing the database files */
 char *inventory_db_name; /* Name of the inventory database */
 char *vendor_db_name; /* Name of the vendor database */
} STOCK_DBS;

/* Function prototypes */
int databases_setup(STOCK_DBS *, const char *, FILE *);
int databases_close(STOCK_DBS *);
void initialize_stockdbs(STOCK_DBS *);
int open_database(DB **, const char *, const char *,
 FILE *);
void set_db_filenames(STOCK_DBS *my_stock);

Example 2.2. The stock_db Utility Functions

Before continuing, we want some utility functions that we use to make sure the stock_db
structure is in a sane state before using it. One is a simple function that initializes all the
structure's pointers to a useful default.The second is more interesting in that it is used to
place a common path on all our database names so that we can explicitly identify where all
the database files should reside.

/* File: gettingstarted_common.c */
#include "gettingstarted_common.h"

/* Initializes the STOCK_DBS struct.*/
void
initialize_stockdbs(STOCK_DBS *my_stock)
{
 my_stock->db_home_dir = DEFAULT_HOMEDIR;
 my_stock->inventory_dbp = NULL;
 my_stock->vendor_dbp = NULL;

 my_stock->inventory_db_name = NULL;
 my_stock->vendor_db_name = NULL;

Databases

6/25/2010 Getting Started with DB Page 18

}

/* Identify all the files that will hold our databases. */
void
set_db_filenames(STOCK_DBS *my_stock)
{
 size_t size;

 /* Create the Inventory DB file name */
 size = strlen(my_stock->db_home_dir) + strlen(INVENTORYDB) + 1;
 my_stock->inventory_db_name = malloc(size);
 snprintf(my_stock->inventory_db_name, size, "%s%s",
 my_stock->db_home_dir, INVENTORYDB);

 /* Create the Vendor DB file name */
 size = strlen(my_stock->db_home_dir) + strlen(VENDORDB) + 1;
 my_stock->vendor_db_name = malloc(size);
 snprintf(my_stock->vendor_db_name, size, "%s%s",
 my_stock->db_home_dir, VENDORDB);
}

Example 2.3. open_database() Function

We are opening multiple databases, and we are opening those databases using identical flags
and error reporting settings. It is therefore worthwhile to create a function that performs this
operation for us:

/* File: gettingstarted_common.c */

/* Opens a database */
int
open_database(DB **dbpp, /* The DB handle that we are opening */
 const char *file_name, /* The file in which the db lives */
 const char *program_name, /* Name of the program calling this
 * function */
 FILE *error_file_pointer) /* File where we want error messages
 sent */
{
 DB *dbp; /* For convenience */
 u_int32_t open_flags;
 int ret;

 /* Initialize the DB handle */
 ret = db_create(&dbp, NULL, 0);
 if (ret != 0) {
 fprintf(error_file_pointer, "%s: %s\n", program_name,
 db_strerror(ret));
 return(ret);
 }

Databases

6/25/2010 Getting Started with DB Page 19

 /* Point to the memory malloc'd by db_create() */
 *dbpp = dbp

 /* Set up error handling for this database */
 dbp->set_errfile(dbp, error_file_pointer);
 dbp->set_errpfx(dbp, program_name);

 /* Set the open flags */
 open_flags = DB_CREATE;

 /* Now open the database */
 ret = dbp->open(dbp, /* Pointer to the database */
 NULL, /* Txn pointer */
 file_name, /* File name */
 NULL, /* Logical db name (unneeded) */
 DB_BTREE, /* Database type (using btree) */
 open_flags, /* Open flags */
 0); /* File mode. Using defaults */
 if (ret != 0) {
 dbp->err(dbp, ret, "Database '%s' open failed.", file_name);
 return(ret);
 }

 return (0);
}

Example 2.4. The databases_setup() Function

Now that we have our open_database() function, we can use it to open a database. We now
create a simple function that will open all our databases for us.

/* opens all databases */
int
databases_setup(STOCK_DBS *my_stock, const char *program_name,
 FILE *error_file_pointer)
{
 int ret;

 /* Open the vendor database */
 ret = open_database(&(my_stock->vendor_dbp),
 my_stock->vendor_db_name,
 program_name, error_file_pointer);
 if (ret != 0)
 /*
 * Error reporting is handled in open_database() so just return
 * the return code here.
 */
 return (ret);

 /* Open the inventory database */

Databases

6/25/2010 Getting Started with DB Page 20

 ret = open_database(&(my_stock->inventory_dbp),
 my_stock->inventory_db_name,
 program_name, error_file_pointer);
 if (ret != 0)
 /*
 * Error reporting is handled in open_database() so just return
 * the return code here.
 */
 return (ret);

 printf("databases opened successfully\n");
 return (0);
}

Example 2.5. The databases_close() Function

Finally, it is useful to have a function that can close all our databases for us:

/* Closes all the databases. */
int
databases_close(STOCK_DBS *my_stock)
{
 int ret;
 /*
 * Note that closing a database automatically flushes its cached data
 * to disk, so no sync is required here.
 */

 if (my_stock->inventory_dbp != NULL) {
 ret = my_stock->inventory_dbp->close(my_stock->inventory_dbp, 0);
 if (ret != 0)
 fprintf(stderr, "Inventory database close failed: %s\n",
 db_strerror(ret));
 }

 if (my_stock->vendor_dbp != NULL) {
 ret = my_stock->vendor_dbp->close(my_stock->vendor_dbp, 0);
 if (ret != 0)
 fprintf(stderr, "Vendor database close failed: %s\n",
 db_strerror(ret));
 }

 printf("databases closed.\n");
 return (0);
}

6/25/2010 Getting Started with DB Page 21

Chapter 3. Database Records
DB records contain two parts — a key and some data. Both the key and its corresponding data
are encapsulated in DBT structures. Therefore, to access a DB record, you need two such
structures, one for the key and one for the data.

DBT structures provide a void * field that you use to point to your data, and another field
that identifies the data length. They can therefore be used to store anything from simple
primitive data to complex structures so long as the information you want to store resides in a
single contiguous block of memory.

This chapter describes DBT usage. It also introduces storing and retrieving key/value pairs
from a database.

Using Database Records
Each database record is comprised of two DBT structures — one for the key and another for
the data.

To store a database record where the key and/or the data are primitive data (int, float,
and so forth), or where the key and/or the data contain an array, we need only to point to the
memory location where that data resides and identify its length. For example:
#include <db.h>
#include <string.h>

...

DBT key, data;
float money = 122.45;
char *description = "Grocery bill.";

/* Zero out the DBTs before using them. */
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

key.data = &money;
key.size = sizeof(float);

data.data = description;
data.size = strlen(description) + 1;

To retrieve the record, simply assign the void * returned in the DBT to the appropriate
variable.

Note that in the following example we do not allow DB to assign the memory for the retrieval
of the money value. The reason why is that some systems may require float values to have a
specific alignment, and the memory as returned by DB may not be properly aligned (the same
problem may exist for structures on some systems). We tell DB to use our memory instead of
its own by specifying the DB_DBT_USERMEM flag. Be aware that when we do this, we must also
identify how much user memory is available through the use of the ulen field.

Database Records

6/25/2010 Getting Started with DB Page 22

#include <db.h>
#include <string.h>

...

float money;
DBT key, data;
char *description;

/* Initialize the DBTs */
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

key.data = &money;
key.ulen = sizeof(float);
key.flags = DB_DBT_USERMEM;

/* Database retrieval code goes here */

/*
 * Money is set into the memory that we supplied.
 */
description = data.data;

Reading and Writing Database Records

When reading and writing database records, be aware that there are some slight differences
in behavior depending on whether your database supports duplicate records. Two or more
database records are considered to be duplicates of one another if they share the same key.
The collection of records sharing the same key are called a duplicates set. In DB, a given key
is stored only once for a single duplicates set.

By default, DB databases do not support duplicate records. Where duplicate records are
supported, cursors (see below) are typically used to access all of the records in the duplicates
set.

DB provides two basic mechanisms for the storage and retrieval of database key/data pairs:

• The DBT->put() and DBT->get() methods provide the easiest access for all non-duplicate
records in the database. These methods are described in this section.

• Cursors provide several methods for putting and getting database records. Cursors and their
database access methods are described in Using Cursors (page 39).

Writing Records to the Database

Records are stored in the database using whatever organization is required by the access
method that you have selected. In some cases (such as BTree), records are stored in a sort
order that you may want to define (see Setting Comparison Functions (page 85) for more
information).

Database Records

6/25/2010 Getting Started with DB Page 23

In any case, the mechanics of putting and getting database records do not change once you
have selected your access method, configured your sorting routines (if any), and opened your
database. From your code's perspective, a simple database put and get is largely the same no
matter what access method you are using.

You use DB->put() to put, or write, a database record. This method requires you to provide
the record's key and data in the form of a pair of DBT structures. You can also provide one or
more flags that control DB's behavior for the database write.

Of the flags available to this method, DB_NOOVERWRITE may be interesting to you. This flag
disallows overwriting (replacing) an existing record in the database. If the provided key
already exists in the database, then this method returns DB_KEYEXIST even if the database
supports duplicates.

For example:
#include <db.h>
#include <string.h>

...

char *description = "Grocery bill.";
DBT key, data;
DB *my_database;
int ret;
float money;

/* Database open omitted for clarity */

money = 122.45;

/* Zero out the DBTs before using them. */
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

key.data = &money;
key.size = sizeof(float);

data.data = description;
data.size = strlen(description) +1;

ret = my_database->put(my_database, NULL, &key, &data, DB_NOOVERWRITE);
if (ret == DB_KEYEXIST) {
 my_database->err(my_database, ret,
 "Put failed because key %f already exists", money);
}

Getting Records from the Database

You can use the DB->get() method to retrieve database records. Note that if your database
supports duplicate records, then by default this method will only return the first record in a

Database Records

6/25/2010 Getting Started with DB Page 24

duplicate set. For this reason, if your database supports duplicates, the common solution is to
use a cursor to retrieve records from it. Cursors are described in Using Cursors (page 39).

(You can also retrieve a set of duplicate records using a bulk get. To do this, you use the
DB_MULTIPLE flag on the call to DB->get(). For more information, see the DB Programmer's
Reference Guide).

By default, DB->get() returns the first record found whose key matches the key provide
on the call to this method. If your database supports duplicate records, you can change this
behavior slightly by supplying the DB_GET_BOTH flag. This flag causes DB->get() to return the
first record that matches the provided key and data.

If the specified key and/or data does not exist in the database, this method returns
DB_NOTFOUND.

#include <db.h>
#include <string.h>

...

DBT key, data;
DB *my_database;
float money;
char description[DESCRIPTION_SIZE + 1];

/* Database open omitted for clarity */

money = 122.45;

/* Zero out the DBTs before using them. */
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

key.data = &money;
key.size = sizeof(float);

data.data = description;
data.ulen = DESCRIPTION_SIZE + 1;
data.flags = DB_DBT_USERMEM;
my_database->get(my_database, NULL, &key, &data, 0);

/*
 * Description is set into the memory that we supplied.
 */

Note that in this example, the data.size field would be automatically set to the size of the
retrieved data.

Database Records

6/25/2010 Getting Started with DB Page 25

Deleting Records

You can use the DB->del() method to delete a record from the database. If your database
supports duplicate records, then all records associated with the provided key are deleted. To
delete just one record from a list of duplicates, use a cursor. Cursors are described in Using
Cursors (page 39).

You can also delete every record in the database by using DB->truncate().

For example:

#include <db.h>
#include <string.h>

...

DBT key;
DB *my_database;
float money = 122.45;

/* Database open omitted for clarity */

/* Zero out the DBTs before using them. */
memset(&key, 0, sizeof(DBT));

key.data = &money;
key.size = sizeof(float);

my_database->del(my_database, NULL, &key, 0);

Data Persistence

When you perform a database modification, your modification is made in the in-memory
cache. This means that your data modifications are not necessarily flushed to disk, and so
your data may not appear in the database after an application restart.

Note that as a normal part of closing a database, its cache is written to disk. However, in the
event of an application or system failure, there is no guarantee that your databases will close
cleanly. In this event, it is possible for you to lose data. Under extremely rare circumstances,
it is also possible for you to experience database corruption.

Therefore, if you care if your data is durable across system failures, and to guard against the
rare possibility of database corruption, you should use transactions to protect your database
modifications. Every time you commit a transaction, DB ensures that the data will not be lost
due to application or system failure. Transaction usage is described in the Berkeley DB Getting
Started with Transaction Processing guide.

If you do not want to use transactions, then the assumption is that your data is of a nature
that it need not exist the next time your application starts. You may want this if, for example,
you are using DB to cache data relevant only to the current application runtime.

Database Records

6/25/2010 Getting Started with DB Page 26

If, however, you are not using transactions for some reason and you still want some guarantee
that your database modifications are persistent, then you should periodically call DB-
>sync(). Syncs cause any dirty entries in the in-memory cache and the operating system's
file cache to be written to disk. As such, they are quite expensive and you should use them
sparingly.

Remember that by default a sync is performed any time a non-transactional database is closed
cleanly. (You can override this behavior by specifying DB_NOSYNC on the call to DB->close().)
That said, you can manually run a sync by calling DB->sync().

Note
If your application or system crashes and you are not using transactions, then you
should either discard and recreate your databases, or verify them. You can verify a
database using DB->verify(). If your databases do not verify cleanly, use the db_dump
command to salvage as much of the database as is possible. Use either the -R or -r
command line options to control how aggressive db_dump should be when salvaging
your databases.

Using C Structures with DB
Storing data in structures is a handy way to pack varied types of information into each
database record. DB databases are sometimes thought of as a two column table where column
1 is the key and column 2 is the data. By using structures, you can effectively turn this table
into n columns where n-1 columns are contained in the structure.

