
Oracle Manufacturing APIs and Open Interfaces Manual

Volume 1

Release 11i

February 2001

Part No. A88838-01

Oracle© Manufacturing APIs and Open Interfaces Manual, Release 11i

Part No. A88838-01

Copyright © 1999, 2000 Oracle Corporation. All rights reserved.

Contributing Authors: Jill Arehart, Rachel Haas, Elizabeth Looney, Tom Myers, Susan Saperstein, Amy
Sonczalla

Contributors: David Reitan

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright, patent and
other intellectual property law. Reverse engineering of the software is prohibited.

Program Documentation is licensed for use solely to support the deployment of the Programs and not for
any other purpose.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are “commercial
computer software” and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are “restricted computer software” and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and Oracle Applications, Oracle Inventory, Oracle EDI Gateway, Oracle
Payables, Oracle Purchasing, Oracle Self-Service Purchasing, Oracle Self-Service Web Applications,
Context, Financial Analyzer, Oracle7, Oracle8, Oracle Alert, Oracle Applications, Oracle Discoverer,
Oracle Financials, Object Library, Oracle Work in Process, Oracle Workflow, SmartClient, PL/SQL,
SQL*Calc, SQL*Forms, SQL*Loader, SQL*Menu, SQL*Net, SQL*Plus, SQL*Report, SQL*ReportWriter,
Oracle Web Employees, and SQL*QMX are trademarks or registered trademarks of Oracle Corporation.
Windows NT is a registered trademark of Microsoft Corporation. All other company or product names
mentioned are used for identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xi

Preface... xiii

About This Manual... xiii
Audience for This Manual.. xiv
Do Not Use Database Tools to Modify Oracle Applications Data ... xiv
Other Information Sources.. xv

1 Integrating Your Systems

Overview of Oracle Manufacturing APIs and Open Interfaces .. 1-2
Basic Business Needs ... 1-2
Oracle Manufacturing Interfaces.. 1-2
Inbound Open Interface Model .. 1-7
Components of an Open Interface ... 1-9

2 Oracle ASCP and Oracle Global ATP Server Open Interfaces

ODS Load API Features... 2-2
Functional Overview.. 2-7
Setting Up the ODS Load API.. 2-7

Parameter Descriptions.. 2-8

3 Bills of Material Business Object Interface

Overview .. 3-2
iii

Bills of Material Entity Diagram... 3-3
Business Object APIs .. 3-5
Business object interface Design... 3-6
Detailed Business object interface Design... 3-9
Overall Import Description ... 3-11
Columns Exposed to User ... 3-15

Import Mechanics ... 3-21
Launching the Import .. 3-26
Package Interaction .. 3-32
Import Error Handling and Messaging... 3-35
Bill of Material Export API .. 3-45
Launching the Export... 3-45
Export Error Handling and Messaging ... 3-46

4 Oracle Cost Management Open Interfaces

Periodic Cost Open Interface.. 4-2
Functional Overview.. 4-2

Setting Up the Interface ... 4-3
Create Indexes for Performance ... 4-3

Periodic Cost Open Interface Runtime Options ... 4-4
Inserting into the Periodic Cost Interface Tables ... 4-4

Periodic Costs Interface Table Description ... 4-4
Periodic Cost Detail Interface Table Description ... 4-7
Required Data.. 4-8
Derived Data.. 4-9

Validation ... 4-9
Importing Additional Periodic Cost Details ... 4-12

Reviewing Failed Rows ... 4-12
Log File Messages ... 4-12

5 Engineering Change Order Business Object Interface

Features ... 5-2
ECO Business Object .. 5-3

Business Object APIs ... 5-6
Process Flow .. 5-9
iv

Entity Process Flows... 5-13
ECO Headers... 5-14
ECO Revisions... 5-15
Revised Items .. 5-17
Revised Components ... 5-19
Reference Designators.. 5-22
Substitute Components.. 5-23
New API Packages ... 5-24
Launching the Import .. 5-27
Package Interaction .. 5-32
Sample Launch Package .. 5-35
Import Error Handling and Messaging... 5-46
Error Handling Concepts .. 5-46
API Messaging .. 5-55
Error Handler .. 5-56

6 Oracle Inventory Open Interfaces and APIs

Open Transaction Interface ... 6-2
Functional Overview.. 6-2
Setting Up the Transaction Interface ... 6-6
Inserting into the Transaction Interface Tables .. 6-7
MTL_TRANSACTION_LOTS_INTERFACE.. 6-22
MTL_SERIAL_NUMBERS_INTERFACE.. 6-23
CST_COMP_SNAP_INTERFACE .. 6-25
Validation .. 6-26
Resolving Failed Transaction Interface Rows .. 6-26

Open Replenishment Interface .. 6-28
Functional Overview.. 6-28
Setting Up the Replenishment Interface.. 6-29
Inserting into the Replenishment Interface Tables .. 6-29
Replenishment Headers Interface Tables.. 6-30
Validation .. 6-35
Viewing Failed Transactions... 6-36
Fixing Failed Transactions .. 6-37

Open Item Interface ... 6-38
v

Validation of Lot API ... 6-86
Material Reservation Application Program Interface ... 6-87

Functional Overview.. 6-87
Setting Up the Material Reservation API.. 6-87
Validation of Material Reservation API .. 6-98

Reservations Manager Application Program Interface ... 6-99
Setting Up the Reservations Manager API ... 6-99
Validation of Reservations Manager API ... 6-100

Sales Order Application Program Interface .. 6-102
Functional Overview.. 6-102
Setting Up the Sales Order API .. 6-102
Validation of Sales Order API... 6-105

Move Order Application Program Interface ... 6-107
Functional Overview.. 6-107
Setting Up the Move Order API ... 6-107
Validation of Move Order API ... 6-120

Pick Release Application Program Interface... 6-122
Setting Up the Pick Release API ... 6-122
Validation of Pick Release API ... 6-124

Pick Confirm Application Program Interface ... 6-126
Functional Overview.. 6-126
Setting Up the Pick Confirm API ... 6-126
Validation of Pick Confirm API.. 6-128

7 Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open
Interfaces and APIs

Open Forecast Interface ... 7-2
Functional Overview.. 7-2
Setting Up the Open Forecast Interface... 7-2
Inserting into the Open Forecast Interface Table ... 7-2
Validation .. 7-5

Resolving Failed Open Forecast Interface Rows .. 7-7
Open Master Schedule Interface ... 7-8

Functional Overview.. 7-8
Setting Up the Open Master Schedule Interface .. 7-8
vii

Inserting into the Open Master Schedule Interface Table .. 7-8
Validation... 7-11
Resolving Failed Open Master Schedule Interface Rows ... 7-12

Open Forecast Entries Application Program Interface .. 7-14
Functional Overview.. 7-14
Setting Up the Open Forecast Entries API .. 7-14
Inserting into the Open Forecast Entries API Tables... 7-14
Open Forecast Interface Designator Table Description .. 7-16
Validation... 7-18
Using the Open Forecast Entries API .. 7-19

Sourcing Rule Application Program Interface .. 7-21
Sourcing Rule/Bill of Distribution API Features ... 7-21
Functional Overview.. 7-22
Setting Up the Sourcing Rule/Bill of Distribution API... 7-23
Validation of Sourcing Rule /Bill of Distribution API.. 7-40
Sourcing Rule Assignment API Features .. 7-43
Functional Overview.. 7-44
Setting Up the Sourcing Rule Assignment API.. 7-44
Validation of Sourcing Rule Assignment API ... 7-56

8 Oracle Purchasing Open Interfaces

Requisitions Open Interface... 8-2
Functional Overview.. 8-2
Setting Up the Requisitions Interface .. 8-5
Inserting into the Requisitions Interface Tables ... 8-5
Validation... 8-24
Resolving Failed Requisitions Interface Rows ... 8-25
Rescheduling Requisitions .. 8-25

Purchasing Documents Open Interface.. 8-27
Functional Overview.. 8-28
Record and Error Processing... 8-29
Original, Replace, and Update Submissions... 8-31
Sourcing.. 8-36
Price Breaks.. 8-37
Adding or Deleting Lines in an Update Submission... 8-38
viii

4(...)11.6(.....)11.6(......)11.6(......)11.6(.....)11.6(......)11.6(.....))11.6(.....)11.6(......)11.6(.....)11.6(......)11.6(..)-182.56
Revision Numbering and Archiving ... 8-39
Setting Up the Purchasing Documents Open Interface .. 8-40
Monitoring Price Increases.. 8-45

Purchasing Documents Open Interface Table Descriptions .. 8-47
Purchasing Document(...)tec....tr-0.41si Tsbl-7.7()11.7(tD)-6.6(o)-0.4(n)4.8(i)0.8(eripion-5.8(n)6-4
ix

Collection Import Interface Table... 9-3
Derived Data.. 9-7
Optional Data .. 9-10
Collection Import Results Database Views... 9-11
Example: Collection Import SQL Script .. 9-11
Collection Import Manager ... 9-15

Collection Plan Views .. 9-17
Example.. 9-17

10 Oracle Work in Process Open Interfaces

Open Move Transaction Interface.. 10-2
Functional Overview.. 10-2
Setting Up the Move Transaction Interface .. 10-4
Launching the Move Transaction Manager .. 10-5
Inserting Records into the WIP_MOVE_TXN_INTERFACE Table..................................... 10-5
Validating Move Transactions .. 10-15
Resolving Failed Rows... 10-16

Open Resource Transaction Interface ... 10-17
Functional Overview.. 10-17
Setting Up the Resource Transaction Interface .. 10-18
Launching the Cost Manager.. 10-18
Inserting Records into the WIP_COST_TXN_INTERFACE Table 10-18
Validating Resource Transactions .. 10-24
Resolving Failed Rows... 10-25

Work Order Interface.. 10-25
Functional Overview.. 10-28
Setting Up the Work Order Interface... 10-29
Inserting Records Into the Work Order Interface .. 10-30
WIP_JOB_SCHEDULE_INTERFACE Table ... 10-31
WIP_JOB_DTLS_INTERFACE Table ... 10-47
Validating Work Order Interface Records .. 10-54
Resolving Failed Rows... 10-54

Index
x

Send Us Your Comments

Oracle Manufacturing APIs and Open Interfaces Manual, Release 11i

Part No. A88838-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ E-mail - your_product@us.oracle.com
■ FAX - telephone number. Attn: Oracle Manufacturing APIs and Open Interfaces
■ Postal service: 3op

Oracle Corporation
Oracle Manufacturing APIs and Open Interfaces Documentation
500 Oracle Parkway, 3op
Redwood Shores, CA 94065
United States

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.
xi

xii

Preface

This Oracle® Manufacturing APIs and Open Interfaces Manual, Release 11i contains
up-to-date information about integrating with other Oracle Manufacturing
applications and with your other systems.

This preface explains how you should use this manual, and defines the notational
conventions you need to understand.

About This Manual
This manual contains information about importing/exporting information using
Oracle Applications open interfaces. This manual includes the following chapters:

■ Chapter 1 gives you an overview of Manufacturing integration tools and
explains how to use these tools to integrate Oracle Manufacturing products
with one another and with non-Oracle systems.

■ Chapter 2 contains information about Oracle ASCP and Oracle Global ATP
Server.

■ Chapter 3 contains information about Oracle Bills of Material open interfaces.

■ Chapter 4 contains information about Oracle Cost Management open interfaces.

■ Chapter 5 contains information about Oracle Engineering open interfaces.

Note: This documentation includes open interfaces found in
Oracle Manufacturing Release 11i. If you are using an earlier
version of the software, please consult your support representative
or the Product Update Notes for more specific information about
your release.
xiii

■ Chapter 6 contains information about Oracle Inventory open interfaces.

■ Chapter 7 contains information about Oracle Master Scheduling/MRP and
Oracle Supply Chain Planning open interfaces.

■ Chapter 8 contains information about Oracle Purchasing or Oracle Public Sector
Purchasing open interfaces.

■ Chapter 9 contains information about Oracle Quality open interfaces.

■ Chapter 10 contains information about Oracle Work in Process open interfaces.

Audience for This Manual
This manual provides you information needed to integrate with other Oracle
Manufacturing and Distribution applications and your other systems. This manual
is intended for the use of the team implementing Oracle Manufacturing
applications. In order to effectively implement, this team should include all levels of
individuals including but not limited to:

■ Project Leaders

■ Systems Analysts

■ Department managers

■ Application Programmers

■ System Programmers

■ System Managers

■ Database Administrators

Do Not Use Database Tools to Modify Oracle Applications Data
Oracle Applications tables are interrelated and any change you make using Oracle
Applications can update several tables at once. But when you modify Oracle
Applications data using anything other than Oracle Applications, you may change a
row in one table without making corresponding changes in related tables. If your
tables get out of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications
automatically checks that your changes are valid. Oracle Applications also keeps
track of who changes information. If you enter information into database tables
using database tools, you may store invalid information. You also lose the ability to
xiv

track who has changed your information because SQL*Plus and other database
tools do not keep a record of changes.

Consequently, we STRONGLY RECOMMEND that you never use SQL*Plus or any
other tool to modify Oracle Applications data unless otherwise instructed, or when
working within an open interface table as described in this manual.

Other Information Sources
Here are some other ways you can increase your knowledge and understanding of
Oracle Manufacturing and Distribution applications.

Online Documentation
All Oracle Applications documentation is available online on CD-ROM, except for
technical reference manuals. There are two online formats, HyperText Markup
Language (HTML) and Adobe Acrobat (PDF).

All user’s guides are available in HTML, Acrobat, and paper. Technical reference
manuals are available in paper only. Other documentation is available in Acrobat
and paper.

The content of the documentation does not differ from format to format. There may
be slight differences due to publication standards, but such differences do not affect
content. For example, page numbers and screen shots are not included in HTML.

The HTML documentation is available from all Oracle Applications windows. Each
window is programmed to start your web browser and open a specific,
context-sensitive section. Once any section of the HTML documentation is open,
you can navigate freely throughout all Oracle Applications documentation. The
HTML documentation also ships with Oracle Information Navigator (if your
national language supports this tool), which enables you to search for words and
phrases throughout the documentation set.

Related User’s Guides
Oracle Manufacturing and Distribution applications share business and setup
information with other Oracle Applications products. Therefore, you may want to
refer to other user’s guides when you are integrating your systems.

If you do not have the hardcopy versions of these manuals, you can read them
online using the Applications Library icon or Help menu command.

Oracle Applications User’s Guide This guide explains how to enter data, query, run
reports, and navigate using the graphical user interface (GUI) available with this
xv

release of Oracle Applications products. This guide also includes information on
setting user profiles, as well as running and reviewing reports and concurrent
processes.

You can access this user’s guide online by choosing ”Getting Started with Oracle
Applications” from any Oracle Applications help file.

Oracle Applications Demonstration User’s Guide This guide documents the functional
storyline and product flows for Global Computers, a fictional manufacturer of
personal computers products and services. As well as including product overviews,
the book contains detailed discussions and examples across each of the major
product flows. Tables, illustrations, and charts summarize key flows and data
elements.

Reference Manuals

Oracle Automotive Implementation Manual This manual describes the setup and
implementation of the Oracle Applications used for the Oracle Automotive
solution.

Oracle Applications Message Reference Manual This manual describes all Oracle
Applications messages. This manual is available in HTML format on the
documentation CD-ROM for Release 11i.

Oracle Project Manufacturing Implementation Manual This manual describes the setup
steps and implementation for Oracle Project Manufacturing.

Oracle Self-Service Web Applications Implementation Manual This manual describes the
setup steps for Oracle Self-Service Web Applications and the Web Applications
dictionary.

Installation and System Administration

Oracle Alert User’s Guide This guide explains how to define periodic and event alerts
to monitor the status of your Oracle Applications data.

Multiple Reporting Currencies in Oracle Applications If you use the Multiple Reporting
Currencies feature to record transactions in more than one currency, use this manual
before implementing the Oracle Applications product. This manual details
additional steps and setup considerations for implementation.
xvi

Multiple Organizations in Oracle Applications If you use the Oracle Applications
Multiple Organization Support feature to use multiple sets of books for one product
installation, this guide describes all you need to know about setting up and using
the product with this feature.

Oracle Applications Implementation Wizard User’s Guide If you are implementing more
than one Oracle product, you can use the Oracle Applications Implementation
Wizard to coordinate your setup activities. This guide describes how to use the
wizard.

Oracle Applications Developer’s Guide This guide contains the coding standards
followed by the Oracle Applications development staff. It describes the Oracle
Application Object Library components needed to implement the Oracle
Applications user interface described in the Oracle Applications User Interface
Standards. It also provides information to help you build your custom
Developer/2000 forms so that they integrate with Oracle Applications.

Oracle Applications Flexfields Guide This guide provides flexfields planning, setup and
reference information for the implementation team, as well as for users responsible
for the ongoing maintenance of Oracle Applications product data. This manual also
provides information on creating custom reports on flexfields data.

Oracle Applications Installation Manual for Windows Clients This guide provides
information you need to successfully install Oracle Financials, Oracle Public Sector
Financials, Oracle Manufacturing, or Oracle Human Resources in your specific
hardware and operating system software environment.

Oracle Applications Product Update Notes If you are upgrading your Oracle
Applications, refer to the product update notes appropriate to your update and
product(s) to see summaries of new features as well as changes to database objects,
profile options and seed data added for each new release.

Oracle Applications Upgrade Preparation Manual This guide explains how to prepare
your Oracle Applications products for an upgrade. It also contains information on
completing the upgrade procedure for each product. Refer to this manual and the
Oracle Applications Installation Manual when you plan to upgrade your products.

Oracle Applications System Administrator’s Guide This manual provides planning and
reference information for the System Administrator.
xvii

Other Sources

Training We offer a complete set of formal training courses to help you and your staff
master Oracle Manufacturing applications and reach full productivity quickly. We
organize these courses into functional learning paths, so you take only those courses
appropriate to your job or area of responsibility.

You have a choice of educational environments. You can attend courses offered by
Oracle University at any one of our many Education Centers, or you can arrange for
our trainers to teach at your facility. In addition, Oracle training professionals can
tailor standard courses or develop custom courses to meet your needs. For example,
you may want to use your organization structure, terminology, and data as
examples in a customized training session delivered at your own facility.

Support From on-site support to central support, our team of experienced
professionals provides the help and information you need to keep the product
working for you. This team includes your Technical Representative, Account
Manager, and Oracle’s large staff of consultants and support specialists with
expertise in your business area, managing an Oracle8 server, and your hardware
and software environment.

About Oracle
Oracle Corporation develops and markets an integrated line of software products
for database management, applications development, decision support, and office
automation, as well as Oracle Applications, an integrated suite of more than 70
software modules for financial management, supply chain management,
manufacturing, project systems, human resources and sales and service
management.

Oracle products are available for mainframes, minicomputers, personal computers,
network computers and personal digital assistants, allowing organizations to
integrate different computers, different operating systems, different networks, and
even different database management systems, into a single, unified computing and
information resource.

Oracle is the world’s leading supplier of software for information management, and
the world’s second largest software company. Oracle offers its database, tools, and
applications products, along with related consulting, education, and support
services, in over 140 countries around the world.
xviii

Thank You
Thank you for using Oracle Manufacturing applications and this implementation
manual.

We value your comments and feedback. At the end of this manual is a Reader’s
Comment Form you can use to explain what you like or dislike about Oracle
Manufacturing applications or this implementation manual. Mail your comments to
the following address or call us directly at (650) 506-7000.

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Or, send electronic mail to appsdoc@us.oracle.com.
xix

xx

Integrating Your Sy
1

Integrating Your Systems

This chapter gives you an overview of Manufacturing integration tools and explains
how to use these tools to integrate Oracle Manufacturing products with one another
and with your existing non–Oracle systems.

Oracle Manufacturing integration tools are powerful, flexible tools that allow you to
capture data from other Oracle applications or your own applications, define
necessary format conversions, and direct data to your Oracle Manufacturing
products. Topics covered here include:

■ Overview of Oracle Manufacturing APIs and Open Interfaces on page 1-2
stems 1-1

Overview of Oracle Manufacturing APIs and Open Interfaces
Overview of Oracle Manufacturing APIs and Open Interfaces
Oracle Manufacturing products provide a number of open interfaces so you can link
them with non-Oracle applications, applications you build, applications on other
computers, and even the applications of your suppliers and customers.

The purpose of this essay is to help you understand the general model Oracle
Manufacturing products use for open application interfaces. Other essays in this
chapter provide specific information on how to use each of the open interfaces.
Additional functional information on these interfaces is available in each product’s
User’s Guide. Additional technical information on these interfaces is available in
each product’s Technical Reference Manual.

Basic Business Needs
Oracle Manufacturing product APIs and open interfaces provide you with the
features you need to support the following basic business needs:

■ Connect to data collection devices. This lets you collect material movement
transactions such as receipts, issues, quality data, movements, completions, and
shipments. This speeds data entry and improves transaction accuracy.

■ Connect to other systems — such as finite scheduling packages, computer-aided
design systems, custom and legacy manufacturing systems — to create
integrated enterprise wide systems.

■ Connect to external systems — such as the customer’s purchasing system and
the supplier’s order entry system — to better integrate the supply chain via
electronic commerce.

■ Control processing of inbound data imported from outside Oracle applications.

■ Validate imported data to ensure integrity of Oracle Manufacturing products.

■ Review, update, and resubmit imported data that failed validation.

■ Export data from Oracle Manufacturing products

Oracle Manufacturing Interfaces

Open Interface Architectures
Oracle Manufacturing products have three different methods to import and export
data:

■ Interface Tables
1-2 Oracle Manufacturing APIs and Open Interfaces Manual

Overview of Oracle Manufacturing APIs and Open Interfaces
■ Interface Views (Business Views)

■ Function Calls or Programmatic Interfaces (Processes)

Interface Tables
Interface tables, both inbound and outbound, normally require some validation
through a concurrent program. These tables are fully documented in the essays that
follow this chapter.

In several instances, interfaces do not require an intermediate validation step — you
can write directly to the product’s tables after you consult the product’s Technical
Reference Manual.

Interface Views (Business Views)
Views simplify the data relationships for easier processing, whether for reporting or
data export. Oracle Manufacturing and Distribution products have defined business
views that identify certain areas of key business interest. You can access this data
using your tool of choice. The MTL_ITEM_QUANTITIES_VIEW is an example of a
key business view.

Product views are defined in the Technical Reference Manuals. The view definitions
also briefly describe how they are used. Many views, such as shortage reporting
views in Oracle Work in Process, have been added specifically for easier reporting.
Dynamic Views have also been added in Oracle Quality. Dynamic Views are views
that are dynamically created and re-created as you create and modify collection
plans in Oracle Quality.

Function Calls or Programmatic Interfaces (Processes)
Some open interfaces are more fundamental to the architecture of Oracle
Manufacturing products. They are not interfaces as much as open integration.

For example, note flexfield validation by table/view. In this class of inbound
interfaces, the addition of views automatically imports data into an existing
function. This provides tight integration without adding a batch process to move
data.

Another example is modifying open stored procedures. In the Oracle Bills of
Material concurrent program AutoCreate Configuration, you can add business
specific logic to match configurations (check for duplicate configurations) by
modifying the stored procedures provided for this purpose.
Integrating Your Systems 1-3

Overview of Oracle Manufacturing APIs and Open Interfaces
Summary: Beyond Published Interfaces
The Oracle Cooperative Applications Initiative references many third party
products which provide import and export capabilities and allow loose to tight
integration with legacy systems, other supplier systems, and so on. Contact your
Oracle consultant for more information about system integration.

Current Documentation For Open Interfaces
Below are the actual names of the tables, views, and modules:

Key

Data Flow Direction Inbound means into Oracle Manufacturing; Outbound means out
from Oracle Manufacturing

Iface Man The interface is documented in detail in the
Oracle Manufacturing and Distribution Open Interfaces Manual

TRM The tables, views, or modules are described in the product’s
Technical Reference Manual

Table 1–1 Oracle Manufacturing Interfaces/APIs

Interface/API Name
Data Flow
Direction

Table, View,
Process, or
Procedure

Iface
Man TRM

Table, View, Module Name, or
Procedure Name

Oracle Inventory

Transactions Inbound Table Yes Yes MTL_TRANSACTIONS_INTERFACE
MTL_SERIAL_NUMBERS_INTERFACE
MTL_TRANSACTION_LOTS_INTERFACE

Demand Interface Inbound Table Yes Yes MTL_DEMAND_INTERFACE

On-Hand Balances Outbound View Yes MTL_ITEM_QUANTITIES_VIEW

User-Defined Supply Inbound Table Yes MTL_USER_SUPPLY

User-Defined Demand Inbound Table Yes MTL_USER_DEMAND

Replenishment Inbound Table Yes Yes MTL_REPLENISH_HEADERS_INT
MTL_REPLENISH_LINES_INT

Item Inbound Table Yes Yes MTL_SYSTEM_ITEMS_INTERFACE
MTL_ITEMS_REVISIONS_INTERFACE

Customer Item Inbound Table Yes Yes MTL_CI_INTERFACE

Customer Item
Cross-References

Inbound Table Yes Yes MTL_CI_XREFS_INTERFACE
1-4 Oracle Manufacturing APIs and Open Interfaces Manual

Overview of Oracle Manufacturing APIs and Open Interfaces
Material Inbound Table Yes Yes MTL_TRANSACTIONS_INTERFACE
MTL_SERIAL_NUMBERS_INTERFACE
MTL_TRANSACTION_LOTS_
INTERFACE

Oracle Engineering / Oracle Bills of Material

MFG Calendar Outbound View Yes BOM_CALENDAR_MONTHS_VIEW

Bill of Material Inbound Table Yes Yes BOM_BILL_OF_MTLS_INTERFACE
BOM_INVENTORY_COMPS_
INTERFACE
BOM_REF_DESGS_INTERFACE
BOM_SUB_COMPS_INTERFACE
MTL_ITEMS_REVISIONS_INTERFACE

BOM_EXPORT_TAB

BOM_SMALL_EXPL_TEMP

Routings Inbound Table Yes Yes BOM_OP_ROUTINGS_INTERFACE
BOM_OP_SEQUENCES_INTERFACE
BOM_OP_RESOURCES_INTERFACE
MTL_RTG_ITEM_REVS_INTERFACE

ECO Inbound Table Yes Yes ENG_ENG_CHANGES_INTERFACE
ENG_ECO_REVISIONS_INTERFACE
ENG_REVISED_ITEMS_INTERFACE
BOM_INVENTORY_COMPS_
INTERFACE
BOM_REF_DESGS_INTERFACE
BOM_SUB_COMPS_INTERFACE

Oracle Cost Management (see Oracle Bills of Material Technical Reference Manual)

Item Cost Inquiry Outbound View Yes CST_INQUIRY_TYPES
CSTFQVIC (View Item Cost Information)

MFG Cost Reporting Outbound View Yes CST_REPORT_TYPES
CSTRFICR (Inventory Valuation Report)

Oracle Master Scheduling/MRP and Oracle Supply Chain Planning

Forecast Interface Inbound Table Yes Yes MRP_FORECAST_INTERFACE

Table 1–1 Oracle Manufacturing Interfaces/APIs

Interface/API Name
Data Flow
Direction

Table, View,
Process, or
Procedure

Iface
Man TRM

Table, View, Module Name, or
Procedure Name
Integrating Your Systems 1-5

Overview of Oracle Manufacturing APIs and Open Interfaces
Forecast Entries API Inbound Process
PL/SQL
Table

Yes Yes T_FORECAST_INTERFACE
T_FORECAST_DESIGNATOR

Master Schedule
Interface

Inbound Table Yes Yes MRP_SCHEDULE_INTERFACE

Master Schedule Relief
Interface

Inbound Table Yes MRP_RELIEF_INTERFACE

Planner Workbench
Interface

Outbound Process Yes Stored Procedure MRPPL06, or
WIP_JOB_SCHEDULE_INTERFACE
PO_REQUISITIONS_INTERFACE
PO_RESCHEDULE_INTERFACE

Projected
Requirements
Interface

Outbound Table Yes MRP_RECOMMENDATIONS

Projected Supply
Interface

Outbound Table Yes MRP_GROSS_REQUIREMENTS

Sourcing Rule API Outbound Procedure Yes Yes MRP_SOURCING_RULE_PUB.PROCESS_
SOURCING_RULE
MRP_SRC_ASSIGNMENT_PUB.PROCESS_
ASSIGNMENT

Oracle Purchasing

Requisitions Inbound Table Yes Yes PO_REQUISITIONS_INTERFACE
PO_REQ_DIST_INTERFACE

Requisition Reschedule Inbound Table Yes Yes PO_RESCHEDULE_INTERFACE

Purchasing Documents Inbound Table Yes Yes PO_HEADERS_INTERFACE
PO_LINES_INTERFACE

Receiving Inbound Table Yes Yes RCV_HEADERS_INTERFACE
RCV_TRANSACTIONS_INTERFACE

Requisitions Inbound Table Yes Yes PO_REQUISITIONS_INTERFACE
PO_REQ_DIST_INTERFACE

Requisition Reschedule Inbound Table Yes Yes PO_RESCHEDULE_INTERFACE

Purchasing Documents Inbound Table Yes Yes PO_HEADERS_INTERFACE
PO_LINES_INTERFACE

Receiving Inbound Table Yes Yes RCV_HEADERS_INTERFACE
RCV_TRANSACTIONS_INTERFACE

Table 1–1 Oracle Manufacturing Interfaces/APIs

Interface/API Name
Data Flow
Direction

Table, View,
Process, or
Procedure

Iface
Man TRM

Table, View, Module Name, or
Procedure Name
1-6 Oracle Manufacturing APIs and Open Interfaces Manual

Overview of Oracle Manufacturing APIs and Open Interfaces
Inbound Open Interface Model
Oracle Manufacturing products provide both inbound and outbound interfaces. For
inbound interfaces, where these products are the destination, interface tables as well
as supporting validation, processing, and maintenance programs are provided. For
outbound interfaces, where these products are the source, database views are
provided and the destination application should provide the validation, processing,
and maintenance programs.

Discussion of Inbound Interfaces Only
This overview and the rest of the documents in this chapter discuss only inbound
interfaces in detail. You can find information about the tables, views, and processes
involved in outbound interfaces in the product’s Technical Reference Manual. Note
that the Technical Reference Manuals do not contain detailed, narrative discussions
about the outbound interfaces.

Open Interface Diagram
The general model for open application interfaces is as follows:

Oracle Quality

Collection Import Inbound Table Yes Yes QA_RESULTS_INTERFACE

Dynamic Collection Plan
View

Outbound View Yes Yes Q_COLLECTION_PLAN_NAME_V

Dynamic Collection
Import View

Inbound View Yes Yes Q_COLLECTION_PLAN_NAME_IV

Oracle Work in Process

Moves Inbound Table Yes Yes WIP_MOVE_TXN_INTERFACE

Resource Inbound Table Yes Yes WIP_COST_TXN_INTERFACE

Work Order Interface Inbound Table Yes Yes WIP_JOB_SCHEDULE_INTERFACE
WIP_JOB_DTLS_INTERFACE

Table 1–1 Oracle Manufacturing Interfaces/APIs

Interface/API Name
Data Flow
Direction

Table, View,
Process, or
Procedure

Iface
Man TRM

Table, View, Module Name, or
Procedure Name
Integrating Your Systems 1-7

Overview of Oracle Manufacturing APIs and Open Interfaces
Figure 1–1 Open Interface Diagram

Open Application Programmatic Interface (API) Diagram
The model used by APIs such as the Service Request interfaces (Oracle Service) is as
follows:
1-8 Oracle Manufacturing APIs and Open Interfaces Manual

Overview of Oracle Manufacturing APIs and Open Interfaces
Figure 1–2 Open Application Programmatic Interface (API) Diagram

Components of an Open Interface
There are a number of components that are generally common to all open interfaces.
These components are described below. However, all open interfaces do not include
every component, and in some cases the component may be implemented slightly
differently than described below.

Source Application
You obtain data from a source application to pass on to a destination application for
further processing and/or storage. Typically the data has completed processing in
the source application before being passed.

Oracle Manufacturing products are the source for outbound interfaces. For
example, Oracle Inventory is the source for the On-Hand Balances Interface. This
Integrating Your Systems 1-9

Overview of Oracle Manufacturing APIs and Open Interfaces
interface is used to export on-hand balances from Oracle Inventory for use by other
planning and distribution destination applications.

Destination Application
You send data to a destination application so that the application can perform
further processing and/or storage.

Oracle Manufacturing products are the destinations for inbound interfaces. For
example, Oracle Purchasing is the destination for receiving transactions imported
using the Receiving Open Interface. Oracle Purchasing updates purchase orders for
each receiving transaction, and creates and stores the receiving transaction history.

Interface Table
For inbound interfaces, the interface table is the intermediary table where the data
from the source application temporarily resides until it is validated and processed
into an Oracle Manufacturing product. The various types of interface columns, with
examples from the Oracle Work in Process Move Transaction Interface, are listed
below:

Identifier Columns Identifier columns uniquely identify rows in the interface table
and provide foreign key reference to both the source and destination applications.
For example, typical identifier columns for a move transaction would identify:

■ The source application, such as the bar code device identifier

■ The row’s unique identifier in the source application, such as the job name

■ The destination application’s unique identifier, such as the Work in Process
entity ID.

Control Columns Control columns track the status of each row in the interface table
as it is inserted, validated, errored, processed, and ultimately deleted. Additional
control columns identify who last updated the row and the last update date.

Data Columns Data columns store the specific attributes that the source application is
sending to the Oracle Manufacturing product. For example, transaction quantity is
one attribute of a move transaction.

Required Columns Required columns store the minimum information needed by the
Oracle Manufacturing product to successfully process the interface row. For
example, organization code is required for all move transactions.
1-10 Oracle Manufacturing APIs and Open Interfaces Manual

Overview of Oracle Manufacturing APIs and Open Interfaces
Some columns are conditionally required based on the specifics of the interface. For
example, repetitive move transactions require production line information, whereas
discrete move transactions do not.

Derived Columns Derived columns are created by the destination product from
information in the required columns. For example, on a move transaction, the
primary unit of measure is derived from the assembly being moved.

Optional Columns Optional columns are not necessarily required by Oracle
Manufacturing products but can be used for additional value-added functionality.
For example, for move transactions the reason code is not required, but can
optionally be used to collect additional transaction information.

Errors Table
For inbound interfaces, the errors table stores all errors found by the validation and
processing functions. In some cases, the errors table is a child of the interface table.
This allows each row in the interface table to have many errors, so that you can
manage multiple errors at once. In other cases, the errors are stored in a column
within the interface table, which requires you to fix each error independently.

For example, in the Oracle Work in Process Open Resource Transaction Interface,
the validation program inserts an error into an errors table when resource
transaction records fail validation because of a missing piece of required data, such
as the resource transaction quantity. In contrast, Order Import in Oracle Order
Management/Shipping inserts errors into a single errors column in the interface
table when rows fail validation.

Database View
Database views are database objects that make data from the Oracle Manufacturing
source products available for selection and use by destination applications.

Oracle Manufacturing products provide predefined views of key data that is likely
to be used by destination applications. In addition to the predefined views that
these products use, Oracle Quality also provides non-predefined, dynamic views.
These views join related tables within source products so that the data can be
selected by the destination application.

For example, Oracle Cost Management provides work in process valuation and
transaction distribution database views for use by other cost reporting destination
products.
Integrating Your Systems 1-11

Overview of Oracle Manufacturing APIs and Open Interfaces
Load Function
For inbound interfaces, the load function is the set of programs that selects and
accumulates data from the source application and inserts it into Oracle
Manufacturing interface tables. The programming languages and tools used in the
load function are highly dependent on the hardware and system software of the
source application.
1-12 Oracle Manufacturing APIs and Open Interfaces Manual

Overview of Oracle Manufacturing APIs and Open Interfaces
■ checking the relationship between columns in the same row such as the from
and to operation sequence numbers

The move transaction validation program also derives columns from required
columns such as WIP_ENTITY_ID from the job name and PROD_LINE_ID from the
line code.

When an Oracle Manufacturing product is the source product, the destination
application should provide the validate function.

Process Function
The process function is a set of programs that processes the data from the interface
table into the Oracle Manufacturing destination product. The specific processing
performed varies by application. For open transaction interfaces, the processing
generally includes recording transaction history, updating inventory and order
balances, and charging costs.

Interfaces typically let you control both the frequency and the number of validated
rows that the processing programs attempt to process. Upon successful completion
of processing, the process function should delete the processed row from the
interface table.

On occasion, the process function may need to insert rows into the errors table. For
example, if the Oracle Work in Process Open Move Transaction Interface processing
function encounters problems such as lack of grants, it updates the interface table
with an error status and inserts an error in the errors table.

When an Oracle Manufacturing product is the source, the destination application
should provide the process function.

Maintain Function
The maintain function is generally accomplished from a window within an Oracle
Manufacturing product. Most of these windows allow you to query, update, and
resubmit interface records that have validation. You can generally use these
windows to query unprocessed or unvalidated rows and check their current status.

For example, if invalid information from a bar code device is inserted into the
Oracle Work in Process Open Move Transaction interface table, the load validation
function catches the error. You must either fix or delete the problem record using the
Pending Move Transactions window. Corrected rows can be resubmitted for
processing. Deleting problem data, then subsequently correcting it at the source,
ensures that you do not have duplicate data when the information is reinserted.
Integrating Your Systems 1-13

Overview of Oracle Manufacturing APIs and Open Interfaces
In the case where there is no formal maintain function, you can use SQL*Plus to
query and update the errored interface table rows.

When an Oracle Manufacturing product is the source application, the destination
application should provide the maintain function.
1-14 Oracle Manufacturing APIs and Open Interfaces Manual

Oracle ASCP and Oracle Global ATP Server Open Inte
2

Oracle ASCP and Oracle Global ATP Server

Open Interfaces

This section explains how to use the ODS Load API and how it functions in Oracle ASCP
and Oracle Global ATP Server. Topics included are:

n ODS Load API Features on page 2-2

n Functional Overview on page 2-7

n Setting Up the ODS Load API on page 2-7
rfaces 2- 1

ODS Load API Features
ODS Load API Features
The ODS API consists of the following entities (staging tables):

n Inventory Items information

In complete refresh mode, you can renew all entries. In incremental refresh mode, you
can create new entries, and update information for existing items.

The following staging tables are used:

n MSC_ST_SYSTEM_ITEMS

n MSC_ST_SAFETY_STOCKS

n Sourcing Rules

In complete refresh mode, you can renew all entries. In incremental refresh mode, you
can create new entries, and update existing sourcing information.

The following tables are used:

n MSC_ST_ASSIGNMENT_SETS

n MSC_ST_SOURCING_RULES

n MSC_ST_SR_ASSIGNMENTS

n MSC_ST_SR_RECEIPT_ORG

n MSC_ST_SR_SOURCE_ORG

In complete refresh mode, you can renew all entries using the table,
MSC_ST_INTERORG_SHIP_METHODS

In both complete and refresh mode, you can update the sourcing history information
using the table, MSC_ST_SOURCING_HISTORY

n ATP Rules

In complete refresh mode, you can renew all entries using the table,
MSC_ST_ATP_RULES

n Bill of Resources

In complete refresh mode, you can renew all entries. The following tables are used:

n MSC_ST_BILL_OF_RESOURCES

n MSC_ST_BOR_REQUIREMENTS

n BOMs/Routings
2-2 Oracle Manufacturing APIs and Open Interfaces Manual

ODS Load API Features
In complete refresh mode, you can renew all entries. In incremental refresh mode, you
can create new entries, and update existing BOM/Routing data.

The following tables are used:

n MSC_ST_PROCESS_EFFECTIVITY

n MSC_ST_BOMS

n MSC_ST_BOM_COMPONENTS

n MSC_ST_COMPONENT_SUBSTITUTES

n MSC_ST_ROUTINGS

n MSC_ST_ROUTING_OPERATIONS

n MSC_ST_OPERATION_RESOURCE_SEQS

n MSC_ST_OPERATION_RESOURCES

n MSC_ST_OPERATION_COMPONENTS

n Calendar system

In complete refresh mode, you can renew all entries. The following tables are used:

n MSC_ST_CALENDAR_DATES

n MSC_ST_CAL_YEAR_START_DATES

n MSC_ST_CAL_WEEK_START_DATES

n MSC_ST_PERIOD_START_DATES

n MSC_ST_CALENDAR_SHIFTS

n MSC_ST_SHIFT_DATES

n MSC_ST_SHIFT_TIMES

n MSC_ST_SHIFT_EXCEPTIONS

n MSC_ST_SIMULATION_SETS

n MSC_ST_RESOURCE_SHIFTS

n Categories

In complete refresh mode, you can renew all entries. In incremental refresh mode, you
can create new entries, and update existing categories information.

The following tables are used:
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-3

ODS Load API Features
n MSC_ST_CATEGORY_SETS

n MSC_ST_ITEM_CATEGORIES

n MDS/MPS designators

In complete refresh mode, you can renew all entries. In incremental refresh mode, you
can create new entries, and update existing designators information.

These operations use the table, MSC_ST_DESIGNATORS

n Demands and Sales Orders

In complete refresh mode, you can renew all entries. In incremental refresh mode, you
can create new entries, and update existing demands and sales orders information.

The following tables are used:

n MSC_ST_DEMANDS

n MSC_ST_RESERVATIONS

n MSC_ST_SALES_ORDERS

n Supplies

In complete refresh mode, you can renew all entries. In incremental refresh mode, you
can create new entries, and update existing supplies information.

These operations use the table, MSC_ST_SUPPLIES

n Resources

In complete refresh mode, you can renew all entries. The following tables are used:

n MSC_ST_RESOURCE_GROUPS

n MSC_ST_DEPARTMENT_RESOURCES

In complete refresh mode, you can renew all entries. In incremental refresh mode, you
can create new entries, and update existing resources information.

The following tables are used:

n MSC_ST_NET_RESOURCE_AVAIL

n MSC_ST_RESOURCE_REQUIREMENTS

n MSC_ST_RESOURCE_CHANGES

n Approved Suppliers Information

In complete refresh mode, you can renew all entries. The following tables are used:
2-4 Oracle Manufacturing APIs and Open Interfaces Manual

ODS Load API Features
n MSC_ST_ITEM_SUPPLIERS

n MSC_ST_SUPPLIER_FLEX_FENCES

In complete refresh mode, you can renew all entries. In incremental refresh mode, you
can create new entries, and update existing supplier capacities information.