So long as a C structure contains fields that are not pointers, you can safely store and retrieve
them in the same way as you would any primitive datatype. The following code fragment
illustrates this:
#include <db.h>
#include <string.h>

typedef struct my_struct {
 int id;
 char familiar_name[MAXLINE]; /* Some suitably large value */
 char surname[MAXLINE];
} MY_STRUCT;

...

DBT key, data;
DB *my_database;
MY_STRUCT user;
char *fname = "David";
char *sname = "Rider";

/* Database open omitted for clarity */

user.id = 1;
strncpy(user.familiar_name, fname, strlen(fname)+1);

Database Records

6/25/2010 Getting Started with DB Page 27

strncpy(user.surname, sname, strlen(sname)+1);

/* Zero out the DBTs before using them. */
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

key.data = &(user.id);
key.size = sizeof(int);

data.data = &user;
data.size = sizeof(MY_STRUCT);

my_database->put(my_database, NULL, &key, &data, DB_NOOVERWRITE);

To retrieve the structure, make sure you supply your own memory. The reason why is that like
real numbers, some systems require structures to be aligned in a specific way. Because it is
possible that the memory DB provides is not aligned properly, for safest result simply use your
own memory:

#include <db.h>
#include <string.h>

...

DBT key, data;
DB *my_database;
MY_STRUCT user;

/* Database open omitted for clarity */

/* Zero out the DBTs before using them. */
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

/* Initialize the structure */
memset(&user, 0, sizeof(MY_STRUCT));
user.id = 1;

key.data = &user.id;
key.size = sizeof(int);

/* Use our memory to retrieve the structure */
data.data = &user;
data.ulen = sizeof(MY_STRUCT);
data.flags = DB_DBT_USERMEM;

my_database->get(my_database, NULL, &key, &data, 0);

printf("Familiar name: %s\n", user.familiar_name);
printf("Surname: %s\n", user.surname);

Database Records

6/25/2010 Getting Started with DB Page 28

Be aware that while this is the easiest way to manage structures stored in DB databases, this
approach does suffer from causing your database to be larger than is strictly necessary. Each
structure stored in the database is of a fixed size, and you do not see any space savings from
storing a (for example) 5 character surname versus a 20 character surname.

For a simple example such as this, the padding stored with each record is probably not
critical. However, if you are storing structures that contain a very large number of character
arrays, or if you are simply storing millions of records, then you may want to avoid this
approach. The wasted space in each record will only serve to make your databases larger than
need be, which will in turn require a larger cache and more disk I/O than you would ordinarily
need.

An alternative approach is described next.

C Structures with Pointers

It is often necessary in C structures to use fields that are pointers to dynamically allocated
memory. This is particularly true if you want to store character strings (or any kind of an array
for that matter), and you want to avoid any overhead caused by pre-designating the size of
the array.

When storing structures like these you need to make sure that all of the data pointed to and
contained by the structure is lined up in a single contiguous block of memory. Remember that
DB stores data located at a specific address and of a particular size. If your structure includes
fields that are pointing to dynamically allocated memory, then the data that you want to store
can be located in different, not necessarily contiguous, locations on the heap.

The easiest way to solve this problem is to pack your data into a single memory location and
then store the data in that location. (This process is sometimes called marshalling the data.)
For example:
#include <db.h>
#include <string.h>
#include <stdlib.h>

typedef struct my_struct {
 int id;
 char *familiar_name;
 char *surname;
} MY_STRUCT;

...

DBT key, data;
DB *my_database;
MY_STRUCT user;
int buffsize, bufflen;
char fname[] = "Pete";
char sname[10];
char *databuff;

strncpy(sname, "Oar", strlen("Oar")+1);

Database Records

6/25/2010 Getting Started with DB Page 29

/* Database open omitted for clarity */

user.id = 1;
user.familiar_name = fname;
user.surname = sname;

/* Some of the structure's data is on the stack, and
 * some is on the heap. To store this structure's data, we
 * need to marshall it -- pack it all into a single location
 * in memory.
 */

/* Get the buffer */
buffsize = sizeof(int) +
 (strlen(user.familiar_name) + strlen(user.surname) + 2);
databuff = malloc(buffsize);
memset(databuff, 0, buffsize);

/* copy everything to the buffer */
memcpy(databuff, &(user.id), sizeof(int));
bufflen = sizeof(int);

memcpy(databuff + bufflen, user.familiar_name,
 strlen(user.familiar_name) + 1);
bufflen += strlen(user.familiar_name) + 1;

memcpy(databuff + bufflen, user.surname,
 strlen(user.surname) + 1);
bufflen += strlen(user.surname) + 1;

/* Now store it */

/* Zero out the DBTs before using them. */
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

key.data = &(user.id);
key.size = sizeof(int);

data.data = databuff;
data.size = bufflen;

my_database->put(my_database, NULL, &key, &data, DB_NOOVERWRITE);
free(sname);
free(databuff);

To retrieve the stored structure:

#include <db.h>

Database Records

6/25/2010 Getting Started with DB Page 30

#include <string.h>
#include <stdlib.h>

typedef struct my_struct {
 char *familiar_name;
 char *surname;
 int id;
} MY_STRUCT;

...

int id;
DBT key, data;
DB *my_database;
MY_STRUCT user;
char *buffer;

/* Database open omitted for clarity */

/* Zero out the DBTs before using them. */
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

id = 1;
key.data = &id;
key.size = sizeof(int);

my_database->get(my_database, NULL, &key, &data, 0);

/*
 * Some compilers won't allow pointer arithmetic on void *'s,
 * so use a char * instead.
 */
buffer = data.data;

user.id = *((int *)data.data);
user.familiar_name = buffer + sizeof(int);
user.surname = buffer + sizeof(int) + strlen(user.familiar_name) + 1;

Database Usage Example
In Database Example (page 16) we created several functions that will open and close the
databases that we will use for our inventory application. We now make use of those functions
to load inventory data into the two databases that we use for this application.

Again, remember that you can find the complete implementation for these functions in:
DB_INSTALL/examples_c/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

Database Records

6/25/2010 Getting Started with DB Page 31

Example 3.1. VENDOR Structure

We want to store data related to an inventory system. There are two types of information that
we want to manage: inventory data and related vendor contact information. To manage this
information, we could create a structure for each type of data, but to illustrate storing mixed
data without a structure we refrain from creating one for the inventory data.

For the vendor data, we add the VENDOR structure to the same file as holds our STOCK_DBS
structure. Note that the VENDOR structure uses fixed-length fields. This is not necessary and
in fact could represent a waste of resources if the number of vendors stored in our database
scales to very large numbers. However, for simplicity we use fixed-length fields anyway,
especially given that our sample data contains so few vendor records.

Note that for the inventory data, we will store the data by marshaling it into a buffer,
described below.

/* File: gettingstarted_common.h */
#include <db.h>

...

typedef struct vendor {
 char name[MAXFIELD]; /* Vendor name */
 char street[MAXFIELD]; /* Street name and number */
 char city[MAXFIELD]; /* City */
 char state[3]; /* Two-digit US state code */
 char zipcode[6]; /* US zipcode */
 char phone_number[13]; /* Vendor phone number */
 char sales_rep[MAXFIELD]; /* Name of sales representative */
 char sales_rep_phone[MAXFIELD]; /* Sales rep's phone number */
} VENDOR;

Example 3.2. example_database_load

Our initial sample application will load database information from several flat files. To save
space, we won't show all the details of this example program. However, as always you can find
the complete implementation for this program here:

DB_INSTALL/examples_c/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

We begin with the normal include directives and forward declarations:

/* example_database_load.c */
#include "gettingstarted_common.h"

/* Forward declarations */
int load_vendors_database(STOCK_DBS, char *);
int pack_string(char *, char *, int);
int load_inventory_database(STOCK_DBS, char *);

Database Records

6/25/2010 Getting Started with DB Page 32

Next we begin our main() function with the variable declarations and command line parsing
that is normal for most command line applications:
/*
 * Loads the contents of vendors.txt and inventory.txt into
 * Berkeley DB databases.
 */
int
main(int argc, char *argv[])
{
 STOCK_DBS my_stock;
 int ret, size;
 char *basename, *inventory_file, *vendor_file;

 /* Initialize the STOCK_DBS struct */
 initialize_stockdbs(&my_stock);

 /*
 * Initialize the base path. This path is used to
 * identify the location of the flat-text data
 * input files.
 */
 basename = "./";

 /*
 * Parse the command line arguments here and determine
 * the location of the flat text files containing the
 * inventory data here. This step is omitted for clarity.
 */

 /*
 * Identify the files that will hold our databases
 * This function uses information obtained from the
 * command line to identify the directory in which
 * the database files reside.
 */
 set_db_filenames(&my_stock);

 /* Find our input files */
 size = strlen(basename) + strlen(INVENTORY_FILE) + 1;
 inventory_file = malloc(size);
 snprintf(inventory_file, size, "%s%s", basename, INVENTORY_FILE);

 size = strlen(basename) + strlen(VENDORS_FILE) + 1;
 vendor_file = malloc(size);
 snprintf(vendor_file, size, "%s%s", basename, VENDORS_FILE);

 /* Open all databases */
 ret = databases_setup(&my_stock, "example_database_load", stderr);
 if (ret != 0) {

Database Records

6/25/2010 Getting Started with DB Page 33

 fprintf(stderr, "Error opening databases\n");
 databases_close(&my_stock);
 return (ret);
 }

 ret = load_vendors_database(my_stock, vendor_file);
 if (!ret) {
 fprintf(stderr, "Error loading vendors database.\n");
 databases_close(&my_stock);
 return (ret);
 }
 ret = load_inventory_database(my_stock, inventory_file);
 if (!ret) {
 fprintf(stderr, "Error loading inventory database.\n");
 databases_close(&my_stock);
 return (ret);
 }

 /* close our environment and databases */
 databases_close(&my_stock);

 printf("Done loading databases.\n");
 return (0);
}

Notice that there is not a lot to this function because we have pushed off all the database
activity to other places. In particular our databases are all opened and configured in
databases_setup() which we implemented in The databases_setup() Function (page 19).

Next we show the implementation of load_vendors_database(). We load this data by
scanning (line by line) the contents of the vendors.txt into a VENDOR structure. Once we
have a line scanned into the structure, we can store that structure into our vendors database.

Note that we use the vendor's name as the key here. In doing so, we assume that the vendor's
name is unique in our database. If it was not, we would either have to select a different key,
or architect our application such that it could cope with multiple vendor records with the
same name.
/*
 * Loads the contents of the vendors.txt file into
 * a database.
 */
int
load_vendors_database(STOCK_DBS my_stock, char *vendor_file)
{
 DBT key, data;
 FILE *ifp;
 VENDOR my_vendor;
 char buf[MAXLINE];

 /* Open the vendor file for read access */

Database Records

6/25/2010 Getting Started with DB Page 34

 ifp = fopen(vendor_file, "r");
 if (ifp == NULL) {
 fprintf(stderr, "Error opening file '%s'\n", vendor_file);
 return(-1);
 }

 /* Iterate over the vendor file */
 while(fgets(buf, MAXLINE, ifp) != NULL) {
 /* zero out the structure */
 memset(&my_vendor, 0, sizeof(VENDOR));
 /* Zero out the DBTs */
 memset(&key, 0, sizeof(DBT));
 memset(&data, 0, sizeof(DBT));

 /*
 * Scan the line into the structure.
 * Convenient, but not particularly safe.
 * In a real program, there would be a lot more
 * defensive code here.
 */
 sscanf(buf,
 "%20[^#]#%20[^#]#%20[^#]#%3[^#]#%6[^#]#%13[^#]#%20[^#]#%20[^\n]",
 my_vendor.name, my_vendor.street,
 my_vendor.city, my_vendor.state,
 my_vendor.zipcode, my_vendor.phone_number,
 my_vendor.sales_rep, my_vendor.sales_rep_phone);

 /*
 * Now that we have our structure we can load it
 * into the database.
 */

 /* Set up the database record's key */
 key.data = my_vendor.name;
 key.size = strlen(my_vendor.name) + 1;

 /* Set up the database record's data */
 data.data = &my_vendor;
 data.size = sizeof(my_vendor);

 /*
 * Note that given the way we built our struct, there are extra
 * bytes in it. Essentially we're using fixed-width fields with
 * the unused portion of some fields padded with zeros. This
 * is the easiest thing to do, but it does result in a bloated
 * database. Look at load_inventory_data() for an example of how
 * to avoid this.
 */

Database Records

6/25/2010 Getting Started with DB Page 35

 /* Put the data into the database.
 * Omitting error handling for clarity.
 */
 my_stock.vendor_dbp->put(my_stock.vendor_dbp, 0,
 &key, &data, 0);
 } /* end vendors database while loop */

 /* Close the vendor.txt file */
 fclose(ifp);
 return(0);
}

Finally, we need to write the load_inventory_database() function. We made this function a
bit more complicated than is necessary by avoiding the use of a structure to manage the data.
Instead, we manually pack all our inventory data into a single block of memory, and store that
data in the database.

While this complicates our code somewhat, this approach allows us to use the smallest amount
of space possible for the data that we want to store. The result is that our cache can be
smaller than it might otherwise be and our database will take less space on disk than if we
used a structure with fixed-length fields.

For a trivial dataset such as what we use for these examples, these resource savings are
negligible. But if we were storing hundreds of millions of records, then the cost savings may
become significant.

Before we actually implement our inventory loading function, it is useful to create a simple
utility function that copies a character array into a buffer at a designated offset:
/*
 * Simple little convenience function that takes a buffer, a string,
 * and an offset and copies that string into the buffer at the
 * appropriate location. Used to ensure that all our strings
 * are contained in a single contiguous chunk of memory.
 */
int
pack_string(char *buffer, char *string, int start_pos)
{
 int string_size = strlen(string) + 1;

 memcpy(buffer+start_pos, string, string_size);

 return(start_pos + string_size);
}

That done, we can now load the inventory database:
/*
 * Loads the contents of the inventory.txt file into
 * a database.
 */
int

Database Records

6/25/2010 Getting Started with DB Page 36

load_inventory_database(STOCK_DBS my_stock, char *inventory_file)
{
 DBT key, data;
 char buf[MAXLINE];
 void *databuf;
 int bufLen, dataLen;
 FILE *ifp;

 /*
 * Rather than lining everything up nicely in a struct, we're being
 * deliberately a bit sloppy here. This function illustrates how to
 * store mixed data that might be obtained from various locations
 * in your application.
 */
 float price;
 int quantity;
 char category[MAXFIELD], name[MAXFIELD];
 char vendor[MAXFIELD], sku[MAXFIELD];

 /* Load the inventory database */
 ifp = fopen(inventory_file, "r");
 if (ifp == NULL) {
 fprintf(stderr, "Error opening file '%s'\n", inventory_file);
 return(-1);
 }

 /* Get our buffer. MAXDATABUF is some suitably large number */
 databuf = malloc(MAXDATABUF);

 /*
 * Read the inventory.txt file line by line, saving each line off to
 * the database as we go.
 */
 while(fgets(buf, MAXLINE, ifp) != NULL) {
 /*
 * Scan the line into the appropriate buffers and variables.
 * Convenient, but not particularly safe. In a real
 * program, there would be a lot more defensive code here.
 */
 sscanf(buf,
 "%20[^#]#%20[^#]#%f#%i#%20[^#]#%20[^\n]",
 name, sku, &price, &quantity, category, vendor);

 /*
 * Now pack it into a single contiguous memory location for
 * storage.
 */
 memset(databuf, 0, MAXDATABUF);
 bufLen = 0;

Database Records

6/25/2010 Getting Started with DB Page 37

 dataLen = 0;

 /*
 * We first store the fixed-length elements. This makes our code
 * to retrieve this data from the database a little bit easier.
 */

 /* First discover how long the data element is. */
 dataLen = sizeof(float);
 /* Then copy it to our buffer */
 memcpy(databuf, &price, dataLen);
 /*
 * Then figure out how much data is actually in our buffer.
 * We repeat this pattern for all the data we want to store.
 */
 bufLen += dataLen;

 /* Rinse, lather, repeat. */
 dataLen = sizeof(int);
 memcpy(databuf + bufLen, &quantity, dataLen);
 bufLen += dataLen;

 bufLen = pack_string(databuf, name, bufLen);
 bufLen = pack_string(databuf, sku, bufLen);
 bufLen = pack_string(databuf, category, bufLen);
 bufLen = pack_string(databuf, vendor, bufLen);

 /*
 * Now actually save the contents of the buffer off
 * to our database.
 */

 /* Zero out the DBTs */
 memset(&key, 0, sizeof(DBT));
 memset(&data, 0, sizeof(DBT));

 /*
 * The key is the item's SKU. This is a unique value, so we need
 * not support duplicates for this database.
 */
 key.data = sku;
 key.size = strlen(sku) + 1;

 /* The data is the information that we packed into databuf. */
 data.data = databuf;
 data.size = bufLen;

 /* Put the data into the database */
 my_stock.vendor_dbp->put(my_stock.inventory_dbp, 0,

Database Records

6/25/2010 Getting Started with DB Page 38

 &key, &data, 0);
 } /* end vendors database while loop */

 /* Cleanup */
 fclose(ifp);
 if (databuf != NULL)
 free(databuf);

 return(0);
}

In the next chapter we provide an example that shows how to read the inventory and vendor
databases.

6/25/2010 Getting Started with DB Page 39

Chapter 4. Using Cursors
Cursors provide a mechanism by which you can iterate over the records in a database. Using
cursors, you can get, put, and delete database records. If a database allows duplicate records,
then cursors are the easiest way that you can access anything other than the first record for a
given key.

This chapter introduces cursors. It explains how to open and close them, how to use them to
modify databases, and how to use them with duplicate records.

Opening and Closing Cursors

Cursors are managed using the DBC structure. To use a cursor, you must open it using the DB-
>cursor() method.

For example:

#include <db.h>

...

DB *my_database;
DBC *cursorp;

/* Database open omitted for clarity */

/* Get a cursor */
my_database->cursor(my_database, NULL, &cursorp, 0);

When you are done with the cursor, you should close it. To close a cursor, call the DBC-
>close() method. Note that closing your database while cursors are still opened within the
scope of the DB handle, especially if those cursors are writing to the database, can have
unpredictable results. It is recommended that you close all cursor handles after their use to
ensure concurrency and to release resources such as page locks.

#include <db.h>

...

DB *my_database;
DBC *cursorp;

/* Database and cursor open omitted for clarity */

if (cursorp != NULL)
 cursorp->close(cursorp);

if (my_database != NULL)
 my_database->close(my_database, 0);

Using Cursors

6/25/2010 Getting Started with DB Page 40

Getting Records Using the Cursor

To iterate over database records, from the first record to the last, simply open the cursor
and then use the DBC->get() method. Note that you need to supply the DB_NEXT flag to this
method. For example:

#include <db.h>
#include <string.h>

...

DB *my_database;
DBC *cursorp;
DBT key, data;
int ret;

/* Database open omitted for clarity */

/* Get a cursor */
my_database->cursor(my_database, NULL, &cursorp, 0);

/* Initialize our DBTs. */
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

/* Iterate over the database, retrieving each record in turn. */
while ((ret = cursorp->get(cursorp, &key, &data, DB_NEXT)) == 0) {
 /* Do interesting things with the DBTs here. */
}
if (ret != DB_NOTFOUND) {
 /* Error handling goes here */
}

/* Cursors must be closed */
if (cursorp != NULL)
 cursorp->close(cursorp);

if (my_database != NULL)
 my_database->close(my_database, 0);

To iterate over the database from the last record to the first, use DB_PREV instead of
DB_NEXT:

#include <db.h>
#include <string.h>

...

DB *my_database;
DBC *cursorp;

Using Cursors

6/25/2010 Getting Started with DB Page 41

DBT key, data;
int ret;

/* Database open omitted for clarity */

/* Get a cursor */
my_database->cursor(my_database, NULL, &cursorp, 0);

/* Initialize our DBTs. */
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

/* Iterate over the database, retrieving each record in turn. */
while ((ret = cursorp->get(cursorp, &key,
 &data, DB_PREV)) == 0) {
 /* Do interesting things with the DBTs here. */
}
if (ret != DB_NOTFOUND) {
 /* Error handling goes here */
}

// Cursors must be closed
if (cursorp != NULL)
 cursorp->close(cursorp);

if (my_database != NULL)
 my_database->close(my_database, 0);

Searching for Records

You can use cursors to search for database records. You can search based on just a key, or you
can search based on both the key and the data. You can also perform partial matches if your
database supports sorted duplicate sets. In all cases, the key and data parameters of these
methods are filled with the key and data values of the database record to which the cursor is
positioned as a result of the search.

Also, if the search fails, then cursor's state is left unchanged and DB_NOTFOUND is returned.

To use a cursor to search for a record, use DBT->get(). When you use this method, you can
provide the following flags:

Note

Notice in the following list that the cursor flags use the keyword SET when the cursor
examines just the key portion of the records (in this case, the cursor is set to the
record whose key matches the value provided to the cursor). Moreover, when the
cursor uses the keyword GET, then the cursor is positioned to both the key and the
data values provided to the cursor.

Using Cursors

6/25/2010 Getting Started with DB Page 42

Regardless of the keyword you use to get a record with a cursor, the cursor's key and
data DBTs are filled with the data retrieved from the record to which the cursor is
positioned.

• DB_SET

Moves the cursor to the first record in the database with the specified key.

• DB_SET_RANGE

Identical to DB_SET unless you are using the BTree access. In this case, the cursor moves to
the first record in the database whose key is greater than or equal to the specified key. This
comparison is determined by the comparison function that you provide for the database. If
no comparison function is provided, then the default lexicographical sorting is used.

For example, suppose you have database records that use the following strings as keys:

Alabama
Alaska
Arizona

Then providing a search key of Alaska moves the cursor to the second key noted above.
Providing a key of Al moves the cursor to the first key (Alabama), providing a search key
of Alas moves the cursor to the second key (Alaska), and providing a key of Ar moves the
cursor to the last key (Arizona).

• DB_GET_BOTH

Moves the cursor to the first record in the database that uses the specified key and data.

• DB_GET_BOTH_RANGE

Moves the cursor to the first record in the database whose key matches the specified key
and whose data is greater than or equal to the specified data. If the database supports
duplicate records, then on matching the key, the cursor is moved to the duplicate record
with the smallest data that is greater than or equal to the specified data.

For example, suppose your database uses BTree and it has database records that use the
following key/data pairs:

Alabama/Athens
Alabama/Florence
Alaska/Anchorage
Alaska/Fairbanks
Arizona/Avondale
Arizona/Florence

then providing:

a search key of ... and a search data of ... moves the cursor to ...

Alaska Fa Alaska/Fairbanks

Using Cursors

6/25/2010 Getting Started with DB Page 43

a search key of ... and a search data of ... moves the cursor to ...

Arizona Fl Arizona/Florence

Alaska An Alaska/Anchorage

For example, assuming a database containing sorted duplicate records of U.S. States/U.S
Cities key/data pairs (both as strings), then the following code fragment can be used to
position the cursor to any record in the database and print its key/data values:

#include <db.h>
#include <string.h>

...

DBC *cursorp;
DBT key, data;
DB *dbp;
int ret;
char *search_data = "Fa";
char *search_key = "Alaska";

/* database open omitted for clarity */

/* Get a cursor */
dbp->cursor(dbp, NULL, &cursorp, 0);

/* Set up our DBTs */
key.data = search_key;
key.size = strlen(search_key) + 1;
data.data = search_data;
data.size = strlen(search_data) + 1;

/*
 * Position the cursor to the first record in the database whose
 * key matches the search key and whose data begins with the
 * search data.
 */
ret = cursorp->get(cursorp, &key, &data, DB_GET_BOTH_RANGE);
if (!ret) {
 /* Do something with the data */
} else {
 /* Error handling goes here */
}

/* Close the cursor */
if (cursorp != NULL)
 cursorp->close(cursorp);

/* Close the database */
if (dbp != NULL)

Using Cursors

6/25/2010 Getting Started with DB Page 44

 dbp->close(dbp, 0);

Working with Duplicate Records

A record is a duplicate of another record if the two records share the same key. For duplicate
records, only the data portion of the record is unique.

Duplicate records are supported only for the BTree or Hash access methods. For information
on configuring your database to use duplicate records, see Allowing Duplicate Records (page
82).

If your database supports duplicate records, then it can potentially contain multiple records
that share the same key. By default, normal database get operations will only return the first
such record in a set of duplicate records. Typically, subsequent duplicate records are accessed
using a cursor. The following DBC->get() flags are interesting when working with databases
that support duplicate records:

• DB_NEXT, DB_PREV

Shows the next/previous record in the database, regardless of whether it is a duplicate of
the current record. For an example of using these methods, see Getting Records Using the
Cursor (page 40).

• DB_GET_BOTH_RANGE

Useful for seeking the cursor to a specific record, regardless of whether it is a duplicate
record. See Searching for Records (page 41) for more information.

• DB_NEXT_NODUP, DB_PREV_NODUP

Gets the next/previous non-duplicate record in the database. This allows you to skip over
all the duplicates in a set of duplicate records. If you call DBC->get() with DB_PREV_NODUP,
then the cursor is positioned to the last record for the previous key in the database. For
example, if you have the following records in your database:

Alabama/Athens
Alabama/Florence
Alaska/Anchorage
Alaska/Fairbanks
Arizona/Avondale
Arizona/Florence

and your cursor is positioned to Alaska/Fairbanks, and you then call DBC->get() with
DB_PREV_NODUP, then the cursor is positioned to Alabama/Florence. Similarly, if you
call DBC->get() with DB_NEXT_NODUP, then the cursor is positioned to the first record
corresponding to the next key in the database.

If there is no next/previous key in the database, then DB_NOTFOUND is returned, and the
cursor is left unchanged.

• DB_NEXT_DUP

Using Cursors

6/25/2010 Getting Started with DB Page 45

Gets the next record that shares the current key. If the cursor is positioned at the last
record in the duplicate set and you call DBC->get() with DB_NEXT_DUP, then DB_NOTFOUND
is returned and the cursor is left unchanged.

For example, the following code fragment positions a cursor to a key and displays it and all its
duplicates.

#include <db.h>
#include <string.h>

...

DB *dbp;
DBC *cursorp;
DBT key, data;
int ret;
char *search_key = "Al";

/* database open omitted for clarity */

/* Get a cursor */
dbp->cursor(dbp, NULL, &cursorp, 0);

/* Set up our DBTs */
key.data = search_key;
key.size = strlen(search_key) + 1;

/*
 * Position the cursor to the first record in the database whose
 * key and data begin with the correct strings.
 */
ret = cursorp->get(cursorp, &key, &data, DB_SET);
while (ret != DB_NOTFOUND) {
 printf("key: %s, data: %s\n", (char *)key.data, (char *)data.data);
 ret = cursorp->get(cursorp, &key, &data, DB_NEXT_DUP);
}

/* Close the cursor */
if (cursorp != NULL)
 cursorp->close(cursorp);

/* Close the database */
if (dbp != NULL)
 dbp->close(dbp, 0);

Using Cursors

6/25/2010 Getting Started with DB Page 46

Putting Records Using Cursors

You can use cursors to put records into the database. DB's behavior when putting records into
the database differs depending on the flags that you use when writing the record, on the
access method that you are using, and on whether your database supports sorted duplicates.