These operations use the table, MSC_ST_SUPPLIER_CAPACITIES

n Trading Partners Information

In complete refresh mode, you can renew all entries. The following tables are used:

n MSC_ST_TRADING_PARTNERS

n MSC_ST_TRADING_PARTNER_SITES

n MSC_ST_LOCATION_ASSOCIATIONS

n MSC_ST_PARAMETERS

n MSC_ST_SUB_INVENTORIES

n MSC_ST_PARTNER_CONTACTS

n Planner Information

In complete refresh mode, you can renew all entries using the table,
MSC_ST_PLANNERS

n Units Of Measure

In complete refresh mode, you can renew all entries. The following tables are used:

n MSC_ST_UNITS_OF_MEASURE

n MSC_ST_UOM_CONVERSIONS

n MSC_ST_UOM_CLASS_CONVERSIONS

n Unit Number, Projects, and Tasks Information

In complete refresh mode, you can renew all entries. The following tables are used:

n MSC_ST_UNIT_NUMBERS

n MSC_ST_PROJECTS

n MSC_ST_PROJECT_TASKS

n BIS Objects

In complete refresh mode, you can renew all entries.
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-5

ODS Load API Features
n MSC_ST_BIS_BUSINESS_PLANS

n MSC_ST_BIS_PERIODS

n MSC_ST_BIS_PFMC_MEASURES

n MSC_ST_BIS_TARGET_LEVELS

n MSC_ST_BIS_TARGETS

n Demand Classes

In complete refresh mode, you can renew all entries using the table,
MSC_ST_DEMAND_CLASSES

See Also
The Oracle ASCP and Oracle Global ATP Server Technical Reference Manual.
2-6 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
Functional Overview
The ODS Load API provides a public procedure, Launch_Monitor, for loading the data into
the ODS tables.

The Launch_Monitor procedure performs the following major processes:

n Generate new local ID for the global attributes such as item, category set, vendor,
vendor site, customer, and customer site.

n Launch the ODS Load Workers to perform Create, Update, and Delete Operation for
each entity in ODS.

n Recalculate the sourcing history based on the latest sourcing information and the data
from the transaction systems.

n Recalculate the net resource availability based on the calendars, shifts, and department
resources information.

n Purge the data in the staging tables.

Setting Up the ODS Load API
The ODS Load API is a stored PL/SQL function. You need to define certain data before you
create or update ODS data. Before using the API, set up and/or activate the following
parameters:

n Instance Code

n Number of Workers

n Recalculate Net Resource Availability (Yes/No)

n Recalculate Sourcing History (Yes/No)
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-7

Setting Up the ODS Load API
Parameter Descriptions
The following charts describe all staging tables used by the ODS Load API. All of the
inbound and outbound parameters are listed for these table. Additional information on these
parameters follows each chart.

MSC_ST_ASSIGNMENT_SETS
The staging table used by the collection program to valid and process data for table MSC_
ASSIGNMENT_SETS.

SR_ASSIGNMENT_SET_ID
Assignment set identifier from source application instance

ASSIGNMENT_SET_NAME
Assignment set name

Parameter Usage Type Required Derived Optional

SR_ASSIGNMENT_SET_ID IN NUMBER x

ASSIGNMENT_SET_NAME IN VARCHAR2(34) x

DESCRIPTION IN VARCHAR2(80) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x
2-8 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
DESCRIPTION
Description

DELETED_FLAG
Flag to indicate whether the row is no longer valid. SYS_YES means the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-9

Setting Up the ODS Load API
REFRESH_ID
Refresh identifier

MSC_ST_ATP_RULES
The staging table used by the collection program to validate and process data for table
MSC_ATP_RULES.

Parameter Usage Type Required Derived Optional

RULE_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

RULE_NAME IN VARCHAR2(80) x

DESCRIPTION IN VARCHAR2(240) x

ACCUMULATE_AVAILABLE_
FLAG

IN NUMBER x

BACKWARD_
CONSUMPTION_FLAG

IN NUMBER x

FORWARD_CONSUMPTION_
FLAG

IN NUMBER x

PAST_DUE_DEMAND_
CUTOFF_FENCE

IN NUMBER x

PAST_DUE_SUPPLY_
CUTOFF_FENCE

IN NUMBER x

INFINITE_SUPPLY_FENCE_
CODE

IN NUMBER x

INFINITE_SUPPLY_TIME_
FENCE

IN NUMBER x

ACCEPTABLE_EARLY_
FENCE

IN NUMBER x

ACCEPTABLE_LATE_FENCE IN NUMBER x

DEFAULT_ATP_SOURCES IN NUMBER x

INCLUDE_SALES_ORDERS IN NUMBER x

INCLUDE_DISCRETE_WIP_
DEMAND

IN NUMBER x

INCLUDE_REP_WIP_
DEMAND

IN NUMBER x
2-10 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
INCLUDE_NONSTD_WIP_
DEMAND

IN NUMBER x

INCLUDE_DISCRETE_MPS IN NUMBER x

INCLUDE_USER_DEFINED_
DEMAND

IN NUMBER x

INCLUDE_PURCHASE_
ORDERS

IN NUMBER x

INCLUDE_DISCRETE_WIP_
RECEIPTS

IN x

INCLUDE_REP_WIP_
RECEIPTS

IN NUMBER x

INCLUDE_NONSTD_WIP_
RECEIPTS

IN NUMBER x

INCLUDE_INTERORG_
TRANSFERS

IN NUMBER x

INCLUDE_ONHAND_
AVAILABLE

IN NUMBER x

INCLUDE_USER_DEFINED_
SUPPLY

IN NUMBER x

ACCUMULATION_WINDOW IN NUMBER x

INCLUDE_REP_MPS IN NUMBER x

INCLUDE_INTERNAL_REQS IN NUMBER x

INCLUDE_SUPPLIER_REQS IN NUMBER x

INCLUDE_INTERNAL_
ORDERS

IN NUMBER x

INCLUDE_FLOW_
SCHEDULE_DEMAND

IN NUMBER x

USER_ATP_SUPPLY_TABLE_
NAME

IN VARCHAR2(30) x

USER_ATP_DEMAND_
TABLE_NAME

IN VARCHAR2(30) x

MPS_DESIGNATOR IN VARCHAR2(10) x

LAST_UPDATE_DATE IN DATE x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-11

Setting Up the ODS Load API
RULE_ID
ATP rule identifier

SR_INSTANCE_ID
Instance id

RULE_NAME
Name of ATP rule

DESCRIPTION
Description for ATP rule

ACCUMULATE_AVAILABLE_FLAG
Flag for ATP computation to accumulate quantity availability

BACKWARD_CONSUMPTION_FLAG
Flag for ATP computation to backwardly consume shortage

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

DEMAND_CLASS_ATP_
FLAG

IN NUMBER x

INCLUDE_FLOW_
SCHEDULE_RECEIPTS

IN NUMBER x

Parameter Usage Type Required Derived Optional
2-12 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
FORWARD_CONSUMPTION_FLAG
Flag for ATP computation to forwardly consume shortage

PAST_DUE_DEMAND_CUTOFF_FENCE
Demand before the specified number of days are not to be considered in ATP computation

PAST_DUE_SUPPLY_CUTOFF_FENCE
Supplies before the specified number of days are not to be considered in ATP computation

INFINITE_SUPPLY_FENCE_CODE
Source code for infinite supply time fence

INFINITE_SUPPLY_TIME_FENCE
Infinite supply time fence days only when user-defined is specified in the time fence code

ACCEPTABLE_EARLY_FENCE
Acceptable early fence

ACCEPTABLE_LATE_FENCE
Acceptable late fence

DEFAULT_ATP_SOURCES
Indicate which subinventories to use for on-hand quantities

INCLUDE_SALES_ORDERS
Yes/No flag for ATP computation to include demand from sales orders

INCLUDE_DISCRETE_WIP_DEMAND
Yes/No flag for ATP computation to include demand from WIP discrete jobs

INCLUDE_REP_WIP_DEMAND
Yes/No flag for ATP computation to include demand from WIP repetitive discrete jobs

INCLUDE_NONSTD_WIP_DEMAND
Yes/No flag for ATP computation to include demand from WIP non-standard jobs’
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-13

Setting Up the ODS Load API
INCLUDE_DISCRETE_MPS
Yes/No flag for ATP computation to include supply from discrete MPS schedule

INCLUDE_USER_DEFINED_DEMAND
Yes/No flag for ATP computation to include user defined demand

INCLUDE_PURCHASE_ORDERS
Yes/No flag for ATP computation to include supply from purchase orders

INCLUDE_DISCRETE_WIP_RECEIPTS
Yes/No flag for ATP computation to include supply from WIP discrete jobs

INCLUDE_REP_WIP_RECEIPTS
Yes/No flag for ATP computation to include supply from WIP repetitive schedule jobs

INCLUDE_NONSTD_WIP_RECEIPTS
Yes/No flag for ATP computation to include supply from WIP non-standard jobs

INCLUDE_INTERORG_TRA SFERS
Yes/No flag for ATP computation to include supply from inter-organization transfers

INCLUDE_ONHAND_AVAILABLE
Yes/No flag for ATP computation to include supply from on-hand inventory

INCLUDE_USER_DEFINED_SUPPLY
Yes/No flag for ATP computation to include supply from user defined source

ACCUMULATION_WINDOW
Maximum number of days that available supply should be accumulated

INCLUDE_REP_MPS
Yes/No flag for ATP computation to include supply from repetitive MPS schedules

INCLUDE_INTERNAL_REQS
Yes/No flag for ATP computation include from internal requisitions
2-14 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
INCLUDE_SUPPLIER_REQS
Yes/No flag for ATP computation include from internal orders

INCLUDE_INTERNAL_ORDERS
Yes/No flag for ATP computation to include demand from internal orders

INCLUDE_FLOW_SCHEDULE_DEMAND
Yes/No flag for ATP computation to include demand from flow schedule

USER_ATP_SUPPLY_TABLE_NAME
Not currently used

USER_ATP_DEMAND_TABLE_NAME
Not currently used

MPS_DESIGNATOR
Not currently used

LAST_UPDATE_DATE
Standard Who Column

LAST_UPDATED_BY
Standard Who Column

CREATION_DATE
Standard Who Column

CREATED_BY
Standard Who Column

LAST_UPDATE_LOGIN
Standard Who Column

REQUEST_ID
Concurrent Who Column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-15

Setting Up the ODS Load API
PROGRAM_APPLICATION_ID
Concurrent Who Column

PROGRAM_ID
Concurrent Who Column

PROGRAM_UPDATE_DATE
Concurrent Who Column

REFRESH_ID
Refresh identifier

DEMAND_CLASS_ATP_FLAG
Yes/No flag for ATP computation to consider Demand Class when selecting supply and
demand

INCLUDE_FLOW_SCHEDULE_RECEIPTS
Yes/No flag for ATP computation to include supply from repetitive MPS schedules

MSC_ST_BILL_OF_RESOURCES
The staging table used by the collection program to validate and process data for table
MSC_BILL_OF_RESOURCES.

Parameter Usage Type Required Derived Optional

ORGANIZATION_ID IN NUMBER x

BILL_OF_RESOURCES IN VARCHAR2(10) x

DESCRIPTION IN VARCHAR2(50) x

DISABLE_DATE IN DATE x

ROLLUP_START_DATE IN DATE x

ROLLUP_COMPLETION_
DATE

IN DATE x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x
2-16 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
ORGANIZATION_ID
Organization identifier

BILL_OF_RESOURCES
Source application bill of resource identifier

DESCRIPTION
Bill of resource description

DISABLE_DATE
Bill of resource disable date

ROLLUP_START_DATE
Bill of resources load start date

ROLLUP_COMPLETION_DATE
Bill of resources load completion date

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-17

Setting Up the ODS Load API
LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID NULL
Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

MSC_ST_BIS_BUSINESS_PLANS
The staging table used by the collection program to validate and process data for table
MSC_BIS_BUSINESS_PLANS.

Parameter Usage Type Required Derived Optional

BUSINESS_PLAN_ID IN NUMBER x

SHORT_NAME IN VARCHAR2(30) x
2-18 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
BUSINESS_PLAN_ID
Business plan identifier

SHORT_NAME
Business plan short name

NAME
Business plan name

DESCRIPTION
Describe the business plan

NAME IN VARCHAR2(80) x

DESCRIPTION IN VARCHAR2(240) x

VERSION_NO IN NUMBER x

CURRENT_PLAN_FLAG IN VARCHAR2(1) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-19

Setting Up the ODS Load API
VERSION_NO
Version number

CURRENT_PLAN_FLAG
Yes/No flag indicating whether the business plan is current

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column
2-20 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
REFRESH_ID
Refresh identifier

SR_INSTANCE_ID
Source application instance identifier

MSC_ST_BIS_PERIODS
The staging table used by the collection program to validate and process data for table
MSC_BIS_PERIODS.

Parameter Usage Type Required Derived Optional

ORGANIZATION_ID IN NUMBER x

PERIOD_SET_NAME IN VARCHAR2(15) x

PERIOD_NAME IN VARCHAR2(15) x

START_DATE IN DATE x

END_DATE IN DATE x

PERIOD_TYPE IN VARCHAR2(15) x

PERIOD_YEAR IN NUMBER(15) x

PERIOD_NUM IN NUMBER(15) x

QUARTER_NUM IN NUMBER(15) x

ENTERED_PERIOD_NAME IN VARCHAR2(15) x

ADJUSTMENT_PERIOD_
FLAG

IN VARCHAR2(1) x

DESCRIPTION IN VARCHAR2(240) x

CONTEXT IN VARCHAR2(150) x

YEAR_START_DATE IN DATE x

QUARTER_START_DATE IN DATE x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-21

Setting Up the ODS Load API
ORGANIZATION_ID
Organization identifier

PERIOD_SET_NAME
Accounting calendar name

PERIOD_NAME
Accounting calendar name

START_DATE
Date on which accounting period begins

END_DATE
Date on which accounting period ends

PERIOD_TYPE
Accounting period type

PERIOD_YEAR
Accounting period year

PERIOD_NUM
Accounting period number

QUARTER_NUM
Accounting period number

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-22 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
ENTERED_PERIOD_NAME
User entered accounting period name

ADJUSTMENT_PERIOD_FLAG
Calendar period adjustment status

DESCRIPTION
Accounting period description

CONTEXT
Descriptive flexfield segment

YEAR_START_DATE
Date on which the year containing this accounting period starts

QUARTER_START_DATE
Date on which the quarter containing this accounting period starts

LAST_UPDATE_DATE
Standard Who Column

LAST_UPDATED_BY
Standard Who Column

CREATION_DATE
Standard Who Column

CREATED_BY
Standard Who Column

LAST_UPDATE_LOGIN
Standard Who Column

REQUEST_ID
Concurrent Who Column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-23

Setting Up the ODS Load API
PROGRAM_APPLICATION_ID
Concurrent Who Column

PROGRAM_ID
Concurrent Who Column

PROGRAM_UPDATE_DATE
Concurrent Who Column

REFRESH_ID
Refresh identifier

SR_INSTANCE_ID
Source application instance identifier

MSC_ST_BIS_PFMC_MEASURES
The staging table used by the collection program to validate and process data for table
MSC_BIS_PFMC_MEASURES.

Parameter Usage Type Required Derived Optional

MEASURE_ID IN NUMBER x

MEASURE_SHORT_NAME IN VARCHAR2(30) x

MEASURE_NAME IN VARCHAR2(80) x

DESCRIPTION IN VARCHAR2(240) x

ORG_DIMENSION_ID IN NUMBER x

TIME_DIMENSION_ID IN NUMBER x

DIMENSION1_ID IN NUMBER x

DIMENSION2_ID IN NUMBER x

DIMENSION3_ID IN NUMBER x

DIMENSION4_ID IN NUMBER x

DIMENSION5_ID IN NUMBER x

UNIT_OF_MEASURE_CLASS IN VARCHAR2(10) x

DELETED_FLAG IN NUMBER x
2-24 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
MEASURE_ID
Measure identifier

MEASURE_SHORT_NAME
Source application instance identifier

MEASURE_NAME
Measure short name

DESCRIPTION
Describe the performance measure

ORG_DIMENSION_ID
Organization dimension identifier

TIME_DIMENSION_ID
Time dimension identifier

DIMENSION1_ID
First dimension identifier

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-25

Setting Up the ODS Load API
DIMENSION2_ID
Second dimension identifier

DIMENSION3_ID
Third dimension identifier

DIMENSION4_ID
Forth dimension identifier

DIMENSION5_ID
Fifth dimension identifier

UNIT_OF_MEASURE_CLASS
Unit of measure class

DELETED_FLAG
Yes/No flag indicates whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column
2-26 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier

SR_INSTANCE_ID
Source application instance identifier

MSC_ST_BIS_TARGETS
The staging table used by the collection program to validate and process data for table
MSC_BIS_TARGETS.

Parameter Usage Type Required Derived Optional

TARGET_ID IN NUMBER x

TARGET_LEVEL_ID IN NUMBER x

BUSINESS_PLAN_ID IN NUMBER x

ORG_LEVEL_VALUE_ID IN VARCHAR2(80) x

TIME_LEVEL_VALUE_ID IN VARCHAR2(80) x

DIM1_LEVEL_VALUE_ID IN VARCHAR2(80) x

DIM2_LEVEL_VALUE_ID IN VARCHAR2(80) x

DIM3_LEVEL_VALUE_ID IN VARCHAR2(80) x

DIM4_LEVEL_VALUE_ID IN VARCHAR2(80) x

DIM5_LEVEL_VALUE_ID IN VARCHAR2(80) x

TARGET IN NUMBER x

RANGE1_LOW IN NUMBER x

RANGE1_HIGH IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-27

Setting Up the ODS Load API
TARGET_ID
Target identifier

RANGE2_LOW IN NUMBER x

RANGE2_HIGH IN NUMBER x

RANGE3_LOW IN NUMBER x

RANGE3_HIGH IN NUMBER x

NOTIFY_RESP1_ID IN NUMBER x

NOTIFY_RESP1_SHORT_
NAME

IN VARCHAR2(100) x

NOTIFY_RESP2_ID IN NUMBER x

NOTIFY_RESP2_SHORT_
NAME

IN VARCHAR2(100) x

NOTIFY_RESP3_ID IN NUMBER x

NOTIFY_RESP3_SHORT_
NAME

IN VARCHAR2(100) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-28 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
TARGET_LEVEL_ID
Target level identifier

BUSINESS_PLAN_ID
Business plan identifier

ORG_LEVEL_VALUE_ID
Org level value identifier

TIME_LEVEL_VALUE_ID
Time level value identifier

DIM1_LEVEL_VALUE_ID
First dimension level value identifier

DIM2_LEVEL_VALUE_ID
Second dimension level value identifier

DIM3_LEVEL_VALUE_ID
Third dimension level value identifier

DIM4_LEVEL_VALUE_ID
Forth dimension level value identifier

DIM5_LEVEL_VALUE_ID
Fifth dimension level value identifier

TARGET
Target number

RANGE1_LOW
Low number of the first range

RANGE1_HIGH
High number of the first range
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-29

Setting Up the ODS Load API
RANGE2_LOW
Low number of the second range

RANGE2_HIGH
High number of the second range

RANGE3_LOW
Low number of the third range

RANGE3_HIGH
High number of the third range

NOTIFY_RESP1_ID
First notify identifier

NOTIFY_RESP1_SHORT_NAME
Short name of the first notify

NOTIFY_RESP2_ID
Second notify identifier

NOTIFY_RESP2_SHORT_NAME
Short name of the second notify

NOTIFY_RESP3_ID
Third notify identifier

NOTIFY_RESP3_SHORT_NAME
Short name of the third notify

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column
2-30 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier

SR_INSTANCE_ID
Source application instance identifier

MSC_ST_BIS_TARGET_LEVELS
The staging table used by the collection program to validate and process data for table
MSC_BIS_TARGET_LEVELS

Parameter Usage Type Required Derived Optional

TARGET_LEVEL_ID IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-31

Setting Up the ODS Load API
TARGET_LEVEL_SHORT_
NAME

IN VARCHAR2(30) x

TARGET_LEVEL_NAME IN VARCHAR2(80) x

DESCRIPTION IN VARCHAR2(240) x

MEASURE_ID IN NUMBER x

ORG_LEVEL_ID IN NUMBER x

TIME_LEVEL_ID IN NUMBER x

DIMENSION1_LEVEL_ID IN NUMBER x

DIMENSION2_LEVEL_ID IN NUMBER x

DIMENSION3_LEVEL_ID IN NUMBER x

DIMENSION4_LEVEL_ID IN NUMBER x

DIMENSION5_LEVEL_ID IN NUMBER x

WORKFLOW_ITEM_TYPE IN VARCHAR2(8) x

WORKFLOW_PROCESS_
SHORT_NAME

IN VARCHAR2(30) x

DEFAULT_NOTIFY_RESP_ID IN NUMBER x

DEFAULT_NOTIFY_RESP_
SHORT_NAME

IN VARCHAR2(100) x

COMPUTING_FUNCTION_ID IN NUMBER x

REPORT_FUNCTION_ID IN NUMBER x

UNIT_OF_MEASURE IN VARCHAR2(25) x

SYSTEM_FLAG IN VARCHAR2(1) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-32 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
TARGET_LEVEL_ID
Target level identifier

TARGET_LEVEL_SHORT_NAME
Short name identifying the target level

TARGET_LEVEL_NAME
Target level name

DESCRIPTION
Describe the target level

MEASURE_ID
Performance measure identifier

ORG_LEVEL_ID
Organization level identifier

TIME_LEVEL_ID
Time level identifier

DIMENSION1_LEVEL_ID
First dimension level identifier

DIMENSION2_LEVEL_ID
Second dimension level identifier

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-33

Setting Up the ODS Load API
DIMENSION3_LEVEL_ID
Third dimension level identifier

DIMENSION4_LEVEL_ID
Forth dimension level identifier

DIMENSION5_LEVEL_ID
Fifth dimension level identifier

WORKFLOW_ITEM_TYPE
Workflow item type

WORKFLOW_PROCESS_SHORT_NAME
Workflow process short name

DEFAULT_NOTIFY_RESP_ID
Default notify identifier

DEFAULT_NOTIFY_RESP_SHORT_NAME
Name of the default notify

COMPUTING_FUNCTION_ID
Computing function identifier

REPORT_FUNCTION_ID
Report function identifier

UNIT_OF_MEASURE
Unit of measure

SYSTEM_FLAG
System flag

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted
2-34 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier

SR_INSTANCE_ID
Source application instance identifier
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-35

Setting Up the ODS Load API
MSC_ST_BOMS
The staging table used by the collection program to valid and process data for table MSC_
BOMS.

Parameter Usage Type Required Derived Optional

BILL_SEQUENCE_ID IN NUMBER x

ORGANIZATION_ID IN NUMBER x

ASSEMBLY_ITEM_ID IN NUMBER x

ASSEMBLY_TYPE IN NUMBER x

ALTERNATE_BOM_
DESIGNATOR

IN VARCHAR2(10) x

SPECIFIC_ASSEMBLY_
COMMENT

IN VARCHAR2(240) x

PENDING_FROM_ECN IN VARCHAR2(10) x

COMMON_BILL_
SEQUENCE_ID

IN NUMBER x

SCALING_TYPE IN NUMBER x

BOM_SCALING_TYPE IN NUMBER x

ASSEMBLY_QUANTITY IN NUMBER x

UOM IN VARCHAR2(3) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x
2-36 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
BILL_SEQUENCE_ID
Bill sequence identifier in the source application instance

ORGANIZATION_ID
Organization identifier of the item

ASSEMBLY_ITEM_ID
Identifier of the item being assembled

ASSEMBLY_TYPE
Manufacturing Bill(1), or Engineering(2). Used for UI and reports.

ALTERNATE_BOM_DESIGNATOR
Name of the bill for alternate bills (null for the primary bill)

SPECIFIC_ASSEMBLY_COMMENT
Comments for specific assembly

PENDING_FROM_ECN
Change notice that created this bill of material

COMMON_BILL_SEQUENCE_ID
Common bill sequence identifier

SCALING_TYPE
Controls scaling behavior

BOM_SCALING_TYPE
BOM scaling type

ASSEMBLY_QUANTITY
Assembly quantity

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-37

Setting Up the ODS Load API
UOM
Unit of measure code

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier
2-38 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
REFRESH_ID
Refresh identifier

MSC_ST_BOM_COMPONENTS
The staging table used by the collection program to valid and process data for table MSC_
BOM_COMPONENTS.

Parameter Usage Type Required Derived Optional

COMPONENT_SEQUENCE_
ID

IN NUMBER x

ORGANIZATION_ID IN NUMBER x

INVENTORY_ITEM_ID IN NUMBER x

USING_ASSEMBLY_ID IN NUMBER x

BILL_SEQUENCE_ID IN NUMBER x

COMPONENT_TYPE IN NUMBER x

SCALING_TYPE IN NUMBER x

CHANGE_NOTICE IN VARCHAR2(10) x

REVISION IN VARCHAR2(3) x

UOM_CODE IN VARCHAR2(3) x

USAGE_QUANTITY IN NUMBER x

EFFECTIVITY_DATE IN DATE x

DISABLE_DATE IN DATE x

FROM_UNIT_NUMBER IN VARCHAR2(30) x

TO_UNIT_NUMBER IN VARCHAR2(30) x

USE_UP_CODE IN NUMBER x

SUGGESTED_EFFECTIVITY_
DATE

IN DATE x

DRIVING_ITEM_ID IN NUMBER x

OPERATION_OFFSET_
PERCENT

IN NUMBER x

OPTIONAL_COMPONENT IN NUMBER x

OLD_EFFECTIVITY_DATE IN DATE x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-39

Setting Up the ODS Load API
COMPONENT_SEQUENCE_ID
Component identifier on the source application instance

ORGANIZATION_ID
Organization identifier

INVENTORY_ITEM_ID
Identifier of the component item

WIP_SUPPLY_TYPE IN NUMBER x

PLANNING_FACTOR IN NUMBER x

ATP_FLAG IN NUMBER x

COMPONENT_YIELD_
FACTOR

IN NUMBER x

REVISED_ITEM_
SEQUENCE_ID

IN NUMBER x

STATUS_TYPE IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-40 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
USING_ASSEMBLY_ID
Identifier of the item being assembled

BILL_SEQUENCE_ID
Identifier of the BOM

COMPONENT_TYPE
Component (1), Ingredient component (–1), by–product (2)

SCALING_TYPE
Scaling type

CHANGE_NOTICE
Code for ECO. Use for UI and reporting

REVISION
Inventory item revision code

UOM_CODE
Unit of measure code

USAGE_QUANTITY
Quantity of the component to build one unit of item

EFFECTIVITY_DATE
Date of effectivity for this component

DISABLE_DATE
End of effectivity

FROM_UNIT_NUMBER
Effective from this unit number

TO_UNIT_NUMBER
Effective up to this unit number
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-41

Setting Up the ODS Load API
USE_UP_CODE
Yes/No flag indicating whether the component is effective

SUGGESTED_EFFECTIVITY_DATE
Calculated use–up–date (if Use–up–code is yes)

DRIVING_ITEM_ID
Item which consumption determine the switch to this component

OPERATION_OFFSET_PERCENT
Operation offset percent

OPTIONAL_COMPONENT
Yes/No flag – if optional use planning factor to determine demand

OLD_EFFECTIVITY_DATE
Old effectivity date

WIP_SUPPLY_TYPE
Used mainly for phantoms

PLANNING_FACTOR
Planning factor for this component (percent)

ATP_FLAG
Yes/No flag used for ATP

COMPONENT_YIELD_FACTOR
Factor used to multiply component quantity with to obtain component quantity

REVISED_ITEM_SEQUENCE_ID
Revised item sequence identifier

STATUS_TYPE
Status type
2-42 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-43

Setting Up the ODS Load API
MSC_ST_BOR_REQUIREMENTS
The staging table used by the collection program to valid and process data for table MSC_
BOR_REQUIREMENTS.

Parameter Usage Type Required Derived Optional

BILL_OF_RESOURCES IN VARCHAR2(10) x

ORGANIZATION_ID IN NUMBER x

ASSEMBLY_ITEM_ID IN NUMBER x

SR_TRANSACTION_ID IN NUMBER x

SOURCE_ITEM_ID IN NUMBER x

RESOURCE_ID IN NUMBER x

RESOURCE_DEPARTMENT_
HOURS

IN NUMBER x

OPERATION_SEQUENCE_ID IN NUMBER x

OPERATION_SEQ_NUM IN NUMBER x

RESOURCE_SEQ_NUM IN NUMBER x

SETBACK_DAYS IN NUMBER x

DEPARTMENT_ID IN NUMBER x

LINE_ID IN NUMBER x

ASSEMBLY_USAGE IN NUMBER x

ORIGINATION_TYPE IN NUMBER x

RESOURCE_UNITS IN NUMBER x

BASIS IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x
2-44 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
BILL_OF_RESOURCES
Bill of resources name

ORGANIZATION_ID
Organization identifier

ASSEMBLY_ITEM_ID
Assembly item identifier

SR_TRANSACTION_ID
Source application transaction identifier

SOURCE_ITEM_ID
Source item identifier

RESOURCE_ID
Resource identifier

RESOURCE_DEPARTMENT_HOURS
Require resource hours

OPERATION_SEQUENCE_ID
Operation sequence identifier

OPERATION_SEQ_NUM
Operation sequence number

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-45

Setting Up the ODS Load API
RESOURCE_SEQ_NUM
Resource sequence number

SETBACK_DAYS
Resource set back days from assembly due date

DEPARTMENT_ID
Department identifier

LINE_ID
Line identifier

ASSEMBLY_USAGE
Resource hours multiplier for assembly usage

ORIGINATION_TYPE
Load(1), Manual update(2), Manual addition(3)

RESOURCE_UNITS
Operation resource units

BASIS
Operation Basis. Item(1), Lot(2), Resource Units(3), Resource value(4), Total value(5),
Activity units(6)

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column
2-46 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

MSC_ST_CALENDAR_DATES
The staging table used by the collection program to valid and process data for table MSC_
CALENDAR_DATES.

Parameter Usage Type Required Derived Optional

CALENDAR_DATE IN DATE x

CALENDAR_CODE IN VARCHAR2(14) x

EXCEPTION_SET_ID IN NUMBER x

SEQ_NUM IN NUMBER x

NEXT_SEQ_NUM IN NUMBER x

PRIOR_SEQ_NUM IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-47

Setting Up the ODS Load API
CALENDAR_DATE
Calendar date

CALENDAR_CODE
Calendar code

EXCEPTION_SET_ID
Exception set identifier

SEQ_NUM
Sequence number (for working days only)

NEXT_DATE IN DATE x

PRIOR_DATE IN DATE x

CALENDAR_START_DATE IN DATE x

CALENDAR_END_DATE IN DATE x

DESCRIPTION IN VARCHAR2(240) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-48 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
NEXT_SEQ_NUM
Next sequence number

PRIOR_SEQ_NUM
Prior sequence number

NEXT_DATE
Date corresponding to next sequence number

PRIOR_DATE
Date corresponding to prior sequence number

CALENDAR_START_DATE
Beginning date for the calendar

CALENDAR_END_DATE
Ending date for the calendar

DESCRIPTION
Calendar description

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-49

Setting Up the ODS Load API
LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

MSC_ST_CALENDAR_SHIFTS
The staging table used by the collection program to validate and process data for table
MSC_CALENDAR_SHIFTS.

Parameter Usage Type Required Derived Optional

CALENDAR_CODE IN VARCHAR2(14) x

SHIFT_NUM IN NUMBER x

DAYS_ON IN NUMBER x

DAYS_OFF IN NUMBER x

DESCRIPTION IN VARCHAR2(240) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x
2-50 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
CALENDAR_CODE
Calendar code

SHIFT_NUM
Shift number

DAYS_ON
Number of consecutive working days

DAYS_OFF
Number of consecutive non–working days

DESCRIPTION
Description

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-51

Setting Up the ODS Load API
CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier

SR_INSTANCE_ID
Source application instance identifier

MSC_ST_CAL_WEEK_START_DATES
The staging table used by the collection program to validate and process data for table
MSC_CAL_WEEK_START_DATES.

Parameter Usage Type Required Derived Optional

CALENDAR_CODE IN VARCHAR2(14) x

EXCEPTION_SET_ID IN NUMBER x

WEEK_START_DATE IN DATE x

NEXT_DATE IN DATE x
2-52 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
CALENDAR_CODE
Workday calendar identifier

EXCEPTION_SET_ID
Exception set identifier

WEEK_START_DATE
Week start date

NEXT_DATE
Date corresponding to the next working date

PRIOR_DATE
Date corresponding to the prior working date

PRIOR_DATE IN DATE x

SEQ_NUM IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-53

Setting Up the ODS Load API
SEQ_NUM
Sequence number (for working days)

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier
2-54 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
SR_INSTANCE_ID
Source application instance identifier

MSC_ST_CAL_YEAR_START_DATES
The staging table used by the collection program to validate and process data for table
MSC_YEAR_START_DATES.

CALENDAR_CODE
Workday calendar identifier

EXCEPTION_SET_ID
Exception set unique identifier

YEAR_START_DATE
Year start date

Parameter Usage Type Required Derived Optional

CALENDAR_CODE IN VARCHAR2(14) x

EXCEPTION_SET_ID IN NUMBER x

YEAR_START_DATE IN DATE x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-55

Setting Up the ODS Load API
DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier

SR_INSTANCE_ID
Source application instance identifier
2-56 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
MSC_ST_CATEGORY_SETS
The staging table used by the collection program to validate and process data for table
MSC_CATEGORY_SETS.

CATEGORY_SET_ID
Category set identifier

SR_CATEGORY_SET_ID
Category set identifier from source application instance

Parameter Usage Type Required Derived Optional

CATEGORY_SET_ID IN NUMBER x

SR_CATEGORY_SET_ID IN NUMBER x

CATEGORY_SET_NAME IN VARCHAR2(30) x

DESCRIPTION IN VARCHAR2(240) x

CONTROL_LEVEL IN NUMBER x

DEFAULT_FLAG IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-57

Setting Up the ODS Load API
CATEGORY_SET_NAME
Category set name

DESCRIPTION
Category set description

CONTROL_LEVEL
Control level

DEFAULT_FLAG
Default flag

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column
2-58 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh Identifier

MSC_ST_COMPONENT_SUBSTITUTES
The staging table used by the collection program to validate and process data for table
MSC_COMPONENT_SUBSTITUTES.

Parameter Usage Type Required Derived Optional

COMPONENT_SEQUENCE_
ID

IN NUMBER x

SUBSTITUTE_ITEM_ID IN NUMBER x

USAGE_QUANTITY IN NUMBER x

ORGANIZATION_ID IN NUMBER x

PRIORITY IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-59

Setting Up the ODS Load API
COMPONENT_SEQUENCE_ID
Component sequence identifier

SUBSTITUTE_ITEM_ID
Substitute item identifier

USAGE_QUANTITY
Usage quantity for the substitute component

ORGANIZATION_ID
Organization identifier

PRIORITY
Priority code

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

BILL_SEQUENCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-60 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

BILL_SEQUENCE_ID
Bill sequence identifier

MSC_ST_DEMANDS
The staging table used by the collection program to validate and process data for table
MSC_DEMANDS.

Parameter Usage Type Required Derived Optional

ORDER_PRIORITY IN NUMBER x

DEMAND_ID IN NUMBER x

INVENTORY_ITEM_ID IN NUMBER x

ORGANIZATION_ID IN NUMBER x

USING_ASSEMBLY_ITEM_ID IN NUMBER x

USING_ASSEMBLY_
DEMAND_DATE

IN DATE x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-61

Setting Up the ODS Load API
USING_REQUIREMENT_
QUANTITY

IN NUMBER x

ASSEMBLY_DEMAND_
COMP_DATE

IN DATE

DEMAND_TYPE IN NUMBER x

DAILY_DEMAND_RATE IN NUMBER x

ORIGINATION_TYPE IN NUMBER x

SOURCE_ORGANIZATION_
ID

IN NUMBER x

DISPOSITION_ID IN NUMBER x

RESERVATION_ID IN NUMBER x

DEMAND_SCHEDULE_
NAME

IN VARCHAR2(10) x

PROJECT_ID IN NUMBER(15) x

TASK_ID IN NUMBER(15) x

PLANNING_GROUP IN VARCHAR2(30) x

END_ITEM_UNIT_NUMBER IN VARCHAR2(30) x

SCHEDULE_DATE IN DATE x

OPERATION_SEQ_NUM IN NUMBER x

QUANTITY_ISSUED IN NUMBER x

DEMAND_CLASS IN VARCHAR2(34) x

SALES_ORDER_NUMBER IN VARCHAR2(122) x

SALES_ORDER_PRIORITY IN NUMBER x

FORECAST_PRIORITY IN NUMBER x

MPS_DATE_REQUIRED IN DATE x

PO_NUMBER IN VARCHAR2(62) x

WIP_ENTITY_NAME IN VARCHAR2(240) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

Parameter Usage Type Required Derived Optional
2-62 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

REPETITIVE_SCHEDULE_ID IN NUMBER x

WIP_ENTITY_ID IN NUMBER x

SELLING_PRICE IN NUMBER x

DMD_LATENESS_COST IN NUMBER x

DMD_SATISFIED_DATE IN DATE x

DMD_SPLIT_FLAG IN NUMBER x

REQUEST_DATE IN DATE x

ORDER_NUMBER IN VARCHAR2(240) x

WIP_STATUS_CODE IN NUMBER x

WIP_SUPPLY_TYPE IN NUMBER x

ATTRIBUTE1 IN VARCHAR2(150) x

ATTRIBUTE2 IN VARCHAR2(150) x

ATTRIBUTE3 IN VARCHAR2(150) x

ATTRIBUTE4 IN VARCHAR2(150) x

ATTRIBUTE5 IN VARCHAR2(150) x

ATTRIBUTE6 IN VARCHAR2(150) x

ATTRIBUTE7 IN VARCHAR2(150) x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-63

Setting Up the ODS Load API
ORDER_PRIORITY
Order priority

DEMAND_ID
Demand identifier

INVENTORY_ITEM_ID
Inventory item identifier

ORGANIZATION_ID
Organization identifier

USING_ASSEMBLY_ITEM_ID
Using assembly item identifier (item generates demand for dependent demands)

USING_ASSEMBLY_DEMAND_DATE
Demand date (due date)

ATTRIBUTE8 IN VARCHAR2(150) x

ATTRIBUTE9 IN VARCHAR2(150) x

ATTRIBUTE10 IN VARCHAR2(150) x

ATTRIBUTE11 IN VARCHAR2(150) x

ATTRIBUTE12 IN VARCHAR2(150) x

ATTRIBUTE13 IN VARCHAR2(150) x

ATTRIBUTE14 IN VARCHAR2(150) x

ATTRIBUTE15 IN VARCHAR2(150) x

SALES_ORDER_LINE_ID IN NUMBER x

CONFIDENCE_PERCENTAGE IN NUMBER x

BUCKET_TYPE IN NUMBER x

BILL_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-64 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
USING_REQUIREMENT_QUANTITY
Required quantity

ASSEMBLY_DEMAND_COMP_DATE
Using assembly completion date

DEMAND_TYPE
Discrete Demand(1), Rate–based demand(2)

DAILY_DEMAND_RATE
Repetitive demand rate

ORIGINATION_TYPE
Origin of the demand: Planned order, hard reversation, etc...

SOURCE_ORGANIZATION_ID
Source organization identifier

DISPOSITION_ID
Identifier reference to the supply generating the demand

RESERVATION_ID
Reservation identifier

DEMAND_SCHEDULE_NAME
Demand schedule name

PROJECT_ID
Project identifier to which the demand applies

TASK_ID
Task identifier to which the demand applies

PLANNING_GROUP
Planning group
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-65

Setting Up the ODS Load API
END_ITEM_UNIT_NUMBER
End item unit number

SCHEDULE_DATE
Schedule date

OPERATION_SEQ_NUM
Operation sequence number

QUANTITY_ISSUED
Quantity issued

DEMAND_CLASS
Demand class code

SALES_ORDER_NUMBER
Sales order number

SALES_ORDER_PRIORITY
Sales order priority

FORECAST_PRIORITY
Forecast priority

MPS_DATE_REQUIRED
MPS date required

PO_NUMBER
Purchase order number

WIP_ENTITY_NAME
Wip job name

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted
2-66 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier populated by the collection program

REPETITIVE_SCHEDULE_ID
Repetitive schedule identifier
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-67

Setting Up the ODS Load API
WIP_ENTITY_ID
WIP job identifier

SELLING_PRICE
Selling price

DMD_LATENESS_COST
Demand lateness cost for independent demands

DMD_SATISFIED_DATE
Date demand is satisfied

DMD_SPLIT_FLAG
Demand split flag

REQUEST_DATE
Request date

ORDER_NUMBER
WIP entity name

WIP_STATUS_CODE
WIP job status code

WIP_SUPPLY_TYPE
WIP supply type

ATTRIBUTE1
Descriptive flexfield segment

ATTRIBUTE2
Descriptive flexfield segment

ATTRIBUTE3
Descriptive flexfield segment
2-68 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
ATTRIBUTE4
Descriptive flexfield segment

ATTRIBUTE5
Descriptive flexfield segment

ATTRIBUTE6
Descriptive flexfield segment

ATTRIBUTE7
Descriptive flexfield segment

ATTRIBUTE8
Descriptive flexfield segment

ATTRIBUTE9
Descriptive flexfield segment

ATTRIBUTE10
Descriptive flexfield segment

ATTRIBUTE11
Descriptive flexfield segment

ATTRIBUTE12
Descriptive flexfield segment

ATTRIBUTE13
Descriptive flexfield segment

ATTRIBUTE14
Descriptive flexfield segment

ATTRIBUTE15
Descriptive flexfield segment
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-69

Setting Up the ODS Load API
SALES_ORDER_LINE_ID
Sales order line identifier

CONFIDENCE_PERCENTAGE
Forecast confidence percentage

BUCKET_TYPE
Bucket type

BILL_ID
Forecast billing address identifier

MSC_ST_DEMAND_CLASSES
The staging table used by the collection program to validate and process data for demand
classes.