Note that when putting records to the database using a cursor, the cursor is positioned at the
record you inserted.

You use DBC->put() to put (write) records to the database. You can use the following flags
with this method:

• DB_NODUPDATA

If the provided key already exists in the database, then this method returns DB_KEYEXIST.

If the key does not exist, then the order that the record is put into the database is
determined by the insertion order in use by the database. If a comparison function has been
provided to the database, the record is inserted in its sorted location. Otherwise (assuming
BTree), lexicographical sorting is used, with shorter items collating before longer items.

This flag can only be used for the BTree and Hash access methods, and only if the database
has been configured to support sorted duplicate data items (DB_DUPSORT was specified at
database creation time).

This flag cannot be used with the Queue or Recno access methods.

For more information on duplicate records, see Allowing Duplicate Records (page 82).

• DB_KEYFIRST

For databases that do not support duplicates, this method behaves exactly the same as if a
default insertion was performed. If the database supports duplicate records, and a duplicate
sort function has been specified, the inserted data item is added in its sorted location. If
the key already exists in the database and no duplicate sort function has been specified, the
inserted data item is added as the first of the data items for that key.

• DB_KEYLAST

Behaves exactly as if DB_KEYFIRST was used, except that if the key already exists in the
database and no duplicate sort function has been specified, the inserted data item is added
as the last of the data items for that key.

For example:

#include <db.h>
#include <string.h>

...

DB *dbp;
DBC *cursorp;

Using Cursors

6/25/2010 Getting Started with DB Page 47

DBT data1, data2, data3;
DBT key1, key2;
char *key1str = "My first string";
char *data1str = "My first data";
char *key2str = "A second string";
char *data2str = "My second data";
char *data3str = "My third data";
int ret;

/* Set up our DBTs */
key1.data = key1str;
key1.size = strlen(key1str) + 1;
data1.data = data1str;
data1.size = strlen(data1str) + 1;

key2.data = key2str;
key2.size = strlen(key2str) + 1;
data2.data = data2str;
data2.size = strlen(data2str) + 1;
data3.data = data3str;
data3.size = strlen(data3str) + 1;

/* Database open omitted */

/* Get the cursor */
dbp->cursor(dbp, NULL, &cursorp, 0);

/*
 * Assuming an empty database, this first put places
 * "My first string"/"My first data" in the first
 * position in the database
 */
ret = cursorp->put(cursorp, &key1,
 &data1, DB_KEYFIRST);

/*
 * This put places "A second string"/"My second data" in the
 * the database according to its key sorts against the key
 * used for the currently existing database record. Most likely
 * this record would appear first in the database.
 */
ret = cursorp->put(cursorp, &key2,
 &data2, DB_KEYFIRST); /* Added according to sort order */

/*
 * If duplicates are not allowed, the currently existing record that
 * uses "key2" is overwritten with the data provided on this put.
 * That is, the record "A second string"/"My second data" becomes
 * "A second string"/"My third data"

Using Cursors

6/25/2010 Getting Started with DB Page 48

 *
 * If duplicates are allowed, then "My third data" is placed in the
 * duplicates list according to how it sorts against "My second data".
 */
ret = cursorp->put(cursorp, &key2,
 &data3, DB_KEYFIRST); /* If duplicates are not allowed, record
 * is overwritten with new data. Otherwise,
 * the record is added to the beginning of
 * the duplicates list.
 */

Deleting Records Using Cursors

To delete a record using a cursor, simply position the cursor to the record that you want to
delete and then call DBC->del().

For example:

#include <db.h>
#include <string.h>

...

DB *dbp;
DBC *cursorp;
DBT key, data;
char *key1str = "My first string";
int ret;

/* Database open omitted */

/* Initialize our DBTs. */
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

/* Set up our DBTs */
key.data = key1str;
key.size = strlen(key1str) + 1;

/* Get the cursor */
dbp->cursor(dbp, NULL, &cursorp, 0);

/* Iterate over the database, deleting each record in turn. */
while ((ret = cursorp->get(cursorp, &key,
 &data, DB_SET)) == 0) {
 cursorp->del(cursorp, 0);
}

/* Cursors must be closed */
if (cursorp != NULL)

Using Cursors

6/25/2010 Getting Started with DB Page 49

 cursorp->close(cursorp);

if (dbp != NULL)
 dbp->close(dbp, 0);

Replacing Records Using Cursors

You replace the data for a database record by using DBC->put() with the DB_CURRENT flag.

#include <db.h>
#include <string.h>

...

DB *dbp;
DBC *cursorp;
DBT key, data;
char *key1str = "My first string";
char *replacement_data = "replace me";
int ret;

/* Initialize our DBTs. */
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

/* Set up our DBTs */
key.data = key1str;
key.size = strlen(key1str) + 1;

/* Database open omitted */

/* Get the cursor */
dbp->cursor(dbp, NULL, &cursorp, 0);

/* Position the cursor */
ret = cursorp->get(cursorp, &key, &data, DB_SET);
if (ret == 0) {
 data.data = replacement_data;
 data.size = strlen(replacement_data) + 1;
 cursorp->put(cursorp, &key, &data, DB_CURRENT);
}

/* Cursors must be closed */
if (cursorp != NULL)
 cursorp->close(cursorp);

if (dbp != NULL)
 dbp->close(dbp, 0);

Using Cursors

6/25/2010 Getting Started with DB Page 50

Note that you cannot change a record's key using this method; the key parameter is always
ignored when you replace a record.

When replacing the data portion of a record, if you are replacing a record that is a member
of a sorted duplicates set, then the replacement will be successful only if the new record
sorts identically to the old record. This means that if you are replacing a record that is
a member of a sorted duplicates set, and if you are using the default lexicographic sort,
then the replacement will fail due to violating the sort order. However, if you provide a
custom sort routine that, for example, sorts based on just a few bytes out of the data item,
then potentially you can perform a direct replacement and still not violate the restrictions
described here.

Under these circumstances, if you want to replace the data contained by a duplicate record,
and you are not using a custom sort routine, then delete the record and create a new record
with the desired key and data.

Cursor Example
In Database Usage Example (page 30) we wrote an application that loaded two databases with
vendor and inventory information. In this example, we will write an application to display all
of the items in the inventory database. As a part of showing any given inventory item, we will
look up the vendor who can provide the item and show the vendor's contact information.

Specifically, the example_database_read application does the following:

1. Opens the the inventory and vendor databases that were created by our
example_database_load application. See example_database_load (page 31) for
information on how that application creates the databases and writes data to them.

2. Obtains a cursor from the inventory database.

3. Steps through the inventory database, displaying each record as it goes.

4. Gets the name of the vendor for that inventory item from the inventory record.

5. Uses the vendor name to look up the vendor record in the vendor database.

6. Displays the vendor record.

Remember that you can find the complete implementation of this application in:
DB_INSTALL/examples_c/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

Example 4.1. example_database_read

To begin, we include the necessary header files and perform our forward declarations.
/* File: example_database_read.c */
/* gettingstarted_common.h includes db.h for us */
#include "gettingstarted_common.h"

/* Forward declarations */
char * show_inventory_item(void *);

Using Cursors

6/25/2010 Getting Started with DB Page 51

int show_all_records(STOCK_DBS *);
int show_records(STOCK_DBS *, char *);
int show_vendor_record(char *, DB *);

Next we write our main() function. Note that it is somewhat unnecessarily complicated here
because we will be extending it in the next chapter to perform inventory item lookups.

/*
 * Displays all inventory items and the associated vendor record.
 */
int
main(int argc, char *argv[])
{
 STOCK_DBS my_stock;
 int ret;

 /* Initialize the STOCK_DBS struct */
 initialize_stockdbs(&my_stock);

 /*
 * Parse the command line arguments here and determine
 * the location of the database files. This step is
 * omitted for brevity.
 */

 /*
 * Identify the files that will hold our databases
 * This function uses information obtained from the
 * command line to identify the directory in which
 * the database files reside.
 */
 set_db_filenames(&my_stock);

 /* Open all databases */
 ret = databases_setup(&my_stock, "example_database_read", stderr);
 if (ret != 0) {
 fprintf(stderr, "Error opening databases\n");
 databases_close(&my_stock);
 return (ret);
 }

 ret = show_all_records(&my_stock);

 /* close our databases */
 databases_close(&my_stock);
 return (ret);
}

Next we need to write the show_all_records() function. This function takes a STOCK_DBS
structure and displays all of the inventory records found in the inventory database. Once it

Using Cursors

6/25/2010 Getting Started with DB Page 52

shows the inventory record, it retrieves the vendor's name from that record and uses it to look
up and display the appropriate vendor record:
int show_all_records(STOCK_DBS *my_stock)
{
 DBC *cursorp;
 DBT key, data;
 char *the_vendor;
 int exit_value, ret;

 /* Initialize our DBTs. */
 memset(&key, 0, sizeof(DBT));
 memset(&data, 0, sizeof(DBT));

 /* Get a cursor to the itemname db */
 my_stock->inventory_dbp->cursor(my_stock->inventory_dbp, NULL,
 &cursorp, 0);

 /*
 * Iterate over the inventory database, from the first record
 * to the last, displaying each in turn.
 */
 exit_value = 0;
 while ((ret =
 cursorp->get(cursorp, &key, &data, DB_NEXT))
 == 0)
 {
 the_vendor = show_inventory_item(data.data);
 ret = show_vendor_record(the_vendor, my_stock->vendor_dbp);
 if (ret) {
 exit_value = ret;
 break;
 }
 }

 /* Close the cursor */
 cursorp->close(cursorp);
 return(exit_value);
}

The show_inventory_item() simply extracts the inventory information from the record
data and displays it. It then returns the vendor's name. Note that in order to extract the
inventory information, we have to unpack it from the data buffer. How we do this is entirely
dependent on how we packed the buffer in the first place. For more information, see the
load_inventory_database() function implementation in example_database_load (page 31).
/*
 * Shows an inventory item.
 */
char *
show_inventory_item(void *vBuf)

Using Cursors

6/25/2010 Getting Started with DB Page 53

{
 float price;
 int buf_pos, quantity;
 char *category, *name, *sku, *vendor_name;
 char *buf = (char *)vBuf;

 /* Get the price. */
 price = *((float *)buf);
 buf_pos = sizeof(float);

 /* Get the quantity. */
 quantity = *((int *)(buf + buf_pos));
 buf_pos += sizeof(int);

 /* Get the inventory item's name */
 name = buf + buf_pos;
 buf_pos += strlen(name) + 1;

 /* Get the inventory item's sku */
 sku = buf + buf_pos;
 buf_pos += strlen(sku) + 1;

 /*
 * Get the category (fruits, vegetables, desserts) that this
 * item belongs to.
 */
 category = buf + buf_pos;
 buf_pos += strlen(category) + 1;

 /* Get the vendor's name */
 vendor_name = buf + buf_pos;

 /* Display all this information */
 printf("name: %s\n", name);
 printf("\tSKU: %s\n", sku);
 printf("\tCategory: %s\n", category);
 printf("\tPrice: %.2f\n", price);
 printf("\tQuantity: %i\n", quantity);
 printf("\tVendor:\n");

 /* Return the vendor's name */
 return(vendor_name);
}

Having returned the vendor's name, we can now use it to look up and display the appropriate
vendor record. In this case we do not need to use a cursor to display the vendor record. Using
a cursor here complicates our code slightly for no good gain. Instead, we simply perform a
get() directly against the vendor database.

/*

Using Cursors

6/25/2010 Getting Started with DB Page 54

 * Shows a vendor record. Each vendor record is an instance of
 * a vendor structure. See load_vendor_database() in
 * example_database_load for how this structure was originally
 * put into the database.
 */
int
show_vendor_record(char *vendor_name, DB *vendor_dbp)
{
 DBT key, data;
 VENDOR my_vendor;
 int ret;

 /* Zero our DBTs */
 memset(&key, 0, sizeof(DBT));
 memset(&data, 0, sizeof(DBT));

 /* Set the search key to the vendor's name */
 key.data = vendor_name;
 key.size = strlen(vendor_name) + 1;

 /*
 * Make sure we use the memory we set aside for the VENDOR
 * structure rather than the memory that DB allocates.
 * Some systems may require structures to be aligned in memory
 * in a specific way, and DB may not get it right.
 */

 data.data = &my_vendor;
 data.ulen = sizeof(VENDOR);
 data.flags = DB_DBT_USERMEM;

 /* Get the record */
 ret = vendor_dbp->get(vendor_dbp, 0, &key, &data, 0);
 if (ret != 0) {
 vendor_dbp->err(vendor_dbp, ret,
 "Error searching for vendor: '%s'", vendor_name);
 return(ret);
 } else {
 printf("\t\t%s\n", my_vendor.name);
 printf("\t\t%s\n", my_vendor.street);
 printf("\t\t%s, %s\n", my_vendor.city, my_vendor.state);
 printf("\t\t%s\n\n", my_vendor.zipcode);
 printf("\t\t%s\n\n", my_vendor.phone_number);
 printf("\t\tContact: %s\n", my_vendor.sales_rep);
 printf("\t\t%s\n", my_vendor.sales_rep_phone);
 }
 return(0);
}

Using Cursors

6/25/2010 Getting Started with DB Page 55

That completes the implementation of example_database_read(). In the next chapter, we
will extend this application to make use of a secondary database so that we can query the
inventory database for a specific inventory item.