Parameter Usage Type Required Derived Optional

DEMAND_CLASS IN VARCHAR2(30) x

MEANING IN VARCHAR2(80) x

DESCRIPTION IN VARCHAR2(250) x

FROM_DATE IN DATE x

TO_DATE IN DATE x

ENABLED_FLAG IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x
2-70 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
DEMAND_CLASS NOT
Demand class code

MEANING NOT
Demand class meaning

DESCRIPTION
Describe the demand class

PROGRAM_UPDATE_DATE IN DATE x

ATTRIBUTE_CATEGORY IN VARCHAR2(30) x

ATTRIBUTE1 IN VARCHAR2(150) x

ATTRIBUTE2 IN VARCHAR2(150) x

ATTRIBUTE3 IN VARCHAR2(150) x

ATTRIBUTE4 IN VARCHAR2(150) x

ATTRIBUTE5 IN VARCHAR2(150) x

ATTRIBUTE6 IN VARCHAR2(150) x

ATTRIBUTE7 IN VARCHAR2(150) x

ATTRIBUTE8 IN VARCHAR2(150) x

ATTRIBUTE9 IN VARCHAR2(150) x

ATTRIBUTE10 IN VARCHAR2(150) x

ATTRIBUTE11 IN VARCHAR2(150) x

ATTRIBUTE12 IN VARCHAR2(150) x

ATTRIBUTE13 IN VARCHAR2(150) x

ATTRIBUTE14 IN VARCHAR2(150) x

ATTRIBUTE15 IN VARCHAR2(150) x

DELETED_FLAG IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-71

Setting Up the ODS Load API
FROM_DATE
Start date

TO_DATE
End date

ENABLED_FLAG
Enabled flag

SR_INSTANCE_ID NOT
Source application instance identifier

LAST_UPDATE_DATE
Standard Who Column

LAST_UPDATED_BY
Standard Who Column

CREATION_DATE
Standard Who Column

CREATED_BY
Standard Who Column

LAST_UPDATE_LOGIN
Standard Who Column

REQUEST_ID
Concurrent Who Column

PROGRAM_APPLICATION_ID
Concurrent Who Column

PROGRAM_ID
Concurrent Who Column
2-72 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PROGRAM_UPDATE_DATE
Concurrent Who Column

ATTRIBUTE_CATEGORY
Descriptive flexfield structure defining column

ATTRIBUTE1
Descriptive flexfield segment

ATTRIBUTE2
Descriptive flexfield segment

ATTRIBUTE3
Descriptive flexfield segment

ATTRIBUTE4
Descriptive flexfield segment

ATTRIBUTE5
Descriptive flexfield segment

ATTRIBUTE6
Descriptive flexfield segment

ATTRIBUTE7
Descriptive flexfield segment

ATTRIBUTE8
Descriptive flexfield segment

ATTRIBUTE9
Descriptive flexfield segment

ATTRIBUTE10
Descriptive flexfield segment
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-73

Setting Up the ODS Load API
ATTRIBUTE11
Descriptive flexfield segment

ATTRIBUTE12
Descriptive flexfield segment

ATTRIBUTE13
Descriptive flexfield segment

ATTRIBUTE14
Descriptive flexfield segment

ATTRIBUTE15
Descriptive flexfield segment

DELETED_FLAG
Deleted flag

REFRESH_ID
Refresh identifier

MSC_ST_DEPARTMENT_RESOURCES
The staging table used by the collection program to validate and process data for table
MSC_DEPARTMENT_RESOURCES.

Parameter Usage Type Required Derived Optional

ORGANIZATION_ID IN NUMBER x

RESOURCE_ID IN NUMBER x

RESOURCE_CODE IN VARCHAR2(10) x

DEPARTMENT_ID IN NUMBER x

DEPARTMENT_CODE IN VARCHAR2(10) x

DEPARTMENT_CLASS IN VARCHAR2(10) x

LINE_FLAG IN VARCHAR2(1) x

OWNING_DEPARTMENT_ID IN NUMBER x

CAPACITY_UNITS IN NUMBER x
2-74 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
MAX_RATE IN NUMBER x

MIN_RATE IN NUMBER x

AGGREGATED_RESOURCE_
ID

IN NUMBER x

AGGREGATED_RESOURCE_
FLAG

IN NUMBER x

RESOURCE_GROUP_NAME IN VARCHAR2(30) x

RESOURCE_GROUP_CODE IN VARCHAR2(10) x

RESOURCE_BALANCE_
FLAG

IN NUMBER x

BOTTLENECK_FLAG IN NUMBER x

START_TIME IN NUMBER x

STOP_TIME IN NUMBER x

DEPARTMENT_
DESCRIPTION

IN VARCHAR2(240) x

RESOURCE_DESCRIPTION IN VARCHAR2(240) x

OVER_UTILIZED_PERCENT IN NUMBER x

UNDER_UTILIZED_
PERCENT

IN NUMBER x

RESOURCE_SHORTAGE_
TYPE

IN NUMBER x

RESOURCE_EXCESS_TYPE IN NUMBER x

USER_TIME_FENCE IN NUMBER x

UTILIZATION IN NUMBER x

EFFICIENCY IN NUMBER x

RESOURCE_INCLUDE_FLAG IN NUMBER x

CRITICAL_RESOURCE_
FLAG

IN NUMBER x

RESOURCE_TYPE IN NUMBER x

DISABLE_DATE IN DATE x

LINE_DISABLE_DATE IN DATE x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-75

Setting Up the ODS Load API
ORGANIZATION_ID
Organization identifier

RESOURCE_ID
Source application resource identifier

RESOURCE_CODE
Resource code

DEPARTMENT_ID
Source application department identifier or line identifier

AVAILABLE_24_HOURS_
FLAG

IN NUMBER x

CTP_FLAG IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

DEPT_OVERHEAD_COST IN NUMBER x

RESOURCE_COST IN NUMBER x

RESOURCE_OVER_UTIL_
COST

IN NUMBER x

Parameter Usage Type Required Derived Optional
2-76 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
DEPARTMENT_CODE
Department code, also holds line code

DEPARTMENT_CLASS
Department class

LINE_FLAG
Flag to indicate whether or not this resource is a line

OWNING_DEPARTMENT_ID
Owning department identifier

CAPACITY_UNITS
Resource capacity

MAX_RATE
Hourly minimum rate of production line

MIN_RATE
Hourly maximum rate of production line

AGGREGATED_RESOURCE_ID
Reference to aggregate resource, if aggregated

AGGREGATED_RESOURCE_FLAG
Yes/No flag to indicate whether this is an aggregated resource

RESOURCE_GROUP_NAME
Resource group name

RESOURCE_GROUP_CODE
Resource group code

RESOURCE_BALANCE_FLAG
Flag to indicate if the resource needs to load balanced
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-77

Setting Up the ODS Load API
BOTTLENECK_FLAG
Flag to indicate if the resource is a known bottleneck

START_TIME
Start time of the line

STOP_TIME
Stop time of the line

DEPARTMENT_DESCRIPTION
Describes of the line or department

RESOURCE_DESCRIPTION
Describes the resource

OVER_UTILIZED_PERCENT
Overutilization tolerance

UNDER_UTILIZED_PERCENT
Underutilization tolerance

RESOURCE_SHORTAGE_TYPE
Resource shortage type

RESOURCE_EXCESS_TYPE
Resource excess type

USER_TIME_FENCE
User time fence

UTILIZATION
Utilization

EFFICIENCY
Efficiency
2-78 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
RESOURCE_INCLUDE_FLAG
Resource include flag

CRITICAL_RESOURCE_FLAG
Critical resource flag

RESOURCE_TYPE
Resource type

DISABLE_DATE
Disable date

LINE_DISABLE_DATE
Line disable date

AVAILABLE_24_HOURS_FLAG
Resource is available 24 hours or by shifts

CTP_FLAG
Flag indicating whether the department resource is used for ATP or not

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-79

Setting Up the ODS Load API
LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier populated by the collection program

DEPT_OVERHEAD_COST
Department overhead cost

RESOURCE_COST
Resource cost

RESOURCE_OVER_UTIL_COST
Resource overutilization cost

MSC_ST_DESIGNATORS
The staging table used by the collection program to validate and process data for table
MSC_DESIGNATORS.

Parameter Usage Type Required Derived Optional

DESIGNATOR_ID IN NUMBER x

DESIGNATOR IN VARCHAR2(10) x
2-80 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
SR_DESIGNATOR IN VARCHAR2(10) x

ORGANIZATION_ID IN NUMBER x

SR_ORGANIZATION_ID IN NUMBER x

MPS_RELIEF IN NUMBER x

INVENTORY_ATP_FLAG IN NUMBER x

DESCRIPTION IN VARCHAR2(50) x

DISABLE_DATE IN DATE x

DEMAND_CLASS IN VARCHAR2(34) x

ORGANIZATION_
SELECTION

IN NUMBER x

PRODUCTION IN NUMBER x

RECOMMENDATION_
RELEASE

IN NUMBER x

DESIGNATOR_TYPE IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

CONSUME_FORECAST IN NUMBER x

UPDATE_TYPE IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-81

Setting Up the ODS Load API
DESIGNATOR_ID
Designator identifier

DESIGNATOR
Source application schedule name

SR_DESIGNATOR
Source designator identifier

ORGANIZATION_ID
Organization identifier

SR_ORGANIZATION_ID
Source organization identifier

MPS_RELIEF
Flag to indicate whether MPS relief performed against this designator

INVENTORY_ATP_FLAG
ATP supply flag

FORWARD_UPDATE_TIME_
FENCE

IN NUMBER x

BACKWARD_UPDATE_
TIME_FENCE

IN NUMBER x

OUTLIER_UPDATE_
PERCENTAGE

IN NUMBER x

FORECAST_SET_ID IN VARCHAR2(10) x

CUSTOMER_ID IN NUMBER x

SHIP_ID IN NUMBER x

BILL_ID IN NUMBER x

BUCKET_TYPE IN NUMBER x

Parameter Usage Type Required Derived Optional
2-82 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
DESCRIPTION
Description of the this designator

DISABLE_DATE
Designator disable date

DEMAND_CLASS
Demand class code

ORGANIZATION_SELECTION
Single/Multiple organizations

PRODUCTION
Production flag

RECOMMENDATION_RELEASE
Planned order release flag

DESIGNATOR_TYPE
Schedule type

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-83

Setting Up the ODS Load API
LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh number populated by the collection program

CONSUME_FORECAST
Consume forecast flag

UPDATE_TYPE
Forecast update type code

FORWARD_UPDATE_TIME_FENCE
Forward consumption days

BACKWARD_UPDATE_TIME_FENCE
Backward consumption days

OUTLIER_UPDATE_PERCENTAGE
Forecast outlier update percentage
2-84 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
FORECAST_SET_ID
Forecast set identifier

CUSTOMER_ID
Customer identifier

SHIP_ID
Forecast ship code identifier

BILL_ID
Forecast billing address identifier

BUCKET_TYPE
Forecast bucket type – days, weeks or periods

MSC_ST_INTERORG_SHIP_METHODS
The staging table used by the collection program to validate and process data for table
MSC_INTERORG_SHIP_METHODS.

Parameter Usage Type Required Derived Optional

FROM_ORGANIZATION_ID IN NUMBER x

TO_ORGANIZATION_ID IN NUMBER x

SHIP_METHOD IN VARCHAR2(30) x

TIME_UOM_CODE IN VARCHAR2(10) x

INSTRANSIT_TIME IN NUMBER x

DEFAULT_FLAG IN NUMBER x

FROM_LOCATION_ID IN NUMBER x

TO_LOCATION_ID IN NUMBER x

AVAILABILITY_DATE IN DATE x

WEIGHT_CAPACITY IN NUMBER x

WEIGHT_UOM IN VARCHAR2(3) x

VOLUME_CAPACITY IN NUMBER x

VOLUME_UOM IN VARCHAR2(3) x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-85

Setting Up the ODS Load API
FROM_ORGANIZATION_ID
Organization identifier for the origin organization

TO_ORGANIZATION_ID
Organization identifier for the destination organization’

SHIP_METHOD
Ship method

TIME_UOM_CODE
Unit of measure used to specify the intransit lead time

COST_PER_WEIGHT_UNIT IN NUMBER x

COST_PER_VOLUME_UNIT IN NUMBER x

INTRANSIT_TIME IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

TRANSPORT_CAP_OVER_
UTIL_COST

IN NUMBER x

SR_INSTANCE_ID2 IN NUMBER x

Parameter Usage Type Required Derived Optional
2-86 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
INSTRANSIT_TIME
Instransit time

DEFAULT_FLAG
Flag to indicate if this is a default ship method

FROM_LOCATION_ID
Location identifier of the origin location

TO_LOCATION_ID
Location identifier of the destination location

AVAILABILITY_DATE
Availability date

WEIGHT_CAPACITY
Weight capacity of this ship method

WEIGHT_UOM
Weight unit of measure

VOLUME_CAPACITY
Weight capacity

VOLUME_UOM
Volume unit of measure

COST_PER_WEIGHT_UNIT
Cost per weight unit

COST_PER_VOLUME_UNIT
Cost per volume unit

INTRANSIT_TIME
Intransit time
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-87

Setting Up the ODS Load API
DELETED_FLAG
Deleted flag

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier

SR_INSTANCE_ID
Source application instance identifier of the source org
2-88 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
TRANSPORT_CAP_OVER_UTIL_COST
Transport cap over utilized cost

SR_INSTANCE_ID2
Source application instance identifier of the destination org

MSC_ST_ITEM_CATEGORIES
The staging table used by the collection program to validate and process data for table
MSC_ITEM_CATEGORIES.

Parameter Usage Type Required Derived Optional

INVENTORY_ITEM_ID IN NUMBER x

ORGANIZATION_ID IN NUMBER x

SR_CATEGORY_SET_ID IN NUMBER x

SR_CATEGORY_ID IN NUMBER x

CATEGORY_NAME IN VARCHAR2(163) x

DESCRIPTION IN VARCHAR2(240) x

DISABLE_DATE IN DATE x

SUMMARY_FLAG IN VARCHAR2(1) x

ENABLED_FLAG IN VARCHAR2(1) x

START_DATE_ACTIVE IN DATE x

END_DATE_ACTIVE IN DATE x

CATEGORY_SET_NAME IN VARCHAR2(30) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-89

Setting Up the ODS Load API
INVENTORY_ITEM_ID
Inventory item identifier

ORGANIZATION_ID
Organization identifier

SR_CATEGORY_SET_ID
Category set identifier from source application

SR_CATEGORY_ID
Category identifier from source application

CATEGORY_NAME
Category name

DESCRIPTION
Description

DISABLE_DATE
Disable date

SUMMARY_FLAG
Summary flag

ENABLED_FLAG
Enabled flag

START_DATE_ACTIVE
Start date

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-90 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
END_DATE_ACTIVE
End date

CATEGORY_SET_NAME
Category set name

DELETED_FLAG
Deleted flag

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-91

Setting Up the ODS Load API
SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

MSC_ST_ITEM_SUPPLIERS
The staging table used by the collection program to validate and process data for table
MSC_ITEM_SUPPLIERS.

Parameter Usage Type Required Derived Optional

INVENTORY_ITEM_ID IN NUMBER x

ORGANIZATION_ID IN NUMBER x

SUPPLIER_ID IN NUMBER x

SUPPLIER_SITE_ID IN NUMBER x

USING_ORGANIZATION_ID IN NUMBER x

ASL_ID IN NUMBER x

PROCESSING_LEAD_TIME IN NUMBER x

MINIMUM_ORDER_
QUANTITY

IN NUMBER x

FIXED_LOT_MULTIPLE IN NUMBER x

DELIVERY_CALENDAR_
CODE

IN VARCHAR2(14) x

VENDOR_NAME IN VARCHAR2(80) x

VENDOR_SITE_CODE IN VARCHAR2(15) x

SUPPLIER_CAP_OVER_
UTIL_COST

IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x
2-92 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
INVENTORY_ITEM_ID
Inventory item identifier

ORGANIZATION_ID
Organization identifier

SUPPLIER_ID
Supplier identifier

SUPPLIER_SITE_ID
Supplier site identifier

USING_ORGANIZATION_ID
Using organization identifier

ASL_ID
ASL identifier

PROCESSING_LEAD_TIME
Processing lead time

MINIMUM_ORDER_QUANTITY
Minimum order quantity

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

SR_INSTANCE_ID2 IN NUMBER x

REFRESH_ID IN NUMBER x

PURCHASING_UNIT_OF_
MEASURE

IN VARCHAR2(25) x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-93

Setting Up the ODS Load API
FIXED_LOT_MULTIPLE
Fixed lot multiple

DELIVERY_CALENDAR_CODE
Delivery calendar code

VENDOR_NAME
Supplier name

VENDOR_SITE_CODE
Supplier site code

SUPPLIER_CAP_OVER_UTIL_COST
Supplier cap over util cost

DELETED_FLAG
Deleted flag

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column
2-94 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

SR_INSTANCE_ID2
Source application instance identifier of using organization

REFRESH_ID
Refresh identifier

PURCHASING_UNIT_OF_MEASURE
Purchasing unit of measure

MSC_ST_LOCATION_ASSOCIATIONS
The staging table used by the collection program to validate and process data for table
MSC_LOCATION_ASSOCIATIONS.

Parameter Usage Type Required Derived Optional

LOCATION_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

LOCATION_CODE IN VARCHAR2(20) x

ORGANIZATION_ID IN NUMBER x

PARTNER_ID IN NUMBER x

PARTNER_SITE_ID IN NUMBER x

SR_TP_ID IN NUMBER x

SR_TP_SITE_ID IN NUMBER x

LAST_UPDATE_DATE IN DATE x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-95

Setting Up the ODS Load API
LOCATION_ID
Location identifier

SR_INSTANCE_ID
Source application instance identifier

LOCATION_CODE
Location code

ORGANIZATION_ID
Organization identifier

PARTNER_ID
Partner identifier

PARTNER_SITE_ID
Partner site identifier

SR_TP_ID
Trading partner identifier from source application

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

ORGANIZATION_ID IN NUMBER x

REFRESH_ID IN NUMBER x

PARTNER_TYPE IN NUMBER x

Parameter Usage Type Required Derived Optional
2-96 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
SR_TP_SITE_ID
Trading partner site identifier from source application

LAST_UPDATE_DATE
Standard Who Column

LAST_UPDATED_BY
Standard Who Column

CREATION_DATE
Standard Who Column

CREATED_BY
Standard Who Column

LAST_UPDATE_LOGIN
Standard Who Column

REQUEST_ID
Concurrent Who Column

PROGRAM_APPLICATION_ID
Concurrent Who Column

PROGRAM_ID
Concurrent Who Column

PROGRAM_UPDATE_DATE
Concurrent Who Column

ORGANIZATION_ID
Organization identifier

REFRESH_ID
Refresh identifier
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-97

Setting Up the ODS Load API
PARTNER_TYPE
Partner type

MSC_ST_NET_RESOURCE_AVAIL
The staging table used by the collection program to validate and process data for table
MSC_NET_RESOURCE_AVAIL.

Parameter Usage Type Required Derived Optional

ORGANIZATION_ID IN NUMBER x

DEPARTMENT_ID IN NUMBER x

RESOURCE_ID IN NUMBER x

SHIFT_NUM IN NUMBER x

SHIFT_DATE IN DATE x

FROM_TIME IN NUMBER x

TO_TIME IN NUMBER x

CAPACITY_UNITS IN NUMBER x

SIMULATION_SET IN VARCHAR2(10) x

AGGREGATE_RESOURCE_ID IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x
2-98 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
DEPARTMENT_ID
Department identifier (–1 for lines)

RESOURCE_ID
Resource identifier

SHIFT_NUM
Shift number

SHIFT_DATE
Calendar date

FROM_TIME
Shift start time

TO_TIME
Shift end time

CAPACITY_UNITS
Number of units available during the time interval

SIMULATION_SET
Simulation set identifier

AGGREGATE_RESOURCE_ID
Reference to aggregate resource, if resource aggregated (denormalized column)

DELETED_FLAG
Yes/No flag indicating whether the row will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-99

Setting Up the ODS Load API
CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier populate by the collection program

MSC_ST_OPERATION_COMPONENTS
The staging table used by the collection program to validate and process data for table
MSC_OPERATION_COMPONENTS.

Parameter Usage Type Required Derived Optional

ORGANIZATION_ID IN NUMBER x

OPERATION_SEQUENCE_ID IN NUMBER x

COMPONENT_SEQUENCE_
ID

IN NUMBER x
2-100 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
ORGANIZATION_ID
Organization identifier

OPERATION_SEQUENCE_ID
Operation sequence identifier

COMPONENT_SEQUENCE_ID
Component sequence identifier

BILL_SEQUENCE_ID
Bill sequence identifier

ROUTING_SEQUENCE_ID
Routing sequence identifier

BILL_SEQUENCE_ID IN NUMBER x

ROUTING_SEQUENCE_ID IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-101

Setting Up the ODS Load API
DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS to be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh number populated by the collection program

SR_INSTANCE_ID
Source application instance identifier
2-102 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
MSC_ST_OPERATION_RESOURCES
The staging table used by the collection program to validate and process data for table
MSC_OPERATION_RESOURCES.

Parameter Usage Type Required Derived Optional

ROUTING_SEQUENCE_ID IN NUMBER x

RESOURCE_TYPE IN NUMBER x

OPERATION_SEQUENCE_ID IN NUMBER x

RESOURCE_SEQ_NUM IN NUMBER x

RESOURCE_ID IN NUMBER x

ALTERNATE_NUMBER IN NUMBER x

PRINCIPAL_FLAG IN NUMBER x

BASIS_TYPE IN NUMBER x

RESOURCE_USAGE IN NUMBER x

MAX_RESOURCE_UNITS IN NUMBER x

RESOURCE_UNITS IN NUMBER x

UOM_CODE IN VARCHAR2(3) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-103

Setting Up the ODS Load API
ROUTING_SEQUENCE_ID
Routing sequence identifier

RESOURCE_TYPE
Resource type

OPERATION_SEQUENCE_ID
Operation sequence identifier

RESOURCE_SEQ_NUM
Resource sequence number

RESOURCE_ID
Resource identifier

ALTERNATE_NUMBER
Alternate number

PRINCIPAL_FLAG
Flag to indicate whether the resource is the principal resource

BASIS_TYPE
Basis type

RESOURCE_USAGE
Resource usage

MAX_RESOURCE_UNITS
Maximum number of resource units consumed by this operation resource

RESOURCE_UNITS
Operation resource units (capacity)

UOM_CODE
Unit of measure
2-104 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh number populated by the collection program
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-105

Setting Up the ODS Load API
MSC_ST_OPERATION_RESOURCE_SEQS
The staging table used by the collection program to validate and process data for table
MSC_OPERATION_RESOURCE_SEQS.

ROUTING_SEQUENCE_ID
Routing sequence identifier

OPERATION_SEQUENCE_ID
Operation sequence identifier

Parameter Usage Type Required Derived Optional

ROUTING_SEQUENCE_ID IN NUMBER x

OPERATION_SEQUENCE_ID IN NUMBER x

RESOURCE_SEQ_NUM IN NUMBER x

SCHEDULE_FLAG IN NUMBER x

RESOURCE_OFFSET_
PERCENT

IN NUMBER x

DEPARTMENT_ID IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x
2-106 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
RESOURCE_SEQ_NUM
Resource sequence number

SCHEDULE_FLAG
Schedule

RESOURCE_OFFSET_PERCENT
Resource offset percent

DEPARTMENT_ID
Department identifier

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-107

Setting Up the ODS Load API
PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh number populated by the collection program

MSC_ST_PARAMETERS
The staging table used by the collection program to validate and process data for table
MSC_PARAMETERS.

Parameter Usage Type Required Derived Optional

ORGANIZATION_ID IN NUMBER x

DEMAND_TIME_FENCE_
FLAG

IN NUMBER x

PLANNING_TIME_FENCE_
FLAG

IN NUMBER x

OPERATION_SCHEDULE_
TYPE

IN NUMBER x

CONSIDER_WIP IN NUMBER x

CONSIDER_PO IN NUMBER x

SNAPSHOT_LOCK IN NUMBER x

PLAN_SAFETY_STOCK IN NUMBER x

CONSIDER_RESERVATIONS IN NUMBER x

PART_INCLUDE_TYPE IN NUMBER x

DEFAULT_ABC_
ASSIGNMENT_GROUP

IN VARCHAR2(40) x

PERIOD_TYPE IN NUMBER x

RESCHED_ASSUMPTION IN NUMBER x
2-108 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
ORGANIZATION_ID

DEMAND_TIME_FENCE_FLAG
Flag to indicate whether to consider demand time fence

PLAN_DATE_DEFAULT_
TYPE

IN NUMBER x

INCLUDE_REP_SUPPLY_
DAYS

IN NUMBER x

INCLUDE_MDS_DAYS IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

REPETITIVE_HORIZON1 IN NUMBER(38) x

REPETITIVE_HORIZON2 IN NUMBER(38) x

REPETITIVE_BUCKET_SIZE1 IN NUMBER(38) x

REPETITIVE_BUCKET_SIZE2 IN NUMBER(38) x

REPETITIVE_BUCKET_SIZE3 IN NUMBER(38) x

REPETITIVE_ANCHOR_
DATE

IN DATE x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-109

Setting Up the ODS Load API
PLANNING_TIME_FENCE_FLAG
IS Flag to indicate whether to consider planning time fence

OPERATION_SCHEDULE_TYPE
Operation schedule type

CONSIDER_WIP
Flag to indicate whether to consider WIP

CONSIDER_PO
Flag to indicate whether to consider PO

SNAPSHOT_LOCK
Flag to indicate whether the snapshot should try to lock tables

PLAN_SAFETY_STOCK
Flag to indicate whether to plan safety stock

CONSIDER_RESERVATIONS
Flag to indicate whether to plan material reservations

PART_INCLUDE_TYPE
Flag to indicate which part to include

DEFAULT_ABC_ASSIGNMENT_GROUP
VARCHAR2(40)

PERIOD_TYPE
 Calculate periods based on work dates or calendar dates

RESCHED_ASSUMPTION
Reschedule assumption

PLAN_DATE_DEFAULT_TYPE
Plan date default type
2-110 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
INCLUDE_REP_SUPPLY_DAYS
Flag to indicate whether to include Supply days

INCLUDE_MDS_DAYS
Flag to indicate whether to include MDS days

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-111

Setting Up the ODS Load API
SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier populated by the collection program

REPETITIVE_HORIZON1
 First repetitive horizon

REPETITIVE_HORIZON2
Second repetitive horizon

REPETITIVE_BUCKET_SIZE1
First repetitive bucket size

REPETITIVE_BUCKET_SIZE2
Second repetitive bucket size

REPETITIVE_BUCKET_SIZE3
Third repetitive bucket size

REPETITIVE_ANCHOR_DATE
Repetitive anchor date

MSC_ST_PARTNER_CONTACTS
The staging table used by the collection program to validate and process data for table
MSC_PARTNER_CONTACTS.

Parameter Usage Type Required Derived Optional

NAME IN VARCHAR2(100) x

DISPLAY_NAME IN VARCHAR2(240) x

PARTNER_ID IN NUMBER x

PARTNER_SITE_ID IN NUMBER x

PARTNER_TYPE IN NUMBER x

EMAIL IN VARCHAR2(240) x
2-112 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
NAME
Partner's user name

DISPLAY_NAME
Partner's display name

PARTNER_ID
Partner Identifier

PARTNER_SITE_ID
Partner site identifier

PARTNER_TYPE
Indicate type of partner, supplier, customer, or buyer

FAX IN VARCHAR2(240) x

ENABLED_FLAG IN VARCHAR2(1) x

DELETED_FLAG IN NUMBER x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-113

Setting Up the ODS Load API
EMAIL
Partner's email address

FAX
Partner's FAX number

ENABLED_FLAG
Flag indicating contact is enabled

DELETED_FLAG
 Yes/No flag indicates whether corresponding record in ODS will be deleted

REFRESH_ID
Refresh ID populated by the pull program

SR_INSTANCE_ID
Source application instance identifier

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column
2-114 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

MSC_ST_PERIOD_START_DATES
The staging table used by the collection program to validate and process data for table
MSC_PERIOD_START_DATES.

Parameter Usage Type Required Derived Optional

CALENDAR_CODE IN VARCHAR2(14) x

EXCEPTION_SET_ID IN NUMBER x

PERIOD_START_DATE IN DATE x

PERIOD_SEQUENCE_NUM IN NUMBER x

PERIOD_NAME IN VARCHAR2(3) x

NEXT_DATE IN DATE x

PRIOR_DATE IN DATE x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-115

Setting Up the ODS Load API
CALENDAR_CODE
Calendar code

EXCEPTION_SET_ID
Exception set unique identifier

PERIOD_START_DATE
Period start date

PERIOD_SEQUENCE_NUM
Sequence number

PERIOD_NAME
Period Name (depends on quarterly calendar type chosen)

NEXT_DATE
Next calendar date corresponding to next sequence number

PRIOR_DATE
Period start date

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-116 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier populated by the collection program

SR_INSTANCE_ID
Source application instance identifier

MSC_ST_PLANNERS
The staging table used by the collection program to validate and process data for table
MSC_PLANNERS.

Parameter Usage Type Required Derived Optional

ORGANIZATION_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-117

Setting Up the ODS Load API
LAST_UPDATE_LOGIN IN NUMBER x

DESCRIPTION IN VARCHAR2(50) x

DISABLE_DATE IN DATE x

ATTRIBUTE_CATEGORY IN VARCHAR2(30) x

ATTRIBUTE1 IN VARCHAR2(150) x

ATTRIBUTE2 IN VARCHAR2(150) x

ATTRIBUTE3 IN VARCHAR2(150) x

ATTRIBUTE4 IN VARCHAR2(150) x

ATTRIBUTE5 IN VARCHAR2(150) x

ATTRIBUTE6 IN VARCHAR2(150) x

ATTRIBUTE7 IN VARCHAR2(150) x

ATTRIBUTE8 IN VARCHAR2(150) x

ATTRIBUTE9 IN VARCHAR2(150) x

ATTRIBUTE10 IN VARCHAR2(150) x

ATTRIBUTE11 IN VARCHAR2(150) x

ATTRIBUTE12 IN VARCHAR2(150) x

ATTRIBUTE13 IN VARCHAR2(150) x

ATTRIBUTE14 IN VARCHAR2(150) x

ATTRIBUTE15 IN VARCHAR2(150) x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

ELECTRONIC_MAIL_
ADDRESS

IN VARCHAR2(240) x

EMPLOYEE_ID IN NUMBER x

CURRENT_EMPLOYEE_
FLAG

IN NUMBER x

Parameter Usage Type Required Derived Optional
2-118 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
ORGANIZATION_ID
Organization identifier

SR_INSTANCE_ID
Source application instance identifier

LAST_UPDATE_DATE
Standard Who Column

LAST_UPDATED_BY
Standard Who Column

CREATION_DATE
Standard Who Column

CREATED_BY
Standard Who Column

LAST_UPDATE_LOGIN
Standard Who Column

DESCRIPTION
Describe the planner

DISABLE_DATE
Date on which the planner record is disable

ATTRIBUTE_CATEGORY
Descriptive flexfield structure defining column

REFRESH_ID IN NUMBER x

DELETED_FLAG IN NUMBER x

USER_NAME IN VARCHAR2(100) x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-119

Setting Up the ODS Load API
ATTRIBUTE1
Descriptive flexfield segment

ATTRIBUTE2
Descriptive flexfield segment

ATTRIBUTE3
Descriptive flexfield segment

ATTRIBUTE4
Descriptive flexfield segment

ATTRIBUTE5
Descriptive flexfield segment

ATTRIBUTE6
Descriptive flexfield segment

ATTRIBUTE7
Descriptive flexfield segment

ATTRIBUTE8
Descriptive flexfield segment

ATTRIBUTE9
Descriptive flexfield segment

ATTRIBUTE10
Descriptive flexfield segment

ATTRIBUTE11
Descriptive flexfield segment

ATTRIBUTE12
Descriptive flexfield segment
2-120 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
ATTRIBUTE13
Descriptive flexfield segment

ATTRIBUTE14
Descriptive flexfield segment

ATTRIBUTE15
Descriptive flexfield segment

REQUEST_ID
Concurrent Who Column

PROGRAM_APPLICATION_ID
Concurrent Who Column

PROGRAM_ID
Concurrent Who Column

PROGRAM_UPDATE_DATE
Concurrent Who Column

ELECTRONIC_MAIL_ADDRESS
Electronic mail address

EMPLOYEE_ID
Employee identifier assigned to the planner

CURRENT_EMPLOYEE_FLAG
Flag indicate whether the planner is current employee

REFRESH_ID
Refresh identifier

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-121

Setting Up the ODS Load API
USER_NAME

MSC_ST_PROCESS_EFFECTIVITY
The staging table used by the collection program to validate and process data for table
MSC_PROCESS_EFFECTIVITY.

Parameter Usage Type Required Derived Optional

PROCESS_SEQUENCE_ID IN NUMBER x

ITEM_ID IN NUMBER x

ORGANIZATION_ID IN NUMBER x

EFFECTIVITY_DATE IN DATE x

DISABLE_DATE IN DATE x

MINIMUM_QUANTITY IN NUMBER x

MAXIMUM_QUANTITY IN NUMBER x

PREFERENCE IN NUMBER x

ROUTING_SEQUENCE_ID IN NUMBER x

BILL_SEQUENCE_ID IN NUMBER x

TOTAL_PRODUCT_CYCLE_
TIME

IN NUMBER x

ITEM_PROCESS_COST IN NUMBER x

LINE_ID IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x
2-122 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PROCESS_SEQUENCE_ID
Process sequence identifier

ITEM_ID
Inventory item identifier

ORGANIZATION_ID
Organization identifier

EFFECTIVITY_DATE
Effectivity date of the process

DISABLE_DATE
Disable date of the process

MINIMUM_QUANTITY
Minimum quantity for which the process can be used to produce the item

MAXIMUM_QUANTITY
Maximum quantity for which the process can be used to produce the item

PREFERENCE
Preference

ROUTING_SEQUENCE_ID
Routing sequence identifier

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

PRIMARY_LINE_FLAG IN NUMBER x

PRODUCTION_LINE_RATE IN NUMBER x

LOAD_DISTRIBUTION_
PRIORITY

IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-123

Setting Up the ODS Load API
BILL_SEQUENCE_ID
Bill sequence identifier

TOTAL_PRODUCT_CYCLE_TIME
Total time that an assembly takes along the primary path in the operation network calculated
by flow manufacturing

ITEM_PROCESS_COST
Cost of alternate BOM and routing

LINE_ID
Line identifier

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column
2-124 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier populated by the collection program

SR_INSTANCE_ID
Source application instance identifier

PRIMARY_LINE_FLAG
Flag indicating whether the line is used for lead time calculations

PRODUCTION_LINE_RATE
Number of assemblies which run down the line per hour

LOAD_DISTRIBUTION_PRIORITY

MSC_ST_PROJECTS
The staging table used by the collection program to validate and process data for table
MSC_PROJECTS.

Parameter Usage Type Required Derived Optional

PROJECT_ID IN NUMBER(15) x

ORGANIZATION_ID IN NUMBER(15) x

PLANNING_GROUP IN VARCHAR2(30) x

COSTING_GROUP_ID IN NUMBER x

WIP_ACCT_CLASS_CODE IN VARCHAR2(10) x

SEIBAN_NUMBER_FLAG IN NUMBER(1) x

PROJECT_NAME IN VARCHAR2(30) x

PROJECT_NUMBER IN VARCHAR2(25) x

PROJECT_NUMBER_SORT_
ORDER

IN VARCHAR2(25) x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-125

Setting Up the ODS Load API
PROJECT_ID
Project identifier or Seiban identifier

ORGANIZATION_ID
Organization identifier

PLANNING_GROUP
Planning group code

COSTING_GROUP_ID
Costing group identifier

PROJECT_DESCRIPTION IN VARCHAR2(250) x

START_DATE IN DATE x

COMPLETION_DATE IN DATE x

OPERATING_UNIT IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

MATERIAL_ACCOUNT IN NUMBER x

MANAGER_CONTACT IN VARCHAR2(100) x

Parameter Usage Type Required Derived Optional
2-126 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
WIP_ACCT_CLASS_CODE
Default WIP accounting class assigned to this project

SEIBAN_NUMBER_FLAG
Flag indicates whether project_id identifies a project or a seiban

PROJECT_NAME
Project name

PROJECT_NUMBER
Project number or seiban number

PROJECT_NUMBER_SORT_ORDER
Sort order

PROJECT_DESCRIPTION
Describe the project

START_DATE
Project start date

COMPLETION_DATE
Project completion date

OPERATING_UNIT
Operating unit

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-127

Setting Up the ODS Load API
CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

MATERIAL_ACCOUNT
Material account
2-128 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
MANAGER_CONTACT

MSC_ST_PROJECT_TASKS
The staging table used by the collection program to validate and process data for table
MSC_PROJECT_TASKS.

Parameter Usage Type Required Derived Optional

PROJECT_ID IN NUMBER(15) x

TASK_ID IN NUMBER(15) x

ORGANIZATION_ID IN NUMBER x

TASK_NUMBER IN VARCHAR2(25) x

TASK_NAME IN VARCHAR2(20) x

DESCRIPTION IN VARCHAR2(250) x

MANAGER IN VARCHAR2(240) x

START_DATE IN DATE x

END_DATE IN DATE x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

MANAGER_CONTACT IN VARCHAR2(100) x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-129

Setting Up the ODS Load API
PROJECT_ID
Project identifier

TASK_ID
Task identifier

ORGANIZATION_ID
Organization identifier

TASK_NUMBER
Task number

TASK_NAME
Task name

DESCRIPTION
Task description

MANAGER
Manager

START_DATE
Task start date

END_DATE
Task end date

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column
2-130 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier populated by the collection program

MANAGER_CONTACT

MSC_ST_RESERVATIONS
The staging table used by the collection program to validate and process data for table
MSC_RESERVATIONS.

Parameter Usage Type Required Derived Optional

INVENTORY_ITEM_ID IN NUMBER x

ORGANIZATION_ID IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-131

Setting Up the ODS Load API
TRANSACTION_ID IN NUMBER x

PARENT_DEMAND_ID IN NUMBER x

DISPOSITION_ID IN NUMBER x

REQUIREMENT_DATE IN DATE x

REVISION IN VARCHAR2(3) x

RESERVED_QUANTITY IN NUMBER x

DISPOSITION_TYPE IN NUMBER x

SUBINVENTORY IN VARCHAR2(10) x

RESERVATION_TYPE IN NUMBER x

DEMAND_CLASS IN VARCHAR2(34) x

AVAILABLE_TO_MRP IN NUMBER x

RESERVATION_FLAG IN NUMBER x

PROJECT_ID IN NUMBER(15) x

TASK_ID IN NUMBER(15) x

PLANNING_GROUP IN VARCHAR2(30) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-132 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
INVENTORY_ITEM_ID
Inventory item identifier

ORGANIZATION_ID
Organization identifier

TRANSACTION_ID
Unique identifier generated from the source application instance

PARENT_DEMAND_ID
Parent demand identifier

DISPOSITION_ID
Disposition identifier

REQUIREMENT_DATE
Date of need

REVISION
Inventory item revision code

RESERVED_QUANTITY
Quantity reserved

DISPOSITION_TYPE
Disposition type

SUBINVENTORY
Subinventory identifier

RESERVATION_TYPE
Reservation type

DEMAND_CLASS
Demand class code
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-133

Setting Up the ODS Load API
AVAILABLE_TO_MRP
Available-to-MRP flag

RESERVATION_FLAG
Reservation flag

PROJECT_ID
Project identifier

TASK_ID
Task identifier

PLANNING_GROUP
Planning group code

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column
2-134 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier populated by the collection program

MSC_ST_RESOURCE_CHANGES
The staging table used by the collection program to validate and process data for table
MSC_RESOURCE_CHANGES.

Parameter Usage Type Required Derived Optional

DEPARTMENT_ID IN NUMBER x

RESOURCE_ID IN NUMBER x

SHIFT_NUM IN NUMBER x

FROM_DATE IN DATE x

TO_DATE IN DATE x

FROM_TIME IN NUMBER x

TO_TIME IN NUMBER x

CAPACITY_CHANGE IN NUMBER x

SIMULATION_SET IN VARCHAR2(10) x

ACTION_TYPE IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-135

Setting Up the ODS Load API
DEPARTMENT_ID
Department identifier (-1 for lines)

RESOURCE_ID
Resource identifier

SHIFT_NUM
Shift number

FROM_DATE
Capacity exception from date

TO_DATE
 Capacity exception to date

FROM_TIME
Capacity exception from time

TO_TIME
Capacity exception to time

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-136 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
CAPACITY_CHANGE
Capacity change

SIMULATION_SET
Simulation set identifier

ACTION_TYPE
Type of capacity modification

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-137

Setting Up the ODS Load API
PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier populated by the collection program

SR_INSTANCE_ID
Source application instance identifier

MSC_ST_RESOURCE_GROUPS
The staging table used by the collection program to validate and process data for table
MSC_ST_RESOURCE_CHANGES.

Parameter Usage Type Required Derived Optional

GROUP_CODE IN VARCHAR2(30) x

MEANING IN VARCHAR2(80) x

DESCRIPTION IN VARCHAR2(250) x

FROM_DATE IN DATE x

TO_DATE IN DATE x

ENABLED_FLAG IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

ATTRIBUTE_CATEGORY IN VARCHAR2(30) x

ATTRIBUTE1 IN VARCHAR2(150) x
2-138 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
GROUP_CODE
Resource group code

MEANING
Meaning

DESCRIPTION
Resource group description

FROM_DATE
Resource start date

TO_DATE
Resource end date

ATTRIBUTE2 IN VARCHAR2(150) x

ATTRIBUTE3 IN VARCHAR2(150) x

ATTRIBUTE4 IN VARCHAR2(150) x

ATTRIBUTE5 IN VARCHAR2(150) x

ATTRIBUTE6 IN VARCHAR2(150) x

ATTRIBUTE7 IN VARCHAR2(150) x

ATTRIBUTE8 IN VARCHAR2(150) x

ATTRIBUTE9 IN VARCHAR2(150) x

ATTRIBUTE10 IN VARCHAR2(150) x

ATTRIBUTE11 IN VARCHAR2(150) x

ATTRIBUTE12 IN VARCHAR2(150) x

ATTRIBUTE13 IN VARCHAR2(150) x

ATTRIBUTE14 IN VARCHAR2(150) x

ATTRIBUTE15 IN VARCHAR2(150) x

DELETED_FLAG IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-139

Setting Up the ODS Load API
ENABLED_FLAG
Flag indicates whether resource group is enable

SR_INSTANCE_ID
Source application instance identifier

LAST_UPDATE_DATE
Standard Who Column

LAST_UPDATED_BY
Standard Who Column

CREATION_DATE
Standard Who Column

CREATED_BY
Standard Who Column

LAST_UPDATE_LOGIN
Standard Who Column

REQUEST_ID
Concurrent Who Column

PROGRAM_APPLICATION_ID
Concurrent Who Column

PROGRAM_ID
Concurrent Who Column

PROGRAM_UPDATE_DATE
Concurrent Who Column

ATTRIBUTE_CATEGORY
Descriptive flexfield structure defining column
2-140 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
ATTRIBUTE1
Descriptive flexfield segment

ATTRIBUTE2
Descriptive flexfield segment

ATTRIBUTE3
Descriptive flexfield segment

ATTRIBUTE4
Descriptive flexfield segment

ATTRIBUTE5
Descriptive flexfield segment

ATTRIBUTE6
Descriptive flexfield segment

ATTRIBUTE7
Descriptive flexfield segment

ATTRIBUTE8
Descriptive flexfield segment

ATTRIBUTE9
Descriptive flexfield segment

ATTRIBUTE10
Descriptive flexfield segment

ATTRIBUTE11
Descriptive flexfield segment

ATTRIBUTE12
Descriptive flexfield segment
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-141

Setting Up the ODS Load API
ATTRIBUTE13
Descriptive flexfield segment

ATTRIBUTE14
Descriptive flexfield segment

ATTRIBUTE15
Descriptive flexfield segment

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

REFRESH_ID
Refresh identifier

MSC_ST_RESOURCE_REQUIREMENTS
The staging table used by the collection program to validate and process data for table
MSC_RESOURCE_REQUIREMENTS.

Parameter Usage Type Required Derived Optional

DEPARTMENT_ID IN NUMBER x

RESOURCE_ID IN NUMBER x

ORGANIZATION_ID IN NUMBER x

INVENTORY_ITEM_ID IN NUMBER x

SUPPLY_ID IN NUMBER x

OPERATION_SEQ_NUM IN NUMBER x

OPERATION_SEQUENCE_ID IN NUMBER x

RESOURCE_SEQ_NUM IN NUMBER x

START_DATE IN DATE x

OPERATION_HOURS_
REQUIRED

IN NUMBER x

HOURS_EXPENDED IN NUMBER x

DEMAND_CLASS IN VARCHAR2(34) x

BASIS_TYPE IN NUMBER x
2-142 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
DEPARTMENT_ID
Department identifier

RESOURCE_ID
Resource identifier

ASSIGNED_UNITS IN NUMBER x

END_DATE IN DATE x

WIP_JOB_TYPE IN NUMBER x

SCHEDULED_
COMPLETION_DATE

IN DATE x

SCHEDULED_QUANTITY IN NUMBER x

QUANTITY_COMPLETED IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

WIP_ENTITY_ID IN NUMBER x

STD_OP_CODE IN VARCHAR2(4) x

SUPPLY_TYPE IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-143

Setting Up the ODS Load API
ORGANIZATION_ID
Organization identifier

INVENTORY_ITEM_ID
Inventory item identifier

SUPPLY_ID
Supply identifier

OPERATION_SEQ_NUM
Operation sequence number

OPERATION_SEQUENCE_ID
Operation sequence identifier

RESOURCE_SEQ_NUM
Resource sequence number

START_DATE
Start date of the resource requirement

OPERATION_HOURS_REQUIRED
Operation hours required

HOURS_EXPENDED
Hours expended

DEMAND_CLASS
Demand class code

BASIS_TYPE
Basis type

ASSIGNED_UNITS
Assigned units
2-144 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
END_DATE
End date of the resource requirement

WIP_JOB_TYPE
WIP job type

SCHEDULED_COMPLETION_DATE
Schedule completion date

SCHEDULED_QUANTITY
Quantity scheduled

QUANTITY_COMPLETED
Quantity completed

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-145

Setting Up the ODS Load API
PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

WIP_ENTITY_ID
WIP job identifier

STD_OP_CODE
Standard OP code

SUPPLY_TYPE
Supply type

MSC_ST_RESOURCE_SHIFTS
The staging table used by the collection program to validate and process data for table
MSC_RESOURCE_SHIFTS.

Parameter Usage Type Required Derived Optional

DEPARTMENT_ID IN NUMBER x

RESOURCE_ID IN NUMBER x

SHIFT_NUM IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x
2-146 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
DEPARTMENT_ID
Department identifier

RESOURCE_ID
Resource identifier

SHIFT_NUM
Shift number

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-147

Setting Up the ODS Load API
CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier

SR_INSTANCE_ID
Source application instance identifier

MSC_ST_ROUTINGS
The staging table used by the collection program to validate and process data for table
MSC_ROUTINGS.

Parameter Usage Type Required Derived Optional

ROUTING_SEQUENCE_ID IN NUMBER x

ASSEMBLY_ITEM_ID IN NUMBER x

ROUTING_TYPE IN NUMBER x

ROUTING_COMMENT IN VARCHAR2(240) x

PRIORITY IN NUMBER x

ALTERNATE_ROUTING_
DESIGNATOR

IN VARCHAR2(10) x
2-148 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PROJECT_ID IN NUMBER x

TASK_ID IN NUMBER x

LINE_ID IN NUMBER x

UOM_CODE IN VARCHAR2(3) x

CFM_ROUTING_FLAG IN NUMBER x

CTP_FLAG IN NUMBER x

ROUTING_QUANTITY IN NUMBER x

COMPLETION_
SUBINVENTORY

IN VARCHAR2(10) x

COMPLETION_LOCATOR_ID IN NUMBER x

COMMON_ROUTING_
SEQUENCE_ID

IN NUMBER x

MIXED_MODEL_MAP_FLAG IN NUMBER x

TOTAL_PRODUCT_CYCLE_
TIME

IN NUMBER x

ORGANIZATION_ID IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-149

Setting Up the ODS Load API
ROUTING_SEQUENCE_ID
Routing sequence identifier

ASSEMBLY_ITEM_ID
Assembly item identifier

ROUTING_TYPE
Routing type

ROUTING_COMMENT
Routing comment

PRIORITY
Routing priority

ALTERNATE_ROUTING_DESIGNATOR
Name of the alternate routing. Null for primary routing

PROJECT_ID
Project identifier

TASK_ID
Task identifier

LINE_ID
Manufacturing line identifier

UOM_CODE
Unit of measure code

CFM_ROUTING_FLAG
CFM routing flag

CTP_FLAG
CTP flag
2-150 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
ROUTING_QUANTITY
Routing quantity

COMPLETION_SUBINVENTORY
Completion subinventory

COMPLETION_LOCATOR_ID
Completion locator identifier

COMMON_ROUTING_SEQUENCE_ID
Common routing sequence identifier

MIXED_MODEL_MAP_FLAG
Mix model map flag

TOTAL_PRODUCT_CYCLE_TIME
Total product cycle time

ORGANIZATION_ID
Organization identifier

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-151

Setting Up the ODS Load API
LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

MSC_ST_ROUTING_OPERATIONS
The staging table used by the collection program to validate and process data for table
MSC_ROUTING_OPERATIONS.

Parameter Usage Type Required Derived Optional

OPERATION_SEQUENCE_ID IN NUMBER x

ROUTING_SEQUENCE_ID IN NUMBER x

OPERATION_SEQ_NUM IN NUMBER x

OPERATION_DESCRIPTION IN VARCHAR2(240) x

EFFECTIVITY_DATE IN DATE x

DISABLE_DATE IN DATE x

FROM_UNIT_NUMBER IN VARCHAR2(30) x

TO_UNIT_NUMBER IN VARCHAR2(30) x

OPTION_DEPENDENT_FLAG IN NUMBER x
2-152 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
OPERATION_TYPE IN NUMBER x

MINIMUM_TRANSFER_
QUANTITY

IN NUMBER x

YIELD IN NUMBER x

DEPARTMENT_ID IN NUMBER x

DEPARTMENT_CODE IN VARCHAR2(10) x

OPERATION_LEAD_TIME_
PERCENT

IN NUMBER x

CUMULATIVE_YIELD IN NUMBER x

REVERSE_CUMULATIVE_
YIELD

IN NUMBER x

NET_PLANNING_PERCENT IN NUMBER x

TEAR_DOWN_DURATION IN NUMBER x

SETUP_DURATION IN NUMBER x

UOM_CODE IN VARCHAR2(3) x

STANDARD_OPERATION_
CODE

IN VARCHAR2(4) x

ORGANIZATION_ID IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-153

Setting Up the ODS Load API
OPERATION_SEQUENCE_ID
Operation sequence identifier

ROUTING_SEQUENCE_ID
Routing sequence identifier

OPERATION_SEQ_NUM
Operation sequence number

OPERATION_DESCRIPTION
Operation description

EFFECTIVITY_DATE
 Date operation is effective

DISABLE_DATE
End of effectivity

FROM_UNIT_NUMBER
Effective from this unit number

TO_UNIT_NUMBER
Effective up to this unit number

OPTION_DEPENDENT_FLAG
 Flag to indicate whether this operation option dependent

OPERATION_TYPE
Indicate operation type: Process, Line, or Event.

MINIMUM_TRANSFER_QUANTITY
Minimum operation transfer quantity

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-154 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
YIELD
Process yield at this operation

DEPARTMENT_ID
Department identifier

DEPARTMENT_CODE
Department code

OPERATION_LEAD_TIME_PERCENT
Indicates the amount of overlap its lead time has with the parent lead time

CUMULATIVE_YIELD
Cumulative process yield from the beginning of routing to this operation

REVERSE_CUMULATIVE_YIELD
Cumulative process yield from the end of routing to comparable operation

NET_PLANNING_PERCENT
Cumulative planning percents derived from the operation network

TEAR_DOWN_DURATION
Duration of the tear down for this operation

SETUP_DURATION
Duration of the set-up

UOM_CODE
Unit of measure code

STANDARD_OPERATION_CODE
Code of the standard operation on which this operation is based

ORGANIZATION_ID
Organization identifier
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-155

Setting Up the ODS Load API
DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier
2-156 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
MSC_ST_SAFETY_STOCKS
The staging table used by the collection program to validate and process data for table
MSC_SAFETY_STOCKS.

ORGANIZATION_ID
Organization identifier

INVENTORY_ITEM_ID
Inventory item identifier

Parameter Usage Type Required Derived Optional

ORGANIZATION_ID IN NUMBER x

INVENTORY_ITEM_ID IN NUMBER x

PERIOD_START_DATE IN DATE x

SAFETY_STOCK_QUANTITY IN NUMBER x

UPDATED IN NUMBER x

STATUS IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-157

Setting Up the ODS Load API
PERIOD_START_DATE
Period start date

SAFETY_STOCK_QUANTITY
Safety stock quantity

UPDATED
Updated flag

STATUS
Status flag

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column
2-158 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

MSC_ST_SALES_ORDERS
The staging table used by the collection program to validate and process data for table
MSC_SAFETY_STOCKS.

Parameter Usage Type Required Derived Optional

INVENTORY_ITEM_ID IN NUMBER x

ORGANIZATION_ID IN NUMBER x

DEMAND_ID IN NUMBER x

PRIMARY_UOM_QUANTITY IN NUMBER x

RESERVATION_TYPE IN NUMBER x

RESERVATION_QUANTITY IN NUMBER x

DEMAND_SOURCE_TYPE IN NUMBER x

DEMAND_SOURCE_
HEADER_ID

IN NUMBER x

COMPLETED_QUANTITY IN NUMBER x

SUBINVENTORY IN VARCHAR2(10) x

DEMAND_CLASS IN VARCHAR2(34) x

REQUIREMENT_DATE IN DATE x

DEMAND_SOURCE_LINE IN VARCHAR2(40) x

DEMAND_SOURCE_
DELIVERY

IN VARCHAR2(30) x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-159

Setting Up the ODS Load API
DEMAND_SOURCE_NAME IN VARCHAR2(30) x

PARENT_DEMAND_ID IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

SALES_ORDER_NUMBER IN VARCHAR2(122) x

SALESREP_CONTACT IN VARCHAR2(100) x

ORDERED_ITEM_ID IN NUMBER x

AVAILABLE_TO_MRP IN VARCHAR2(1) x

CUSTOMER_ID IN NUMBER x

SHIP_TO_SITE_USE_ID IN NUMBER x

BILL_TO_SITE_USE_ID IN NUMBER x

LINE_NUM IN NUMBER x

TERRITORY_ID IN NUMBER x

UPDATE_SEQ_NUM IN NUMBER x

DEMAND_TYPE IN NUMBER x

PROJECT_ID IN NUMBER x

TASK_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-160 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
INVENTORY_ITEM_ID
Inventory item identifier

ORGANIZATION_ID
Organization identifier

DEMAND_ID
Unique identifier of a demand row from source application instance

PRIMARY_UOM_QUANTITY
Primary UOM quantity

RESERVATION_TYPE
Code for type of reservation

RESERVATION_QUANTITY
Total quantity reserved expressed in primary unit of measure

DEMAND_SOURCE_TYPE
Demand source type

DEMAND_SOURCE_HEADER_ID
Header ID for the source of the demand

COMPLETED_QUANTITY
Completed quantity

SUBINVENTORY
Subinventory code

PLANNING_GROUP IN VARCHAR2(30) x

END_ITEM_UNIT_NUMBER IN VARCHAR2(30) x

DEMAND_PRIORITY IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-161

Setting Up the ODS Load API
DEMAND_CLASS
Demand class code

REQUIREMENT_DATE
Planned ship date for summary demand

DEMAND_SOURCE_LINE
Line id of demand source

DEMAND_SOURCE_DELIVERY
For Sales Order demand, Line id of Sales order line detail row (SO_LINE_DETAILS.LINE_
DETAIL_I D) from source application instance

DEMAND_SOURCE_NAME
Identifier for user-defined Source Type

PARENT_DEMAND_ID
Parent demand identifier

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column
2-162 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh number populated by the collection program

SR_INSTANCE_ID
Source application instance identifier

SALES_ORDER_NUMBER
Sales order number

SALESREP_CONTACT

ORDERED_ITEM_ID
Ordered item identifier

AVAILABLE_TO_MRP
Available to MRP flag

CUSTOMER_ID
Customer identifier

SHIP_TO_SITE_USE_ID
Ship to identifier of the sales order

BILL_TO_SITE_USE_ID
Bill to identifier of the sales order
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-163

Setting Up the ODS Load API
LINE_NUM
Sales order line number

TERRITORY_ID
Territory identifier of the sales order

UPDATE_SEQ_NUM
Update sequence number

DEMAND_TYPE
Demand type

PROJECT_ID
Project identifier

TASK_ID
Task identifier

PLANNING_GROUP
Planning group

END_ITEM_UNIT_NUMBER
Unit number identifier

DEMAND_PRIORITY
Demand priority

MSC_ST_SHIFT_DATES
The staging table used by the collection program to validate and process data for table
MSC_SHIFT_DATES.

Parameter Usage Type Required Derived Optional

CALENDAR_CODE IN VARCHAR2(14) x

EXCEPTION_SET_ID IN NUMBER x

SHIFT_NUM IN NUMBER x

SHIFT_DATE IN DATE x
2-164 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
CALENDAR_CODE
Calendar code

EXCEPTION_SET_ID
Exception set identifier

SHIFT_NUM
Calendar shift number

SHIFT_DATE
Calendar date

SEQ_NUM IN NUMBER x

NEXT_SEQ_NUM IN NUMBER x

PRIOR_SEQ_NUM IN NUMBER x

NEXT_DATE IN DATE x

PRIOR_DATE IN DATE x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-165

Setting Up the ODS Load API
SEQ_NUM
Sequence number for shift date (only for working dates)

NEXT_SEQ_NUM
Next sequence number for calendar date (working day)

PRIOR_SEQ_NUM
Prior sequence number for calendar date (working day)

NEXT_DATE
Next date corresponding to next sequence number

PRIOR_DATE
Prior date corresponding to prior sequence number

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column
2-166 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier

SR_INSTANCE_ID
Source application instance identifier

MSC_ST_SHIFT_EXCEPTIONS
The staging table used by the collection program to validate and process data for table
MSC_SHIFT_EXCEPTIONS.

Parameter Usage Type Required Derived Optional

CALENDAR_CODE IN VARCHAR2(14) x

SHIFT_NUM IN NUMBER x

EXCEPTION_SET_ID IN NUMBER x

EXCEPTION_DATE IN DATE x

EXCEPTION_TYPE IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-167

Setting Up the ODS Load API
CALENDAR_CODE
Calendar code

SHIFT_NUM
Calendar shift number

EXCEPTION_SET_ID
Exception set identifier

EXCEPTION_DATE
Exception date

EXCEPTION_TYPE
Exception type

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-168 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier

SR_INSTANCE_ID
Source application instance identifier

MSC_ST_SHIFT_TIMES
The staging table used by the collection program to validate and process data for table
MSC_SHIFT_TIMES.

Parameter Usage Type Required Derived Optional

CALENDAR_CODE IN VARCHAR2(14) x

SHIFT_NUM IN NUMBER x

FROM_TIME IN NUMBER x

TO_TIME IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-169

Setting Up the ODS Load API
CALENDAR_CODE
Calendar code

SHIFT_NUM
Shift number

FROM_TIME
Shift start time

TO_TIME
Shift end time

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

REFRESH_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-170 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

REFRESH_ID
Refresh identifier

SR_INSTANCE_ID
Source application instance identifier

MSC_ST_SIMULATION_SETS
The staging table used by the collection program to validate and process data for table
MSC_SIMULATION_SETS.

Parameter Usage Type Required Derived Optional

ORGANIZATION_ID IN NUMBER x

SIMULATION_SET IN VARCHAR2(10) x

DESCRIPTION IN VARCHAR2(50) x

USE_IN_WIP_FLAG IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-171

Setting Up the ODS Load API
ORGANIZATION_ID
Organization identifier

SIMULATION_SET
Simulation set

DESCRIPTION
Describe simulation set

USE_IN_WIP_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

DELETED_FLAG
LAST_UPDATE_DATE

Standard Who column
LAST_UPDATED_BY

Standard Who column
CREATION_DATE

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-172 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
Standard Who column
CREATED_BY

Standard Who column
LAST_UPDATE_LOGIN

Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

MSC_ST_SOURCING_HISTORY
The staging table used by the collection program to validate and process data for table
MSC_SOURCING_HISTORY.

Parameter Usage Type Required Derived Optional

INVENTORY_ITEM_ID IN NUMBER x

ORGANIZATION_ID IN NUMBER x

SR_INSTANCE_ID IN NUMBER x

SOURCING_RULE_ID IN NUMBER x

SOURCE_ORG_ID IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-173

Setting Up the ODS Load API
INVENTORY_ITEM_ID
Inventory Item Id

ORGANIZATION_ID
Organization Id

SOURCE_SR_INSTANCE_ID IN NUMBER x

SUPPLIER_ID IN NUMBER x

SUPPLIER_SITE_ID IN NUMBER x

HISTORICAL_ALLOCATION IN NUMBER x

REFRESH_NUMBER IN NUMBER x

LAST_CALCULATED_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

LAST_UPDATE_DATE IN DATE x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

Index Name Index Type Sequence Column Name

MSC_ST_
SOURCING_
HISTORY_U1

UNIQUE 1 SOURCING_RULE_
ID

 2 INVENTORY_ITEM_
ID

 3 ORGANIZATION_ID

 4 SR_INSTANCE_ID

Parameter Usage Type Required Derived Optional
2-174 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
SR_INSTANCE_ID
sr instance Id

SOURCING_RULE_ID
Sourcing Rule/Bill of Distribution identifier

SOURCE_ORG_ID
Source Org Id

SOURCE_SR_INSTANCE_ID
source org sr instance Id

SUPPLIER_ID
Supplier identifier

SUPPLIER_SITE_ID
Supplier site identifier

HISTORICAL_ALLOCATION
Historical Allocation

REFRESH_NUMBER
Refresh Number

LAST_CALCULATED_DATE
Last Calculated Date

LAST_UPDATED_BY
Standard Who Column

LAST_UPDATE_DATE
Standard Who Column

CREATION_DATE
Standard Who Column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-175

Setting Up the ODS Load API
CREATED_BY
Standard Who Column

LAST_UPDATE_LOGIN
Standard Who Column

REQUEST_ID
Concurrent Who Column

PROGRAM_APPLICATION_ID
Concurrent Who Column

PROGRAM_ID
Concurrent Who Column

PROGRAM_UPDATE_DATE
Concurrent Who Column

MSC_ST_SOURCING_RULES
The staging table used by the collection program to validate and process data for table
MSC_SOURCING_RULES.

Parameter Usage Type Required Derived Optional

SOURCING_RULE_ID IN NUMBER x

SR_SOURCING_RULE_
ID

IN NUMBER x

SOURCING_RULE_
NAME

IN VARCHAR2(30) x

ORGANIZATION_ID IN NUMBER x

DESCRIPTION IN VARCHAR2(80) x

STATUS IN NUMBER x

SOURCING_RULE_TYPE IN NUMBER x

PLANNING_ACTIVE IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x
2-176 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
SOURCING_RULE_ID
Sourcing rule / Bill of Distribution identifier

SR_SOURCING_RULE_ID
Sourcing rule / Bill of Distribution identifier from source application

SOURCING_RULE_NAME
Sourcing rule / Bill of Distribution name

ORGANIZATION_ID
Organization identifier

DESCRIPTION
Describe Sourcing rule / Bill of Distribution

STATUS
Status flag

SOURCING_RULE_TYPE
Flag indicates whether the row is sourcing rule or bill of distribution

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_
APPLICATION_ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_
DATE

IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-177

Setting Up the ODS Load API
PLANNING_ACTIVE
Flag indicates whether the row is planning active

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier
2-178 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
REFRESH_ID
Refresh identifier

MSC_ST_SR_ASSIGNMENTS
The staging table used by the collection program to validate and process data for table
MSC_SR_ASSIGNMENTS.

Parameter Usage Type Required Derived Optional

ASSIGNMENT_ID IN NUMBER x

SR_ASSIGNMENT_ID IN NUMBER x

ASSIGNMENT_SET_ID IN NUMBER x

ASSIGNMENT_TYPE IN NUMBER x

SOURCING_RULE_ID IN NUMBER x

SOURCING_RULE_TYPE IN NUMBER x

INVENTORY_ITEM_ID IN NUMBER x

PARTNER_ID IN NUMBER x

SHIP_TO_SITE_ID IN NUMBER x

CUSTOMER_NAME IN VARCHAR2(50) x

SITE_USE_CODE IN VARCHAR2(30) x

LOCATION IN VARCHAR2(40) x

ORGANIZATION_ID IN NUMBER x

CATEGORY_ID IN NUMBER x

CATEGORY_NAME IN VARCHAR2(163) x

CATEGORY_SET_
IDENTIFIER

IN NUMBER x

CATEGORY_SET_NAME IN VARCHAR2(30) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-179

Setting Up the ODS Load API
ASSIGNMENT_ID
Unique identifier for the row

SR_ASSIGNMENT_ID
Unique identifier for the row from the source application

ASSIGNMENT_SET_ID
Assignment set unique identifier

ASSIGNMENT_TYPE
Assignment set type

SOURCING_RULE_ID
Sourcing rule / Bill of Distribution identifier

SOURCING_RULE_TYPE
Sourcing rule type

INVENTORY_ITEM_ID
Inventory item identifier

PARTNER_ID
Trading partner identifier

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

SR_ASSIGNMENT_
INSTANCE_ID

IN NUMBER x

Parameter Usage Type Required Derived Optional
2-180 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
SHIP_TO_SITE_ID
Ship to site identifier

CUSTOMER_NAME
Customer name

SITE_USE_CODE
Site use code

LOCATION
Location

ORGANIZATION_ID
Organization identifier

CATEGORY_ID
Category identifier

CATEGORY_NAME
Category name

CATEGORY_SET_IDENTIFIER
Category set identifier

CATEGORY_SET_NAME
Category set name

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-181

Setting Up the ODS Load API
CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

SR_ASSIGNMENT_INSTANCE_ID
Source application instance identifier for the source assignment record

MSC_ST_SR_RECEIPT_ORG
The staging table used by the collection program to validate and process data for table
MSC_SR_RECEIPT_ORG.

Parameter Usage Type Required Derived Optional

SR_RECEIPT_ID IN NUMBER x

SR_SR_RECEIPT_ORG IN NUMBER x
2-182 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
SR_RECEIPT_ID
Unique identifier for a row generated at planning server

SR_SR_RECEIPT_ORG
Receiving org from source application instance

SOURCING_RULE_ID
Sourcing rule / Bill of Distribution identifier

SOURCING_RULE_ID IN NUMBER x

RECEIPT_PARTNER_ID IN NUMBER x

RECEIPT_PARTNER_SITE_ID IN NUMBER x

EFFECTIVE_DATE IN DATE x

DISABLE_DATE IN DATE x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

RECEIPT_ORG_INSTANCE_
ID

IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-183

Setting Up the ODS Load API
RECEIPT_PARTNER_ID
Trading partner unique identifier

RECEIPT_PARTNER_SITE_ID
Trading partner site unique identifier

EFFECTIVE_DATE
Date of effectivity

DISABLE_DATE
Disable date

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column
2-184 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

RECEIPT_ORG_INSTANCE_ID
Source application instance identifier associated with the receiving org

MSC_ST_SR_SOURCE_ORG
The staging table used by the collection program to validate and process data for table
MSC_SR_SOURCE_ORG.

Parameter Usage Type Required Derived Optional

SR_SOURCE_ID IN NUMBER x

SR_SR_SOURCE_ID IN NUMBER x

SR_RECEIPT_ID IN NUMBER x

SOURCE_ORGANIZATION_
ID

IN NUMBER x

SOURCE_PARTNER_ID IN NUMBER x

SOURCE_PARTNER_SITE_ID IN NUMBER x

SECONDARY_INVENTORY IN VARCHAR2(10) x

SOURCE_TYPE IN NUMBER x

ALLOCATION_PERCENT IN NUMBER x

RANK IN NUMBER x

VENDOR_NAME IN VARCHAR2(80) x

VENDOR_SITE_CODE IN VARCHAR2(15) x

SHIP_METHOD IN VARCHAR2(30) x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-185

Setting Up the ODS Load API
SR_SOURCE_ID
Unique identifier for a row generated at planning server

SR_SR_SOURCE_ID
Unique identifier for the row generated at the source application

SR_RECEIPT_ID
SR receipt unique identifier

SOURCE_ORGANIZATION_ID
Source organization identifier

SOURCE_PARTNER_ID
Source trading partner identifier

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

SOURCE_ORG_INSTANCE_
ID

IN NUMBER x

Parameter Usage Type Required Derived Optional
2-186 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
SOURCE_PARTNER_SITE_ID
Source trading partner site identifier

SECONDARY_INVENTORY
Secondary inventory code (not currently used)

SOURCE_TYPE
Source type

ALLOCATION_PERCENT
Percent of supply allocated to this source

RANK
Rank of source

VENDOR_NAME
Supplier name

VENDOR_SITE_CODE
Supplier site code

SHIP_METHOD
Ship method

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-187

Setting Up the ODS Load API
CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier associated with the sr source org record

REFRESH_ID
Refresh identifier

SOURCE_ORG_INSTANCE_ID
Source application instance identifier associated with the source organization

MSC_ST_SUB_INVENTORIES
The staging table used by the collection program to validate and process data for table
MSC_SUB_INVENTORIES.

Parameter Usage Type Required Derived Optional

ORGANIZATION_ID IN NUMBER x

SUB_INVENTORY_CODE IN VARCHAR2(10) x

DESCRIPTION IN VARCHAR2(50) x

DISABLE_DATE IN DATE x
2-188 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
ORGANIZATION_ID
Organization identifier

SUB_INVENTORY_CODE
Sub-inventory code

DESCRIPTION
Describe sub-inventory

DISABLE_DATE
Date on which the row is no longer in used

NETTING_TYPE IN NUMBER x

DEMAND_CLASS IN VARCHAR2(34) x

PROJECT_ID IN NUMBER(15) x

TASK_ID IN NUMBER(15) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

INVENTORY_ATP_CODE IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-189

Setting Up the ODS Load API
NETTING_TYPE
Netting type

DEMAND_CLASS
Demand class code

PROJECT_ID
Project identifier

TASK_ID
Task identifier

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column
2-190 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

INVENTORY_ATP_CODE
Inventory ATP code

MSC_ST_SUPPLIER_CAPACITIES
The staging table used by the collection program to validate and process data for table
MSC_SUPPLIER_CAPACITIES.

Parameter Usage Type Required Derived Optional

SUPPLIER_ID IN NUMBER x

SUPPLIER_SITE_ID IN NUMBER x

ORGANIZATION_ID IN NUMBER x

USING_ORGANIZATION_ID IN NUMBER x

INVENTORY_ITEM_ID IN NUMBER x

VENDOR_NAME IN VARCHAR2(80) x

VENDOR_SITE_CODE IN VARCHAR2(15) x

FROM_DATE IN DATE x

TO_DATE IN DATE x

CAPACITY IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-191

Setting Up the ODS Load API
SUPPLIER_ID
Supplier identifier

SUPPLIER_SITE_ID
Supplier site identifier

ORGANIZATION_ID
Organization identifier

USING_ORGANIZATION_ID
Using organization identifier

INVENTORY_ITEM_ID
Inventory item identifier

VENDOR_NAME
Supplier name

VENDOR_SITE_CODE
Supplier site code

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-192 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
FROM_DATE
First date of valid capacity

TO_DATE
Last date of valid capacity

CAPACITY
Capacity

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-193

Setting Up the ODS Load API
PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

MSC_ST_SUPPLIER_FLEX_FENCES
The staging table used by the collection program to validate and process data for table
MSC_SUPPLIER_FLEX_FENCES.

Parameter Usage Type Required Derived Optional

SUPPLIER_ID IN NUMBER x

SUPPLIER_SITE_ID IN NUMBER x

ORGANIZATION_ID IN NUMBER x

USING_ORGANIZATION_ID IN NUMBER x

INVENTORY_ITEM_ID IN NUMBER x

VENDOR_NAME IN VARCHAR2(80) x

VENDOR_SITE_CODE IN VARCHAR2(15) x

FENCE_DAYS IN NUMBER x

TOLERANCE_PERCENTAGE IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x
2-194 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
SUPPLIER_ID
Supplier identifier

SUPPLIER_SITE_ID
Supplier site identifier

ORGANIZATION_ID
Organization identifier

USING_ORGANIZATION_ID
Using organization identifier

INVENTORY_ITEM_ID
Inventory item identifier

VENDOR_NAME
Supplier name

VENDOR_SITE_CODE
Supplier site code

FENCE_DAYS
Number of advance days

TOLERANCE_PERCENTAGE
Capacity tolerance percentage

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-195

Setting Up the ODS Load API
LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier
2-196 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
MSC_ST_SUPPLIES
The staging table used by the collection program to validate and process data for table
MSC_SUPPLIES.

Parameter Usage Type Required Derived Optional

PLAN_ID IN NUMBER x

TRANSACTION_ID IN NUMBER x

INVENTORY_ITEM_ID IN NUMBER x

ORGANIZATION_ID IN NUMBER x

SCHEDULE_DESIGNATOR_
ID

IN NUMBER x

SOURCE_SCHEDULE_NAME IN VARCHAR2(10) x

REVISION IN VARCHAR2(10) x

UNIT_NUMBER IN VARCHAR2(30) x

NEW_SCHEDULE_DATE IN DATE x

OLD_SCHEDULE_DATE IN DATE x

NEW_WIP_START_DATE IN DATE x

OLD_WIP_START_DATE IN DATE x

FIRST_UNIT_COMPLETION_
DATE

IN DATE x

LAST_UNIT_COMPLETION_
DATE

IN DATE x

FIRST_UNIT_START_DATE IN DATE x

LAST_UNIT_START_DATE IN DATE x

DISPOSITION_ID IN NUMBER x

DISPOSITION_STATUS_TYPE IN NUMBER x

ORDER_TYPE IN NUMBER x

SUPPLIER_ID IN NUMBER x

NEW_ORDER_QUANTITY IN NUMBER x

OLD_ORDER_QUANTITY IN NUMBER x

NEW_ORDER_PLACEMENT_
DATE

IN DATE x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-197

Setting Up the ODS Load API
OLD_ORDER_PLACEMENT_
DATE

IN DATE x

RESCHEDULE_DAYS IN NUMBER x

RESCHEDULE_FLAG IN NUMBER x

SCHEDULE_COMPRESS_
DAYS

IN NUMBER x

NEW_PROCESSING_DAYS IN NUMBER x

PURCH_LINE_NUM IN NUMBER x

QUANTITY_IN_PROCESS IN NUMBER x

IMPLEMENTED_QUANTITY IN NUMBER x

FIRM_PLANNED_TYPE IN NUMBER x

FIRM_QUANTITY IN NUMBER x

FIRM_DATE IN DATE x

IMPLEMENT_DEMAND_
CLASS

IN VARCHAR2(34) x

IMPLEMENT_DATE IN DATE x

IMPLEMENT_QUANTITY IN NUMBER x

IMPLEMENT_FIRM IN NUMBER x

IMPLEMENT_WIP_CLASS_
CODE

IN VARCHAR2(10) x

IMPLEMENT_JOB_NAME IN VARCHAR2(240) x

IMPLEMENT_DOCK_DATE IN DATE x

IMPLEMENT_STATUS_CODE IN NUMBER x

IMPLEMENT_UOM_CODE IN VARCHAR2(3) x

IMPLEMENT_LOCATION_ID IN NUMBER x

IMPLEMENT_SOURCE_
ORG_ID

IN NUMBER x

IMPLEMENT_SUPPLIER_ID IN NUMBER x

IMPLEMENT_SUPPLIER_
SITE_ID

IN NUMBER x

Parameter Usage Type Required Derived Optional
2-198 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
IMPLEMENT_AS IN NUMBER x

RELEASE_STATUS IN NUMBER x

LOAD_TYPE IN NUMBER x

PROCESS_SEQ_ID IN NUMBER x

SCO_SUPPLY_FLAG IN NUMBER x

ALTERNATE_BOM_
DESIGNATOR

IN VARCHAR2(10) x

ALTERNATE_ROUTING_
DESIGNATOR

IN VARCHAR2(10) x

OPERATION_SEQ_NUM IN NUMBER x

SOURCE IN NUMBER x

BY_PRODUCT_USING_
ASSY_ID

IN NUMBER x

SOURCE_ORGANIZATION_
ID

IN NUMBER x

SOURCE_SR_INSTANCE_ID IN NUMBER x

SOURCE_SUPPLIER_SITE_ID IN NUMBER x

SOURCE_SUPPLIER_ID IN NUMBER x

SHIP_METHOD IN NUMBER x

WEIGHT_CAPACITY_USED IN NUMBER x

VOLUME_CAPACITY_USED IN NUMBER x

SOURCE_SUPPLY_
SCHEDULE_NAME

IN NUMBER x

NEW_SHIP_DATE IN DATE x

NEW_DOCK_DATE IN DATE x

LINE_ID IN NUMBER x

PROJECT_ID IN NUMBER(15) x

TASK_ID IN NUMBER(15) x

PLANNING_GROUP IN VARCHAR2(30) x

IMPLEMENT_PROJECT_ID IN NUMBER(15) x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-199

Setting Up the ODS Load API
IMPLEMENT_TASK_ID IN NUMBER(15) x

IMPLEMENT_SCHEDULE_
GROUP_ID

IN NUMBER x

IMPLEMENT_BUILD_
SEQUENCE

IN NUMBER x

IMPLEMENT_ALTERNATE_
BOM

IN VARCHAR2(10) x

IMPLEMENT_ALTERNATE_
ROUTING

IN VARCHAR2(10) x

IMPLEMENT_UNIT_
NUMBER

IN VARCHAR2(30) x

IMPLEMENT_LINE_ID IN NUMBER x

RELEASE_ERRORS IN VARCHAR2(1) x

NUMBER1 IN NUMBER x

SOURCE_ITEM_ID IN NUMBER x

ORDER_NUMBER IN VARCHAR2(240) x

SCHEDULE_GROUP_ID IN NUMBER x

SCHEDULE_GROUP_NAME IN VARCHAR2(30) x

BUILD_SEQUENCE IN NUMBER x

WIP_ENTITY_ID IN NUMBER x

WIP_ENTITY_NAME IN VARCHAR2(240) x

WO_LATENESS_COST IN NUMBER x

IMPLEMENT_PROCESSING_
DAYS

IN NUMBER x

DELIVERY_PRICE IN NUMBER x

LATE_SUPPLY_DATE IN DATE x

LATE_SUPPLY_QTY IN NUMBER x

SUBINVENTORY_CODE IN VARCHAR2(10) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

Parameter Usage Type Required Derived Optional
2-200 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

SCHEDULE_DESIGNATOR IN VARCHAR2(10) x

VENDOR_ID IN NUMBER x

VENDOR_SITE_ID IN NUMBER x

SUPPLIER_SITE_ID IN NUMBER x

PURCH_ORDER_ID IN NUMBER x

EXPECTED_SCRAP_QTY IN NUMBER x

QTY_SCRAPPED IN NUMBER x

QTY_COMPLETED IN NUMBER x

LOT_NUMBER IN VARCHAR2(30) x

EXPIRATION_DATE IN DATE x

WIP_STATUS_CODE IN NUMBER x

DAILY_RATE IN NUMBER x

LOCATOR_ID IN NUMBER x

SERIAL_NUMBER IN VARCHAR2(30) x

REFRESH_ID IN NUMBER x

LOCATOR_NAME IN VARCHAR2(204) x

ONHAND_SOURCE_TYPE IN NUMBER x

SR_MTL_SUPPLY_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-201

Setting Up the ODS Load API
PLAN_ID
Plan identifier

TRANSACTION_ID
Transaction unique identifier

INVENTORY_ITEM_ID
Inventory item identifier

ORGANIZATION_ID
Organization identifier

SCHEDULE_DESIGNATOR_ID
Schedule designator identifier

SOURCE_SCHEDULE_NAME
Source schedule name

REVISION
Inventory item revision code

UNIT_NUMBER
Unit number

NEW_SCHEDULE_DATE
End date of the supply (completion date of first unit)

OLD_SCHEDULE_DATE
Old schedule date

DEMAND_CLASS IN VARCHAR2(34)

FROM_ORGANIZATION_ID IN NUMBER

WIP_SUPPLY_TYPE IN NUMBER

PO_LINE_ID IN NUMBER

Parameter Usage Type Required Derived Optional
2-202 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
NEW_WIP_START_DATE
New WIP schedule start date

OLD_WIP_START_DATE
Old WIP schedule start date

FIRST_UNIT_COMPLETION_DATE
First unit completion date for recommended repetitive schedules

LAST_UNIT_COMPLETION_DATE
Last unit completion date for recommended repetitive schedules

FIRST_UNIT_START_DATE
First unit start date for repetitive schedule

LAST_UNIT_START_DATE
Last unit start date for repetitive schedule

DISPOSITION_ID
Identifier which references to source of supply

DISPOSITION_STATUS_TYPE
Disposition type code

ORDER_TYPE
Specifies type of order: planned order, purchase order, etc...