6/25/2010 Getting Started with DB Page 56

Chapter 5. Secondary Databases
Usually you find database records by means of the record's key. However, the key that you
use for your record will not always contain the information required to provide you with rapid
access to the data that you want to retrieve. For example, suppose your database contains
records related to users. The key might be a string that is some unique identifier for the
person, such as a user ID. Each record's data, however, would likely contain a complex object
containing details about people such as names, addresses, phone numbers, and so forth. While
your application may frequently want to query a person by user ID (that is, by the information
stored in the key), it may also on occasion want to locate people by, say, their name.

Rather than iterate through all of the records in your database, examining each in turn for a
given person's name, you create indexes based on names and then just search that index for
the name that you want. You can do this using secondary databases. In DB, the database that
contains your data is called a primary database. A database that provides an alternative set of
keys to access that data is called a secondary database. In a secondary database, the keys are
your alternative (or secondary) index, and the data corresponds to a primary record's key.

You create a secondary database by creating the database, opening it, and then associating
the database with the primary database (that is, the database for which you are creating the
index). As a part of associating the secondary database to the primary, you must provide a
callback that is used to create the secondary database keys. Typically this callback creates a
key based on data found in the primary database record's key or data.

Once opened, DB manages secondary databases for you. Adding or deleting records in your
primary database causes DB to update the secondary as necessary. Further, changing a record's
data in the primary database may cause DB to modify a record in the secondary, depending on
whether the change forces a modification of a key in the secondary database.

Note that you can not write directly to a secondary database. Any attempt to write to a
secondary database results in a non-zero status return. To change the data referenced by a
secondary record, modify the primary database instead. The exception to this rule is that
delete operations are allowed on the secondary database. See Deleting Secondary Database
Records (page 62) for more information.

Note

Secondary database records are updated/created by DB only if the key creator
callback function returns 0. If a value other than 0 is returned, then DB will not add
the key to the secondary database, and in the event of a record update it will remove
any existing key. Note that the callback can use either DB_DONOTINDEX or some error
code outside of DB's name space to indicate that the entry should not be indexed.

See Implementing Key Extractors (page 58) for more information.

When you read a record from a secondary database, DB automatically returns the data and
optionally the key from the corresponding record in the primary database.

Secondary Databases

6/25/2010 Getting Started with DB Page 57

Opening and Closing Secondary Databases

You manage secondary database opens and closes in the same way as you would any normal
database. The only difference is that:

• You must associate the secondary to a primary database using DB->associate().

• When closing your databases, it is a good idea to make sure you close your secondaries
before closing your primaries. This is particularly true if your database closes are not single
threaded.

When you associate a secondary to a primary database, you must provide a callback that is
used to generate the secondary's keys. These callbacks are described in the next section.

For example, to open a secondary database and associate it to a primary database:

#include <db.h>

...

DB *dbp, *sdbp; /* Primary and secondary DB handles */
u_int32_t flags; /* Primary database open flags */
int ret; /* Function return value */

/* Primary */
ret = db_create(&dbp, NULL, 0);
if (ret != 0) {
 /* Error handling goes here */
}

/* Secondary */
ret = db_create(&sdbp, NULL, 0);
if (ret != 0) {
 /* Error handling goes here */
}

/* Usually we want to support duplicates for secondary databases */
ret = sdbp->set_flags(sdbp, DB_DUPSORT);
if (ret != 0) {
 /* Error handling goes here */
}

/* Database open flags */
flags = DB_CREATE; /* If the database does not exist,
 * create it.*/

/* open the primary database */
ret = dbp->open(dbp, /* DB structure pointer */
 NULL, /* Transaction pointer */

Secondary Databases

6/25/2010 Getting Started with DB Page 58

 "my_db.db", /* On-disk file that holds the database. */
 NULL, /* Optional logical database name */
 DB_BTREE, /* Database access method */
 flags, /* Open flags */
 0); /* File mode (using defaults) */
if (ret != 0) {
 /* Error handling goes here */
}

/* open the secondary database */
ret = sdbp->open(sdbp, /* DB structure pointer */
 NULL, /* Transaction pointer */
 "my_secdb.db", /* On-disk file that holds the
 database. */
 NULL, /* Optional logical database name */
 DB_BTREE, /* Database access method */
 flags, /* Open flags */
 0); /* File mode (using defaults) */
if (ret != 0) {
 /* Error handling goes here */
}

/* Now associate the secondary to the primary */
dbp->associate(dbp, /* Primary database */
 NULL, /* TXN id */
 sdbp, /* Secondary database */
 get_sales_rep, /* Callback used for key creation. Not
 * defined in this example. See the next
 * section. */
 0); /* Flags */

Closing the primary and secondary databases is accomplished exactly as you would for any
database:

/* Close the secondary before the primary */
if (sdbp != NULL)
 sdbp->close(sdbp, 0);
if (dbp != NULL)
 dbp->close(dbp, 0);

Implementing Key Extractors

You must provide every secondary database with a callback that creates keys from primary
records. You identify this callback when you associate your secondary database to your
primary.

You can create keys using whatever data you want. Typically you will base your key on some
information found in a record's data, but you can also use information found in the primary
record's key. How you build your keys is entirely dependent upon the nature of the index that
you want to maintain.

Secondary Databases

6/25/2010 Getting Started with DB Page 59

You implement a key extractor by writing a function that extracts the necessary information
from a primary record's key or data. This function must conform to a specific prototype, and it
must be provided as a callback to the associate() method.

For example, suppose your primary database records contain data that uses the following
structure:
typedef struct vendor {
 char name[MAXFIELD]; /* Vendor name */
 char street[MAXFIELD]; /* Street name and number */
 char city[MAXFIELD]; /* City */
 char state[3]; /* Two-digit US state code */
 char zipcode[6]; /* US zipcode */
 char phone_number[13]; /* Vendor phone number */
 char sales_rep[MAXFIELD]; /* Name of sales representative */
 char sales_rep_phone[MAXFIELD]; /* Sales rep's phone number */
} VENDOR;

Further suppose that you want to be able to query your primary database based on the name
of a sales representative. Then you would write a function that looks like this:
#include <db.h>

...

int
get_sales_rep(DB *sdbp, /* secondary db handle */
 const DBT *pkey, /* primary db record's key */
 const DBT *pdata, /* primary db record's data */
 DBT *skey) /* secondary db record's key */
{
 VENDOR *vendor;

 /* First, extract the structure contained in the primary's data */
 vendor = pdata->data;

 /* Now set the secondary key's data to be the representative's name */
 memset(skey, 0, sizeof(DBT));
 skey->data = vendor->sales_rep;
 skey->size = strlen(vendor->sales_rep) + 1;

 /* Return 0 to indicate that the record can be created/updated. */
 return (0);
}

In order to use this function, you provide it on the associate() method after the primary and
secondary databases have been created and opened:
dbp->associate(dbp, /* Primary database */
 NULL, /* TXN id */
 sdbp, /* Secondary database */
 get_sales_rep, /* Callback used for key creation. */
 0); /* Flags */

Secondary Databases

6/25/2010 Getting Started with DB Page 60

Working with Multiple Keys

Until now we have only discussed indexes as if there is a one-to-one relationship between the
secondary key and the primary database record. In fact, it is possible to generate multiple
keys for any given record, provided that you take appropriate steps in your key creator to do
so.

For example, suppose you had a database that contained information about books. Suppose
further that you sometimes want to look up books by author. Because sometimes books have
multiple authors, you may want to return multiple secondary keys for every book that you
index.

To do this, you write a key extractor that returns a DBT whose data member points to an
array of DBTs. Each such member of this array contains a single secondary key. In addition, the
DBT returned by your key extractor must have a size field equal to the number of elements
contained in the DBT array. Also, the flag field for the DBT returned by the callback must
include DB_DBT_MULTIPLE. For example:

Note
It is important that the array of secondary keys created by your callback not contain
repeats. That is, every element in the array must be unique. If the array does not
contain a unique set, then the secondary can get out of sync with the primary.

int
my_callback(DB *dbp, const DBT *pkey, const DBT *pdata, DBT *skey)
{
 DBT *tmpdbt;
 char *tmpdata1, tmpdata2;

 /*
 * This example skips the step of extracting the data you
 * want to use for building your secondary keys from the
 * pkey or pdata DBT.
 *
 * Assume for the purpose of this example that the data
 * is temporarily stored in two variables,
 * tmpdata1 and tmpdata2.
 */

 /*
 * Create an array of DBTs that is large enough for the
 * number of keys that you want to return. In this case,
 * we go with an array of size two.
 */

 tmpdbt = malloc(sizeof(DBT) * 2);
 memset(tmpdbt, 0, sizeof(DBT) * 2);

 /* Now assign secondary keys to each element of the array. */
 tmpdbt[0].data = tmpdata1;

Secondary Databases

6/25/2010 Getting Started with DB Page 61

 tmpdbt[0].size = (u_int32_t)strlen(tmpdbt[0].data) + 1;
 tmpdbt[1].data = tmpdata2;
 tmpdbt[1].size = (u_int32_t)strlen(tmpdbt[1].data) + 1;

 /*
 * Now we set flags for the returned DBT. DB_DBT_MULTIPLE is
 * required in order for DB to know that the DBT references an
 * array. In addition, we set DB_DBT_APPMALLOC because we
 * dynamically allocated memory for the DBT's data field.
 * DB_DBT_APPMALLOC causes DB to release that memory once it
 * is done with the returned DBT.
 */
 skey->flags = DB_DBT_MULTIPLE | DB_DBT_APPMALLOC;

 /* Point the results data field to the arrays of DBTs */
 skey->data = tmpdbt;

 /* Indicate the returned array is of size 2 */
 skey->size = 2;

 return (0);
}

Reading Secondary Databases

Like a primary database, you can read records from your secondary database either by using
the DB->get() or DB->pget() methods, or by using a cursor on the secondary database. The
main difference between reading secondary and primary databases is that when you read a
secondary database record, the secondary record's data is not returned to you. Instead, the
primary key and data corresponding to the secondary key are returned to you.

For example, assuming your secondary database contains keys related to a person's full name:

#include <db.h>
#include <string.h>

...

DB *my_secondary_database;
DBT key; /* Used for the search key */
DBT pkey, pdata; /* Used to return the primary key and data */
char *search_name = "John Doe";

/* Primary and secondary database opens omitted for brevity */

/* Zero out the DBTs before using them. */
memset(&key, 0, sizeof(DBT));
memset(&pkey, 0, sizeof(DBT));
memset(&pdata, 0, sizeof(DBT));

Secondary Databases

6/25/2010 Getting Started with DB Page 62

key.data = search_name;
key.size = strlen(search_name) + 1;

/* Returns the key from the secondary database, and the data from the
 * associated primary database entry.
 */
my_secondary_database->get(my_secondary_database, NULL,
 &key, &pdata, 0);

/* Returns the key from the secondary database, and the key and data
 * from the associated primary database entry.
 */
my_secondary_database->pget(my_secondary_database, NULL,
 &key, &pkey, &pdata, 0);

Note that, just like a primary database, if your secondary database supports duplicate records
then DB->get() and DB->pget() only return the first record found in a matching duplicates
set. If you want to see all the records related to a specific secondary key, then use a cursor
opened on the secondary database. Cursors are described in Using Cursors (page 39).

Deleting Secondary Database Records

In general, you will not modify a secondary database directly. In order to modify a secondary
database, you should modify the primary database and simply allow DB to manage the
secondary modifications for you.

However, as a convenience, you can delete secondary database records directly. Doing so
causes the associated primary key/data pair to be deleted. This in turn causes DB to delete all
secondary database records that reference the primary record.

You can use the DB->del() method to delete a secondary database record. Note that if
your secondary database contains duplicate records, then deleting a record from the set of
duplicates causes all of the duplicates to be deleted as well.

Note

You can delete a secondary database record using the previously described mechanism
only if the primary database is opened for write access.

For example:
#include <db.h>
#include <string.h>

...

DB *dbp, *sdbp; /* Primary and secondary DB handles */
DBT key; /* DBTs used for the delete */
int ret; /* Function return value */
char *search_name = "John Doe"; /* Name to delete */

Secondary Databases

6/25/2010 Getting Started with DB Page 63

/* Primary */
ret = db_create(&dbp, NULL, 0);
if (ret != 0) {
 /* Error handling goes here */
}

/* Secondary */
ret = db_create(&sdbp, NULL, 0);
if (ret != 0) {
 /* Error handling goes here */
}

/* Usually we want to support duplicates for secondary databases */
ret = sdbp->set_flags(sdbp, DB_DUPSORT);
if (ret != 0) {
 /* Error handling goes here */
}

/* open the primary database */
ret = dbp->open(dbp, /* DB structure pointer */
 NULL, /* Transaction pointer */
 "my_db.db", /* On-disk file that holds the database.
 * Required. */
 NULL, /* Optional logical database name */
 DB_BTREE, /* Database access method */
 0, /* Open flags */
 0); /* File mode (using defaults) */
if (ret != 0) {
 /* Error handling goes here */
}

/* open the secondary database */
ret = sdbp->open(sdbp, /* DB structure pointer */
 NULL, /* Transaction pointer */
 "my_secdb.db", /* On-disk file that holds the database.
 * Required. */
 NULL, /* Optional logical database name */
 DB_BTREE, /* Database access method */
 0, /* Open flags */
 0); /* File mode (using defaults) */
if (ret != 0) {
 /* Error handling goes here */
}

/* Now associate the secondary to the primary */
dbp->associate(dbp, /* Primary database */
 NULL, /* TXN id */
 sdbp, /* Secondary database */
 get_sales_rep, /* Callback used for key creation. */

Secondary Databases

6/25/2010 Getting Started with DB Page 64

 0); /* Flags */

/*
 * Zero out the DBT before using it.
 */
memset(&key, 0, sizeof(DBT));

key.data = search_name;
key.size = strlen(search_name) + 1;

/* Now delete the secondary record. This causes the associated primary
 * record to be deleted. If any other secondary databases have secondary
 * records referring to the deleted primary record, then those secondary
 * records are also deleted.
 */
 sdbp->del(sdbp, NULL, &key, 0);

Using Cursors with Secondary Databases

Just like cursors on a primary database, you can use cursors on secondary databases to iterate
over the records in a secondary database. Like cursors used with primary databases, you can
also use cursors with secondary databases to search for specific records in a database, to seek
to the first or last record in the database, to get the next duplicate record, and so forth. For a
complete description on cursors and their capabilities, see Using Cursors (page 39).