SUPPLIER_ID
Supplier identifier

NEW_ORDER_QUANTITY
Supply quantity

OLD_ORDER_QUANTITY
Old order quantity
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-203

Setting Up the ODS Load API
NEW_ORDER_PLACEMENT_DATE
New order placement date

OLD_ORDER_PLACEMENT_DATE
Old order placement date

RESCHEDULE_DAYS
Different between old and new schedule dates

RESCHEDULE_FLAG
Flag indicating if this row been rescheduled

SCHEDULE_COMPRESS_DAYS
Schedule compress days

NEW_PROCESSING_DAYS
Repetitive schedule processing days

PURCH_LINE_NUM
Purchase order line number (for purchase order)

QUANTITY_IN_PROCESS
Quantity being processed by the WIP/PO interface processes

IMPLEMENTED_QUANTITY
Planned order implemented quantity

FIRM_PLANNED_TYPE
Flag indicating whether the order is firm

FIRM_QUANTITY
Firm quantity

FIRM_DATE
Firm date
2-204 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
IMPLEMENT_DEMAND_CLASS
Implement demand class

IMPLEMENT_DATE
Implement due date

IMPLEMENT_QUANTITY
Planned order implemented quantity

IMPLEMENT_FIRM
Implement firm flag

IMPLEMENT_WIP_CLASS_CODE
Implement WIP class code

IMPLEMENT_JOB_NAME
Implement job name

IMPLEMENT_DOCK_DATE
Implement dock date

IMPLEMENT_STATUS_CODE
Implement status code

IMPLEMENT_UOM_CODE
Implement unit of measure code

IMPLEMENT_LOCATION_ID
Implement location identifier

IMPLEMENT_SOURCE_ORG_ID
Implement source organization identifier

IMPLEMENT_SUPPLIER_ID
Implement supplier identifier
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-205

Setting Up the ODS Load API
IMPLEMENT_SUPPLIER_SITE_ID
Implement supplier site identifier

IMPLEMENT_AS
Implement order type

RELEASE_STATUS
Release status code

LOAD_TYPE
Load program to execute

PROCESS_SEQ_ID
Process sequence identifier

SCO_SUPPLY_FLAG
Flag to indicate if supply was suggested by SCO

ALTERNATE_BOM_DESIGNATOR
Alternate BOM designator

ALTERNATE_ROUTING_DESIGNATOR
Alternate routing designator

OPERATION_SEQ_NUM
Operation sequence number

SOURCE

BY_PRODUCT_USING_ASSY_ID

SOURCE_ORGANIZATION_ID
Source organization identifier

SOURCE_SR_INSTANCE_ID
Source org instance identifier
2-206 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
SOURCE_SUPPLIER_SITE_ID
Source supplier site identifier

SOURCE_SUPPLIER_ID
Source supplier identifier

SHIP_METHOD
Ship method

WEIGHT_CAPACITY_USED
Weight capacity used

VOLUME_CAPACITY_USED
Volume capacity used

SOURCE_SUPPLY_SCHEDULE_NAME
Source supply schedule name

NEW_SHIP_DATE
New ship date

NEW_DOCK_DATE
New suggested dock date

LINE_ID
Manufacturing line identifier

PROJECT_ID
Project identifier

TASK_ID
Task identifier

PLANNING_GROUP
Planning group code
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-207

Setting Up the ODS Load API
IMPLEMENT_PROJECT_ID
Implement project identifier

IMPLEMENT_TASK_ID
Implement task identifier

IMPLEMENT_SCHEDULE_GROUP_ID
Implement schedule group identifier

IMPLEMENT_BUILD_SEQUENCE
Implement build sequence for the planned order to be implemented as a discrete job

IMPLEMENT_ALTERNATE_BOM
Implement alternate BOM designator

IMPLEMENT_ALTERNATE_ROUTING
Implement alternate routing

IMPLEMENT_UNIT_NUMBER
Implement unit number

IMPLEMENT_LINE_ID
Implement line identifier

RELEASE_ERRORS

NUMBER1

SOURCE_ITEM_ID
Source item identifier

ORDER_NUMBER
Order number

SCHEDULE_GROUP_ID
Schedule group identifier
2-208 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
SCHEDULE_GROUP_NAME
Schedule group name

BUILD_SEQUENCE
Build Sequence for the Planned Order

WIP_ENTITY_ID
WIP entity identifier

WIP_ENTITY_NAME
WIP entity name

WO_LATENESS_COST
Work order lateness cost

IMPLEMENT_PROCESSING_DAYS
Implement processing days

DELIVERY_PRICE
Supply unit price for purchasing supply

LATE_SUPPLY_DATE
Supply date for the shadow part of the split supplies

LATE_SUPPLY_QTY
Shadow supply quantity

SUBINVENTORY_CODE
Sub-inventory code

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-209

Setting Up the ODS Load API
LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

SCHEDULE_DESIGNATOR
Schedule designator

VENDOR_ID
Supplier identifier

VENDOR_SITE_ID
Supplier site identifier
2-210 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
SUPPLIER_SITE_ID
Supplier site identifier

PURCH_ORDER_ID
Purchase order identifier

EXPECTED_SCRAP_QTY
Expected scrap qty

QTY_SCRAPPED
Current job scrapped units

QTY_COMPLETED
Current job quantity completed

LOT_NUMBER
Lot number for on-hand quantities

EXPIRATION_DATE
Expiration date

WIP_STATUS_CODE
WIP job status code

DAILY_RATE
Daily rate for recommended repetitive schedules

LOCATOR_ID
Locator identifier

SERIAL_NUMBER
Serial number

REFRESH_ID
Refresh identifier
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-211

Setting Up the ODS Load API
LOCATOR_NAME
Locator name

ONHAND_SOURCE_TYPE
Onhand source type

SR_MTL_SUPPLY_ID
Supply identifier from the source

DEMAND_CLASS
Demand class code

FROM_ORGANIZATION_ID
From organization identifier

WIP_SUPPLY_TYPE
WIP supply type

PO_LINE_ID
Purchase order line identifier

MSC_ST_SYSTEM_ITEMS
The staging table used by the collection program to validate and process data for table
MSC_SYSTEM_ITEMS.

Parameter Usage Type Required Derived Optional

ORGANIZATION_ID IN NUMBER x

SR_ORGANIZATION_ID IN NUMBER x

INVENTORY_ITEM_ID IN NUMBER x

SR_INVENTORY_ITEM_ID IN NUMBER x

ITEM_NAME IN VARCHAR2(40) x

LOTS_EXPIRATION IN NUMBER x

LOT_CONTROL_CODE IN NUMBER x

SHRINKAGE_RATE IN NUMBER x

FIXED_DAYS_SUPPLY IN NUMBER x
2-212 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
FIXED_ORDER_QUANTITY IN NUMBER x

FIXED_LOT_MULTIPLIER IN NUMBER x

MINIMUM_ORDER_
QUANTITY

IN NUMBER x

MAXIMUM_ORDER_
QUANTITY

IN NUMBER x

ROUNDING_CONTROL_
TYPE

IN NUMBER x

PLANNING_TIME_FENCE_
DAYS

IN NUMBER x

DEMAND_TIME_FENCE_
DAYS

IN NUMBER x

RELEASE_TIME_FENCE_
CODE

IN NUMBER x

RELEASE_TIME_FENCE_
DAYS

IN NUMBER x

DESCRIPTION IN VARCHAR2(240) x

IN_SOURCE_PLAN IN NUMBER x

REVISION IN VARCHAR2(3) x

SR_CATEGORY_ID IN NUMBER x

CATEGORY_NAME IN VARCHAR2(200) x

ABC_CLASS_ID IN NUMBER x

ABC_CLASS_NAME IN VARCHAR2(40) x

MRP_PLANNING_CODE IN NUMBER x

FIXED_LEAD_TIME IN NUMBER x

VARIABLE_LEAD_TIME IN NUMBER x

PREPROCESSING_LEAD_
TIME

IN NUMBER x

POSTPROCESSING_LEAD_
TIME

IN NUMBER x

FULL_LEAD_TIME IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-213

Setting Up the ODS Load API
CUMULATIVE_TOTAL_
LEAD_TIME

IN NUMBER x

CUM_MANUFACTURING_
LEAD_TIME

IN NUMBER x

UOM_CODE IN VARCHAR2(3) x

UNIT_WEIGHT IN NUMBER x

UNIT_VOLUME IN NUMBER x

WEIGHT_UOM IN VARCHAR2(3) x

VOLUME_UOM IN VARCHAR2(3) x

PRODUCT_FAMILY_ID IN NUMBER x

ATP_RULE_ID IN NUMBER x

MRP_CALCULATE_ATP_
FLAG

IN NUMBER x

ATP_COMPONENTS_FLAG IN VARCHAR2(1) x

BUILT_IN_WIP_FLAG IN NUMBER x

PURCHASING_ENABLED_
FLAG

IN NUMBER x

PLANNING_MAKE_BUY_
CODE

IN NUMBER x

REPETITIVE_TYPE IN NUMBER x

STANDARD_COST IN NUMBER x

CARRYING_COST IN NUMBER x

ORDER_COST IN NUMBER x

DMD_LATENESS_COST IN NUMBER x

SS_PENALTY_COST IN NUMBER x

SUPPLIER_CAP_OVERUTIL_
COST

IN NUMBER x

LIST_PRICE IN NUMBER x

AVERAGE_DISCOUNT IN NUMBER x

END_ASSEMBLY_PEGGING_
FLAG

IN VARCHAR2(1) x

Parameter Usage Type Required Derived Optional
2-214 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
END_ASSEMBLY_PEGGING IN NUMBER x

FULL_PEGGING IN NUMBER x

ENGINEERING_ITEM_FLAG IN NUMBER x

WIP_SUPPLY_TYPE IN NUMBER x

MRP_SAFETY_STOCK_
CODE

IN NUMBER x

MRP_SAFETY_STOCK_
PERCENT

IN NUMBER x

SAFETY_STOCK_BUCKET_
DAYS

IN NUMBER x

INVENTORY_USE_UP_DATE IN DATE x

BUYER_NAME IN VARCHAR2(240) x

PLANNER_CODE IN VARCHAR2(10) x

PLANNING_EXCEPTION_
SET

IN VARCHAR2(10) x

EXCESS_QUANTITY IN NUMBER x

EXCEPTION_SHORTAGE_
DAYS

IN NUMBER x

EXCEPTION_EXCESS_DAYS IN NUMBER x

EXCEPTION_
OVERPROMISED_DAYS

IN NUMBER x

REPETITIVE_VARIANCE_
DAYS

IN NUMBER x

BASE_ITEM_ID IN NUMBER x

BOM_ITEM_TYPE IN NUMBER x

ATO_FORECAST_CONTROL IN NUMBER x

ORGANIZATION_CODE IN VARCHAR2(7) x

EFFECTIVITY_CONTROL IN NUMBER x

ACCEPTABLE_EARLY_
DELIVERY

IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-215

Setting Up the ODS Load API
INVENTORY_PLANNING_
CODE

IN NUMBER x

INVENTORY_TYPE IN NUMBER x

ACCEPTABLE_RATE_
INCREASE

IN NUMBER x

ACCEPTABLE_RATE_
DECREASE

IN NUMBER x

PRIMARY_SUPPLIER_ID IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

ATP_FLAG IN VARCHAR2(1) x

INVENTORY_ITEM_FLAG IN NUMBER x

REVISION_QTY_CONTROL_
CODE

IN NUMBER x

EXPENSE_ACCOUNT IN NUMBER x

INVENTORY_ASSET_FLAG IN VARCHAR2(1) x

BUYER_ID IN NUMBER(9) x

MATERIAL_COST IN NUMBER x

RESOURCE_COST IN NUMBER x

Parameter Usage Type Required Derived Optional
2-216 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
ORGANIZATION_ID
Organization identifier

SR_ORGANIZATION_ID
Source organization identifier

INVENTORY_ITEM_ID
Inventory item identifier

SR_INVENTORY_ITEM_ID
Source inventory item identifier

ITEM_NAME
Item name

LOTS_EXPIRATION
Lots expiration

LOT_CONTROL_CODE
Flag indicating if lots_expiration is used or not

SHRINKAGE_RATE
Percentage of shrinkage for this item

FIXED_DAYS_SUPPLY
Period of the supply days

FIXED_ORDER_QUANTITY
Fixed order quantity

FIXED_LOT_MULTIPLIER
Fixed lot multiplier

SOURCE_ORG_ID IN NUMBER x

PICK_COMPONENTS_FLAG IN VARCHAR2(1) x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-217

Setting Up the ODS Load API
MINIMUM_ORDER_QUANTITY
Minimum size of an order

MAXIMUM_ORDER_QUANTITY
Maximum size of an order

ROUNDING_CONTROL_TYPE
Flag indicating if rounding of the quantity is allowed

PLANNING_TIME_FENCE_DAYS
Planning time fences days of the item

DEMAND_TIME_FENCE_DAYS
Demand time fence days

RELEASE_TIME_FENCE_CODE
Release time fence code

RELEASE_TIME_FENCE_DAYS
Release time fence days

DESCRIPTION
Item description

IN_SOURCE_PLAN
Flag indicating whether the item is in the plan

REVISION
Item revision code

SR_CATEGORY_ID
Source category identifier

CATEGORY_NAME
Category name
2-218 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
ABC_CLASS_ID
ABC class identifier

ABC_CLASS_NAME
ABC class name

MRP_PLANNING_CODE
MRP planning code

FIXED_LEAD_TIME
Fixed lead time

VARIABLE_LEAD_TIME
Variable lead time

PREPROCESSING_LEAD_TIME
Preprocessing lead time

POSTPROCESSING_LEAD_TIME
Postprocessing lead time

FULL_LEAD_TIME
Full lead time

CUMULATIVE_TOTAL_LEAD_TIME
Cumulative total lead time

CUM_MANUFACTURING_LEAD_TIME
Cumulative manufacturing lead time

UOM_CODE
Unit of measure code

UNIT_WEIGHT
Weight of the item
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-219

Setting Up the ODS Load API
UNIT_VOLUME
Volume of the item

WEIGHT_UOM
Unit of measure for the weight

VOLUME_UOM
Unit of measure for the volume

PRODUCT_FAMILY_ID
Product family identifier

ATP_RULE_ID
ATP rule identifier

MRP_CALCULATE_ATP_FLAG
Flag indication whether to calculate ATP in MRP

ATP_COMPONENTS_FLAG
Flag indicating whether to calculate components ATP

BUILT_IN_WIP_FLAG
Flag to indicate if the item can be built in WIP

PURCHASING_ENABLED_FLAG
Flag to indicate if the item can be purchased

PLANNING_MAKE_BUY_CODE
Plan this item as either a make item or buy item

REPETITIVE_TYPE
Flag indicates if this item build repetitively

STANDARD_COST
Standard cost
2-220 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
CARRYING_COST
Actual carrying cost

ORDER_COST
Order cost

DMD_LATENESS_COST
DMD lateness cost

SS_PENALTY_COST
SS penalty cost

SUPPLIER_CAP_OVERUTIL_COST
Supplier capacity over-utilization cost

LIST_PRICE
Item list price

AVERAGE_DISCOUNT
Item average discount

END_ASSEMBLY_PEGGING_FLAG
Peg to the end assembly on reports

END_ASSEMBLY_PEGGING
Peg to the end assembly on reports (value is populated by the plan)

FULL_PEGGING
Full pegging flag

ENGINEERING_ITEM_FLAG
Engineering item flag

WIP_SUPPLY_TYPE
WIP supply type
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-221

Setting Up the ODS Load API
MRP_SAFETY_STOCK_CODE
Safety stock code

MRP_SAFETY_STOCK_PERCENT
Safety stock percent

SAFETY_STOCK_BUCKET_DAYS
Safety stock bucket days

INVENTORY_USE_UP_DATE
Use up date

BUYER_NAME
Buyer name

PLANNER_CODE
Planner code

PLANNING_EXCEPTION_SET
Exception control set

EXCESS_QUANTITY
Excess quantity

EXCEPTION_SHORTAGE_DAYS
Exception shortage days

EXCEPTION_EXCESS_DAYS
Exception excess days

EXCEPTION_OVERPROMISED_DAYS
Exception overpromised days

REPETITIVE_VARIANCE_DAYS
Repetitive variance days
2-222 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
BASE_ITEM_ID
Inventory base item identifier

BOM_ITEM_TYPE
BOM item type

ATO_FORECAST_CONTROL
ATO forecast control

ORGANIZATION_CODE
Organization code

EFFECTIVITY_CONTROL
Effectivity control code

ACCEPTABLE_EARLY_DELIVERY
Acceptable early delivery

INVENTORY_PLANNING_CODE
Inventory planning code

INVENTORY_TYPE
Inventory type

ACCEPTABLE_RATE_INCREASE
Acceptable rate increase

ACCEPTABLE_RATE_DECREASE
Acceptable rate increase

PRIMARY_SUPPLIER_ID
Primary supplier identifier

DELETED_FLAG
Peg to the end assembly on reports
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-223

Setting Up the ODS Load API
LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

ATP_FLAG
ATP flag
2-224 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
INVENTORY_ITEM_FLAG
Inventory item identifier

REVISION_QTY_CONTROL_CODE
Revision quantity control

EXPENSE_ACCOUNT
Expense account

INVENTORY_ASSET_FLAG
Inventory asset flag

BUYER_ID
Buyer identifier

MATERIAL_COST
Material cost

RESOURCE_COST
Resource cost

SOURCE_ORG_ID
Source organization identifier

PICK_COMPONENTS_FLAG
Flag indicating whether all shippable components should be picked

MSC_ST_TRADING_PARTNERS
The staging table used by the collection program to validate and process data for table
MSC_TRADING_PARTNERS.

Parameter Usage Type Required Derived Optional

PARTNER_ID IN NUMBER x

ORGANIZATION_CODE IN VARCHAR2(7) x

SR_TP_ID IN NUMBER x

DISABLE_DATE IN DATE x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-225

Setting Up the ODS Load API
STATUS IN VARCHAR2(1) x

MASTER_ORGANIZATION IN NUMBER x

PARTNER_TYPE IN NUMBER x

PARTNER_NAME IN VARCHAR2(80) x

PARTNER_NUMBER IN VARCHAR2(154) x

CALENDAR_CODE IN VARCHAR2(14) x

CALENDAR_EXCEPTION_
SET_ID

IN NUMBER x

OPERATING_UNIT IN NUMBER x

MAXIMUM_WEIGHT IN NUMBER x

MAXIMUM_VOLUME IN NUMBER x

WEIGHT_UOM IN VARCHAR2(3) x

VOLUME_UOM IN VARCHAR2(3) x

PROJECT_REFERENCE_
ENABLED

IN NUMBER x

PROJECT_CONTROL_LEVEL IN NUMBER x

DEMAND_LATENESS_COST IN NUMBER x

SUPPLIER_CAP_OVERUTIL_
COST

IN NUMBER x

RESOURCE_CAP_
OVERUTIL_COST

IN NUMBER x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

Parameter Usage Type Required Derived Optional
2-226 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
PARTNER_ID
Unique partner identifier which can be customer id, supplier id, or inventory organization id

ORGANIZATION_CODE
Organization code

SR_TP_ID
Unique partner identifier in the source application instance

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

MODELED_CUSTOMER_ID IN NUMBER x

MODELED_CUSTOMER_
SITE_ID

IN NUMBER x

MODELED_SUPPLIER_ID IN NUMBER x

MODELED_SUPPLIER_SITE_
ID

IN NUMBER x

TRANSPORT_CAP_OVER_
UTIL_COST

IN NUMBER x

USE_PHANTOM_ROUTINGS IN NUMBER x

INHERIT_PHANTOM_OP_
SEQ

IN NUMBER x

DEFAULT_ATP_RULE_ID IN NUMBER x

DEFAULT_DEMAND_CLASS IN VARCHAR2(34) x

MATERIAL_ACCOUNT IN NUMBER x

EXPENSE_ACCOUNT IN NUMBER x

SOURCE_ORG_ID IN NUMBER x

ORGANIZATION_TYPE IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-227

Setting Up the ODS Load API
DISABLE_DATE
Disable date of the trading partner

STATUS
Status of the trading partner

MASTER_ORGANIZATION
Master organization identifier

PARTNER_TYPE
Specify the type of partner: Customer, Supplier, or organization

PARTNER_NAME
Name of the supplier or customer

PARTNER_NUMBER
Number of the supplier or customer

CALENDAR_CODE
Calendar used for this partner. The code includes instance code and calendar code from the
source apps.

CALENDAR_EXCEPTION_SET_ID
Calendar exception set identifier

OPERATING_UNIT
Operating unit

MAXIMUM_WEIGHT
Maximum weight

MAXIMUM_VOLUME
Maximum volume

WEIGHT_UOM
Weight unit of measure
2-228 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
VOLUME_UOM
Volume unit of measure

PROJECT_REFERENCE_ENABLED
Project reference enabled flag

PROJECT_CONTROL_LEVEL
Project control level

DEMAND_LATENESS_COST
Demand lateness cost

SUPPLIER_CAP_OVERUTIL_COST
Supplier over-utilization cost

RESOURCE_CAP_OVERUTIL_COST
Resource over-utilization cost

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-229

Setting Up the ODS Load API
REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

MODELED_CUSTOMER_ID
 Customer identifier which is modeled as inventory organization

MODELED_CUSTOMER_SITE_ID
 Customer site identifier which is modeled as inventory organization

MODELED_SUPPLIER_ID
Supplier identifier which is modeled as inventory organization

MODELED_SUPPLIER_SITE_ID
Supplier site identifier which is modeled as inventory organization

TRANSPORT_CAP_OVER_UTIL_COST
Transportation over-utilization cost

USE_PHANTOM_ROUTINGS
Use phantom routings
2-230 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
INHERIT_PHANTOM_OP_SEQ
Inherit phantom op sequence

DEFAULT_ATP_RULE_ID
Default ATP rule identifier

DEFAULT_DEMAND_CLASS
Default demand class

MATERIAL_ACCOUNT
Material account

EXPENSE_ACCOUNT
Expense account

SOURCE_ORG_ID
Organization to source items from

ORGANIZATION_TYPE
Organization

MSC_ST_TRADING_PARTNER_SITES
The staging table used by the collection program to validate and process data for table
MSC_TRADING_PARTNER_SITES.

Parameter Usage Type Required Derived Optional

PARTNER_ID IN NUMBER x

PARTNER_SITE_ID IN NUMBER x

PARTNER_ADDRESS IN VARCHAR2(1600
)

x

SR_TP_ID IN NUMBER(15) x

SR_TP_SITE_ID IN NUMBER x

TP_SITE_CODE IN VARCHAR2(30) x

LOCATION IN VARCHAR2(40) x

PARTNER_TYPE IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-231

Setting Up the ODS Load API
PARTNER_ID
Trading partner unique identifier

PARTNER_SITE_ID
Trading partner site unique identifier

PARTNER_ADDRESS
Trading partner address

SR_TP_ID
Trading partner unique identifier from source application

SR_TP_SITE_ID
Trading partner site unique identifier from source application

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

LONGITUDE IN NUMBER(10,7) x

LATITUDE IN NUMBER(10,7) x

OPERATING_UNIT_NAME IN VARCHAR2(60) x

Parameter Usage Type Required Derived Optional
2-232 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
TP_SITE_CODE
Site code

LOCATION
Partner location

PARTNER_TYPE
Indicate type of partner: Customer, Supplier, or Organization

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-233

Setting Up the ODS Load API
PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

LONGITUDE
Longitude

LATITUDE
Latitude

OPERATING_UNIT_NAME

MSC_ST_UNITS_OF_MEASURE
The staging table used by the collection program to validate and process data for table
MSC_UNITS_OF_MEASURE.

Parameter Usage Type Required Derived Optional

UNIT_OF_MEASURE IN VARCHAR2(25) x

UOM_CODE IN VARCHAR2(3) x

UOM_CLASS IN VARCHAR2(10) x

BASE_UOM_FLAG IN VARCHAR2(1) x

DISABLE_DATE IN DATE x

DESCRIPTION IN VARCHAR2(50) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x
2-234 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
UNIT_OF_MEASURE
Unit of measure name

UOM_CODE
Abbreviated unit of measure code

UOM_CLASS
Unit of measure class

BASE_UOM_FLAG
Base unit of measure flag

DISABLE_DATE
Date when the unit can no longer be used to define conversions

DESCRIPTION
Unit of measure description

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-235

Setting Up the ODS Load API
CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

MSC_ST_UNIT_NUMBERS
The staging table used by the collection program to validate and process data for table
MSC_UNIT_NUMBERS.

Parameter Usage Type Required Derived Optional

UNIT_NUMBER IN VARCHAR2(30) x

END_ITEM_ID IN NUMBER x

MASTER_ORGANIZATION_
ID

IN NUMBER x
2-236 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
UNIT_NUMBER
Unit number

END_ITEM_ID
End item unique identifier

MASTER_ORGANIZATION_ID
Master organization identifier

COMMENTS
Comments

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

COMMENTS IN VARCHAR2(240) x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-237

Setting Up the ODS Load API
LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

MSC_ST_UOM_CLASS_CONVERSIONS
The staging table used by the collection program to validate and process data for table
MSC_UOM_CLASS_CONVERSIONS.

Parameter Usage Type Required Derived Optional

INVENTORY_ITEM_ID IN NUMBER x

FROM_UNIT_OF_MEASURE IN VARCHAR2(25) x
2-238 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
INVENTORY_ITEM_ID
The inventory item for which the conversion factors between base units of measure

FROM_UNIT_OF_MEASURE
Base unit of measure of the items base class

FROM_UOM_CODE
Base unit of measure short name for the items base class

FROM_UOM_CODE IN VARCHAR2(3) x

FROM_UOM_CLASS IN VARCHAR2(10) x

TO_UNIT_OF_MEASURE IN VARCHAR2(25) x

TO_UOM_CODE IN VARCHAR2(3) x

TO_UOM_CLASS IN VARCHAR2(10) x

CONVERSION_RATE IN NUMBER x

DISABLE_DATE IN DATE x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-239

Setting Up the ODS Load API
FROM_UOM_CLASS
Base class of the item

TO_UNIT_OF_MEASURE
Base unit of the class to which the conversion is defined

TO_UOM_CODE
 Base unit short name of the class to which the conversion is defined

TO_UOM_CLASS
Class to which the conversion is defined

CONVERSION_RATE
Conversion rate from the items class base unit to the “to” class base unit

DISABLE_DATE
Date when the defined inter-class conversion can no longer be used

DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column
2-240 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier

MSC_ST_UOM_CONVERSIONS
The staging table used by the collection program to validate and process data for table
MSC_UOM_CONVERSIONS.

Parameter Usage Type Required Derived Optional

UNIT_OF_MEASURE IN VARCHAR2(25) x

UOM_CODE IN VARCHAR2(3) x

UOM_CLASS IN VARCHAR2(10) x

INVENTORY_ITEM_ID IN NUMBER x

CONVERSION_RATE IN NUMBER x

DEFAULT_CONVERSION_
FLAG

IN VARCHAR2(1) x

DISABLE_DATE IN DATE x

DELETED_FLAG IN NUMBER x

LAST_UPDATE_DATE IN DATE x

LAST_UPDATED_BY IN NUMBER x
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-241

Setting Up the ODS Load API
UNIT_OF_MEASURE
Primary unit of measure long name

UOM_CODE
Unit of measure code

UOM_CLASS
Destination class of conversion

INVENTORY_ITEM_ID
Inventory item identifier

CONVERSION_RATE
Conversion rate from conversion unit to base unit of class

DEFAULT_CONVERSION_FLAG
Indicates whether the conversion factor applies for this item or it is defined as standard
conversion factor

DISABLE_DATE
Date when the conversion is no longer valid to be used in the system (transactions, etc.)

CREATION_DATE IN DATE x

CREATED_BY IN NUMBER x

LAST_UPDATE_LOGIN IN NUMBER x

REQUEST_ID IN NUMBER x

PROGRAM_APPLICATION_
ID

IN NUMBER x

PROGRAM_ID IN NUMBER x

PROGRAM_UPDATE_DATE IN DATE x

SR_INSTANCE_ID IN NUMBER x

REFRESH_ID IN NUMBER x

Parameter Usage Type Required Derived Optional
2-242 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the ODS Load API
DELETED_FLAG
Yes/No flag indicates whether corresponding record in ODS will be deleted

LAST_UPDATE_DATE
Standard Who column

LAST_UPDATED_BY
Standard Who column

CREATION_DATE
Standard Who column

CREATED_BY
Standard Who column

LAST_UPDATE_LOGIN
Standard Who column

REQUEST_ID
Concurrent Who column

PROGRAM_APPLICATION_ID
Concurrent Who column

PROGRAM_ID
Concurrent Who column

PROGRAM_UPDATE_DATE
Concurrent Who column

SR_INSTANCE_ID
Source application instance identifier

REFRESH_ID
Refresh identifier
Oracle ASCP and Oracle Global ATP Server Open Interfaces 2-243

Setting Up the ODS Load API
2-244 Oracle Manufacturing APIs and Open Interfaces Manual

Bills of Material Business Object Int
3

Bills of Material Business Object Interface

Topics covered in this chapter include:

Overview on page 3-2

Bills of Material Entity Diagram on page 3-3

Import Mechanics on page 3-21
erface 3-1

Overview
Overview
The Bills of Material Business Object Interface allows you to import your Bills of Material
information from a legacy or product data management (PDM) system into Oracle Bills of
Material. When you import a bill of material, you can include revision, bill comments,
components, substitute component and reference designator information in a very user
friendly manner without using cryptic ID’s and system specific information. The Bills of
Material Business Object Interface can process all types of bills, including model, option
class, planning, standard and product family. The Bills of Material Object Interface insure
that your imported bills of material contain the same detail as those you enter manually in
the Define Bill of Material form.

This document describes the basic business needs, major features, business object
architecture and components for the Insert, Update and Delete features for the Bills of
Material Business Object Interface.

Features
n Creating, Updating, and Deleting Bills of Material Information. The Bills of Material

Business Object Interface lets you import your bills of material from external system
into Oracle Bills of Material. You can update bills of material information to mimic the
updates in the external system by identifying the bills of material record as an update.
Similarly, when you wish to delete bill of material information, identify that record as a
delete.

n Bills of Material Business Object Data Encapsulation. When you import bills of
material from an external system it is not required to provide system specific
information. All the Bills of material business object interface requires is business
specific data that is required to define a bill.

n Synchronous Processing of information within a Bill. The Bills of Material Business
Object Interface will process the information within a bill synchronously. Following the
business hierarchy, it will process bill header information before components.

n Asynchronous Processing of Bills of Material. You can process multiple bills
simultaneously using the Bills of Material Business object interface.

n Detailed and Translatable Error Messages. If your import fails, the Bills of Material
Business Object Interface will report detailed and translatable error messages. The error
message will identify the severity of the error and scope with which the error affects
other record that you have tried to import in this business object.
3-2 Oracle Manufacturing APIs and Open Interfaces Manual

Bills of Material Entity Diagram
Bills of Material Entity Diagram
The following diagram shows the table structure for the ECO business object along with all
its entities:

Bills of Material Business Object Architecture
The Bills of Material Business Object Architecture is based on the hierarchical definition of
BOM of material in Oracle Bills of Material. To use the Bills of Material Business object
interface you only need to know structure of your BOM. As in a genealogical tree, the
entity at the top is the parent. The entities connected directly below are its children.

B ill H eader

R evised C om ponen ts

S ubs titu te
C om ponen ts

R efe rence
D es igna tors

B O M _B ILL_O F _M A T E R IA LS

B O M _IN V E N T O R Y _C O M P O N E N T S

B O M _S U B S T IT U T E _C O M P O N E N T S B O M _R E F E R E N C E _D E S IG N A T O R S

R evis ions

M T L_ IT E M _R E V ISIO N S
Bills of Material Business Object Interface 3-3

Bills of Material Entity Diagram
Bills of Material Header: The BOM header entity is the topmost entity in the Bills of
Material hierarchy. You can process more than one header record at a time. The header
entity will contain information like the header item name, organization in which the item
exists, alternate designator if bill is an alternate and the revision.

Revisions: Revisions is a direct child of the header. You can define any number of revisions
for a header item. When you create or update a bill of material you can choose to create a
new revision or modify an existing revision. You can also define different versions of a bills
of material within the same revision. To identify a revision you must specify the
organization in which exists, assembly item number and revision.

Components: Components are a direct child of the header entity. They cannot exist
without a parent item. To identify a component, you must specify the identity of the parent by
giving the assembly item number, organization in which it exists, alternate designator if the
component is being added to an alternate bill, effective date of the component, the
component item number, and its operation sequence number.

Substitute Component: The substitute components entity is a direct child of the
components entity. It cannot exist without a component. To identify a substitute component,
you must identify the parent by giving organization in which it exists, the assembly item
number, its effectivity date, alternate if the component belongs on an alternate bill, the
component item number, its operation sequence number, the substitute component number.

Reference Designator: The reference designator entity is a direct child of the components
entity. It cannot exist without a component. To identify a substitute component, you must
identify the parent by giving organization in which it exists, the assembly item number, its
effectivity date, alternate if the component belongs on an alternate bill, the component item
number, its operation sequence number, the substitute component number.

The Business Object as it exists in the database

Each of the entities shown in the Bills of Material entity diagram maps to a corresponding
table in the database. The following are the existing production tables that exist, and the
information they store.

Production Table Description

BOM_BILLS_OF_MATERIAL Stores information about the Bills of Material header
item or the Assembly Item

MTL_ITEM_REVISIONS Stores information about Bill of Materials revisions

BOM_INVENTORY_COMPONENTS Stores information about the un-implemented
single-level BOM components
3-4 Oracle Manufacturing APIs and Open Interfaces Manual

Bills of Material Entity Diagram
In the database, the entity relationships are established through primary and foreign keys.

Business Logic and Business Object Rules Business logic helps model the
business. It includes all constraints and considerations that the business needs to maintain
and process data successfully. This implies that certain rules must be imposed on incoming
data (business objects) to ensure its validity within the context of the business.

Resulting Design Considerations The program must be able to work with both the
user’s view of the business object, a hierarchy of entities, and the database’s view, a group of
inter-related tables. It must impose data entry and data manipulation rules in order to
maintain the integrity of the business object. In other words, it should impart the user just
enough flexibility to manipulate whole or sections of business objects, while never violating
either the business object rules or the database table inter-relationships.

Business Object APIs

Business Object API Framework
The below framework demonstrates how forms and business object interfaces can use the
business object API framework simultaneously.

BOM_REFERENCE_DESIGNATORS Stores information about the un-implemented BOM
component reference designators

BOM_SUBSTITUTE_COMPONENTS Stores information about the un-implemented
substitute components associated with a BOM
component

BOM_EXPORT_TAB Stores exploded bill information for the specified
assembly for all subordinate organizations in a
specified organization hierarchy.
Bills of Material Business Object Interface 3-5

Bills of Material Entity Diagram
See the APIs section for an explanation of each of the framework components.

Business object interface Design

Business Object Traversal Strategy

Requirements The Business object architecture is a hierarchy of entities. It can also be
viewed as an inverted tree, where the Bills of Material Header entity is the parent, and each
of it’s branches consists of child nodes (entities). Each node in the branch in turn is a parent
of the child nodes under it, hence each node has a branch of it’s own. Here is an example:

Form

Form Block <=> Entity

Form Block <=> Entity

Shared
Packages

Controller Packages

Private
API

Value-Id
Conversion

Attribute
Validation

Product
Globals

Error Handler

Public
API

Open
Interface

Validate
Entity

Default
Entity

Entity
Utilities
3-6 Oracle Manufacturing APIs and Open Interfaces Manual

Bills of Material Entity Diagram
Objectives:
The Bills of Material business object is a closely tied object. If a user does not have access
to a assembly item type item, say, then the user does not have access to any entity records
associated with that bill. Hence, certain assembly item characteristics and errors will affect
it’s children, and, sometimes the entire business object records. So, the program must
traverse the tree in an efficient manner in order to achieve the following:

n Cut down on the amount of processing required. Make use of specific business objects
facts that were established while processing other business object records.

n Provide intelligent error handling. Sometimes, an error in a parent record implies that
there is an error in all of its children, so, if the program is unable to create a assembly
item header record, it will not create any components on the Bill. The program must be
able to infer this early, to avoid processing these components and any of its children.

Solution:
A DEPTH-FIRST algorithm will be used. Process the children of a parent node in sequence.
If a child is, in turn, the parent of more records, then process it’s branch by first processing
the child (which is the parent here), and it’s children. This continues until the whole tree has
been traversed. The example above will be processed:

1. First process the Bills of Material header node.

2. Then, traverse all of it’s children. Identify the first branch which is the one belonging to
Component 1. Traverse this branch in the following manner:

1. First process the parent node, Component 1.

2. Process all it’s children, Substitute Component 1.

3. Then process Revised Component 2 and process substitute component 2 and
reference designator 3 … and so on for any other components.

B ills o f M ateria l
H eader

C om ponent 1 C om ponent 2 R evisions

S ubstitu te
C om ponent 1

S ubstitu te
C om ponent 2

R efe rence
D esignato r 3
Bills of Material Business Object Interface 3-7

Bills of Material Entity Diagram
Data Flow for CREATES, UPDATES and DELETES of Business object interface
records into Production tables
3-8 Oracle Manufacturing APIs and Open Interfaces Manual

Bills of Material Entity Diagram
Detailed Business object interface Design

Pass Business
Object to Public API

(1)

Check for
organization

uniformity
(2)

Pick up highest level
unprocessed record

(3)

Convert User-Unique
Index into Unique

Index
(4)

Attr ibute Level
Validation (Create &

Update)
(10)

Default Empty
Attr ibutes (Create)

(12)

Entity Level Default ing
(13)

Perform Entity Level
Validation

(14)

Populate Empty
Column Values

(Update & Delete)
(11)

Existence
Verif ication

(5)

Check bom i tem type
access, and
operatabil ity.

(7)

Value to ID
Convers ion

(8)

Required Fields
Checking

(9)

Set Status Flag to 'S'
(15)

Error Handler

Wri te message to
stack

Get chi ld record from
cursor

(16)

Get sibl ing record
from cursor

(17)

Get parent record's
sibl ing from cursor

(18)

Success
Failure

Success

Success

Failure

Failure

Check l ineage.
(6)

Scope = 'R'
Error only affects the

current record.

Scope = 'C'
Error affects current
record and all child

records.

Scope = 'A'
Error affects all
records in the

business object.

Scope = 'S'
Error affects current

record, all sibling and
child records.
Bills of Material Business Object Interface 3-9

Bills of Material Entity Diagram
This section provides a detailed description of all the Process Flow steps. It justifies the
sequencing of the events by pointing out their relevance in the Process Flow. It also
describes the errors that may occur, and how they are handled by the program.

Private Data Structures
There are some data structures that are private to the program, which drive the import.

OLD Records All entities have OLD records. These are used for UPDATEs and
DELETEs. The production table record that is being updated or deleted is queried up into
the associated OLD record structure. These records have the same columns as the associated
production table records. These OLD records are for reference only and should not be
written to once they have been queried up.

Unexposed Records All entities have unexposed records. The columns are different
from the exposed columns. Users do not have access to the values stored in the unexposed
records. These records are used to store the ID’s or any system specific information that is
derived during the processing of the business object entity.

SYSTEM_INFORMATION Record There are two kinds of information this record will
store:

n System-specific information, such as profile values, program id, etc.

n Information gathered while processing a parent or sibling, which can be used when
processing other records. It reduces the number of database hits in retrieving the same
information for several records, so the program can skip some checks.

Information in this record may be reset per record, entity, or business object based whether it
is useful and valid when processing another record, entity or business object.

Field Type Description

Entity VARCHAR2(30) Entity currently being processing. Reset per entity.

Org_Id NUMBER Organization the business object exists in. Reset per
business object.

User_Id NUMBER Derived from the user environment. Reset per
session.

Login_Id NUMBER Derived from the user environment. Reset per
session.

Prog_Appid NUMBER Derived from the user environment. Reset per
session.
3-10 Oracle Manufacturing APIs and Open Interfaces Manual

Bills of Material Entity Diagram
Overall Import Description

Prog_Id NUMBER Derived from the user environment. Reset per
session.

STD_Item_Access BOOLEAN Does the user have access to Standard Items ? Check
profile ENG: Standard Item Change Order Access.
Reset per business object.

MDL_Item_Access BOOLEAN Does the user have access to Model Items ? Check
profile ENG: Model Item Change Order Access.
Reset per business object.

PLN_Item_Access BOOLEAN Does the user have access to Planning Items ? Check
profile ENG: Planning Item Change Order Access.
Reset per business object.

Bill_Sequence_Id NUMBER Bill_Sequence_Id value generated for new alternate
bills created for assembly items. Reset per assembly
item.

Current_Revision VARCHAR2(3) Holds the most recently implemented revision for a
assembly item. Reset per assembly item.

Step Purpose Description Error

Step 1: Pass
Business Object
to Public API

The program will try to import it Caller must pass one business object at a
time.

There should be only one Header record.

There may be more than one record for
other entities.

-N/A-

Step 2: Check
for
Organization
uniformity

We must ensure that all records in a
business object belong to the same
Organization.

Derive Organization_Id from Organization_
Code

Store Organization_Id value in System_
Information record.

Severe Error
I

Step 3: Save
system
information

Saves system-specific information in
System_Information record since it is
common to the whole business object.
This information is stored in the
database along with the record

Initialize User_Id, Login_Id, Prog_Appid,
Prog_Id in System_Information record.

Pull in values of profiles ENG: Standard
Item Access, ENG: Model Item Access and
ENG: Planning Item Access into STD_
Item_Access, MDL_Item_Access and
PLN_Item_Access respectively.

Quit import

of business
object
Bills of Material Business Object Interface 3-11

Bills of Material Entity Diagram
Step 4: Pick up
highest level
un-processed
record

The import program processes a parent
and all its direct and indirect children,
before moving onto to a sibling. So, the
highest level parent must be chosen.

The highest level record with a {return
status = NULL} is picked.

When there are no more records, the
program exits and transfers control to the
caller.

-N/A-

Step 5: Convert
user-unique
index to unique
index

Unique index helps uniquely identify a
record in the database, and may consist
of more than one column. User-unique
index is a user-friendly equivalent of the
unique index. It serves the following
purposes:

The user need not enter cryptic Ids

If a user unique index could not be
derived for a parent, it’s entire lineage is
error-ed out since members of the
lineage are referencing an invalid parent.

Derive unique index columns from
user-unique index columns.

Severe Error
III

Step 6:
Existence
Verification

The record being updated or deleted in
the database must already exist. But a
record being created must not. Such an
error in a record must cause all children
to error out, since they are referencing
an invalid parent.

For CREATE, the record must not already
exist. For UPDATE and DELETE, the
record must exist.

Query up database record into the
associated OLD record.

Severe Error
III

Step 7: Check
Lineage

We must ensure that the linkage of
records is correct in the business object.
That is, child records must reference
valid parents. A valid parent is one that
exists, and is truly the current record’s
parent in the database.

Perform lineage checks for entity records
that do not belong to the top-most entity in
the hierarchy, based on Transaction_Type
and the following factors:

Immediate parent being referenced exists in
the database, and, for UPDATE and
DELETE, is truly the parent of this record
in the database, OR

If there is no immediate parent record in the
business object, the indirect parent being
referenced exists and is really the parent of
the current record’s parent in the database.

Severe Error
III

Step 8(a):
Check
operability of
parent items
and current
item (if
applicable)

A assembly item and any of it’s
components cannot be operated upon if
the assembly item is implemented or
canceled.

Check if System_Information record has
this information. If not, find it in the
database assembly item record, and set
System_Information flags accordingly.

Fatal Error
III or Fatal
Error II
(depending
on affected
entity)
3-12 Oracle Manufacturing APIs and Open Interfaces Manual

Bills of Material Entity Diagram
Step 8(b):
Check
operability of
parent items
and current
item (if
applicable)

A assembly item and any of it’s
components cannot be operated upon if
the user does not have access to the
assembly item type.

Compare assembly item BOM_Item_Type
against the assembly item access fields in
the System_Information record.

Fatal Error
III or Fatal
Error II
(depending
on affected
entity)

Step 9:
Value-Id
conversions

There are user-friendly value columns
that derive certain Id columns. The
value columns free up the user from
having to enter cryptic Ids, since the Ids
can be derived from them.

Derive Ids from user-friendly values CREATE:
Severe Error
IV.

Other:
Standard
Error

Step 10:
Required Fields
checking

Some fields are required for an
operation to be performed. Without
them, the operation cannot go through.
The user must enter values for these
fields.

Check that the required field columns are
not NULL.

CREATE:
Severe Error
IV.

Other:
Standard
Error

Step 11:
Attribute
validation
(CREATEs and
UPDATEs)

Each of the attributes/fields must be
checked individually for validity.
Examples of these checks are: range
checks, checks against lookups etc.

Check that user-entered attributes are valid.
Check each attribute independently of the
others

CREATE:
Severe Error
IV.

UPDATE:
Standard
Error

Step 12:
Populate NULL
columns

(UPDATEs and
DELETEs)

The user may send in a record with
certain values set to NULL. Values for
all such columns are copied over from
the OLD record. This feature enables
the user to enter minimal information for
the operation.

For all NULL columns found in business
object record, copy over values from OLD
record.

-N/A-

Step 13:
Default values
for NULL
attributes
(CREATEs)

For CREATEs, there is no OLD record.
So the program must default in
individual attribute values,
independently of each other. This feature
enables the user to enter minimal
information for the operation to go
through.

For all NULL columns found in business
object record, try to default in values, either
by retrieving them from the database, or by
having the program assign values.

Severe Error
IV

Step 14: Check
conditionally
required
attributes

Some attributes are required based on
certain external factors such as the
Transaction_Type value.

Perform checks to confirm all conditionally
required attributes are present.

Severe Error
IV
Bills of Material Business Object Interface 3-13

Bills of Material Entity Diagram
Step 15: Entity
level defaulting

Certain column values may depend on
profile options, other columns in the
same table, columns in other tables, etc.
Defaulting for these columns happens
here.

For all NULL columns in record, try to
default in values based on other values.

Set all MISSING column values to NULL.

CREATE:
Severe Error
IV.

UPDATE:
Standard
Error

Step 16: Entity
level validation

This is where the whole record is
checked. The following are checked:

Non-updateable columns (UPDATEs):
Certain columns must not be changed by
the user when updating the record.

Cross-attribute checking: The validity of
attributes may be checked, based on
factors external to it.

Business logic: The record must comply
with business logic rules.

Perform checks against record in the order
specified in the -Purpose- column.

CREATE:
Severe Error
IV.

UPDATE:
Standard
Error

Step 17:
Database writes

Write record to database table. Perform database write:

Insert record for CREATE

Overwrite record for UPDATE and
CANCEL

Remove record for DELETE

-N/A-

Step 18:
Process direct
and indirect
children

The programwill finish processing an
entire branch before moving on to a
sibling branch. A branch within the
business object tree consists of all direct
and indirect children.

Pick up the first un-processed child record
and Go to Step 5. Continue until all direct
children have been processed.

Then pick up the first un-processed indirect
child record and do the same as above.

When no more records are found, Go to
Step 20.

-N/A-

Step 19:
Process siblings

When an entire branch of a record has
been processed, the siblings of the
current record are processed. The sibling
may also contain a branch. So the
processing for the sibling will be exactly
the same as the current record.

Pick up the first un-processed sibling record
and Go to Step 5.

Continue through the loop until all siblings
have been processed.

When no more records are found, Go to
Step 21.

-N/A-
3-14 Oracle Manufacturing APIs and Open Interfaces Manual

Bills of Material Entity Diagram
Columns Exposed to User
The following columns are exposed to the user.

Bills of Material Exposed Columns

Step 20:
Process parent
record’s
siblings

Once all the siblings have been
processed, the program will move up to
the parent (of this entire branch) and
process all of its siblings (which will
contains branches of their own).

Go up to parent and pick up the first
un-processed sibling of the parent. Go to
Step 5.

Continue through the loop until all siblings
have been processed.

When there are no more records, Go to Step
4.

-N/A-

Name Associated Column Name Type Comments

Assembly_Item_Name Assembly_Item_Id VARCHAR2(81) User-Unique Index

Organization_Code Organization_Id VARCHAR2(3) User-Unique Index

Alternate_BOM_Code Alternate_BOM_Designator VARCHAR2(10) User-Unique Index

Common_Assembly_Name Common_Assembly_Item_Id VARCHAR2(81)

Common_Organization_Code Common_Organization_Id VARCHAR2(3)

Assembly_Type Assembly_Type NUMBER

Transaction_Type -N/A- VARCHAR2(30) Required

Return_Status -N/A- VARCHAR2(1)

Attribute Category Attribute Category VARCHAR2(30)

Attribute1 Attribute1 VARCHAR2(150)

Attribute2 Attribute2 VARCHAR2(150)

Attribute3 Attribute3 VARCHAR2(150)

Attribute4 Attribute4 VARCHAR2(150)

Attribute5 Attribute5 VARCHAR2(150)

Attribute6 Attribute6 VARCHAR2(150)

Attribute7 Attribute7 VARCHAR2(150)

Attribute8 Attribute8 VARCHAR2(150)
Bills of Material Business Object Interface 3-15

Bills of Material Entity Diagram
Bills of Material Components Exposed Columns

Attribute9 Attribute9 VARCHAR2(150)

Attribute10 Attribute10 VARCHAR2(150)

Attribute11 Attribute11 VARCHAR2(150)

Attribute12 Attribute12 VARCHAR2(150)

Attribute13 Attribute13 VARCHAR2(150)

Attribute14 Attribute14 VARCHAR2(150)

Attribute15 Attribute15 VARCHAR2(150)

Name Associated Column Name Type Comments

Organization_Code Organization_Id VARCHAR2(3) User-Unique Index

Assembly_Item_Name Assembly_Item_Id VARCHAR2(81) User-Unique Index

Alternate_Bom_Code Alternate_bom_desginator VARCHAR2(10) User-Unique Index

Start_Effective_Date Effectivity_Date DATE User-Unique Index

Operation_Sequence_Number Operation_Seq_Num NUMBER User-Unique Index

Component_Item_Name Component_Item_Id VARCHAR2(81) User-Unique Index

Transaction_Type -N/A- VARCHAR2(30) Required

Disable_Date Disable_Date

New_Effectivity_Date Effectivity_Date DATE

New_Operation_Sequence_
Number

Operation_Seq_Num NUMBER Allows updates to
Operation_Seq_Num

Item_Sequence_Number Item_Num NUMBER

Quantity_Per_Assembly Component_Quantity NUMBER

Planning_Percent Planning_Factor NUMBER

Projected_Yield Component_Yield_Factor NUMBER

Include_In_Cost_Rollup Include_In_Cost_Rollup NUMBER 1/yes 2/no

WIP_Supply_Type WIP_Supply_Type NUMBER

Supply_Subinventory Supply_Subinventory VARCHAR2(10)
3-16 Oracle Manufacturing APIs and Open Interfaces Manual

Bills of Material Entity Diagram
Locator_Name Locator_Id VARCHAR2(81)

SO_Basis SO_Basis NUMBER 1/yes 2/no

Optional Optional NUMBER 1/yes 2/no

Mutually_Exclusive Mutually_Exclusive_Options NUMBER 1/yes 2/no

Check_ATP Check_ATP NUMBER 1/yes 2/no

Minimum_Allowed_Quantity Low_Quantity NUMBER

Maximum_Allowed_Quantity High_Quantity NUMBER

Shipping_Allowed Shipping_Allowed NUMBER 1/yes 2/no

Required_To_Ship Required_To_Ship NUMBER 1/yes 2/no

Required_For_Revenue Required_For_Revenue NUMBER 1/yes 2/no

Include_On_Ship_Docs Include_On_Ship_Docs NUMBER 1/yes 2/no

Comments Component_Remarks VARCHAR2(240)

Quantity_Related Quantity_Related NUMBER 1/yes 2/no

Return_Status -N/A- VARCHAR2(1)

Attribute Category Attribute Category VARCHAR2(30)

Attribute1 Attribute1 VARCHAR2(150)

Attribute2 Attribute2 VARCHAR2(150)

Attribute3 Attribute3 VARCHAR2(150)

Attribute4 Attribute4 VARCHAR2(150)

Attribute5 Attribute5 VARCHAR2(150)

Attribute6 Attribute6 VARCHAR2(150)

Attribute7 Attribute7 VARCHAR2(150)

Attribute8 Attribute8 VARCHAR2(150)

Attribute9 Attribute9 VARCHAR2(150)

Attribute10 Attribute10 VARCHAR2(150)

Attribute11 Attribute11 VARCHAR2(150)

Attribute12 Attribute12 VARCHAR2(150)

Attribute13 Attribute13 VARCHAR2(150)

Attribute14 Attribute14 VARCHAR2(150)
Bills of Material Business Object Interface 3-17

Bills of Material Entity Diagram
Item Revision Exposed Columns

Attribute15 Attribute15 VARCHAR2(150)

From_End_Item_Unit_Number From_End_Item_Unit_Number VARCHAR2(30)

To_End_Item_Unit_Number To_End_Item_Unit_Number VARCHAR2(30)

Name Associated Column Name Type Comments

Organization_Code Organization_id VARCHAR2(3) User-Unique Index

Assembly_Item_Name Inventory_Item_Id VARCHAR2(81) User-Unique Index

Start_Effective_Date Effectivity_Date VARCHAR2(3) User-Unique Index

Revision Revision VARCHAR2(15) User-Unique Index

Transaction_Type -N/A- VARCHAR2(30) Required

Revision_Comment Description VARCHAR2(240)

Return_Status -N/A- VARCHAR2(1)

Attribute Category Attribute Category VARCHAR2(30)

Attribute1 Attribute1 VARCHAR2(150)

Attribute2 Attribute2 VARCHAR2(150)

Attribute3 Attribute3 VARCHAR2(150)

Attribute4 Attribute4 VARCHAR2(150)

Attribute5 Attribute5 VARCHAR2(150)

Attribute6 Attribute6 VARCHAR2(150)

Attribute7 Attribute7 VARCHAR2(150)

Attribute8 Attribute8 VARCHAR2(150)

Attribute9 Attribute9 VARCHAR2(150)

Attribute10 Attribute10 VARCHAR2(150)

Attribute11 Attribute11 VARCHAR2(150)

Attribute12 Attribute12 VARCHAR2(150)

Attribute13 Attribute13 VARCHAR2(150)

Attribute14 Attribute14 VARCHAR2(150)
3-18 Oracle Manufacturing APIs and Open Interfaces Manual

Bills of Material Entity Diagram
Reference Designator Exposed Columns

Attribute15 Attribute15 VARCHAR2(150)

Name Associated Column Name Type Comments

Organization_Code Organization_Code VARCHAR2(3) User-Unique Index

Assembly_Item_Name Assembly_Item_Id VARCHAR2(81) User-Unique Index

Start_Effective_Date Effectivity_Date VARCHAR2(3) User-Unique Index

Operation_Sequence_Number Operation_Seq_Num NUMBER User-Unique Index

Alternate_BOM_Code Alternate_BOM_Designator VARCHAR2(10) User-Unique Index

Component_Item_Name Component_Item_Id VARCHAR2(81) User-Unique Index

Reference_Designator_Name Component_Reference_Designator VARCHAR2(15) User-Unique Index

Transaction_Type -N/A- VARCHAR2(30) Required

Ref_Designator_Comment Ref_Designator_Comment VARCHAR2(240)

Return_Status -N/A- VARCHAR2(1)

Attribute Category Attribute Category VARCHAR2(30)

Attribute1 Attribute1 VARCHAR2(150)

Attribute2 Attribute2 VARCHAR2(150)

Attribute3 Attribute3 VARCHAR2(150)

Attribute4 Attribute4 VARCHAR2(150)

Attribute5 Attribute5 VARCHAR2(150)

Attribute6 Attribute6 VARCHAR2(150)

Attribute7 Attribute7 VARCHAR2(150)

Attribute8 Attribute8 VARCHAR2(150)

Attribute9 Attribute9 VARCHAR2(150)

Attribute10 Attribute10 VARCHAR2(150)

Attribute11 Attribute11 VARCHAR2(150)

Attribute12 Attribute12 VARCHAR2(150)

Attribute13 Attribute13 VARCHAR2(150)
Bills of Material Business Object Interface 3-19

Bills of Material Entity Diagram
Substitute Component Exposed Columns

Attribute14 Attribute14 VARCHAR2(150)

Attribute15 Attribute15 VARCHAR2(150)

Name Name Type Comments

Organization_Code Organization_Id VARCHAR2(3) User-Unique Index

Assembly_Item_Name Assembly_Item_Id VARCHAR2(81) User-Unique Index

Start_Effective_Date Effectivity_Date VARCHAR2(3) User-Unique Index

Operation_Sequence_Number Operation_Seq_Num NUMBER User-Unique Index

Alternate_BOM_Code Alternate_BOM_Designator VARCHAR2(10) User-Unique Index

Component_Item_Name Component_Item_Id VARCHAR2(81) User-Unique Index

Substitute_Component_Name Substitute_Component_Id VARCHAR2(81) User-Unique Index

Transaction_Type -N/A VARCHAR2(30) Required

Substitute_Item_Quantity Substitute_Item_Quantity NUMBER

Return_Status -N/A- VARCHAR2(1)

Attribute Category Attribute Category VARCHAR2(30)

Attribute1 Attribute1 VARCHAR2(150)

Attribute2 Attribute2 VARCHAR2(150)

Attribute3 Attribute3 VARCHAR2(150)

Attribute4 Attribute4 VARCHAR2(150)

Attribute5 Attribute5 VARCHAR2(150)

Attribute6 Attribute6 VARCHAR2(150)

Attribute7 Attribute7 VARCHAR2(150)

Attribute8 Attribute8 VARCHAR2(150)

Attribute9 Attribute9 VARCHAR2(150)

Attribute10 Attribute10 VARCHAR2(150)

Attribute11 Attribute11 VARCHAR2(150)

Attribute12 Attribute12 VARCHAR2(150)
3-20 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
Import Mechanics

Record Structures
This section lists the data structures with the exposed columns. They are declared in the
Public API specification package. The user needs to populate these data structures to import
data.

BOM Header
TYPE Assembly_Item_Rec_Type IS RECORD

(Organization_Code VARCHAR2(3) := FND_API.G_MISS_CHAR

, Assembly_Item_Name VARCHAR2(81) := FND_API.G_MISS_CHAR

, Alternate_Bom_Designator VARCHAR2(10) := FND_API.G_MISS_CHAR

, Change_Description VARCHAR2(240) := FND_API.G_MISS_CHAR

, Commn_Assembly_Item_Name VARCHAR2(81) := FND_API.G_MISS_CHAR

, Common_Organization_Code VARCHAR2(3) := FND_API.G_MISS_CHAR

, Assembly_Type NUMBER := FND_API.G_MISS_NUM

, Attribute_category VARCHAR2(30) := FND_API.G_MISS_CHAR

, Attribute1 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute2 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute3 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute4 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute5 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute6 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute7 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute8 VARCHAR2(150) := FND_API.G_MISS_CHAR

Attribute13 Attribute13 VARCHAR2(150)

Attribute14 Attribute14 VARCHAR2(150)

Attribute15 Attribute15 VARCHAR2(150)
Bills of Material Business Object Interface 3-21

Import Mechanics
, Attribute9 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute10 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute11 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute12 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute13 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute14 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute15 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Return_Status VARCHAR2(1) := FND_API.G_MISS_CHAR

, Transaction_Type VARCHAR2(30) := FND_API.G_MISS_CHAR

, Original_System_Reference VARCHAR2(50) := FND_API.G_MISS_CHAR);

TYPE Assembly_Item_Tbl_Type IS TABLE OF Assembly_Item_Rec_Type

 INDEX BY BINARY_INTEGER;

Revised Components
TYPE Rev_Component_Rec_Type IS RECORD

(Organization_CodeVARCHAR2(3):= FND_API.G_MISS_CHAR

, Assembly_Item_NameVARCHAR2(81):= FND_API.G_MISS_CHAR

, Start_Effective_DateDATE:= FND_API.G_MISS_DATE

, Disable_DateDATE:= FND_API.G_MISS_DATE

, Operation_Sequence_NumberNUMBER := FND_API.G_MISS_NUM

, Component_Item_NameVARCHAR2(81):= FND_API.G_MISS_CHAR

, Alternate_BOM_CodeVARCHAR2(10):= FND_API.G_MISS_CHAR

, New_Effectivity_Date DATE:= FND_API.G_MISS_DATE

, New_Operation_Sequence_Number NUMBER := FND_API.G_MISS_NUM

, Item_Sequence_NumberNUMBER:= FND_API.G_MISS_NUM

, Quantity_Per_AssemblyNUMBER:= FND_API.G_MISS_NUM

, Planning_PercentNUMBER:= FND_API.G_MISS_NUM

, Projected_YieldNUMBER:= FND_API.G_MISS_NUM
3-22 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
, Include_In_Cost_RollupNUMBER := FND_API.G_MISS_NUM

, Wip_Supply_TypeNUMBER := FND_API.G_MISS_NUM

, So_BasisNUMBER := FND_API.G_MISS_NUM

, Optional NUMBER := FND_API.G_MISS_NUM

, Mutually_ExclusiveNUMBER:= FND_API.G_MISS_NUM

, Check_AtpNUMBER := FND_API.G_MISS_NUM

, Shipping_Allowed NUMBER := FND_API.G_MISS_NUM

, Required_To_Ship NUMBER := FND_API.G_MISS_NUM

, Required_For_Revenue NUMBER := FND_API.G_MISS_NUM

, Include_On_Ship_Docs NUMBER := FND_API.G_MISS_NUM

, Quantity_Related NUMBER := FND_API.G_MISS_NUM

, Supply_Subinventory VARCHAR2(10):= FND_API.G_MISS_CHAR

, Location_Name VARCHAR2(81) := FND_API.G_MISS_CHAR

, Minimum_Allowed_Quantity NUMBER:= FND_API.G_MISS_NUM

, Maximum_Allowed_Quantity NUMBER := FND_API.G_MISS_NUM

, component_remarks VARCHAR2(240) := FND_API.G_MISS_CHAR

, Attribute_category VARCHAR2(30) := FND_API.G_MISS_CHAR

, Attribute1 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute2 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute3 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute4 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute5 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute6 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute7 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute8 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute9 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute10 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute11 VARCHAR2(150) := FND_API.G_MISS_CHAR
Bills of Material Business Object Interface 3-23

Import Mechanics
, Attribute12 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute13 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute14 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute15 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Return_Status VARCHAR2(1) := FND_API.G_MISS_CHAR

, Transaction_Type VARCHAR2(30) := FND_API.G_MISS_CHAR

, Original_System_Reference VARCHAR2(50) := FND_API.G_MISS_CHAR

, From_End_Item_Unit_Number VARCHAR2(30) := FND_API.G_MISS_CHAR

, To_End_Item_Unit_Number VARCHAR2(30) := FND_API.G_MISS_CHAR);

TYPE Rev_Component_Tbl_Type IS TABLE OF Rev_Component_Rec_Type

 INDEX BY BINARY_INTEGER;

Reference Designator
TYPE Ref_Designator_Rec_Type IS RECORD

(Organization_CodeVARCHAR2(3):= FND_API.G_MISS_CHAR

, Revised_Item_NameVARCHAR2(81) := FND_API.G_MISS_CHAR

, Start_Effective_DateDATE:= FND_API.G_MISS_DATE

, Operation_Sequence_NumberNUMBER := FND_API.G_MISS_NUM

, Component_Item_NameVARCHAR2(81):= FND_API.G_MISS_CHAR

, Alternate_Bom_CodeVARCHAR2(10):= FND_API.G_MISS_CHAR

, Reference_Designator_NameVARCHAR2(10) := FND_API.G_MISS_CHAR

, Ref_Designator_CommentVARCHAR2(240):= FND_API.G_MISS_CHAR

, Attribute_category VARCHAR2(30) := FND_API.G_MISS_CHAR

, Attribute1 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute2 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute3 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute4 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute5 VARCHAR2(150) := FND_API.G_MISS_CHAR
3-24 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
, Attribute6 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute7 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute8 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute9 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute10 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute11 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute12 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute13 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute14 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute15 VARCHAR2(150) := FND_API.G_MISS_CHAR

, New_Reference_Designator VARCHAR2(10) := FND_API.G_MISS_CHAR

, Return_Status VARCHAR2(1) := FND_API.G_MISS_CHAR

, Transaction_TypeVARCHAR2(30) := FND_API.G_MISS_CHAR

, Original_System_Reference VARCHAR2(50) := FND_API.G_MISS_CHAR);

TYPE Ref_Designator_Tbl_Type IS TABLE OF Ref_Designator_Rec_Type

 INDEX BY BINARY_INTEGER;

Substitute Components
TYPE Sub_Component_Rec_Type IS RECORD

(Organization_CodeVARCHAR2(3) := FND_API.G_MISS_CHAR

, Revised_Item_NameVARCHAR2(81) := FND_API.G_MISS_CHAR

, Start_Effective_DateDATE := FND_API.G_MISS_DATE

, Operation_Sequence_Number NUMBER := FND_API.G_MISS_NUM

, Component_Item_NameVARCHAR2(81) := FND_API.G_MISS_CHAR

, Alternate_BOM_CodeVARCHAR2(10) := FND_API.G_MISS_CHAR

, Substitute_Component_Name VARCHAR2(81) := FND_API.G_MISS_CHAR

, Substitute_Item_Quantity NUMBER := FND_API.G_MISS_NUM

, Attribute_category VARCHAR2(30) := FND_API.G_MISS_CHAR
Bills of Material Business Object Interface 3-25

Import Mechanics
, Attribute1 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute2 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute3 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute4 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute5 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute6 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute7 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute8 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute9 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute10 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute11 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute12 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute13 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute14 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Attribute15 VARCHAR2(150) := FND_API.G_MISS_CHAR

, Return_Status VARCHAR2(1) := FND_API.G_MISS_CHAR

, Transaction_Type VARCHAR2(30) := FND_API.G_MISS_CHAR

, Original_System_Reference VARCHAR2(50) := FND_API.G_MISS_CHAR);

TYPE Sub_Component_Tbl_Type IS TABLE OF Sub_Component_Rec_Type

 INDEX BY BINARY_INTEGER;

Launching the Import

The Three Step Rule:
In order to use the business object APIs effectively, the user must follow the three step rule:

1. Initialize the system information.

2. Call the Public API.

3. Review all relevant information after the Public API has completed.
3-26 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
Step1: Initialize the system information
Each database table that the program writes to requires system information, such as who is
trying to update the current record. The user must provide this information to the import
program by initializing certain variables. The program will retrieve system information from
these variables, during operation. To initialize the variables, the user must call the following
procedure:

FND_GLOBAL.apps_initialize

(user_idIN NUMBER

, resp_idIN NUMBER

, resp_appl_idIN NUMBER

, security_group_idIN NUMBER DEFAULT 0

)

Pointers:

1. This procedure initializes the global security context for each database session.

2. This initialization should be done when the session is established outside of a
normal forms or concurrent program connection.

3. user_id is the FND User Id of the person launching this program.

4. resp id is the FND Responsibility Id the person is using.

5. resp_appl_id is the Application Responsibility Id.

6. security_group_id is the FND Security Group Id.

Step2: Call the Public API
The Public API is the user’s interface to the Import program. The user must call it
programmatically, while sending in one business object at a time. The Public API returns the
processed business object, the business object status, and a count of all associated error and
warning messages.

The procedure to call is Process_Eco, and the following is its specification :

PROCEDURE Process_BOM

(p_api_version_number IN NUMBER

, p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE
Bills of Material Business Object Interface 3-27

Import Mechanics
, x_return_status OUT VARCHAR2

, x_msg_count OUT NUMBER

, x_msg_data OUT VARCHAR2

, p_ECO_rec IN Eco_Rec_Type := G_MISS_ECO_REC

, p_assembly_item_tbl IN Revised_Item_Tbl_Type :=

G_MISS_REVISED_ITEM_TBL

, p_rev_component_tbl IN Rev_Component_Tbl_Type :=

 G_MISS_REV_COMPONENT_TBL

, p_ref_designator_tbl IN Ref_Designator_Tbl_Type :=

 G_MISS_REF_DESIGNATOR_TBL

, p_sub_component_tbl IN Sub_Component_Tbl_Type :=

G_MISS_SUB_COMPONENT_TBL

, x_assembly_item_tbl OUT Revised_Item_Tbl_Type

, x_rev_component_tbl OUT Rev_Component_Tbl_Type

, x_ref_designator_tbl OUT Ref_Designator_Tbl_Type

, x_sub_component_tbl OUT Sub_Component_Tbl_Type

As is obvious from the above specification, all IN parameters begin with p_. All OUT
parameters begin with x_. The following is a description of these parameters :

n p_api_version_number : This parameter is required. It is used by the API to compare the
version numbers of incoming calls to its current version number, and return an
unexpected error if they are incompatible. See section 4.1 of the Business Object
Coding Standards document for a detailed description of this parameter.

n p_init_msg_list : This parameter, if set to TRUE, allows callers to request that the API
do the initialization of the message list on their behalf. On the other hand, the caller may
set this to FALSE (or accept the default value) in order to do the initialization itself by
calling Error_Handler.Initialize.

n p_assembly_item_tbl, p_rev_component_tbl, p_ref_designator_tbl, p_sub_component_
tbl : This is the set of data structures that represents the incoming business object. p_
assembly_item is a record that holds the Bill of Materials header for a BOM. All the
other data structures are PL/SQL tables of records that hold records for each of the other
entities. All these data structures directly correspond to the entities shown in the BOM
entity diagram.
3-28 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
Please note that any of these data structures may be sent in empty (set to NULL) to indicate
that there are no instances of that entity in the business object being sent in.

n x_assembly_item_tbl, x_rev_component_tbl, x_ref_designator_tbl, x_sub_component_
tbl : This is the set of data structures that represents the outgoing business object. These
records essentially constitute the whole business object as it was sent in, except now it
has all the changes that the import program made to it through all the steps in the
Process Flow. These records can be committed, rolled back, or subjected to further
processing by the caller. All these data structures directly correspond to the entities
shown in the BOM entity diagram.

n x_return_status : This is a flag that indicates the state of the whole business object after
the import. If there has been an error in a record, this status will indicate the fact that
there has been an error in the business object. Similarly, if the business object import
has been successful, this flag will carry a status to indicate that. The caller may look up
this flag to choose an appropriate course of action (commit, rollback, or further
processing by the caller). The following is a list of all the possible business object
states:

n x_msg_count : This holds the number of messages in the API message stack after the
import. This parameter returns a 0 when there are no messages to return.

n x_msg_data : This returns a single message when the message count is 1. The purpose
of this parameter is to save the caller the extra effort of retrieving a lone message from
the message list. This parameter returns NULL when there is more than one message.

As mentioned above, the Public API must be called programmatically. The caller here may
be a form, a shell, or some other API which serves to extend the functionality of the import
program. Please see the Sample Shell section in the Appendix for a complete listing of the
shell that was written to test the import program. This shell illustrates the correct usage of
the import program.

Note: A record must have an error status of NULL for it to be processed. If it has any other value, it will not
be picked up for processing. The user must remember to NULL out this field when sending in a record.

CODE MEANING

‘S’ Success

‘E’ Error

‘F’ Fatal Error

‘U’ Unexpected Error
Bills of Material Business Object Interface 3-29

Import Mechanics
Step 3: Review all relevant information after the Public API has completed
The user must look up:

n all error status that the Public API returns, including, the overall business object error
status, as well as the individual record statuses.

n all record attributes to see what changes occurred after applying business logic to these
records.

n all error and warning messages in the API message list.

The user can access the API message list using the following procedures and functions in the
Error_Handler package:

1. Initializing the message list: The following procedure clears the message list and
initializes all associated variables

PROCEDURE Initialize;

2. Go to the start of the list: The following procedure reset the message index to the start
of the list so the user can start reading from the start of the list

PROCEDURE Reset;

3. Retrieving the entire message list: The following procedure will return the entire
message list to the user

PROCEDURE Get_Message_List

 (x_message_list OUT Eng_Eco_Pub.Error_Tbl_Type);

4. Retrieving messages by entity: One implementation of procedure Get_Entity_Message
will return all messages pertaining to a particular entity (p_entity_id), denoted by the
symbols ECO (ECO Header), RI (Revised Item), RC (Revised Component), SC
(Substitute Component), RD (Reference Designator).

PROCEDURE Get_Entity_Message

 (p_entity_id IN VARCHAR2

 , x_message_list OUT Eng_Eco_Pub.Error_Tbl_Type

);

5. Retrieving a specific message: Another implementation of procedure Get_Entity_
Message will return the message pertaining to a particular entity (p_entity_id), at a
specific array index in that entity table. The entity is denoted by the symbols BH (BOM
3-30 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
Header), RC (Revised Component), SC (Substitute Component), RD (Reference
Designator). The entity index (p_entity_index) is the index in the entity array.

PROCEDURE Get_Entity_Message

(p_entity_id IN VARCHAR2

, p_entity_index IN NUMBER

, x_message_text OUT VARCHAR2

);

6. Retrieving the current message: Procedure Get_Message will return the message at
the current message index and will advance the pointer to the next index. If the user
tries to retrieve beyond the size of the message list, then the message index will be reset
to the beginning of the list.

PROCEDURE Get_Message

(x_message_text OUT VARCHAR2

, x_entity_index OUT NUMBER

, x_entity_id OUT VARCHAR2

);

7. Deleting a specific message: Procedure Delete_Message enables the user to delete a
specific message at a specified entity index (p_entity_index) within the PL/SQL table of
a specified entity (p_entity_id). The entity is denoted by the symbols BH (Bills Header),
RC (Revised Component), SC (Substitute Component), RD (Reference Designator).
The entity index (p_entity_index) is the index in the entity array.

PROCEDURE Delete_Message

(p_entity_id IN VARCHAR2

, p_entity_index IN NUMBER

);

8. Deleting all messages for a certain entity: Another implementation of procedure
Delete_Message lets the user delete all messages for a particular entity (p_entity_id).
The entity is denoted by the symbols BH (Bill Header), RC (Revised Component), SC
(Substitute Component), RD (Reference Designator).

PROCEDURE Delete_Message

 (p_entity_id IN VARCHAR2);
Bills of Material Business Object Interface 3-31

Import Mechanics
9. Get a count of all messages: The following functions returns the total number of
messages currently in the message list

FUNCTION Get_Message_Count RETURN NUMBER;

10. Dumping the message list: The following message generates a dump of the message
list using dbms_output

PROCEDURE Dump_Message_List;

Package Interaction

The Public Package - BOM_BO_PUB

This package is like a gatekeeper, letting only one business object through at a time. This
essentially means that all records in the business object must belong to the business object.
The business object here is the ECO, and incoming records together make up an instance of
the business object. So, all records in an ECO business object instance must reference the
same ECO.

Main Procedure: Process_BOM

1. Set business object status to ‘S’.
3-32 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
2. Check that all records in the business object belong to the same Bill, i.e., all records
must have the same Assembly Item Name and Organization_Code combination.

3. Derive Organization_Id from Organization_Code and copy this value into all business
object records.

Unexpected Error Other Message:
BOM_UNEXP_ORG_INVALID: This record was not processed since an unexpected error
while performing a value to id conversion for organization code.

4. Pass business object into Private API if the business object status is still ‘S’. Also pass
the Assembly Item Name and Organization_Id to Private API, to identify this business
object instance.

5. Accept processed business object and return status from Private API after the import,
and pass it back to the calling program.

Description
Cause of
Failure Error Message

If there is an Bill Header in
the business object, check that
all records have the same
Assembly_item_name and
Organization_Code values as
the Header.

If the business object does not
have an Bill Header record,
check that all records have the
same Assembly_Item_Name
and Organization_Code
combination as the first
highest level entity record
picked up.

Any records
have
mismatched
Assembly_Item_
Name and
Organization_
Code values

Severe
Error I

BOM_MUST_BE_IN_SAME_BOM:

All records in a business object must
belong to the same Bill of Material.
That is, they must all have the same
Assembly Name and organization.
Please check your records for this.

Column Description Error Message

Organization_Id Derive using
Organization_Code from
table MTL_
PARAMTERS

Severe Error
I

BOM_ORG_INVALID:
The Organization <org_id> you
entered is invalid.
Bills of Material Business Object Interface 3-33

Import Mechanics
The Private Package - BOM_BO_PVT
This package is called by the Public package. It carries out all the business object checks
listed in the Process Flow, while making any necessary changes to it, and also performs
production tables inserts, updates and deletes. It then passes the business object and the
business object import status back to the Public API.

Main Procedure: Process_BOM

1. Initialize User_Id, Login_Id, Prog_AppId, Prog_Id in System_Information record.

2. Initialize Assembly_Item_Name and Org_Id in System_Information record from values
passed by Public API.

3. If an BOM Header was passed in, call BOM_Header

4. If BOM Revisions records exist, call BOM_Rev

5. Call Rev_Comps to process immediate-parentless components

6. Call Ref_Desgs to process immediate-parentless reference designators

7. Call Sub_Comps to process immediate-parentless substitute components

8. Return import status and processed business object to Public API

The sections below list the steps performed within each of the entity procedures: BOM_
Header, BOM_Rev, Rev_Comps, Ref_Desgs, Sub_Comps. Each of these entity procedures
performs all the entity process flow steps listed by entity under the Entity Process Details
section. They also call other entity procedures to process child records.

The entity procedure descriptions below also point out how the Private API reacts to errors
in entity process flow steps.

Column Description

User_Id From environment

Login_Id From environment

Prog_AppId From environment

Prog_Id From environment
3-34 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
Import Error Handling and Messaging

Error Handling Concepts
Error handling depends on the severity of the error, the scope of the error, and how the error
affects the lineage (child record error states). When an error occurs, records are marked so
that erroneous records are not processed again.

Error Severity Levels Severity levels help distinguish between different types of errors
since the import program behaves differently for each of these errors. The following is a list
of the error severity levels recognized by the import program:

Error States Error states serve two purposes :

n They convey to the user the exact type of error in the record.

n They help the import program identify the records that do not need to be processed.

Error Scope This indicates what the depth of the error is in the business object, that is,
how many other records in the business object hierarchy the current error affects.

CODE MEANING

‘W’ Warning / Debug

‘E’ Standard Error

‘E’ Severe Error

‘F’ Fatal Error

‘U’ Unexpected error

CODE MEANING

‘S’ Success

‘E’ Error

‘F’ Fatal Error

‘U’ Unexpected Error

‘N’ Not Processed

CODE MEANING

‘R’ Error affects current ‘R’ecord
Bills of Material Business Object Interface 3-35

Import Mechanics
Child Error States If an error in a record affects child records, the status of the child may
vary based on the type of error. There are two error states that indicate how the child is
affected:

Error Classes There are three major classes that determine the severity of the problem.

Expected errors: These are errors the program specifically looks for in the business object,
before committing it to the production tables.

1. Standard Error: This error causes only the current record to be error-ed out, but is not
serious enough to affect any other records in the object. The current record status is set
to ‘E’. For example: Bill of Material entry already exists.

2. Severe Error I: This error affects all records. All record statuses are set to ‘E’. This
error is usually a organization uniformity error. All records must have the same
organization code.

3. Severe Error II: This error affects all records that are children of this record’s parent,
when the parent is not in the business object. A characteristic of this record’s parent
caused the error, so all it’s siblings and their children also get a record status of ‘E’.
This error usually occurs when a lineage check fails.

4. Severe Error III: This error not only affects the current record but also its child records
in the business object. The child record statuses are set to ‘E’. Please check your child
records for errors as well as the current record. This error is usually a user-unique to
unique index conversion error.

5. Severe Error IV: This error affects the current record and its child records since the
program cannot properly process the child records. The child record statuses are set to
‘N’. This type of errors occur when there are errors on CREATEs.

6. Fatal Error I: These errors occur when it is not possible to perform any operation on the
ECO. Such errors affect the entire business object. All record statuses are set to ‘F’. The
following are situations that cause this error:

‘S’ Error affects all ‘S’ibling and child records

‘C’ Error affects ‘C’hild records

‘A’ Error affects ‘A’ll records in business object

CODE MEANING

‘E’ Error

‘N’ Not Processed
3-36 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
7. You do not have access to this Item Type

8. Fatal Error II: This error affects all records that are children of this record’s parent,
when the parent is not in the business object. A characteristic of this record’s parent
caused the error, so all it’s siblings and their children also get a record status of ‘F’.
This usually occurs when the user tries to create, update, or delete a component of a
assembly item that the user does not have access to.

9. Fatal Error III: These errors affects the current record and its children, since it is not
possible to perform any operation on these records. The current record and all its child
record statuses are set to ‘F’. The following situations cause this error:

n You do not have access to the component item’s BOM item type

Unexpected errors: All errors that are not expected errors are unexpected errors. These are
errors that the program is not specifically looking for, for example, the user somehow loses
the database connection.

Warnings: These are messages for information only. The purpose of warnings is:

1. to warn the user of problems that may occur when the bill is used by other
manufacturing applications. For example: WIP Supply Type must be Phantom.

2. to inform the user of any side-effects caused by user-entered data.

In order to bring together all the concepts above into a workable algorithm, we must
introduce some terms that used extensively in this section, and the rest of the document.

Child record : All records carry the unique keys for all parents above them. A child record
(of a particular parent) is one that holds the same values for the unique key columns as the
parent record.

Sibling record : A sibling record (of the current record) is one that holds the same parent
unique key column values as the current record. For example, a component record that holds
the same parent assembly item unique key column values as the current component record, is
a sibling of the current component record. Likewise, a reference designator record that holds
the same parent component unique key column values as a substitute component is a sibling
of the substitute component.

Business Object Error Status : This indicates the state of the whole business object after
the import. As soon as the import program encounters an erroneous record, it sets the
business object error status (also called return status) appropriately to convey this to the user.
It is then up to the user to locate the offending record(s) using the individual record error
statuses as indicated below. The caller may also use the business object return status to
choose an appropriate course of action (commit, rollback, or further processing by the
caller).
Bills of Material Business Object Interface 3-37

Import Mechanics
The following is a list of all the possible business object states:

Record Error Status : This is the state of the record after the import (success or error). The
error status is also referred to as return status or error state in this document. Please see the
Error States section above for a list of statuses a record can receive. The error status helps
locate erroneous records in a business object that has error-ed out. The following are
important pointers about the record error status.

n Every record is assigned an error status by the import program. Hence, if a record has a
NULL return status, it means that the import program has not gotten to it yet.

n The user must send in records with {return status = NULL}. The import program will
not look at records that already have an error status value, since it assumes that a record
with an error status value has already been looked at by the program.

The following shows how the error status, error scope, and child statuses relate together to
constitute the different error classes for records :

CODE MEANING

‘S’ Success

‘E’ Error

‘F’ Fatal Error

‘U’ Unexpected Error

Error Status Scope Child Statuses

Warning S: Success R: Record Only -N/A-

Standard Error E: Error R: Record Only -N/A-

Severe Error I E: Error A: All Records E: Error

Severe Error II E: Error S: Current, Sibling and Child
Records

E: Error

Severe Error III E: Error C: Current and Child Record E: Error

Severe Error IV E: Error C: Current and Child Records N: Not Processed

Fatal Error I F: Fatal Error A: All Records

Fatal Error II F: Fatal Error S: Current, Sibling and Child
Records

Fatal Error III F: Fatal Error C: Current and Child Record

Unexpected Error U: Unexpected Error -N/A- N: Not Processed
3-38 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
This flow diagram charts the possible paths an error might take:

Error/Warning

Write Message to
API Message List

Set record and
object status to 'F'

Set record and
object status to 'U'

Set record and
object status to 'E'

Set child record
statuses to 'F'

Set all record
statuses to 'F'

Set sibling and child
record statuses to

'F'

Set remaining
record statuses to

'N'

Set child record
statuses to 'N'

Set child record
statuses to 'E'

Set all record
statuses to 'E"

Set sibling and child
record statuses to

'E'

Warning Fatal Error

Scope = 'C'

Scope = 'A'

Scope = 'S'

Scope = 'C'

Scope = 'C'

Scope = 'A'

Scope = 'S'

Unexpected Error

Standard and
Severe Error

Scope = 'R'
Bills of Material Business Object Interface 3-39

Import Mechanics
The list below shows the sequence of steps that need to be performed when warnings or
errors are encountered:

p_severity_level = Standard Error

Log error messages
Set record status to ‘E’
Set business object status to ‘E’

p_severity_level = Severe Error I

Log error messages
Set record status to ‘E’
Set all business object record
statuses to ‘E’
Set business object status to ‘E’

p_severity_level = Severe Error II

Log error messages
Set record status to ‘E’
Set direct and indirect children
statuses to ‘E’. Also set statuses
of sibling records and all their
children to ‘E’.
Set business object status to ‘E’

p_severity_level = Severe Error III

Log error messages
Set record status to ‘E’
Set direct and indirect children
statuses to ‘E’
Set business object status to ‘E’

p_severity_level = Severe Error IV

Log error messages
Set record status to ‘E’
Set direct and indirect children
statuses to ‘N’
Set business object status to ‘E’

p_severity_level = Fatal Error I

Log error messages
Set record status to ‘F’
Set all business object
records to ‘F’
Set business object
status to ‘F’

p_severity_level = Fatal Error II

Log error messages
Set record status to ‘F’
Set direct and indirect
children statuses to ‘F’.
Also set statuses of
sibling records and all
their children to ‘F’.
Set business object
status to ‘F’

p_severity_level = Fatal Error III

Log error messages
Set record status to ‘F’
Set direct and indirect
children statuses to ‘F’
Set business object
status to ‘F’

p_severity_level = Unexpected Error

Log error messages
Set record status to ‘U’
Set all remaining
un-processed business
object record statuses to
‘N’
Set business object
status to ‘U’
p_severity_level =
Warning
Log warning messages
3-40 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
API Messaging

Error Message Table All messages are logged in the Error Message Table. This is a
PL/SQL table (array) of messages. Please see Accessing Messages in the Launching the
Import section of this document on how to access these messages.

The following is a description of the API Message Table:

Message formats
Expected errors and warnings: The message text contains the translated and token
substituted message text. Please note that the message text may contain tokens, some of
which will identify the entity instances that this message is for. The following tokens
identify the several entities:

Assembly Item : Assembly_Item_Name

Revised Component : Revised_Component_Number

Substitute Component : Substitute_Component_Number

Reference Designator : Reference_Designator_Name

Field Type Description

Business_Object_ID VARCHAR2(3); Error Handling API will be shared by ECO, BOM
and RTG business objects. The default ID is ECO.