However, when you use cursors with secondary databases:

• Any data returned is the data contained on the primary database record referenced by the
secondary record.

• You cannot use DB_GET_BOTH and related flags with DB->get() and a secondary database.
Instead, you must use DB->pget(). Also, in that case the primary and secondary key given
on the call to DB->pget() must match the secondary key and associated primary record key
in order for that primary record to be returned as a result of the call.

For example, suppose you are using the databases, classes, and key extractors described in
Implementing Key Extractors (page 58). Then the following searches for a person's name in
the secondary database, and deletes all secondary and primary records that use that name.

#include <db.h>
#include <string.h>

...

DB *sdbp; /* Secondary DB handle */
DBC *cursorp; /* Cursor */
DBT key, data; /* DBTs used for the delete */
char *search_name = "John Doe"; /* Name to delete */

/* Primary and secondary database opens omitted for brevity. */

Secondary Databases

6/25/2010 Getting Started with DB Page 65

/* Get a cursor on the secondary database */
sdbp->cursor(sdbp, NULL, &cursorp, 0);

/*
 * Zero out the DBT before using it.
 */
memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

key.data = search_name;
key.size = strlen(search_name) + 1;

/* Position the cursor */
while (cursorp->get(cursorp, &key, &data, DB_SET) == 0)
 cursorp->del(cursorp, 0);

Database Joins

If you have two or more secondary databases associated with a primary database, then you
can retrieve primary records based on the intersection of multiple secondary entries. You do
this using a join cursor.

Throughout this document we have presented a structure that stores information on grocery
vendors. That structure is fairly simple with a limited number of data members, few of which
would be interesting from a query perspective. But suppose, instead, that we were storing
information on something with many more characteristics that can be queried, such as an
automobile. In that case, you may be storing information such as color, number of doors, fuel
mileage, automobile type, number of passengers, make, model, and year, to name just a few.

In this case, you would still likely be using some unique value to key your primary entries
(in the United States, the automobile's VIN would be ideal for this purpose). You would then
create a structure that identifies all the characteristics of the automobiles in your inventory.

To query this data, you might then create multiple secondary databases, one for each of the
characteristics that you want to query. For example, you might create a secondary for color,
another for number of doors, another for number of passengers, and so forth. Of course, you
will need a unique key extractor function for each such secondary database. You do all of this
using the concepts and techniques described throughout this chapter.

Once you have created this primary database and all interesting secondaries, what you have
is the ability to retrieve automobile records based on a single characteristic. You can, for
example, find all the automobiles that are red. Or you can find all the automobiles that have
four doors. Or all the automobiles that are minivans.

The next most natural step, then, is to form compound queries, or joins. For example, you
might want to find all the automobiles that are red, and that were built by Toyota, and that
are minivans. You can do this using a join cursor.

Secondary Databases

6/25/2010 Getting Started with DB Page 66

Using Join Cursors

To use a join cursor:

• Open two or more cursors for secondary databases that are associated with the same
primary database.

• Position each such cursor to the secondary key value in which you are interested. For
example, to build on the previous description, the cursor for the color database is
positioned to the red records while the cursor for the model database is positioned to the
minivan records, and the cursor for the make database is positioned to Toyota.

• Create an array of cursors, and place in it each of the cursors that are participating in your
join query. Note that this array must be null terminated.

• Obtain a join cursor. You do this using the DB->join() method. You must pass this method
the array of secondary cursors that you opened and positioned in the previous steps.

• Iterate over the set of matching records until the return code is not 0.

• Close your cursor.

• If you are done with them, close all your cursors.

For example:
#include <db.h>
#include <string.h>

...

DB *automotiveDB;
DB *automotiveColorDB;
DB *automotiveMakeDB;
DB *automotiveTypeDB;
DBC *color_curs, *make_curs, *type_curs, *join_curs;
DBC *carray[4];
DBT key, data;
int ret;

char *the_color = "red";
char *the_type = "minivan";
char *the_make = "Toyota";

/* Database and secondary database opens omitted for brevity.
 * Assume a primary database handle:
 * automotiveDB
 * Assume 3 secondary database handles:
 * automotiveColorDB -- secondary database based on automobile color
 * automotiveMakeDB -- secondary database based on the manufacturer
 * automotiveTypeDB -- secondary database based on automobile type
 */

Secondary Databases

6/25/2010 Getting Started with DB Page 67

/* initialize pointers and structures */
color_curs = NULL;
make_curs = NULL;
type_curs = NULL;
join_curs = NULL;

memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));

/* open the cursors */
if ((ret =
 automotiveColorDB->cursor(automotiveColorDB, NULL,
 &color_curs, 0)) != 0) {
 /* Error handling goes here */
}

if ((ret =
 automotiveMakeDB->cursor(automotiveMakeDB, NULL,
 &make_curs, 0)) != 0) {
 /* Error handling goes here */
}

if ((ret =
 automotiveTypeDB->cursor(automotiveTypeDB, NULL,
 &type_curs, 0)) != 0) {
 /* Error handling goes here */
}

/* Position the cursors */
key.data = the_color;
key.size = strlen(the_color) + 1;
if ((ret = color_curs->get(color_curs, &key, &data, DB_SET)) != 0)
 /* Error handling goes here */

key.data = the_make;
key.size = strlen(the_make) + 1;
if ((ret = make_curs->get(make_curs, &key, &data, DB_SET)) != 0)
 /* Error handling goes here */

key.data = the_type;
key.size = strlen(the_type) + 1;
if ((ret = type_curs->get(type_curs, &key, &data, DB_SET)) != 0)
 /* Error handling goes here */

/* Set up the cursor array */
carray[0] = color_curs;
carray[1] = make_curs;
carray[2] = type_curs;

Secondary Databases

6/25/2010 Getting Started with DB Page 68

carray[3] = NULL;

/* Create the join */
if ((ret = automotiveDB->join(automotiveDB, carray, &join_curs, 0)) != 0)
 /* Error handling goes here */

/* Iterate using the join cursor */
while ((ret = join_curs->get(join_curs, &key, &data, 0)) == 0) {
 /* Do interesting things with the key and data */
}

/*
 * If we exited the loop because we ran out of records,
 * then it has completed successfully.
 */
if (ret == DB_NOTFOUND) {
 /*
 * Close all our cursors and databases as is appropriate, and
 * then exit with a normal exit status (0).
 */
}

Secondary Database Example

In previous chapters in this book, we built applications that load and display several DB
databases. In this example, we will extend those examples to use secondary databases.
Specifically:

• In Database Usage Example (page 30) we built an application that can open and load data
into several databases. In Secondary Databases with example_database_load (page 68) we
will extend that application to also open a secondary database for the purpose of indexing
inventory item names.

• In Cursor Example (page 50) we built an application to display our inventory database (and
related vendor information). In Secondary Databases with example_database_read (page
75) we will extend that application to show inventory records based on the index we
cause to be loaded using example_database_load.

Secondary Databases with example_database_load

example_database_load uses several utility functions to open and close its databases. In
order to cause example_database_load to maintain an index of inventory item names, all we
really need to do is update the utility functions to:

1. Create a new database to be used as a secondary database.

2. Associate our new database to the inventory primary database.

3. Close the secondary database when we close the rest of our databases.

We also need a function that can create our secondary keys for us.

Secondary Databases

6/25/2010 Getting Started with DB Page 69

Because DB maintains secondary databases for us; once this work is done we need not make
any other changes to example_database_load. Therefore, we can limit all our work to the
code found in gettingstarted_common.h and gettingstarted_common.c.

Remember that you can find the complete implementation of these functions in:
DB_INSTALL/examples_c/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

To begin, we need to update the stock_dbs structure to accommodate the additional
database. We defined this structure in gettingstarted_common.h. We can limit our update
to this file to just that structure definition:

Remember that new code is in bold.
/* file: gettingstarted_common.h */
#include <db.h>

typedef struct stock_dbs {
 DB *inventory_dbp; /* Database containing inventory information */
 DB *vendor_dbp; /* Database containing vendor information */
 DB *itemname_sdbp; /* Index based on the item name index */

 char *db_home_dir; /* Directory containing the database files */
 char *itemname_db_name; /* Itemname secondary database */
 char *inventory_db_name; /* Name of the inventory database */
 char *vendor_db_name; /* Name of the vendor database */
} STOCK_DBS;

/* Function prototypes */
int databases_setup(STOCK_DBS *, const char *, FILE *);
int databases_close(STOCK_DBS *);
void initialize_stockdbs(STOCK_DBS *);
int open_database(DB **, const char *, const char *, FILE *, int);
void set_db_filenames(STOCK_DBS *my_stock);

Because we updated our stock_dbs structure, we need to update our stock_dbs utility
functions (The stock_db Utility Functions (page 17)) accordingly. The updates are trivial and so
we won't show them here in the interest of space. You can find their complete implementation
in the gettingstarted_common.c file accompanying this example in your DB distribution.

More importantly, however, we need to go to gettingstarted_common.c and create our
secondary key extractor function. When we store our inventory items, we place the item
name in the buffer immediately after a float and an int, so retrieving the string from the
buffer is fairly easy to do:
/* file: gettingstarted_common.c */
#include "gettingstarted_common.h"

/*
 * Used to extract an inventory item's name from an

Secondary Databases

6/25/2010 Getting Started with DB Page 70

 * inventory database record. This function is used to create
 * keys for secondary database records.
 */
int
get_item_name(DB *dbp, const DBT *pkey, const DBT *pdata, DBT *skey)
{
 int offset;

 /*
 * First, obtain the buffer location where we placed the
 * item's name. In this example, the item's name is located
 * in the primary data. It is the first string in the
 * buffer after the price (a float) and the quantity (an int).
 *
 * See load_inventory_database() in example_database_load.c
 * for how we marshalled the inventory information into the
 * data DBT.
 */
 offset = sizeof(float) + sizeof(int);

 /* Check to make sure there's data */
 if (pdata->size < offset)
 return (-1); /* Returning non-zero means that the
 * secondary record is not created/updated.
 */

 /* Now set the secondary key's data to be the item name */
 memset(skey, 0, sizeof(DBT));
 skey->data = pdata->data + offset;
 skey->size = strlen(skey->data) + 1;

 return (0);
}

Having completed that function, we need to update set_db_filenames() and
initialize_stockdbs() to handle the new secondary databases that our application will
now use. These functions were originally introduced in The stock_db Utility Functions (page
17).

/* Initializes the STOCK_DBS struct.*/
void
initialize_stockdbs(STOCK_DBS *my_stock)
{
 my_stock->db_home_dir = DEFAULT_HOMEDIR;
 my_stock->inventory_dbp = NULL;
 my_stock->vendor_dbp = NULL;
 my_stock->itemname_sdbp = NULL;

 my_stock->inventory_db_name = NULL;

Secondary Databases

6/25/2010 Getting Started with DB Page 71

 my_stock->vendor_db_name = NULL;
 my_stock->itemname_db_name = NULL;
}

/* Identify all the files that will hold our databases. */
void
set_db_filenames(STOCK_DBS *my_stock)
{
 size_t size;

 /* Create the Inventory DB file name */
 size = strlen(my_stock->db_home_dir) + strlen(INVENTORYDB) + 1;
 my_stock->inventory_db_name = malloc(size);
 snprintf(my_stock->inventory_db_name, size, "%s%s",
 my_stock->db_home_dir, INVENTORYDB);

 /* Create the Vendor DB file name */
 size = strlen(my_stock->db_home_dir) + strlen(VENDORDB) + 1;
 my_stock->vendor_db_name = malloc(size);
 snprintf(my_stock->vendor_db_name, size, "%s%s",
 my_stock->db_home_dir, VENDORDB);

 /* Create the itemname DB file name */
 size = strlen(my_stock->db_home_dir) + strlen(ITEMNAMEDB) + 1;
 my_stock->itemname_db_name = malloc(size);
 snprintf(my_stock->itemname_db_name, size, "%s%s",
 my_stock->db_home_dir, ITEMNAMEDB);
}

We also need to update the open_database() (as described in open_database()
Function (page 18)) to take special actions if we are opening a secondary database. Unlike
our primary databases, we want to support sorted duplicates for our secondary database. This
is because we are indexing based on an item's name, and item names are shared by multiple
inventory records. As a result every key the secondary database (an item name) will be used
by multiple records (pointers to records in our primary database). We allow this by configuring
our secondary database to support duplicate records. Further, because BTrees perform best
when their records are sorted, we go ahead and configure our secondary database for sorted
duplicates.

To do this, we add a parameter to the function that indicates whether we are opening
a secondary database, and we add in the few lines of code necessary to set the sorted
duplicates flags.