Message_Text VARCHAR2(2000) The actual message that the user sees. Please see
below for format information.

Entity_Id VARCHAR2(3) The entity that this message belongs to. This may
hold BO, ECO, REV, RI, RC, RD, or SC.

BO - Business Object

ECO - ECO Header

REV - ECO Revisions

RI - Revised Items

RC - Revised Components

RD - Reference Designators

SC - Substitute Components

BH- Bills of Material Header

BC - Bills of Material Comments

Entity_Index NUMBER The index of the entity array this record belongs to.
Bills of Material Business Object Interface 3-41

Import Mechanics
Assembly Comment: Standard_Remark_Designator

Unexpected errors:

<Package Name> <Procedure/Function Name> <SQL Error Number>

<SQL Error Message Text>

Other message:

An Other Message is a message that is logged for all records that are affected by an error in
a particular record. So if an error in a assembly item record will cause all it’s children to error
out, then the following will be logged:

For the Assembly item itself, the error message describing the problem.

For all records affected by the type of error that occurred in the assembly item, the other
message. This message essentially mentions the following:

1. how the error has affected this record, that is, it has been errored out too, with a severe
or fatal error status, or that it has not been processed.

2. which record caused this record to be affected.

3. what process flow step in the offending record caused this record to be affected.

4. what transaction type in the offending record caused this record to be affected.

Essentially the purpose of the other message is to give the user as much information as
possible about the error that got propagated to this record.

Error Handler
The program performs all it’s error handling and messaging through the Error Handler. It
makes calls to the Error Handler when an error or warning needs to be issued. The following
are the functions of the Error Handler:

n Log the error/warning messages sent to it.

n Set the return status of the record in error.

n Set the return status of other records affected by this error.

The following is the input that the Error Handler expects from the calling program:
3-42 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
The calling program must trap the error and send the above details to the Error
Handler. The Error Handler handles the error and returns the altered object to the
calling program.

Message and Token List Records
The Message and Token List, and the Other Message and Token List are temporary arrays
that the calling program maintains. They hold message-and-token records. The Error
Handler must log these messages into the API Message List. The calling program may want
some of these message record tokens to be translated (such tokens are typically messages
themselves).

For expected errors and warnings, the translated message text is retrieved using the message
name. Then, after any requested token translation is performed, the tokens are substituted
into the translated message text, and the message is logged. For unexpected errors, the

Input Description

Business Object Identifier Because the Error Handler will be shared by many business objects,
the Business Object identifier will help identify the errors,
especially when the same user executes the business object for
BOM and ECO which share some of the entities.

Business Object Entity
Records

Calling program must pass the whole business object as-is.

Message and Token List List of messages generated for error in the current record. See
below for description of this list.

Error Status Status the record in error should be set to.

Error Level Business Object hierarchy level that current record is an instance of.
That is, the entity that the record in error belongs to.

Entity Array Index Index of record in error in its encompassing entity array. Does not
apply to ECO Header.

Error Scope Indicates depth of error, that is, how many other records are affected
by it.

Other Message and Token List Message generated for the other affected records. See below for
description.

Other Status Status the other affected records should be set to.
Bills of Material Business Object Interface 3-43

Import Mechanics
calling program itself sends a message text, so no message retrieval is needed. The message
is logged after token translation and substitution is performed.

Since each message may have more than one token, the Message and Token List has as
many occurrences of the same message as there are tokens in it. The same applies to the
Other Message and Token List, except that this list needs to carry only one message which is
assigned to all other affected records. Since this lone message may have more than one
token, there may be more than one occurrence of the message in the list.

Please note that the API Message List is not public and must be accessed through the
Messaging API’s provided to access the message list.

These are the message list API’s that can be used to perform various operations on the
Message List:

Field Description

Message Name Name of the message used to retrieve the translated message text.
NULL for unexpected errors.

Message Text Message text for unexpected errors.

Token Name Name of the token in the message.

Token Value Value of the token in the message.

Translate Should this token value be translated ?

Message API Name Description

Initialize This API will clear the message list.

Reset This API will reset the message counter to the start of the
message list.

Get_Message_List This message list API will return a copy of the message list. It
will be users responsibility to extract message from this copy.

Get_Entity_Message

(IN p_entity_id,

 IN p_bo_identifier DEFAULT ‘ECO’

OUT x_message_list)

This API will return a list of messages for a requested entity
and business object identifier.
3-44 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
Bill of Material Export API
The Bill of Material Export API provides the ability to export bill of material data for a
particular assembly, in all subordinate organizations in a specified organization hierarchy.
The number of levels to which a BOM is exploded for a particular organization depends on
the Max Bill Levels field setting in the Organization Parameters form. If this value is
greater than or equal to the levels of the bill being exported, then that bill will be exploded to
the lowest level.

You can insert bill of material information returned by the API in the custom table or some
other storage mechanism. This API supports companies having large organziation
structures.

Launching the Export
You need to call the API in the following way:

1. BOMPXINQ.EXPORT_BOM

Get_Entity_Message

(IN p_entity_id,

 IN p_entity_index

 IN p_bo_identifier

 OUT x_message_text)

This API will return message from the index th position for
an entity within a business object

Delete_Message

(IN p_entity_id, IN p_bo_identifier)

This API will delete all messages for a particular entity within
a business object

Delete_Message

(IN p_entity_ic, IN p_bo_identifier,

 IN p_entity_index)

This API will delete message from the index the position for
an entity within a business object

Get_Message

(OUT x_entity_id,

 OUT x_entity_index

OUT x_message_text

OUT x_bo_identifier

This API can be used within a loop to get one message at a
time from the Message List. Every time the user does a get_
message, a message counter will be incremented to the next
message index.
Bills of Material Business Object Interface 3-45

Import Mechanics
INPUT Parameters

OUTPUT Parameters

Export Error Handling and Messaging
The Bill of Material Export API may return the following values for error code:

Profile_id Security Profile Id.

Org_hierarchy_name
The name of the organization hierarchy to which all subordinate
organizations will receive the exported bill of material data.

Assembly_item_id

Must be the inventory_item_id of the bill, and must exist in the mtl_
system_items table for that organization. This item must exist in all
subordinate organizations under the hierarchy origin.

Organization_id
Uniquely identifies a bill whi ch will be exploded with the bill details
in the bom_export_tab, PL/SQL table.

Alternate_bom_
designator

The alternate bill defined for this primary bill. This can be passed as
NULL or ’’ if there are no alternatives defined. It uniquely identifies
a bill which will be exploded with the bill details in the bom_export_
tab, PL/SQL table.

Costs

Pass parameter as 1, if cost details need to be exported. Pass the
appropriate cost_type_id for that item and organization combination.
If the parameter is passed as 2, then pass cost_type_id as having zero
value. If this parameter is passed as NULL or ’’, then it will take the
default value of 2.

Cost_type_id
Pass the appropriate cost_type_id for that item and organization
combination. This works in conjunction with the Costs parameter.

bom_export_tab

PL/SQL table containing the exploded bill of material information.
This information can be inserted into a custom table, written to a text
file, or passed to host arrays (Oracle Call Interface.) Error_Code
should have a value of zero and Err_Msg should be NULL, before
inserting the date into a custom table.

Err_Msg Error Messages.

Error_Code Error Codes.

Error Code Description

0 Successful.
3-46 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
If the error code equals a value other than zero, the contents of the output PL/SQL table
(bom_export_tab) are deleted. Because the output is inserted into a PL/SQL table instead of
a database table, this API can be rerun multiple times without concerns regarding the
committed data. After accessing this API, you should check the value of Error Code and
Error Message before inserting the data from the PL/SQL table to custom tables.

PL/SQL Output Table (BOM_EXPORT_TAB) Columns

TOP_BILL_SEQUENCE_ID

BILL_SEQUENCE_ID

COMMON_BILL_SEQUENCE_ID

ORGANIZATION_ID

COMPONENT_SEQUENCE_ID

COMPONENT_ITEM_ID

COMPONENT_QUANTITY

PLAN_LEVEL

EXTENDED_QUANTITY

SORT_ORDER

GROUP_ID

TOP_ALTERNATE_DESIGNATOR

COMPONENT_YIELD_FACTOR

TOP_ITEM_ID

COMPONENT_CODE

INCLUDE_IN_ROLLUP_FLAG

LOOP_FLAG

PLANNING_FACTOR

9998 Bill exceeds the maximum number of levels defined for that
organization. You need to reduce the number of levels of the bill, or
increase the maximum number of levels allowed for a bill in that
organization.

SQLCODE Oracle database related errors.
Bills of Material Business Object Interface 3-47

Import Mechanics
OPERATION_SEQ_NUM

BOM_ITEM_TYPE

PARENT_BOM_ITEM_TYPE

ASSEMBLY_ITEM_ID

WIP_SUPPLY_TYPE

ITEM_NUM

EFFECTIVITY_DATE

DISABLE_DATE

IMPLEMENTATION_DATE

OPTIONAL

SUPPLY_SUBINVENTORY

SUPPLY_LOCATOR_ID

COMPONENT_REMARKS

CHANGE_NOTICE

OPERATION_LEAD_TIME_PERCENT

MUTUALLY_EXCLUSIVE OPTIONS

CHECK_ATP

REQUIRED_TO_SHIP

REQUIRED_FOR_REVENUE

INCLUDE_ON_SHIP_DOCS

LOW_QUANTITY

HIGH_QUANTITY

SO_BASIS

OPERATION_OFFSET

CURRENT_REVISION

LOCATOR

ATTRIBUTE1

ATTRIBUTE2
3-48 Oracle Manufacturing APIs and Open Interfaces Manual

Import Mechanics
ATTRIBUTE3

ATTRIBUTE4

ATTRIBUTE5

ATTRIBUTE6

ATTRIBUTE7

ATTRIBUTE8

ATTRIBUTE9

ATTRIBUTE10

ATTRIBUTE11

ATTRIBUTE12

ATTRIBUTE13

ATTRIBUTE14

ATTRIBUTE15
Bills of Material Business Object Interface 3-49

Import Mechanics
3-50 Oracle Manufacturing APIs and Open Interfaces Manual

Oracle Cost Management Open Inter
4

Oracle Cost Management Open Interfaces

This chapter contains information about the following Oracle Cost Management
open interfaces and application program interfaces:

■ Periodic Cost Open Interface on page 4-2
faces 4-1

Periodic Cost Open Interface
Periodic Cost Open Interface
The Oracle Periodic Cost Open Interface provides an open interface for you to easily
load periodic item costs from external applications or legacy systems and migrate
them into the Oracle Cost Management Application. This interface should only be
used to bring in periodic costs for the first opened periodic period. It cannot be used
for subsequent periods. Costs in subsequent periods are calculated by the system.

See Also
Oracle Cost Management User’s Guide

Oracle Bill of Materials Technical Reference Manual

Functional Overview
The Periodic Cost Open Interface lets you import Periodic Costing data into the
Oracle Cost Management Application. You can specify just the few required
attributes and let the system do validation of imported data.

Initially, Periodic Costs need to be loaded into the following interface tables with a
value of PROCESS_FLAG = 1:

■ CST_PC_ITEM_COST_INTERFACE is used for the Periodic Cost data and all
Periodic Cost related attributes. This is the header table storing cost information
in the interface.

■ CST_PC_COST_DET_INTERFACE is used for capturing the Periodic Cost
details and related cost detail attributes.

If the Periodic Costs and/or the periodic cost detail rows fail any validation, the
master/detail rows are flagged with errors. The columns ERROR_FLAG, ERROR_
EXPLANATION, and PROCESS_FLAG are populated and the import is failed.

If the import succeeds validation, the destination tables for periodic costs are:

■ CST_PAC_ITEM_COSTS

■ CST_PAC_ITEM_COST_DETAILS

■ CST_PAC_QUANTITY_LAYERS

See Also
Oracle Cost Management User’s Guide

Oracle Bill of Materials Technical Reference Manual
4-2 Oracle Manufacturing APIs and Open Interfaces Manual

Setting Up the Interface
Figure 4–1 Periodic Cost Open Interface.

Setting Up the Interface

Create Indexes for Performance
You should create indexes on the following columns to improve Periodic Cost Open
Interface performance.

■ Unique index on INTERFACE_HEADER_ID on CST_PC_ITEM_COST_
INTERFACE

■ Unique index on INTERFACE_LINE_ID on CST_PC_COST_DET_INTERFACE

■ Non-unique index on INTERFACE_GROUP_ID column in the CST_PC_ITEM_
COST_INTERFACE table

Periodic Cost
Interface Tables

Periodic Cost
 Interface

Legacy Cost
Management
System

Cost Production
Tables
Oracle Cost Management Open Interfaces 4-3

Periodic Cost Open Interface Runtime Options
■ Non-unique index on INTERFACE_HEADER_ID column in the CST_PC_
COST_DET_INTERFACE table

Set Profile Option Defaults
None. All defaults are set up as part of the basic Periodic Costing set up.

Periodic Cost Open Interface Runtime Options
To run the Periodic Cost Open Interface, select Import Periodic Costs from the
Periodic Cost menu.

These are runtime options for the Periodic Cost Open Interface:

Delete Interface Rows After Successful Import
Yes Delete all the rows in the interface table.
No Do not delete the rows in the interface.

Inserting into the Periodic Cost Interface Tables

Periodic Costs Interface Table Description
CST_PC_ITEM_COSTS_INTERFACE is used for the Periodic Cost data and all
Periodic Cost related attributes.

Table 4–1 Periodic Costing Open Costs Interface Table

CST_PC_ITEM_COSTS_INTERFACE

Column Name Type Required Derived Optional
Reserved for
Future Use

INTERFACE_HEADER_ID NUMBER
(sequence)

X

INTERFACE_GROUP_ID NUMBER X

COST_LAYER_ID NUMBER X

PAC_PERIOD_ID NUMBER X

COST_GROUP_ID NUMBER X

COST_GROUP VARCHAR2(10) X

COST_TYPE VARCHAR2(10) X
4-4 Oracle Manufacturing APIs and Open Interfaces Manual

Inserting into the Periodic Cost Interface Tables
PERIOD_NAME VARCHAR2(15) X

INVENTORY_ITEM_ID NUMBER X

QUANTITY_LAYER_ID NUMBER X

BEGIN_LAYER_QUANTITY NUMBER X

ISSUE_QUANTITY NUMBER

BUY_QUANTITY NUMBER

MAKE_QUANTITY NUMBER

ITEM_COST NUMBER X

MARKET_VALUE NUMBER X

JUSTIFICATION VARCHAR2(2000) X

BEGIN_ITEM_COST NUMBER X

ITEM_BUY_COST NUMBER X

ITEM_MAKE_COST NUMBER X

PL_MATERIAL NUMBER X

PL_MATERIAL_OVERHEAD NUMBER X

PL_RESOURCE NUMBER X

PL_OUTSIDE_PROCESSING NUMBER X

PL_OVERHEAD NUMBER X

TL_MATERIAL NUMBER X

TL_MATERIAL_OVERHEAD NUMBER X

TL_RESOURCE NUMBER X

TL_OUTSIDE_PROCESSING NUMBER X

TL_OVERHEAD NUMBER X

PL_ITEM_COST NUMBER X

TL_ITEM_COST NUMBER X

Table 4–1 Periodic Costing Open Costs Interface Table

CST_PC_ITEM_COSTS_INTERFACE

Column Name Type Required Derived Optional
Reserved for
Future Use
Oracle Cost Management Open Interfaces 4-5

Inserting into the Periodic Cost Interface Tables
UNBURDENED_COST NUMBER X

BURDEN_COST NUMBER X

MATERIAL_COST NUMBER X

MATERIAL_OVERHEAD_COST NUMBER X

RESOURCE_COST NUMBER X

OVERHEAD_COST NUMBER X

OUTSIDE_PROCESSING_COST NUMBER X

PROCESS_FLAG NUMBER X

REFERENCE VARCHAR2(240)

ERROR_FLAG NUMBER

ERROR_EXPLANATION VARCHAR2(2000)

LAST_UPDATE_DATE DATE X

LAST_UPDATED_BY NUMBER X

CREATION_DATE DATE X

CREATED_BY NUMBER X

LAST_UPDATE_LOGIN NUMBER

REQUEST_ID NUMBER

PROGRAM_APPLICATION_ID NUMBER

PROGRAM_APPLICATION_
DATE

DATE

LOCK_FLAG NUMBER X

Table 4–1 Periodic Costing Open Costs Interface Table

CST_PC_ITEM_COSTS_INTERFACE

Column Name Type Required Derived Optional
Reserved for
Future Use
4-6 Oracle Manufacturing APIs and Open Interfaces Manual

Inserting into the Periodic Cost Interface Tables
Periodic Cost Detail Interface Table Description
CST_PC_COST_DET_INTERFACE is used for importing the Periodic Cost details
and related cost detail attributes.

Table 4–2 Detail Table Periodic Cost Open Interface

CST_PC_COST_DET_INTERFACE

Column Name Type Required Derived Optional
Reserved for
Future Use

INTERFACE_LINE_ID NUMBER
(sequence)

X

INTERFACE_HEADER_ID NUMBER (FK) X

COST_LAYER_ID NUMBER

COST_ELEMENT_ID NUMBER X

LEVEL_TYPE NUMBER X

ITEM_COST NUMBER X

ITEM_BUY_COST NUMBER X

ITEM_MAKE_COST NUMBER X

PROCESS_FLAG NUMBER X

REFERENCE VARCHAR2(240) X

ERROR_FLAG NUMBER

ERROR_EXPLANATION VARCHAR2(2000)

LAST_UPDATE_DATE DATE X

LAST_UPDATED_BY NUMBER X

CREATION_DATE DATE X

CREATED_BY NUMBER X

LAST_UPDATE_LOGIN NUMBER

REQUEST_ID NUMBER

PROGRAM_APPLICATION_ID NUMBER

PROGRAM_APPLICATION_
DATE

DATE
Oracle Cost Management Open Interfaces 4-7

Inserting into the Periodic Cost Interface Tables

Required Data
The Periodic Cost Interface uses the PROCESS_FLAG to indicate whether
processing of the row succeeded or errorred. When the data is loaded, the
PROCESS_FLAG must be set to a value of 1 (Unprocessed). This will allow the
import program to process the row for validation and import.

The next table shows the required values for each interface table.

Note: For information about columns not discussed in the
Interface Manual, see Table and View Definitions, Oracle Bills of
Material Technical Reference Manual.

Table 4–3

Table Columns
Required
Value

CST_PC_ITEM_
COSTS_INTERFACE

INTERFACE_HEADER_ID not null

PERIOD_NAME not null

COST_GROUP not null

COST_TYPE not null

INVENTORY_ITEM_ID not null

BEGIN_LAYER_QUANTITY not null

PROCESS_FLAG 1

Standard WHO column

LAST_UPDATE_DATE

LAST_UPDATED_BY

CREATION_DATE

CREATED_BY

CST_PC_COST_DET_
INTERFACE

INTERFACE_LINE_ID not null

INTERFACE_HEADER_ID not null

COST_ELEMENT_ID not null

ITEM_COST not null
4-8 Oracle Manufacturing APIs and Open Interfaces Manual

Validation
Derived Data
See Table 4–1 and Table 4–2 for a list of desired columns during import. Issues
arising during derivation of values for these columns are flagged as error and the
row fails import.

Validation
The Open Interface program processes rows that have a PROCESS_FLAG = 1
(Unprocessed). Default values for derived columns are first updated. Then, the
value of the PROCESS_FLAG is updated to 2 (Running) to continue validation of
data.

The Periodic Cost Interface then validates each row. If a row in an interface table
fails validation, the program sets the PROCESS_FLAG to 3 (Error) and sets the
appropriate ERROR_FLAG and ERROR_EXPLANATION.

For all successfully validated rows, the interface inserts the rows into the
appropriate Oracle Cost Management Periodic Cost tables.

Once the validated row is successfully inserted into the Oracle Cost Management
Periodic Cost table, the PROCESS_FLAG is set to 7 (Complete). The rows in the
interface that were successfully imported will be deleted if the runtime option
’Delete all the rows in the interface table’ = Yes is set.

If the rows in the interface are not deleted, users can manually delete them when
necessary.

The PROCESS_FLAG column has one of 4 possible values:

LEVEL_TYPE not null

PROCESS_FLAG not null

Standard WHO column not null

LAST_UPDATE_DATE not null

LAST_UPDATED_BY not null

CREATION_DATE not null

CREATED_BY not null

Table 4–3

Table Columns
Required
Value
Oracle Cost Management Open Interfaces 4-9

Validation
■ 1 - Unprocessed

■ 2 - Running

■ 3 - Error

■ 7 - Complete

Validation and Error Handling
This table lists all the required Periodic Costing Open Cost Interface validations and
the error conditions that result when these validations fail. When validations fail the
PROCESS_FLAG is set to 3 denoting an error condition.

The Error Flag and Error Explanation detail the nature of the error.

Tables abbreviations are:

– CPCDI - CST_PC_COST_DET_INTERFACE

– CPICI - CST_PC_ITEM_COST_INTERFACE

Error
Flag Validation Rule Error Explanation Table

1 No Corresponding Header No Corresponding Header CPCDI

2 COST_ELEMENT_ID must be
one of following:
1 - Material,
2 - Material Overhead
3 - Resource
4 - Outside Processing
5 - Overhead

Invalid Cost Element CPCDI

3 LEVEL_TYPE must be either:
1 - This (current) Level
2 - Previous Level

Invalid Level Type CPCDI

4 All values in the column
COST_GROUP_ID must exist
in the CST_COST_GROUP_
ASSIGNMENTS table.

Invalid Cost Group or No
Organizations in Cost Group

CPICI

5 All values in the COST_TYPE_
ID column must exist in the
CST_LE_COST_TYPES table.

Invalid Cost Type or Cost Type
not in Legal Entity

CPICI
4-10 Oracle Manufacturing APIs and Open Interfaces Manual

Validation
6 All values in the column PAC_
PERIOD_ID must exist in the
CST_PAC_PERIODS table.

The period for which the data
is imported (into the CST_
PAC_ITEM_COSTS, CST_
PAC_ITEM_COST_DETAILS
and CST_PAC_QUANTITY_
LAYERS tables) should have a
status of “OPEN” and the first
defined period in the CST_
PAC_PERIODS table.

Period Name Invalid or period
is not the first opened for the
legal entity and cost type

CPICI

7 Line Record Missing Line Record Missing CPICI

8 All values in the column
INVENTORY_ITEM_ID must
exist in the MTL_SYSTEM_
ITEMS table.

All items should belong to
at least one of the
organizations in the MTL_
SYSTEM_ITEMS, CST_
COST_GROUPS and CST_
COST_ GROUP_
ASSIGNMENTS tables.

Invalid Inventory Item or item
not in Periodic Costing
Organization

CPICI

9 Records brought into the
CST_PAC_ITEM_COSTS,
CST_PAC_ITEM_COST_
DETAILS and CST_PAC_
QUANTITY_LAYERS
tables must not pre-exist in
the relevant tables at the
time of import

Item Cost Exists CPICI

10 Header Failed as Line Failed Header Failed as Line Failed CPICI

11 Line Failed as Header failed Line Failed as Header failed CPCDI

12 MAKE_QUANTITY, BUY_
QUANTITY, ISSUE_
QUANTITY must all be 0

QOH Value Error CPCDI

Error
Flag Validation Rule Error Explanation Table
Oracle Cost Management Open Interfaces 4-11

Reviewing Failed Rows
Importing Additional Periodic Cost Details
Imported cost data for derived columns will overwrite any user specified values.

Reviewing Failed Rows

You can review and report rows in any of the interface tables using SQL*Plus or any
custom reports you develop. Since all rows in the interface tables have a value for
PROCESS_FLAG, you can identify records that have not been successfully imported
into Oracle Cost Management. If you want to reprocess any row, put the flag back to
1, and clear all errors (columns ERROR_FLAG and ERROR_EXPLANATION).

Log File Messages
anirban can we say anything about the messages.

13 All quantity and cost
columns should have a
value of >= 0

Cost Value Error CPICI

CPCDI

14 If MARKET_VALUE is
supplied, it should be less
than the computed ITEM_
COST value in CPICI

Market Value Error CPICI

15 If MARKET_VALUE is
supplied, then
JUSTIFICATION should be
NOT NULL

Justification cannot be NULL CPICI

99 Other Other CPICI

CPCDI

Message Code Message Text Type

CST_PAC_OCI_START_
VALIDATION

Starting to validate Periodic Open
Cost Interface table information

Action

CST_PAC_OCI_ERR_CGLE Error: Could not fetch cost group
and/or legal entity identifiers

Error

Error
Flag Validation Rule Error Explanation Table
4-12 Oracle Manufacturing APIs and Open Interfaces Manual

Reviewing Failed Rows
CST_PAC_OCI_SUCC_CGLE Success: Retrieved cost group and
legal entity identifiers

Success

CST_PAC_OCI_ERR_CTCM Error: Could not fetch cost type
and/or cost method identifiers

Error

CST_PAC_OCI_SUCC_CTCM Success: Retrieved cost type
and/or cost method identifiers

Success

CST_PAC_OCI_ERR_PID Error: Could not fetch proper
Periodic Costing Period identifier

Error

CST_PAC_OCI_SUCC_PID Success: Retrieved Periodic
Costing Period identifier

Success

CST_PAC_OCI_ERR_ITEMID Error: Could not validate
inventory item identifier

Error

CST_PAC_OCI_SUCC_
ITEMID

Success: Validated inventory item
identifier

Success

CST_PAC_OCI_ERR_COST Error: Item cost exists in the
System

Error

CST_PAC_OCI_SUCC_COST Success: Item cost does not exist
in the System

Success

CST_PAC_OCI_ERR_LAYER_
EXISTS

Error: Layer Validation Error Error

CST_PAC_OCI_ERR_LAYER_
GEN

Error: Layer Creation Error Error

CST_PAC_OCI_SUCC_
LAYER_GEN

Success: Layer Creation
Successful

Success

CST_PAC_OCI_UPDATE_
NULL

Action: Updating all derived
columns to NULL in the Interface
Tables

Action

CST_PAC_OCI_CALCULATE Action: Computing and Updating
derived columns in the Interface
Tables

Action

CST_PAC_OCI_SUCC_
CALCULATE

Success: Computation of all
derived columns compete

Success

CST_PAC_OCI_ERR_
MARKET

Error: Market Value cannot be
more than computed Item Cost
Value

Error

Message Code Message Text Type
Oracle Cost Management Open Interfaces 4-13

CST_PAC_OCI_ERR_
JUSTIFICATION

Error: Justification cannot be
NULL if Market Value is supplied

Error

CST_PAC_OCI_START_
INSERT

Action: Starting to insert rows
into Oracle Cost Management
tables

Action

CST_PAC_OCI_SUCC_CPIC Success: Inserted into CST_PAC_
ITEM_COSTS table

Success

CST_PAC_OCI_SUCC_CPICD Success: Inserted into CST_PAC_
ITEM_COST_DETAILS table

Success

CST_PAC_OCI_SUCC_CPQL Success: Inserted into CST_PAC_
QUANTITY_LAYERS table

Success

CST_PAC_OCI_START_
PURGE

Action: Starting to purge
processed rows from interface
tables

Action

CST_PAC_OCI_SUCC_
PURGE

Success: Purge Process Complete Success

CST_PAC_OCI_CHECK_LOG NOTE: Please check log for error
transactions

Note

Message Code Message Text Type
4-14 Oracle Manufacturing APIs and Open Interfaces Manual

Engineering Change Order Business Object Inte
5

Engineering Change Order Business Object

Interface

The Engineering Change Order (ECO) Business Object Interface allows you to import your
change order information from a legacy or product data management (PDM) system into
Oracle Engineering. You can create, update and delete ECO information. With the ECO
Business Object Interface, you can automatically import data from your PDM or Legacy
system without inserting cryptic Ids or system specific information. The ECO Business
Object Interface will import the information within an ECO synchronously while still
enabling you to import more than one ECO simultaneously.

This document describes the basic business needs, major features, business object
architecture and components for the Insert, Update and Delete features for the ECO Business
Object Interface. Topics included are:

n Features on page 5-2

n Business Object APIs on page 5-6

n Entity Process Flows on page 5-13
rface 5-1

Features
Features
n The ECO Business Object Interface allows users to create new ECOs in the Oracle

Engineering tables. The Open Interface program validates all data before importing it
into the production tables. It allows users to update and delete existing ECO data.

n You can easily import “create”, “update”, and “delete” data. Instead of forcing you to
enter cryptic ID and system specific values, the ECO Business Object Interface allows
you to enter only the necessary business information that defines your ECO. The Open
Interface program figures out all the remaining information.

n You should be able to create, update, and delete ECO information synchronously. The
ECO Business Object Interface should process parent information before its processes
child information.

Engineering C hange
O rder

EC O R evisions Attachm ents R evised Item s

R evised C om ponents R eschedule H istory

Substitu te
C om ponents

R eference
D es ignators

EN G _EN G IN EE R IN G _C H AN G E S

EN G _C H AN G E_O R D ER _R EVISIO N S EN G _R EV ISED _ITEM S

BO M _IN VE NTO R Y_C O M PO N EN TS

EN G _C U R R EN T _S C H ED U LED _D ATES

BO M _SU BST ITU TE _C O M P O N EN TS BO M _R EFER E N CE _D ESIG N ATO R S
5-2 Oracle Manufacturing APIs and Open Interfaces Manual

Features
n You should be able to process ECOs asynchronously. The ECO Business Object
Interface should allows you to import different ECOs simultaneously.

ECO Business Object
The ECO business object encompasses several entities to fully model the flow of
information through it. Each new ECO that is setup and processed by the user can be
thought of as a business object instance.

ECO Entity Diagram
The following diagram is a representation of the ECO business object. It shows all the
entities that make up the business object.

Following from the above definition of a business object, and the ECO entity diagram, each
ECO business object instance contains the following specific information about its entities :

n ECO header : This entity represents general ECO attributes, such as, the ECO name,
the change order type, its requestor, the organization responsible for it, etc.

n ECO Revisions : This provides additional information about the ECO. In particular, it
holds revision information for an ECO. The user may wish to keep this entity up-to-date
if he/she is particular about implementing a revision control system.

n Other entities : The other entities represent detailed information about the ECO.

These entities are governed by business rules that dictate the relationships between the
entities, and consequently, the processing algorithms used.

The Business Object in the Database
Each of the entities shown in the ECO entity diagram maps to a corresponding table in the
database. The following are the existing production tables that exist, and the information
they store.

Table 5–1

Production Table Description

ENG_ENGINEERING_CHANGES Stores information about ECO headers

ENG_CHANGE_ORDER_REVISIONS Stores information about revisions of an ECO

ENG_REVISED_ITEMS Stores information about revised items on an
ECO

BOM_INVENTORY_COMPONENTS Stores information about the un-implemented
single-level BOM components
Engineering Change Order Business Object Interface 5-3

Features
Business Object Interface Design
The Business object architecture is a hierarchy of entities. It can also be viewed as a tree
with branches, where the ECO Header entity is the parent, and each of it’s branches consists
of child nodes (entities). Each node in the branch in turn is a parent of the child nodes under
it, hence each node has a branch of it’s own. Here is an example:

ECO Business Object Architecture
The ECO Business Object Architecture is based on the business definition of an engineering
change order. To import ECO information into Oracle Engineering, you only need to know

BOM_REFERENCE_DESIGNATORS Stores information about the un-implemented
BOM component reference designators

BOM_SUBSTITUTE_COMPONENTS Stores information about the un-implemented
substitute components associated with a BOM
component

Table 5–1

Production Table Description

E C O H eade r

R evised Item 1 R evised Item 2 E C O R evis ion

R evised
C om ponent 1

R evised
C om ponent 2

R evised
C om ponent 3

S u bstitu te
C om ponent 1

S u bstitu te
C om ponent 2

R efe rence
D esigna to r 3

R efe rence
D esigna to r 4
5-4 Oracle Manufacturing APIs and Open Interfaces Manual

Features
the basic ECO hierarchical tree. As in a genealogical tree, the entity at the top is the parent.
The entities connected directly below are its children.

Engineering Change Order: The ECO header entity is the parent and defines the basic
business object. There can only be one ECO header record per business object. This entity
contains information about the status, approval status, reason, priority and if it is linked to a
workflow. To identify an engineering change order, you need only to specify the change
notice (ECO name) and the organization in which it exists.

ECO Revisions: The revisions entity is a direct child of the ECO header. It cannot exist
without an ECO. This entity stores the eco revision information. To identify an ECO
Revision, you must specify the change notice, the organization in which it exists, and the
name of the revision.

Revised Items: The revised items entity is also a direct child of the ECO header. It cannot
exist without an ECO. You can enter information into this entity if you wish to revised an
item or its bill. To identify a revised item, you must specify the change notice, the
organization in which it exists, the revised item number, its effectivity date, and if there is a
new item revision.

Revised Components: The revised components entity is a direct child of the revised items
entity. It cannot exist without a revised item. You can enter information into this entity if
you wish to add, change, or disable a component on your revised item’s bill. To identify a
revised component, you must specify the change notice, the organization which it exists, the
revised item number, its effectivity date, if there is a new revised item revision, if you wish
to revised the main bill or an alternate, the component item number, and its operation
sequence number.

Substitute Component: The substitute components entity is a direct child of the revised
components entity. It cannot exists without a revised component. You can enter information
into this entity if you wish to add or disable a substitute component on your revised
component. To identify a substitute component, you must specify the change notice, the
organization in which it exists, the revised item number, its effectivity date, if there is a new
revised item revision, if you wish to revised the main bill or an alternate, the component
item number, its operation sequence number, the substitute component number, and whether
you wish to add or disable your substitute component.

Reference Designator: The reference designator entity is a direct child of the revised
components entity. It cannot exist without a revised component. You can enter information
into this entity if you wish to add or disable a reference designator on your revised
component. To identify a reference designator, you must specify the change notice, the
organization in which it exists, your revised item number, its effectivity date, if there is a
new revised item revision, if you wish to revise the main bill or an alternate, the component
Engineering Change Order Business Object Interface 5-5

Business Object APIs
item number, its operation sequence number, your reference designator, and whether you
wish to add or disable your reference designator.

To import data into the ECO Business Object Interface, you simply need to categorize your
data into ECO Business Object and identify which records you wish to import. No elaborate
Ids or system specific information is required. The information you need to pass to the ECO
Business Object Interface is the same information you would need to convey to any other
person about your ECO.

Business Object APIs
The Business Object API framework is designed to provide flexible usage, but with a
unified programming style. Business Object APIs can be called from Oracle Forms,
Business object interfaces, Web-based applications, PL/SQL programs, and almost all calls
that support PL/SQL calls to Oracle RDBMS. They perform a complete transaction on a

Form

Form Block <=> Entity

Form Block <=> Entity

Shared
Packages

Controller Packages

Private
API

Value-Id
Conversion

Attribute
Validation

Product
Globals

Error Handler

Public
API

Open
Interface

Validate
Entity

Default
Entity

Entity
Utilities
5-6 Oracle Manufacturing APIs and Open Interfaces Manual

Business Object APIs
business object, and always leave the database in a consistent state, regardless of the
outcome of the transaction.

Pass Bus iness
O b ject to Pub lic A PI

(1)

C heck for change
no tice /organization

un iform ity
(2)

P ick up h ighest leve l
unprocessed record

(4)

C onvert U ser-U nique
Index in to U nique

Index
(5)

A ttribu te Level
Va lida tion (C rea te &

U pdate)
(11)

D efault M iss ing
Attribu tes (C reate)

(13)

En tity Level D e fau lting
(15)

Pe rform E ntity Level
Va lida tion

(16)

Popula te M iss ing
C olum n V alues

(U pda te & D elete)
(12)

Exis tence
Verification

(6)

C heck eco and bom
item type access,
and operatab ility.

(8)

Va lue to ID
C onvers ion

(9)

R equired F ie lds
C heck ing

(10)

D atabase W rites
(17)

Error H andler

W rite m essage to
s tack

Se t S tatus Flag to 'S '
G e t ch ild record from

cursor
(a)

G e t pa rent record 's
s ib ling from cursor

(c)

Success
Failure

Success

Success

Failure

Failure

C heck lineage .
(7)

Scope = 'R '
E rror on ly a ffec ts the

current record.

Scope = 'C '
E rror a ffec ts current
record and a ll ch ild

records.

Scope = 'A '
E rror a ffec ts a ll
records in the

bus iness ob ject.

Scope = 'S '
E rror a ffec ts current

record, a ll sib ling and
ch ild records.

R ecord S ta tic
in fo rm ation for

re-use
(3)

C heck Conditiona lly
R equired A ttributes

(14)

S tep 18

G e t s ib ling reco rd
from cursor

(b)
Engineering Change Order Business Object Interface 5-7

Business Object APIs
The APIs encompass all the business rules required to process incoming data. In a nutshell,
they are the interface between the user and the database.

Business Object API Framework
The below framework demonstrates how forms and business object interfaces can use the
business object API framework simultaneously.
5-8 Oracle Manufacturing APIs and Open Interfaces Manual

Business Object APIs
Process Flow
Table 5–2

Step Purpose Description Error

Step 1: Pass
Business
Object to
Public API

The program will try to import it. n Caller must pass one business object at a
time.

n There should be only one Header record.

n There may be more than one record for
other entities.

-N/A-

Step 2:
Check for
Organization
/ Change
Notice
uniformity

Each instance of the business object
represents a particular ECO. We must
ensure that all records in a business
object belong to the same ECO.

n All records must have the same Change
Notice and Organization values.

n Derive Organization_Id from
Organization_Code

n Store ECO_Name and Organization_Id
value in System_Information record.

Severe Error I

Step 3: Save
system
information

Saves system-specific information in
System_Information record since it is
common to the whole business object.
This information is stored in the
database along with the record

n Initialize User_Id, Login_Id, Prog_
Appid, Prog_Id in System_Information
record.

n Pull in values of profiles ENG: Standard
Item Access, ENG: Model Item Access
and ENG: Planning Item Access into
STD_Item_Access, MDL_Item_Access
and PLN_Item_Access respectively.

Quit importof
business object

Step 4: Pick
up highest
level
un-processed
record

The import program processes a
parent and all its direct and indirect
children, before moving onto to a
sibling. So, the highest level parent
must be chosen.

n The highest level record with a {return
status = NULL} is picked.· When there
are no more records, the program exits
and transfers control to the caller.

-N/A-

Step 5:
Convert
user-unique
index to
unique index

Unique index helps uniquely identify
a record in the database, and may
consist of more than one column.
User-unique index is a user-friendly
equivalent of the unique index. It
serves the following purposes:

n The user need not enter cryptic
Ids

n If a user unique index could not
be derived for a parent, it’s entire
lineage is error-ed out since
members of the lineage are
referencing an invalid parent.

Derive unique index columns from
user-unique index columns.

Severe Error III
Engineering Change Order Business Object Interface 5-9

Business Object APIs
Step 6:
Existence
Verification

The record being updated or deleted
in the database must already exist.
But a record being created must not.
Such an error in a record must cause
all children to error out, since they are
referencing an invalid parent.

n For CREATE, the record must not
already exist. For UPDATE and
DELETE, the record must exist.

n Query up database record into the
associated OLD record.

Severe Error III

Step 7:
Check
Lineage

We must ensure that the linkage of
records is correct in the business
object. That is, child records must
reference valid parents. A valid parent
is one that exists, and is truly the
current record’s parent in the
database.

Perform lineage checks for entity records that
do not belong to the top-most entity in the
hierarchy, based on Transaction_Type and the
following factors:

n Immediate parent being referenced
exists in the database, and, for UPDATE
and DELETE, is truly the parent of this
record in the database, OR

n If there is no immediate parent record in
the business object, the indirect parent
being referenced exists and is really the
parent of the current record’s parent in
the database.

Severe Error III

Step 8(a):
Check ECO
operability

An ECO and it’s constituents cannot
be operated upon if the ECO has
already been implemented/canceled,
or if the ECO is in a workflow
process (with Approval _Status =
Approval Requested).

First check if System_Information record has
this information. If not, find it in ECO
Header record in database, and set System_
Information flags accordingly.

Fatal Error I

Step 8(b):
Check ECO
operability

An ECO and any of it’s constituents
cannot be operated upon if the user
does not have access to the Change
Order type of that ECO.

Check if System_Information record has this
information. If not, compare Assembly_Type
of Change Order Type against value of
profile ENG: Engineering Item Change Order
Access. If profile value is No, then
Assembly_Type must not be Engineering. Set
System_Information flag accordingly.

Fatal Error I

Step 8(c):
Check
operability
of parent
items and
current item
(if
applicable)

A revised item and any of it’s
components cannot be operated upon
if the revised item is implemented or
canceled.

Check if System_Information record has this
information. If not, find it in the database
revised item record, and set System_
Information flags accordingly.

Fatal Error III or
Fatal Error II
(depending on
affected entity)

Table 5–2

Step Purpose Description Error
5-10 Oracle Manufacturing APIs and Open Interfaces Manual

Business Object APIs
Step 8(d):
Check
operability
of parent
items and
current item
(if
applicable)

A revised item and any of it’s
components cannot be operated upon
if the user does not have access to the
revised item type.

Compare revised item BOM_Item_Type
against the revised item access fields in the
System_Information record.

Fatal Error III or
Fatal Error II
(depending on
affected entity)

Step 9:
Value-Id
conversions

There are user-friendly value columns
that derive certain Id columns. The
value columns free up the user from
having to enter cryptic Ids, since the
Ids can be derived from them.

Derive Ids from user-friendly values CREATE:
Severe Error IV.
Other: Standard
Error

Step 10:
Required
Fields
checking

Some fields are required for an
operation to be performed. Without
them, the operation cannot go
through. The user must enter values
for these fields.

Check that the required field columns are not
NULL.

CREATE:
Severe Error IV.
Other: Standard
Error

Step 11:
Attribute
validation
(CREATEs
and
UPDATEs)

Each of the attributes/fields must be
checked individually for validity.
Examples of these checks are: range
checks, checks against lookups etc.