/* Opens a database */
int
open_database(DB **dbpp, /* The DB handle that we are opening */
 const char *file_name, /* The file in which the db lives */
 const char *program_name, /* Name of the program calling this
 * function */
 FILE *error_file_pointer,

Secondary Databases

6/25/2010 Getting Started with DB Page 72

 int is_secondary)
{
 DB *dbp; /* For convenience */
 u_int32_t open_flags;
 int ret;

 /* Initialize the DB handle */
 ret = db_create(&dbp, NULL, 0);
 if (ret != 0) {
 fprintf(error_file_pointer, "%s: %s\n", program_name,
 db_strerror(ret));
 return (ret);
 }

 /* Point to the memory malloc'd by db_create() */
 *dbpp = dbp;

 /* Set up error handling for this database */
 dbp->set_errfile(dbp, error_file_pointer);
 dbp->set_errpfx(dbp, program_name);

 /*
 * If this is a secondary database, then we want to allow
 * sorted duplicates.
 */
 if (is_secondary) {
 ret = dbp->set_flags(dbp, DB_DUPSORT);
 if (ret != 0) {
 dbp->err(dbp, ret, "Attempt to set DUPSORT flag failed.",
 file_name);
 return (ret);
 }
 }

 /* Set the open flags */
 open_flags = DB_CREATE;

 /* Now open the database */
 ret = dbp->open(dbp, /* Pointer to the database */
 NULL, /* Txn pointer */
 file_name, /* File name */
 NULL, /* Logical db name (unneeded) */
 DB_BTREE, /* Database type (using btree) */
 open_flags, /* Open flags */
 0); /* File mode. Using defaults */
 if (ret != 0) {
 dbp->err(dbp, ret, "Database '%s' open failed.", file_name);
 return (ret);
 }

Secondary Databases

6/25/2010 Getting Started with DB Page 73

 return (ret);
}

That done, we can now update databases_setup() (see The databases_setup()
Function (page 19)) to create and open our secondary database. To do this, we have to add a
flag to each call to open_database() that indicates whether the database is a secondary. We
also have to associate our secondary database with the inventory database (the primary).

Note that we do not anywhere in this example show the definition of PRIMARY_DB and
SECONDARY_DB. See gettingstarted_common.h in your DB examples directory for those
definitions (they are just 0 and 1, respectively).

/* opens all databases */
int
databases_setup(STOCK_DBS *my_stock, const char *program_name,
 FILE *error_file_pointer)
{
 int ret;

 /* Open the vendor database */
 ret = open_database(&(my_stock->vendor_dbp),
 my_stock->vendor_db_name,
 program_name, error_file_pointer,
 PRIMARY_DB);
 if (ret != 0)
 /*
 * Error reporting is handled in open_database() so just return
 * the return code here.
 */
 return (ret);

 /* Open the inventory database */
 ret = open_database(&(my_stock->inventory_dbp),
 my_stock->inventory_db_name,
 program_name, error_file_pointer,
 PRIMARY_DB);
 if (ret != 0)
 /*
 * Error reporting is handled in open_database() so just return
 * the return code here.
 */
 return (ret);

 /*
 * Open the itemname secondary database. This is used to
 * index the product names found in the inventory
 * database.
 */
 ret = open_database(&(my_stock->itemname_sdbp),

Secondary Databases

6/25/2010 Getting Started with DB Page 74

 my_stock->itemname_db_name,
 program_name, error_file_pointer,
 SECONDARY_DB);
 if (ret != 0)
 /*
 * Error reporting is handled in open_database() so just return
 * the return code here.
 */
 return (ret);

 /*
 * Associate the itemname db with its primary db
 * (inventory db).
 */
 my_stock->inventory_dbp->associate(
 my_stock->inventory_dbp, /* Primary db */
 NULL, /* txn id */
 my_stock->itemname_sdbp, /* Secondary db */
 get_item_name, /* Secondary key extractor */
 0); /* Flags */

 printf("databases opened successfully\n");
 return (0);
}

Finally, we need to update databases_close() (The databases_close() Function (page 20)) to
close our new secondary database. Note that we are careful to close the secondary before the
primary, even though the database close routine is single threaded.

/* Closes all the databases and secondary databases. */
int
databases_close(STOCK_DBS *my_stock)
{
 int ret;
 /*
 * Note that closing a database automatically flushes its cached data
 * to disk, so no sync is required here.
 */

 if (my_stock->itemname_sdbp != NULL) {
 ret = my_stock->itemname_sdbp->close(my_stock->itemname_sdbp, 0);
 if (ret != 0)
 fprintf(stderr, "Itemname database close failed: %s\n",
 db_strerror(ret));
 }

 if (my_stock->inventory_dbp != NULL) {
 ret = my_stock->inventory_dbp->close(my_stock->inventory_dbp, 0);
 if (ret != 0)

Secondary Databases

6/25/2010 Getting Started with DB Page 75

 fprintf(stderr, "Inventory database close failed: %s\n",
 db_strerror(ret));
 }

 if (my_stock->vendor_dbp != NULL) {
 ret = my_stock->vendor_dbp->close(my_stock->vendor_dbp, 0);
 if (ret != 0)
 fprintf(stderr, "Vendor database close failed: %s\n",
 db_strerror(ret));
 }

 printf("databases closed.\n");
 return (0);
}

And the implementation changes slightly to take advantage of the new boolean. Note that to
save space, we just show the constructor where the code actually changes:

That completes our update to example_database_load. Now when this program is called, it
will automatically index inventory items based on their names. We can then query for those
items using the new index. We show how to do that in the next section.

Secondary Databases with example_database_read

In Cursor Example (page 50) we wrote an application that displays every inventory item in the
Inventory database. In this section, we will update that example to allow us to search for and
display an inventory item given a specific name. To do this, we will make use of the secondary
database that example_database_load now creates.

Because we manage all our database open and close activities in databases_setup() and
databases_close(), the update to example_database_read is relatively modest. We need
only add a command line parameter on which we can specify the item name, and we will need
a new function in which we will perform the query and display the results.

To begin, we add a single forward declaration to the application, and update our usage
function slightly:

/* File: example_database_read.c */
/* gettingstarted_common.h includes db.h for us */
#include "gettingstarted_common.h"

/* Forward declarations */
char * show_inventory_item(void *);
int show_all_records(STOCK_DBS *);
int show_records(STOCK_DBS *, char *);
int show_vendor_record(char *, DB *);

Next, we update main() to accept the new command line switch. We also need a new
variable to contain the item's name.

/*

Secondary Databases

6/25/2010 Getting Started with DB Page 76

 * Searches for a inventory item based on that item's name. The search is
 * performed using the item name secondary database. Displays all
 * inventory items that use the specified name, as well as the vendor
 * associated with that inventory item.
 *
 * If no item name is provided, then all inventory items are displayed.
 */
int
main(int argc, char *argv[])
{
 STOCK_DBS my_stock;
 int ret;
 char *itemname;

 /* Initialize the STOCK_DBS struct */
 initialize_stockdbs(&my_stock);

 itemname = NULL;
 /*
 * Parse the command line arguments here and determine
 * the location of the database files as well as the
 * inventory item we want displayed, if any. This step is
 * omitted for brevity.
 */

 /*
 * Identify the files that will hold our databases
 * This function uses information obtained from the
 * command line to identify the directory in which
 * the database files reside.
 */
 set_db_filenames(&my_stock);

 /* Open all databases */
 ret = databases_setup(&my_stock, "example_database_read", stderr);
 if (ret != 0) {
 fprintf(stderr, "Error opening databases\n");
 databases_close(&my_stock);
 return (ret);
 }

The final update to the main() entails a little bit of logic to determine whether we want to
display all available inventory items, or just the ones that match a name provided on the -i
command line parameter.

 /*
 * Show either a single item or all items, depending
 * on whether itemname is set to a value.
 */
 if (itemname == NULL)

Secondary Databases

6/25/2010 Getting Started with DB Page 77

 ret = show_all_records(&my_stock);
 else
 ret = show_records(&my_stock, itemname);

 /* Close our databases */
 databases_close(&my_stock);
 return (ret);
}

The only other thing that we need to add to the application is the implementation of the
show_records() function.

Note

In the interest of space, we refrain from showing the other functions used by
this application. For their implementation, please see Cursor Example (page 50).
Alternatively, you can see the entire implementation of this application in:

DB_INSTALL/examples_c/getting_started

where DB_INSTALL is the location where you placed your DB distribution.

/*
 * Search for an inventory item given its name (using the inventory item
 * secondary database) and display that record and any duplicates that may
 * exist.
 */
int
show_records(STOCK_DBS *my_stock, char *itemname)
{
 DBC *itemname_cursorp;
 DBT key, data;
 char *the_vendor;
 int ret, exit_value;

 /* Initialize our DBTs. */
 memset(&key, 0, sizeof(DBT));
 memset(&data, 0, sizeof(DBT));

 /* Get a cursor to the itemname db */
 my_stock->itemname_sdbp->cursor(my_stock->itemname_sdbp, 0,
 &itemname_cursorp, 0);

 /*
 * Get the search key. This is the name on the inventory
 * record that we want to examine.
 */
 key.data = itemname;
 key.size = strlen(itemname) + 1;

 /*

Secondary Databases

6/25/2010 Getting Started with DB Page 78

 * Position our cursor to the first record in the secondary
 * database that has the appropriate key.
 */
 exit_value = 0;
 ret = itemname_cursorp->get(itemname_cursorp, &key, &data, DB_SET);
 if (!ret) {
 do {
 /*
 * Show the inventory record and the vendor responsible
 * for this inventory item.
 */
 the_vendor = show_inventory_item(data.data);
 ret = show_vendor_record(the_vendor, my_stock->vendor_dbp);
 if (ret) {
 exit_value = ret;
 break;
 }
 /*
 * Our secondary allows duplicates, so we need to loop over
 * the next duplicate records and show them all. This is done
 * because an inventory item's name is not a unique value.
 */
 } while(itemname_cursorp->get(itemname_cursorp, &key, &data,
 DB_NEXT_DUP) == 0);
 } else {
 printf("No records found for '%s'\n", itemname);
 }

 /* Close the cursor */
 itemname_cursorp->close(itemname_cursorp);

 return (exit_value);
}

This completes our update to example_inventory_read. Using this update, you can now
search for and show all inventory items that match a particular name. For example:

 example_inventory_read -i "Zulu Nut"

6/25/2010 Getting Started with DB Page 79

Chapter 6. Database Configuration
This chapter describes some of the database and cache configuration issues that you need
to consider when building your DB database. In most cases, there is very little that you need
to do in terms of managing your databases. However, there are configuration issues that you
need to be concerned with, and these are largely dependent on the access method that you
are choosing for your database.

The examples and descriptions throughout this document have mostly focused on the BTree
access method. This is because the majority of DB applications use BTree. For this reason,
where configuration issues are dependent on the type of access method in use, this chapter
will focus on BTree only. For configuration descriptions surrounding the other access methods,
see the Berkeley DB Programmer's Reference Guide.

Setting the Page Size

Internally, DB stores database entries on pages. Page sizes are important because they can
affect your application's performance.

DB pages can be between 512 bytes and 64K bytes in size. The size that you select must be a
power of 2. You set your database's page size using DB->set_pagesize().

Note that a database's page size can only be selected at database creation time.

When selecting a page size, you should consider the following issues:

• Overflow pages.

• Locking

• Disk I/O.

These topics are discussed next.

Overflow Pages

Overflow pages are used to hold a key or data item that cannot fit on a single page. You do
not have to do anything to cause overflow pages to be created, other than to store data
that is too large for your database's page size. Also, the only way you can prevent overflow
pages from being created is to be sure to select a page size that is large enough to hold your
database entries.

Because overflow pages exist outside of the normal database structure, their use is expensive
from a performance perspective. If you select too small of a page size, then your database
will be forced to use an excessive number of overflow pages. This will significantly harm your
application's performance.

For this reason, you want to select a page size that is at least large enough to hold multiple
entries given the expected average size of your database entries. In BTree's case, for best
results select a page size that can hold at least 4 such entries.

Database Configuration

6/25/2010 Getting Started with DB Page 80

You can see how many overflow pages your database is using by using the DB->stat()
method, or by examining your database using the db_stat command line utility.

Locking

Locking and multi-threaded access to DB databases is built into the product. However, in
order to enable the locking subsystem and in order to provide efficient sharing of the cache
between databases, you must use an environment. Environments and multi-threaded access
are not fully described in this manual (see the Berkeley DB Programmer's Reference Manual for
information), however, we provide some information on sizing your pages in a multi-threaded/
multi-process environment in the interest of providing a complete discussion on the topic.

If your application is multi-threaded, or if your databases are accessed by more than one
process at a time, then page size can influence your application's performance. The reason
why is that for most access methods (Queue is the exception), DB implements page-level
locking. This means that the finest locking granularity is at the page, not at the record.

In most cases, database pages contain multiple database records. Further, in order to provide
safe access to multiple threads or processes, DB performs locking on pages as entries on those
pages are read or written.

As the size of your page increases relative to the size of your database entries, the number of
entries that are held on any given page also increase. The result is that the chances of two or
more readers and/or writers wanting to access entries on any given page also increases.

When two or more threads and/or processes want to manage data on a page, lock contention
occurs. Lock contention is resolved by one thread (or process) waiting for another thread to
give up its lock. It is this waiting activity that is harmful to your application's performance.

It is possible to select a page size that is so large that your application will spend excessive,
and noticeable, amounts of time resolving lock contention. Note that this scenario is
particularly likely to occur as the amount of concurrency built into your application increases.

Oh the other hand, if you select too small of a page size, then that that will only make your
tree deeper, which can also cause performance penalties. The trick, therefore, is to select a
reasonable page size (one that will hold a sizeable number of records) and then reduce the
page size if you notice lock contention.

You can examine the number of lock conflicts and deadlocks occurring in your application by
examining your database environment lock statistics. Either use the DB_ENV->lock_stat()
method, or use the db_stat command line utility. The number of unavailable locks that your
application waited for is held in the lock statistic's st_lock_wait field.

IO Efficiency

Page size can affect how efficient DB is at moving data to and from disk. For some
applications, especially those for which the in-memory cache can not be large enough to hold
the entire working dataset, IO efficiency can significantly impact application performance.

Most operating systems use an internal block size to determine how much data to move to and
from disk for a single I/O operation. This block size is usually equal to the filesystem's block

Database Configuration

6/25/2010 Getting Started with DB Page 81

size. For optimal disk I/O efficiency, you should select a database page size that is equal to
the operating system's I/O block size.

Essentially, DB performs data transfers based on the database page size. That is, it moves data
to and from disk a page at a time. For this reason, if the page size does not match the I/O
block size, then the operating system can introduce inefficiencies in how it responds to DB's I/
O requests.

For example, suppose your page size is smaller than your operating system block size. In this
case, when DB writes a page to disk it is writing just a portion of a logical filesystem page.
Any time any application writes just a portion of a logical filesystem page, the operating
system brings in the real filesystem page, over writes the portion of the page not written by
the application, then writes the filesystem page back to disk. The net result is significantly
more disk I/O than if the application had simply selected a page size that was equal to the
underlying filesystem block size.

Alternatively, if you select a page size that is larger than the underlying filesystem block size,
then the operating system may have to read more data than is necessary to fulfill a read
request. Further, on some operating systems, requesting a single database page may result
in the operating system reading enough filesystem blocks to satisfy the operating system's
criteria for read-ahead. In this case, the operating system will be reading significantly more
data from disk than is actually required to fulfill DB's read request.

Note

While transactions are not discussed in this manual, a page size other than your
filesystem's block size can affect transactional guarantees. The reason why is that
page sizes larger than the filesystem's block size causes DB to write pages in block size
increments. As a result, it is possible for a partial page to be written as the result of a
transactional commit. For more information, see http://www.oracle.com/technology/
documentation/berkeley-db/db/ref/transapp/reclimit.html.

Page Sizing Advice

Page sizing can be confusing at first, so here are some general guidelines that you can use to
select your page size.

In general, and given no other considerations, a page size that is equal to your filesystem
block size is the ideal situation.

If your data is designed such that 4 database entries cannot fit on a single page (assuming
BTree), then grow your page size to accommodate your data. Once you've abandoned
matching your filesystem's block size, the general rule is that larger page sizes are better.

The exception to this rule is if you have a great deal of concurrency occurring in your
application. In this case, the closer you can match your page size to the ideal size needed for
your application's data, the better. Doing so will allow you to avoid unnecessary contention for
page locks.

http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/reclimit.html
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/transapp/reclimit.html

Database Configuration

6/25/2010 Getting Started with DB Page 82

Selecting the Cache Size

Cache size is important to your application because if it is set to too small of a value, your
application's performance will suffer from too much disk I/O. On the other hand, if your cache
is too large, then your application will use more memory than it actually needs. Moreover,
if your application uses too much memory, then on most operating systems this can result in
your application being swapped out of memory, resulting in extremely poor performance.

You select your cache size using either DB->set_cachesize(), or DB_ENV-
>set_cachesize(), depending on whether you are using a database environment or not. You
cache size must be a power of 2, but it is otherwise limited only by available memory and
performance considerations.

Selecting a cache size is something of an art, but fortunately you can change it any time,
so it can be easily tuned to your application's changing data requirements. The best way
to determine how large your cache needs to be is to put your application into a production
environment and watch to see how much disk I/O is occurring. If your application is going to
disk quite a lot to retrieve database records, then you should increase the size of your cache
(provided that you have enough memory to do so).

You can use the db_stat command line utility with the -m option to gauge the effectiveness
of your cache. In particular, the number of pages found in the cache is shown, along with a
percentage value. The closer to 100% that you can get, the better. If this value drops too low,
and you are experiencing performance problems, then you should consider increasing the size
of your cache, assuming you have memory to support it.

BTree Configuration

In going through the previous chapters in this book, you may notice that we touch on some
topics that are specific to BTree, but we do not cover those topics in any real detail. In this
section, we will discuss configuration issues that are unique to BTree.

Specifically, in this section we describe:

• Allowing duplicate records.

• Setting comparator callbacks.

Allowing Duplicate Records

BTree databases can contain duplicate records. One record is considered to be a duplicate of
another when both records use keys that compare as equal to one another.

By default, keys are compared using a lexicographical comparison, with shorter keys collating
higher than longer keys. You can override this default using the DB->set_bt_compare()
method. See the next section for details.

By default, DB databases do not allow duplicate records. As a result, any attempt to write a
record that uses a key equal to a previously existing record results in the previously existing
record being overwritten by the new record.

Database Configuration

6/25/2010 Getting Started with DB Page 83

Allowing duplicate records is useful if you have a database that contains records keyed by a
commonly occurring piece of information. It is frequently necessary to allow duplicate records
for secondary databases.

For example, suppose your primary database contained records related to automobiles. You
might in this case want to be able to find all the automobiles in the database that are of a
particular color, so you would index on the color of the automobile. However, for any given
color there will probably be multiple automobiles. Since the index is the secondary key, this
means that multiple secondary database records will share the same key, and so the secondary
database must support duplicate records.

Sorted Duplicates

Duplicate records can be stored in sorted or unsorted order. You can cause DB to automatically
sort your duplicate records by specifying the DB_DUPSORT flag at database creation time.

If sorted duplicates are supported, then the sorting function specified on DB-
>set_dup_compare() is used to determine the location of the duplicate record in its
duplicate set. If no such function is provided, then the default lexicographical comparison is
used.

Unsorted Duplicates

For performance reasons, BTrees should always contain sorted records. (BTrees containing
unsorted entries must potentially spend a great deal more time locating an entry than does a
BTree that contains sorted entries). That said, DB provides support for suppressing automatic
sorting of duplicate records because it may be that your application is inserting records that
are already in a sorted order.

That is, if the database is configured to support unsorted duplicates, then the assumption
is that your application will manually perform the sorting. In this event, expect to pay a
significant performance penalty. Any time you place records into the database in a sort order
not know to DB, you will pay a performance penalty

That said, this is how DB behaves when inserting records into a database that supports non-
sorted duplicates:

• If your application simply adds a duplicate record using DB->put(), then the record is
inserted at the end of its sorted duplicate set.

• If a cursor is used to put the duplicate record to the database, then the new record is
placed in the duplicate set according to the flags that are provided on the DBC->put()
method. The relevant flags are:

• DB_AFTER

The data provided on the call to DBC->put() is placed into the database as a duplicate
record. The key used for this operation is the key used for the record to which the cursor
currently refers. Any key provided on the call to DBC->put() is therefore ignored.

The duplicate record is inserted into the database immediately after the cursor's current
position in the database.

Database Configuration

6/25/2010 Getting Started with DB Page 84

This flag is ignored if sorted duplicates are supported for the database.

• DB_BEFORE

Behaves the same as DB_AFTER except that the new record is inserted immediately before
the cursor's current location in the database.

• DB_KEYFIRST

If the key provided on the call to DBC->put() already exists in the database, and the
database is configured to use duplicates without sorting, then the new record is inserted
as the first entry in the appropriate duplicates list.

• DB_KEYLAST

Behaves identically to DB_KEYFIRST except that the new duplicate record is inserted as
the last record in the duplicates list.

Configuring a Database to Support Duplicates

Duplicates support can only be configured at database creation time. You do this by specifying
the appropriate flags to DB->set_flags() before the database is opened for the first time.

The flags that you can use are:

• DB_DUP

The database supports non-sorted duplicate records.

• DB_DUPSORT

The database supports sorted duplicate records. Note that this flag also sets the DB_DUP flag
for you.

The following code fragment illustrates how to configure a database to support sorted
duplicate records:
#include <db.h>
...

DB *dbp;
FILE *error_file_pointer;
int ret;
char *program_name = "my_prog";
char *file_name = "mydb.db";

/* Variable assignments omitted for brevity */

/* Initialize the DB handle */
ret = db_create(&dbp, NULL, 0);
if (ret != 0) {
 fprintf(error_file_pointer, "%s: %s\n", program_name,

Database Configuration

6/25/2010 Getting Started with DB Page 85

 db_strerror(ret));
 return(ret);
}

/* Set up error handling for this database */
dbp->set_errfile(dbp, error_file_pointer);
dbp->set_errpfx(dbp, program_name);

/*
 * Configure the database for sorted duplicates
 */
ret = dbp->set_flags(dbp, DB_DUPSORT);
if (ret != 0) {
 dbp->err(dbp, ret, "Attempt to set DUPSORT flag failed.");
 dbp->close(dbp, 0);
 return(ret);
}

/* Now open the database */
ret = dbp->open(dbp, /* Pointer to the database */
 NULL, /* Txn pointer */
 file_name, /* File name */
 NULL, /* Logical db name (unneeded) */
 DB_BTREE, /* Database type (using btree) */
 DB_CREATE, /* Open flags */
 0); /* File mode. Using defaults */
if (ret != 0) {
 dbp->err(dbp, ret, "Database '%s' open failed.", file_name);
 dbp->close(dbp, 0);
 return(ret);
}

Setting Comparison Functions

By default, DB uses a lexicographical comparison function where shorter records collate
before longer records. For the majority of cases, this comparison works well and you do not
need to manage it in any way.

However, in some situations your application's performance can benefit from setting a custom
comparison routine. You can do this either for database keys, or for the data if your database
supports sorted duplicate records.

Some of the reasons why you may want to provide a custom sorting function are:

• Your database is keyed using strings and you want to provide some sort of language-sensitive
ordering to that data. Doing so can help increase the locality of reference that allows your
database to perform at its best.

• You are using a little-endian system (such as x86) and you are using integers as your
database's keys. Berkeley DB stores keys as byte strings and little-endian integers do not

Database Configuration

6/25/2010 Getting Started with DB Page 86

sort well when viewed as byte strings. There are several solutions to this problem, one
being to provide a custom comparison function. See http://www.oracle.com/technology/
documentation/berkeley-db/db/ref/am_misc/faq.html for more information.

• You you do not want the entire key to participate in the comparison, for whatever reason.
In this case, you may want to provide a custom comparison function so that only the
relevant bytes are examined.

Creating Comparison Functions

You set a BTree's key comparison function using DB->set_bt_compare(). You can also set a
BTree's duplicate data comparison function using DB->set_dup_compare().

You cannot use these methods after the database has been opened. Also, if the database
already exists when it is opened, the function provided to these methods must be the same as
that historically used to create the database or corruption can occur.

The value that you provide to the set_bt_compare() method is a pointer to a function that
has the following signature:

int (*function)(DB *db, const DBT *key1, const DBT *key2)

This function must return an integer value less than, equal to, or greater than 0. If key1 is
considered to be greater than key2, then the function must return a value that is greater than
0. If the two are equal, then the function must return 0, and if the first key is less than the
second then the function must return a negative value.

The function that you provide to set_dup_compare() works in exactly the same way, except
that the DBT parameters hold record data items instead of keys.

For example, an example routine that is used to sort integer keys in the database is:

http://www.oracle.com/technology/documentation/berkeley-db/db/ref/am_misc/faq.html
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/am_misc/faq.html

Database Configuration

6/25/2010 Getting Started with DB Page 87

int
compare_int(DB *dbp, const DBT *a, const DBT *b)
{
 int ai, bi;

 /*
 * Returns:
 * < 0 if a < b
 * = 0 if a = b
 * > 0 if a > b
 */
 memcpy(&ai, a->data, sizeof(int));
 memcpy(&bi, b->data, sizeof(int));
 return (ai - bi);
}

Note that the data must first be copied into memory that is appropriately aligned, as Berkeley
DB does not guarantee any kind of alignment of the underlying data, including for comparison
routines. When writing comparison routines, remember that databases created on machines of
different architectures may have different integer byte orders, for which your code may need
to compensate.

To cause DB to use this comparison function:

#include <db.h>
#include <string.h>

...

DB *dbp;
int ret;

/* Create a database */
ret = db_create(&dbp, NULL, 0);
if (ret != 0) {
 fprintf(stderr, "%s: %s\n", "my_program",
 db_strerror(ret));
 return(-1);
}

/* Set up the btree comparison function for this database */
dbp->set_bt_compare(dbp, compare_int);

/* Database open call follows sometime after this. */

	Getting Started with Berkeley DB
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information

	Chapter 1. Introduction to Berkeley DB
	About This Manual
	Berkeley DB Concepts
	Access Methods
	Selecting Access Methods
	Choosing between BTree and Hash
	Choosing between Queue and Recno

	Database Limits and Portability
	Environments
	Error Returns
	Getting and Using DB

	Chapter 2. Databases
	Opening Databases
	Closing Databases
	Database Open Flags
	Administrative Methods
	Error Reporting Functions
	Managing Databases in Environments
	Database Example

	Chapter 3. Database Records
	Using Database Records
	Reading and Writing Database Records
	Writing Records to the Database
	Getting Records from the Database
	Deleting Records
	Data Persistence

	Using C Structures with DB
	C Structures with Pointers

	Database Usage Example

	Chapter 4. Using Cursors
	Opening and Closing Cursors
	Getting Records Using the Cursor
	Searching for Records
	Working with Duplicate Records

	Putting Records Using Cursors
	Deleting Records Using Cursors
	Replacing Records Using Cursors
	Cursor Example

	Chapter 5. Secondary Databases
	Opening and Closing Secondary Databases
	Implementing Key Extractors
	Working with Multiple Keys

	Reading Secondary Databases
	Deleting Secondary Database Records
	Using Cursors with Secondary Databases
	Database Joins
	Using Join Cursors

	Secondary Database Example
	Secondary Databases with example_database_load
	Secondary Databases with example_database_read

	Chapter 6. Database Configuration
	Setting the Page Size
	Overflow Pages
	Locking
	IO Efficiency
	Page Sizing Advice

	Selecting the Cache Size
	BTree Configuration
	Allowing Duplicate Records
	Sorted Duplicates
	Unsorted Duplicates
	Configuring a Database to Support Duplicates

	Setting Comparison Functions
	Creating Comparison Functions