Check that user-entered attributes are valid.
Check each attribute independently of the
others

CREATE:
Severe Error IV.
UPDATE:
Standard Error

Step 12:
Populate
NULL
columns(UP
DATEs and
DELETEs)

The user may send in a record with
certain values set to NULL. Values
for all such columns are copied over
from the OLD record. This feature
enables the user to enter minimal
information for the operation.

For all NULL columns found in business
object record, copy over values from OLD
record.

-N/A-

Step 13:
Default
values for
NULL
attributes
(CREATEs)

For CREATEs, there is no OLD
record. So the program must default
in individual attribute values,
independently of each other. This
feature enables the user to enter
minimal information for the operation
to go through.

For all NULL columns found in business
object record, try to default in values, either
by retrieving them from the database, or by
having the program assign values.

Severe Error IV

Table 5–2

Step Purpose Description Error
Engineering Change Order Business Object Interface 5-11

Business Object APIs
Step 14:
Check
conditionally
required
attributes

Some attributes are required based on
certain external factors such as the
Transaction_Type value.

Perform checks to confirm all conditionally
required attributes are present.

Severe Error IV

Step 15:
Entity level
defaulting

Certain column values may depend
on profile options, other columns in
the same table, columns in other
tables, etc. Defaulting for these
columns happens here.
5-12 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
Entity Process Flows

Exposed Columns and Un-exposed columns
Each business object record that the user includes in the business object needs user-input for
certain columns (required fields, conditionally required fields, user-unique index columns).
There are also some other columns that are user-enterable for the import program. These
columns are called exposed columns, and are included in the data structures that the user
passes the business object records in.

All columns that exist in the Production table, but are not exposed to the user are called
un-exposed columns. These columns are not exposed either because they are not
user-enterable, or because no user-input is required. In the latter case, the import program
saves on processing, since user-input will require validation that the program can avoid by
defaulting values into these columns by itself.

Step 18(a):
Process
direct and
indirect
children

The program will finish processing an
entire branch before moving on to a
sibling branch. A branch within the
business object tree consists of all
direct and indirect children.

n Pick up the first un-processed child
record and Go to Step 5. Continue until
all direct children have been processed.

n Then pick up the first un-processed
indirect child record and do the same as
above.

n When no more records are found, Go to
Step 20.

-N/A-

Step 18(b):
Process
siblings

When an entire branch of a record has
been processed, the siblings of the
current record are processed. The
sibling may also contain a branch. So
the processing for the sibling will be
exactly the same as the current
record.

n Pick up the first un-processed sibling
record and Go to Step 5.

n Continue through the loop until all
siblings have been processed.

n When no more records are found, Go to
Step 21.

-N/A-

Step 18 (c):
Process
parent
record’s
siblings

Once all the siblings have been
processed, the program will move up
to the parent (of this entire branch)
and process all of its siblings (which
will contains branches of their own).

n Go up to parent and pick up the first
un-processed sibling of the parent. Go to
Step 5.

n Continue through the loop until all
siblings have been processed.

n When there are no more records, Go to
Step 4.

-N/A-

Table 5–2

Step Purpose Description Error
Engineering Change Order Business Object Interface 5-13

Entity Process Flows
Data Entry Rules
n Certain fields are REQUIRED fields. They cannot be derived or defaulted. So the user

must enter values for these fields.

n Transaction_Type is always required. It specifies what operation is to be performed on a
record. When left empty (NULL), this will cause the record to error out. Also, this field
must have values (CREATE, UPDATE, or DELETE). In addition, it can also have the
value CANCEL for the Revised Component entity only.

n Each column can take in missing or null values. Defaulting only happens for columns
with NULL values, unless the business logic explicitly requires specific defaulting. On
the other hand, a column with a missing value is NULL-ed out. The following are the
missing values for the different data types:

n Varchar2 : chr(12)

n Int : 9.99E125

n Date : TO_DATE(‘1’,’j’)

ECO Headers
Columns Exposed to the User

Table 5–3

Exposed Name Actual Column Name Type Comments

ECO_Name Change_Notice VARCHAR2(10) User-Unique Index

Organization_Code Organization_Id VARCHAR2(3) User-Unique Index

Transaction_Type -N/A- VARCHAR2(30) Required

Change_Type_Code Change_Order_Type VARCHAR2(10) Required for Create

Status_Type Status_Type NUMBER

ECO_Department_Name Responsible_
Organization_Id

VARCHAR2(3)

Priority_Code Priority_Code VARCHAR2(10)

Approval_List_Name Approval_List_Name VARCHAR2(10)

Approval_Status_Type Approval_Status_Type NUMBER

Reason_Code Reason_Code VARCHAR2(10)

ENG_Implementation_Cost Estimated_ENG_Cost NUMBER
5-14 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
ECO Revisions

MFG_Implementation_Cost Estimated_MFG_Cost NUMBER

Cancellation_Comments Cancellation_Comments VARCHAR2(240)

Requestor Requestor_Id NUMBER Requestor =
Employee Number

Description Description VARCHAR2(2000)

Return_Status -N/A- VARCHAR2(1)

Attribute Category Attribute Category VARCHAR2(30)

Attribute1 Attribute1 VARCHAR2(150)

Attribute2 Attribute2 VARCHAR2(150)

Attribute3 Attribute3 VARCHAR2(150)

Attribute4 Attribute4 VARCHAR2(150)

Attribute5 Attribute5 VARCHAR2(150)

Attribute6 Attribute6 VARCHAR2(150)

Attribute7 Attribute7 VARCHAR2(150)

Attribute8 Attribute8 VARCHAR2(150)

Attribute9 Attribute9 VARCHAR2(150)

Attribute10 Attribute10 VARCHAR2(150)

Attribute11 Attribute11 VARCHAR2(150)

Attribute12 Attribute12 VARCHAR2(150)

Attribute13 Attribute13 VARCHAR2(150)

Attribute14 Attribute14 VARCHAR2(150)

Attribute15 Attribute15 VARCHAR2(150)

Table 5–3

Exposed Name Actual Column Name Type Comments
Engineering Change Order Business Object Interface 5-15

Entity Process Flows
Columns Exposed to the User

Table 5–4

Name Actual Name Type Comments

ECO_Name Change_Notice VARCHAR2(10) User-Unique Index

Organization_Code Organization_Id VARCHAR2(3) User-Unique Index

Revision Revision VARCHAR2(10) User-Unique Index

New_Revision Revision VARCHAR2(10) Allows updates to Revision

Transaction_Type -N/A- VARCHAR2(30) Required

Comments Comments VARCHAR2(240)

Return_Status -N/A- VARCHAR2(30)

Attribute_Category Attribute_Category VARCHAR2(30)

Attribute1 Attribute1 VARCHAR2(150)

Attribute2 Attribute2 VARCHAR2(150)

Attribute3 Attribute3 VARCHAR2(150)

Attribute4 Attribute4 VARCHAR2(150)

Attribute5 Attribute5 VARCHAR2(150)

Attribute6 Attribute6 VARCHAR2(150)

Attribute7 Attribute7 VARCHAR2(150)

Attribute8 Attribute8 VARCHAR2(150)

Attribute9 Attribute9 VARCHAR2(150)

Attribute10 Attribute10 VARCHAR2(150)

Attribute11 Attribute11 VARCHAR2(150)

Attribute12 Attribute12 VARCHAR2(150)

Attribute13 Attribute13 VARCHAR2(150)

Attribute14 Attribute14 VARCHAR2(150)

Attribute15 Attribute15 VARCHAR2(150)
5-16 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
Revised Items
Columns Exposed to the User :

Table 5–5

Name Assoc. Column Name Type Comments

ECO_Name Change_Notice VARCHAR2(10) User-Unique Index

Organization_Code Organization_Code VARCHAR2(3) User-Unique Index

Revised_Item_Name Revised_Item_Id VARCHAR2(81) User-Unique Index

New_Revised_Item_Revision New_Item_Revision VARCHAR2(3) User-Unique Index

Updated_Revised_Item_
Revision

New_Item_Revision VARCHAR2(3) Allows updates to
New_Revised_
Item_Revision

Start_Effective_Date Scheduled_Date DATE User-Unique Index

New_Effective_Date Scheduled_Date DATE Allows updates to
Effectivity_Date

Transaction_Type -N/A- VARCHAR2(30) Required

Alternate_BOM_Code Alternate_BOM_
Designator

VARCHAR2(10)

Status_Type Status_Type NUMBER

MRP_Active MRP_Active NUMBER 1/yes 2/no

Earliest_Effective_Date Early_Schedule_Date DATE

Use_Up_Item_Name Use_Up_Item_Id VARCHAR2(81)

Use_Up_Plan_Name Use_Up_Plan_Name VARCHAR2(10)

Disposition_Type Disposition_Type NUMBER

Update_WIP Update_WIP NUMBER 1/yes 2/no

Cancel_Comments Cancel_Comments VARCHAR2(240)

Descriptive_Text Change_Description VARCHAR2(240)

Attribute Category Attribute Category VARCHAR2(30)

Attribute1 Attribute1 VARCHAR2(150)

Attribute2 Attribute2 VARCHAR2(150)

Attribute3 Attribute3 VARCHAR2(150)

Attribute4 Attribute4 VARCHAR2(150)
Engineering Change Order Business Object Interface 5-17

Entity Process Flows
Notes: n The New_Revised_Item_Revision is not updateable for revised items since it is part of
the unique key which uniquely identifies a record. So, updates to it have to be made by
entering the new revision into Updated_Revised_Item_Revision. After the record is
retrieved using the unique key, it’s revision is overwritten by the new value.

n Just like New_Revised_Item_Revision, Start_Effective_Date is a unique index column.
So changes to it have to be made by entering the new value into New_Effective_Date.

n The user can reschedule a revised item by entering the new Effective Date in New_
Effective_Date. All Effective Date changes will be recorded in the history table ENG_
Current_Start_Effective_Dates, along with requestor_id and comments.

n Revised item revisions go into MTL_ITEM_REVISIONS. When an item is first defined
through the Define Item form, a starting revision record is written out to this table. Any
subsequent revisions are added to or updated in MTL_ITEM_REVISIONS.

Attribute5 Attribute5 VARCHAR2(150)

Attribute6 Attribute6 VARCHAR2(150)

Attribute7 Attribute7 VARCHAR2(150)

Attribute8 Attribute8 VARCHAR2(150)

Attribute9 Attribute9 VARCHAR2(150)

Attribute10 Attribute10 VARCHAR2(150)

Attribute11 Attribute11 VARCHAR2(150)

Attribute12 Attribute12 VARCHAR2(150)

Attribute13 Attribute13 VARCHAR2(150)

Attribute14 Attribute14 VARCHAR2(150)

Attribute15 Attribute15 VARCHAR2(150)

Table 5–5

Name Assoc. Column Name Type Comments
5-18 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
Revised Components
Columns Exposed to the User

Table 5–6

Name
Associated Column
Name Type Comments

ECO_Name ECO_Name VARCHAR2(10) User-Unique Index

Organization_Code Organization_Id VARCHAR2(3) User-Unique Index

Revised_Item_Name Revised_Item_Id VARCHAR2(81) User-Unique Index

New_Revised_Item_
Revision

New_Item_Revision VARCHAR2(3) User-Unique Index

Start_Effective_Date Effectivity_Date DATE User-Unique Index

Operation_Sequence_
Number

Operation_Seq_Num NUMBER User-Unique Index

Component_Item_Name Component_Item_Id VARCHAR2(81) User-Unique Index

Alternate_BOM_Code Alternate_BOM_
Designator

VARCHAR2(10) User-Unique Index

Transaction_Type -N/A- VARCHAR2(30) Required

ACD_Type ACD_Type NUMBER Required. 1/add
2/change 3/disable

Old_Effectivity_Date Effectivity_Date DATE

Old_Operation_Sequence_
Number

Operation_Seq_Num NUMBER

New_Operation_Sequence_
Number

Operation_Seq_Num NUMBER Allows updates to
Operation_Seq_
Num

Item_Sequence_Number Item_Num NUMBER

Quantity_Per_Assembly Component_Quantity NUMBER

Planning_Percent Planning_Factor NUMBER

Projected_Yield Component_Yield_Factor NUMBER

Include_In_Cost_Rollup Include_In_Cost_Rollup NUMBER 1/yes 2/no

WIP_Supply_Type WIP_Supply_Type NUMBER

Supply_Subinventory Supply_Subinventory VARCHAR2(10)
Engineering Change Order Business Object Interface 5-19

Entity Process Flows
Locator_Name Locator_Id VARCHAR2(81)

SO_Basis SO_Basis NUMBER 1/yes 2/no

Optional Optional NUMBER 1/yes 2/no

Mutually_Exclusive Mutually_Exclusive_
Options

NUMBER 1/yes 2/no

Check_ATP Check_ATP NUMBER 1/yes 2/no

Minimum_Allowed_
Quantity

Low_Quantity NUMBER

Maximum_Allowed_
Quantity

High_Quantity NUMBER

Shipping_Allowed Shipping_Allowed NUMBER 1/yes 2/no

Required_To_Ship Required_To_Ship NUMBER 1/yes 2/no

Required_For_Revenue Required_For_Revenue NUMBER 1/yes 2/no

Include_On_Ship_Docs Include_On_Ship_Docs NUMBER 1/yes 2/no

Comments Component_Remarks VARCHAR2(240)

Quantity_Related Quantity_Related NUMBER 1/yes 2/no

Return_Status -N/A- VARCHAR2(1)

Attribute Category Attribute Category VARCHAR2(30)

Attribute1 Attribute1 VARCHAR2(150)

Attribute2 Attribute2 VARCHAR2(150)

Attribute3 Attribute3 VARCHAR2(150)

Attribute4 Attribute4 VARCHAR2(150)

Attribute5 Attribute5 VARCHAR2(150)

Attribute6 Attribute6 VARCHAR2(150)

Attribute7 Attribute7 VARCHAR2(150)

Attribute8 Attribute8 VARCHAR2(150)

Attribute9 Attribute9 VARCHAR2(150)

Attribute10 Attribute10 VARCHAR2(150)

Table 5–6

Name
Associated Column
Name Type Comments
5-20 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
Notes : The ECO Header unique key is part of the revised item unique key. So confirming the
revised item confirms the revised item-ECO Header link, and, consequently, the Header’s
link to all other entity records.

Start_Effectivity_Date is not updateable. So Effectivity Date changes have to made using the
parent revised item’s New_Effective_Date column. Please note however, that revised item
Effectivity Date changes will be propagated to all un-implemented child revised
components.

Users can cancel Revised Components by entering a Transaction_Type value of ‘CANCEL’.

Item locators cannot be created dynamically. There are no APIs to validate flexfields.

Adding a component to a bill-less revised item causes a new primary bill to be created.

For ACD_Type = (‘Change’ or ‘Disable’), Old_Operation_Sequence_Number identifies the
implemented record being changed or disabled. Operation_Sequence_Number identifies the
current un-implemented record. New_Operation_Sequence_Number allows user-updates to
Operation_Sequence_Number. For acd_type = ‘Add’, Old_Operation_Sequence_Number
will equal Operation_Sequence_Number, and New_Operation_Sequence_Number will be
null.

Attribute11 Attribute11 VARCHAR2(150)

Attribute12 Attribute12 VARCHAR2(150)

Attribute13 Attribute13 VARCHAR2(150)

Attribute14 Attribute14 VARCHAR2(150)

Attribute15 Attribute15 VARCHAR2(150)

Table 5–6

Name
Associated Column
Name Type Comments
Engineering Change Order Business Object Interface 5-21

Entity Process Flows
Reference Designators
Columns Exposed to the User

Table 5–7

Name
Associated Column
Name Type Comments

ECO_Name ECO_Name VARCHAR2(10) User-Unique Index

Organization_Code Organization_Code VARCHAR2(3) User-Unique Index

Revised_Item_Name Revised_Item_Id VARCHAR2(81) User-Unique Index

Start_Effective_Date Effectivity_Date VARCHAR2(3) User-Unique Index

New_Revised_Item_Revision New_Item_Revision DATE User-Unique Index

Operation_Sequence_
Number

Operation_Seq_Num NUMBER User-Unique Index

Alternate_BOM_Code Alternate_BOM_
Designator

VARCHAR2(10) User-Unique Index

Component_Item_Name Component_Item_Id VARCHAR2(81) User-Unique Index

Reference_Designator_Name Component_Reference_
Designator

VARCHAR2(15) User-Unique Index

ACD_Type ACD_Type NUMBER User-Unique Index

Transaction_Type -N/A- VARCHAR2(30) Required

Ref_Designator_Comment Ref_Designator_
Comment

VARCHAR2(240)

Return_Status -N/A- VARCHAR2(1)

Attribute Category Attribute Category VARCHAR2(30)

Attribute1 Attribute1 VARCHAR2(150)

Attribute2 Attribute2 VARCHAR2(150)

Attribute3 Attribute3 VARCHAR2(150)

Attribute4 Attribute4 VARCHAR2(150)

Attribute5 Attribute5 VARCHAR2(150)

Attribute6 Attribute6 VARCHAR2(150)

Attribute7 Attribute7 VARCHAR2(150)

Attribute8 Attribute8 VARCHAR2(150)
5-22 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
Substitute Components
Columns Exposed to the User

Attribute9 Attribute9 VARCHAR2(150)

Attribute10 Attribute10 VARCHAR2(150)

Attribute11 Attribute11 VARCHAR2(150)

Attribute12 Attribute12 VARCHAR2(150)

Attribute13 Attribute13 VARCHAR2(150)

Attribute14 Attribute14 VARCHAR2(150)

Attribute15 Attribute15 VARCHAR2(150)

Table 5–8

Name Name Type Comments

ECO_Name Change_Notice VARCHAR2(10) User-Unique Index

Organization_Code Organization_Id VARCHAR2(3) User-Unique Index

Revised_Item_Name Revised_Item_Id VARCHAR2(81) User-Unique Index

Start_Effective_Date Effectivity_Date VARCHAR2(3) User-Unique Index

New_Revised_Item_Revision New_Item_Revision DATE User-Unique Index

Operation_Sequence_
Number

Operation_Seq_Num NUMBER User-Unique Index

Alternate_BOM_Code Alternate_BOM_
Designator

VARCHAR2(10) User-Unique Index

Component_Item_Name Component_Item_Id VARCHAR2(81) User-Unique Index

Substitute_Component_
Name

Substitute_Component_Id VARCHAR2(81) User-Unique Index

ACD_Type ACD_Type NUMBER User-Unique Index

Table 5–7

Name
Associated Column
Name Type Comments
Engineering Change Order Business Object Interface 5-23

Entity Process Flows
New API Packages
The ECO Business object interface program will contain new Business Object API
packages. Please see the Business Object Framework section for the flow of control in these
packages.

Transaction_Type -N/A VARCHAR2(30) Required

Substitute_Item_Quantity Substitute_Item_Quantity NUMBER

Return_Status -N/A- VARCHAR2(1)

Attribute Category Attribute Category VARCHAR2(30)

Attribute1 Attribute1 VARCHAR2(150)

Attribute2 Attribute2 VARCHAR2(150)

Attribute3 Attribute3 VARCHAR2(150)

Attribute4 Attribute4 VARCHAR2(150)

Attribute5 Attribute5 VARCHAR2(150)

Attribute6 Attribute6 VARCHAR2(150)

Attribute7 Attribute7 VARCHAR2(150)

Attribute8 Attribute8 VARCHAR2(150)

Attribute9 Attribute9 VARCHAR2(150)

Attribute10 Attribute10 VARCHAR2(150)

Attribute11 Attribute11 VARCHAR2(150)

Attribute12 Attribute12 VARCHAR2(150)

Attribute13 Attribute13 VARCHAR2(150)

Attribute14 Attribute14 VARCHAR2(150)

Attribute15 Attribute15 VARCHAR2(150)

Table 5–8

Name Name Type Comments
5-24 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
Main Packages
n ENG_Eco_PUB : This is the public PL/SQL package that is to be programmatically

called to launch the import. This package ensures that all records belong to the same
business object before it lets the business object through to the Private package.

n ENG_Eco_PVT : This is the private PL/SQL package. It performs all the business logic
by calling the Entity and Shared packages as and when required.

Shared Packages
n ENG_Globals : This Global package contains all global structure and variable

definitions, as well as commonly used procedures and functions.

n ENG_Validate : This is a shared validation package. This package contains all
attribute-level validation logic.

n ENG_Value_to_ID : This is the shared Value-Id conversion package. This package
contains all Value-Id conversions.

n Error_Handler : This is the shared error handling package. This package is responsible
for logging error messages and erroring out records.

Entity Packages
n ENG_Validate_Eco: This package contains Attribute and Entity level validation for the

ECO Header.

n ENG_Default_Eco: This package contains default attribute procedures for the ECO
Header.

n ENG_Eco_Util: This package contains entity utility functions and procedures for the
ECO Header.

n ENG_Validate_EcoRevision: This package contains Attribute and Entity level
validation for the ECO Revision.

n ENG_Default_EcoRevision: This package contains default attribute procedures for the
ECO Revision.

n ENG_EcoRevision_UTIL: This package contains entity utility functions and
procedures for the ECO Revision.

n ENG_Validate_RevisedItem: This package contains Attribute and Entity level
validation for the Revised Item.

n ENG_Default_RevisedItem: This package contains default attribute procedures for the
Revised Item.
Engineering Change Order Business Object Interface 5-25

Entity Process Flows
n ENG_RevisedItem_UTIL: This package contains entity utility functions and
procedures for the Revised Item.

n BOM_Validate_RevisedComp: This package contains Attribute and Entity level
validation for the Revised Component.

n BOM_Default_RevisedComp: This package contains default attribute procedures for
the Revised Component.

n BOM_RevisedComp_UTIL: This package contains entity utility functions and
procedures for the RevisedComponent.

n BOM_Validate_ReferenceDesig: This package contains Attribute and Entity level
validation for the Reference Designator.

n BOM_Default_ReferenceDesig: This package contains default attribute procedures for
the Reference Designator.

n BOM_ReferenceDesig_UTIL: This package contains entity utility functions and
procedures for the Reference Designator.

n BOM_Validate_SubstituteComp: This package contains Attribute and Entity level
validation for the Substitute Component.

n BOM_Default_SubstituteComp: This package contains default attribute procedures for
the Substitute Component.

n BOM_SubstituteComp_UTIL: This package contains entity utility functions and
procedures for the Substitute Component.

Commits and Rollbacks
None of the ECO business object APIs issue commits or rollbacks. It is the responsibility of
the calling code to issue them. This ensures that parts of the transaction are not left in the
database. If an error occurs, the whole transaction is rolled back. Therefore, API work is
either all completed or none of the work is done.

The APIs pass back to the caller, the state of the business object, whether there has been an
error, or it has been successfully processed. The caller could use this to perform further
activities by building on top of the APIs. This gives callers the flexibility to issue commits
and rollbacks where they decide.

5-26 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
Launching the Import
The Three Step Rule:

In order to use the business object APIs effectively, the user must follow the three step rule:

5. Initialize the system information.

6. Call the Public API.

7. Review all relevant information after the Public API has completed.

Step1: Initialize the system information
Each database table that the program writes to requires system information, such as who is
trying to update the current record. The user must provide this information to the import
program by initializing certain variables. The program will retrieve system information from
these variables, during operation. To initialize the variables, the user must call the following
procedure:

FND_GLOBAL.apps_initialize

(user_id IN NUMBER

, resp_id IN NUMBER

, resp_appl_id IN NUMBER

, security_group_id IN NUMBER DEFAULT 0

)

Pointers:

1. This procedure initializes the global security context for each database session.

2. This initialization should be done when the session is established outside of a normal
forms or concurrent program connection.

3. user_id is the FND User Id of the person launching this program.

4. resp id is the FND Responsibility Id the person is using.

5. resp_appl_id is the Application Responsibility Id.

6. security_group_id is the FND Security Group Id.

Step2: Call the Public API
The Public API is the user’s interface to the Import program. The user must call it
programmatically, while sending in one business object at a time. The Public API returns the
Engineering Change Order Business Object Interface 5-27

Entity Process Flows
processed business object, the business object status, and a count of all associated error and
warning messages.

The procedure to call is Process_Eco, and the following is its specification :

PROCEDURE Process_Eco

(p_api_version_number IN NUMBER

, p_init_msg_list IN VARCHAR2 := FND_API.G_FALSE

, x_return_status OUT VARCHAR2

, x_msg_count OUT NUMBER

, x_msg_data OUT VARCHAR2

, p_ECO_rec IN Eco_Rec_Type := G_MISS_ECO_REC

, p_eco_revision_tbl IN Eco_Revision_Tbl_Type := G_MISS_ECO_REVISION_
TBL

, p_revised_item_tbl IN Revised_Item_Tbl_Type := G_MISS_REVISED_ITEM_
TBL

, p_rev_component_tbl IN Rev_Component_Tbl_Type := G_MISS_REV_
COMPONENT_TBL

, p_ref_designator_tbl IN Ref_Designator_Tbl_Type := G_MISS_REF_
DESIGNATOR_TBL

, p_sub_component_tbl IN Sub_Component_Tbl_Type := G_MISS_SUB_
COMPONENT_TBL

, x_ECO_rec OUT Eco_Rec_Type

, x_eco_revision_tbl OUT Eco_Revision_Tbl_Type

, x_revised_item_tbl OUT Revised_Item_Tbl_Type

, x_rev_component_tbl OUT Rev_Component_Tbl_Type

, x_ref_designator_tbl OUT Ref_Designator_Tbl_Type

, x_sub_component_tbl OUT Sub_Component_Tbl_Type

)

5-28 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
As is obvious from the above specification, all IN parameters begin with p_. All OUT
parameters begin with x_. The following is a description of these parameters :

n p_api_version_number : This parameter is required. It is used by the API to compare the
version numbers of incoming calls to its current version number, and return an
unexpected error if they are incompatible. See section 4.1 of the Business Object
Coding Standards document for a detailed description of this parameter.

n p_init_msg_list : This parameter, if set to TRUE, allows callers to request that the API
do the initialization of the message list on their behalf. On the other hand, the caller may
set this to FALSE (or accept the default value) in order to do the initialization itself by
calling FND_MSG_PUB.Initialize.

n p_eco_rec, p_eco_revision_tbl, p_revised_item_tbl, p_rev_component_tbl, p_ref_
designator_tbl, p_sub_component_tbl : This is the set of data structures that represents
the incoming business object. p_eco_rec is a record that holds the ECO header for the
ECO. All the other data structures are PL/SQL tables of records that hold records for
each of the other entities. All these data structures directly correspond to the entities
shown in the ECO entity diagram.

 Please note that any of these data structures may be sent in empty (set to NULL) to indicate
that there are no instances of that entity in the business object being sent in.

n x_eco_rec, x_eco_revision_tbl, x_revised_item_tbl, x_rev_component_tbl, x_ref_
designator_tbl, x_sub_component_tbl : This is the set of data structures that represents
the outgoing business object. These records essentially constitute the whole business
object as it was sent in, except now it has all the changes that the import program made
to it through all the steps in the Process Flow. These records can be committed, rolled
back, or subjected to further processing by the caller. x_eco_rec is a record that holds
the ECO header for the ECO. All the other data structures are PL/SQL tables of records
that hold records for each of the other entities. All these data structures directly
correspond to the entities shown in the ECO entity diagram.

n x_return_status : This is a flag that indicates the state of the whole business object after
the import. If there has been an error in a record, this status will indicate the fact that
there has been an error in the business object. Similarly, if the business object import
has been successful, this flag will carry a status to indicate that. The caller may look up
this flag to choose an appropriate course of action (commit, rollback, or further
processing by the caller). The following is a list of all the possible business object
states:

n x_msg_count : This holds the number of messages in the API message stack after the
import. This parameter returns a 0 when there are no messages to return.
Engineering Change Order Business Object Interface 5-29

Entity Process Flows
n x_msg_data : This returns a single message when the message count is 1. The purpose
of this parameter is to save the caller the extra effort of retrieving a lone message from
the message list. This parameter returns NULL when there is more than one message.

As mentioned above, the Public API must be called programmatically. The caller here may
be a form, a shell, or some other API which serves to extend the functionality of the import
program. Please see the Sample Shell section in the Appendix for a complete listing of the
shell that was written to test the import program. This shell illustrates the correct usage of
the import program.

Note : A record must have an error status of NULL for it to be processed. If it has any other
value, it will not be picked up for processing. The user must remember to NULL out this
field when sending in a record.

Step 3: Review all relevant information after the Public API has
completed
The user must look up:

n all error status that the Public API returns, including, the overall business object error
status, as well as the individual record statuses.

n all record attributes to see what changes occurred after applying business logic to these
records.

n all error and warning messages in the API message list.

The user can access the API message list using the following procedures and functions in the
Error_Handler package:

1. Initializing the message list: The following procedure clears the message list and
initializes all associated variables

PROCEDURE Initialize;

2. Go to the start of the list: The following procedure reset the message index to the start
of the list so the user can start reading from the start of the list

PROCEDURE Reset;

3. Retrieving the entire message list: The following procedure will return the entire
message list to the user

PROCEDURE Get_Message_List

 (x_message_list OUT Eng_Eco_Pub.Error_Tbl_Type);
5-30 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
4. Retrieving messages by entity: One implementation of procedure Get_Entity_Message
will return all messages pertaining to a particular entity (p_entity_id), denoted by the
symbols ECO (ECO Header), RI (Revised Item), RC (Revised Component), SC
(Substitute Component), RD (Reference Designator).

PROCEDURE Get_Entity_Message

 (p_entity_id IN VARCHAR2

 , x_message_list OUT Eng_Eco_Pub.Error_Tbl_Type

);

5. Retrieving a specific message: Another implementation of procedure Get_Entity_
Message will return the message pertaining to a particular entity (p_entity_id), at a
specific array index in that entity table. The entity is denoted by the symbols ECO
(ECO Header), RI (Revised Item), RC (Revised Component), SC (Substitute
Component), RD (Reference Designator). The entity index (p_entity_index) is the index
in the entity array.

PROCEDURE Get_Entity_Message

(p_entity_id IN VARCHAR2

, p_entity_index IN NUMBER

, x_message_text OUT VARCHAR2

);

6. Retrieving the current message: Procedure Get_Message will return the message at
the current message index and will advance the pointer to the next index. If the user
tries to retrieve beyond the size of the message list, then the message index will be reset
to the beginning of the list.

PROCEDURE Get_Message

(x_message_text OUT VARCHAR2

, x_entity_index OUT NUMBER

, x_entity_id OUT VARCHAR2

);

7. Deleting a specific message: Procedure Delete_Message enables the user to delete a
specific message at a specified entity index (p_entity_index) within the PL/SQL table of
a specified entity (p_entity_id). The entity is denoted by the symbols ECO (ECO
Engineering Change Order Business Object Interface 5-31

Entity Process Flows
Header), RI (Revised Item), RC (Revised Component), SC (Substitute Component), RD
(Reference Designator). The entity index (p_entity_index) is the index in the entity
array.

PROCEDURE Delete_Message

(p_entity_id IN VARCHAR2

, p_entity_index IN NUMBER

);

8. Deleting all messages for a certain entity: Another implementation of procedure
Delete_Message lets the user delete all messages for a particular entity (p_entity_id).
The entity is denoted by the symbols ECO (ECO Header), RI (Revised Item), RC
(Revised Component), SC (Substitute Component), RD (Reference Designator).

PROCEDURE Delete_Message

 (p_entity_id IN VARCHAR2);

9. Get a count of all messages: The following functions returns the total number of
messages currently in the message list

FUNCTION Get_Message_Count RETURN NUMBER;

10. Dumping the message list: The following message generates a dump of the message
list using dbms_output

PROCEDURE Dump_Message_List;

Package Interaction

The Public Package - ENG_ECO_PUB

This package is like a gatekeeper, letting only one business object through at a time. This
essentially means that all records in the business object must belong to the business object.
The business object here is the ECO, and incoming records together make up an instance of
the business object. So, all records in an ECO business object instance must reference the
same ECO.

Main Procedure: Process_ECO

1. Set business object status to ‘S’.
5-32 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
2. Check that all records in the business object belong to the same Bill, i.e., all records
must have the same Assembly Item Name and Organization_Code combination

3. Derive Organization_Id from Organization_Code and copy this value into all business
object records.

Unexpected Error Other Message: ENG_UNEXP_ORG_INVALID: This record was not
processed since an unexpected error while performing a value to id conversion for
organization code.

4. Pass business object into Private API if the business object status is still ‘S’. Also pass
the Assembly Item Name and Organization_Id to Private API, to identify this business
object instance.

Table 5–9

Description
Cause of
Failure Error Message

n If there is an ECO Header
in the business object,
check that all records have
the same ECO_name and
Organization_Code values
as the Header.

n If the business object does
not have an ECO Header
record, check that all
records have the same
ECO_Name and
Organization_Code
combination as the first
highest level entity record
picked up.

Any records
have
mismatched
ECO_Name
and
Organization_
Code values

Severe
Error I

ENG_MUST_BE_IN_SAME_
ECO:All records in a business
object must belong to the same
ECO. That is, they must all have
the same ECO Name and
organization. Please check your
records for this.

Table 5–10

Column Description Error Message

Organization_Id Derive using
Organization_Code
from table MTL_
PARAMTERS

Severe Error I ENG_ORG_INVALID:The
Organization <org_id> you
entered is invalid.
Engineering Change Order Business Object Interface 5-33

Entity Process Flows
5. Accept processed business object and return status from Private API after the import,
and pass it back to the calling program.

The Private Package - ENG_BO_PVT
This package is called by the Public package. It carries out all the business object checks
listed in the Process Flow, while making any necessary changes to it, and also performs
production tables inserts, updates and deletes. It then passes the business object and the
business object import status back to the Public API.

Main Procedure: Process_ECO

1. Initialize User_Id, Login_Id, Prog_AppId, Prog_Id in System_Information record.

2. Initialize Assembly_Item_Name and Org_Id in System_Information record from values

 passed by Public API.

3. If an BOM Header was passed in, call ECO_Header

4. If BOM Revisions records exist, call ECO_Rev

5. Call Rev_Comps to process immediate-parentless components

6. Call Ref_Desgs to process immediate-parentless reference designators

7. Call Sub_Comps to process immediate-parentless substitute components

8. Return import status and processed business object to Public API

The sections below list the steps performed within each of the entity procedures: ECO_
Header, ECO_Rev, Rev_Comps, Ref_Desgs, Sub_Comps. Each of these entity procedures
performs all the entity process flow steps listed by entity under the Entity Process Details
section. They also call other entity procedures to process child records.

The entity procedure descriptions below also point out how the Private API reacts to errors
in entity process flow steps.

Table 5–11

Column Description

User_Id From environment

Login_Id From environment

Prog_AppId From environment

Prog_Id From environment
5-34 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
Sample Launch Package
The following is the PL/SQL program that was coded to test the APIs. It’s purpose here is to
illustrate how the user might call the Public API.

/***

This package calls the Public API. It uses interface table ENG_ENG_CHANGES_
INTERFACE, ENG_ECO_REVISIONS_INTERFACE, ENG_REVISED_ITEMS_
INTERFACE, BOM_INVENTORY_COMPS_INTERFACE, BM_REF_DESGS_
INTERFACE and BOM_SUB_COMPS_INTERFACE. The way it works is that it assumes
that user has loaded these tables with business object records, and then runs this program.
Each record will have a TEST TAG which identifies the whole business object uniquely to
the user.

When the user runs this program, he/she specifies a TEST TAG (p_test_tag). This program
picks up all records that carry this test tag value as one business object, and then tries to
import it into the production tables.

**
**/

CREATE OR REPLACE

PROCEDURE Public_API_UT

(p_test_tag IN VARCHAR2)

IS

 l_eco_rec Eng_Eco_Pub.Eco_Rec_Type;

 l_eco_revision_tbl Eng_Eco_Pub.Eco_Revision_Tbl_Type;

 l_revised_item_tbl Eng_Eco_Pub.Revised_Item_Tbl_Type;

 l_rev_component_tbl Eng_Eco_Pub.Rev_Component_Tbl_Type;

 l_sub_component_tbl Eng_Eco_Pub.Sub_Component_Tbl_Type;

 l_ref_designator_tbl Eng_Eco_Pub.Ref_Designator_Tbl_Type;

 l_return_status VARCHAR2(1);

 l_msg_count NUMBER;

 l_msg_data VARCHAR2(2000);

 l_Error_Table Eng_Eco_Pub.Error_Tbl_Type;
Engineering Change Order Business Object Interface 5-35

Entity Process Flows
 l_Message_text VARCHAR2(2000);

 CURSOR c_eco_rec IS

 SELECT *

 FROM eng_eng_changes_interface

 WHERE eng_changes_ifce_key like p_test_tag;

 CURSOR c_eco_rev IS

 SELECT *

 FROM eng_eco_revisions_interface

 WHERE eng_eco_revisions_ifce_key like p_test_tag;

 CURSOR c_rev_items IS

 SELECT *

 FROM eng_revised_items_interface

 WHERE eng_revised_items_ifce_key like p_test_tag;

 CURSOR c_rev_comps IS

 SELECT *

 FROM bom_inventory_comps_interface

 WHERE bom_inventory_comps_ifce_key like p_test_tag;

 CURSOR c_sub_comps IS

 SELECT *

 FROM bom_sub_comps_interface

 WHERE bom_sub_comps_ifce_key like p_test_tag;

 CURSOR c_ref_desgs IS

 SELECT *

 FROM bom_ref_desgs_interface

 WHERE bom_ref_desgs_ifce_key like p_test_tag;

 i number;

BEGIN

 -- Query all the records and call the Private API.
5-36 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
 FOR eco_rec IN c_eco_rec

 LOOP

 l_eco_rec.eco_name := eco_rec.change_notice;

 l_eco_rec.organization_code := eco_rec.organization_code;

 l_eco_rec.change_type_code := eco_rec.change_order_type;

 l_eco_rec.status_type := eco_rec.status_type;

 l_eco_rec.eco_department_name := eco_rec.responsible_org_code;

 l_eco_rec.priority_code := eco_rec.priority_code;

 l_eco_rec.approval_list_name := eco_rec.approval_list_name;

 l_eco_rec.approval_status_type := eco_rec.approval_status_type;

 l_eco_rec.reason_code := eco_rec.reason_code;

 l_eco_rec.eng_implementation_cost := eco_rec.estimated_eng_cost;

 l_eco_rec.mfg_implementation_cost := eco_rec.estimated_mfg_cost;

 l_eco_rec.cancellation_comments:=eco_rec.cancellation_comments;

 l_eco_rec.requestor := eco_rec.requestor;

 l_eco_rec.description := eco_rec.description;

 l_eco_rec.transaction_type := eco_rec.transaction_type;

 END LOOP;

 -- Fetch ECO Revisions

 i := 1;

 FOR rev IN c_eco_rev

 LOOP

 l_eco_revision_tbl(i).eco_name := rev.change_notice;

 l_eco_revision_tbl(i).organization_code:= rev.organization_code;

 l_eco_revision_tbl(i).revision := rev.revision;

 l_eco_revision_tbl(i).new_revision := rev.new_revision;

 l_eco_revision_tbl(i).comments := rev.comments;

 l_eco_revision_tbl(i).transaction_type := rev.transaction_type;
Engineering Change Order Business Object Interface 5-37

Entity Process Flows
 i := i + 1;

 END LOOP;

 -- Fetch revised items

 i := 1;

 FOR ri IN c_rev_items

 LOOP

 l_revised_item_tbl(i).eco_name := ri.change_notice;

 l_revised_item_tbl(i).organization_code := ri.organization_code;

 l_revised_item_tbl(i).revised_item_name :=

 ri.revised_item_number;

 IF ri.new_item_revision = FND_API.G_MISS_CHAR

 THEN

 l_revised_item_tbl(i).new_revised_item_revision := NULL;

 ELSE

 l_revised_item_tbl(i).new_revised_item_revision :=

 ri.new_item_revision;

 END IF;

 l_revised_item_tbl(i).start_effective_date :=

 ri.scheduled_date;

 l_revised_item_tbl(i).alternate_bom_code :=

 ri.alternate_bom_designator;

 l_revised_item_tbl(i).status_type := ri.status_type;

 l_revised_item_tbl(i).mrp_active := ri.mrp_active;

 l_revised_item_tbl(i).earliest_effective_date :=

 ri.early_schedule_date;

 l_revised_item_tbl(i).use_up_item_name := ri.use_up_item_number;

 l_revised_item_tbl(i).use_up_plan_name := ri.use_up_plan_name;

 l_revised_item_tbl(i).disposition_type := ri.disposition_type;
5-38 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
 l_revised_item_tbl(i).update_wip := ri.update_wip;

 l_revised_item_tbl(i).cancel_comments := ri.cancel_comments;

 l_revised_item_tbl(i).change_description := ri.descriptive_text;

 l_revised_item_tbl(i).transaction_type := ri.transaction_type;

 i := i + 1;

 END LOOP;

 -- Fetch revised components

 i := 1;

 FOR rc IN c_rev_comps

 LOOP

 l_rev_component_tbl(i).eco_name := rc.change_notice;

 l_rev_component_tbl(i).organization_code:= rc.organization_code;

 l_rev_component_tbl(i).revised_item_name :=

 rc.assembly_item_number;

 l_rev_component_tbl(i).new_revised_item_revision := NULL;

 l_rev_component_tbl(i).start_effective_date :=

 rc.effectivity_date;

 l_rev_component_tbl(i).disable_date := rc.disable_date;

 l_rev_component_tbl(i).operation_sequence_number :=

 rc.operation_seq_num;

 l_rev_component_tbl(i).component_item_name :=

 rc.component_item_number;

 l_rev_component_tbl(i).alternate_bom_code :=

 rc.alternate_bom_designator;

 l_rev_component_tbl(i).acd_type := rc.acd_type;

 l_rev_component_tbl(i).old_effectivity_date :=

 rc.old_effectivity_date;

 l_rev_component_tbl(i).old_operation_sequence_number :=
Engineering Change Order Business Object Interface 5-39

Entity Process Flows
 rc.old_operation_seq_num;

 l_rev_component_tbl(i).item_sequence_number := rc.item_num;

 l_rev_component_tbl(i).quantity_per_assembly :=

 rc.component_quantity;

 l_rev_component_tbl(i).planning_percent := rc.planning_factor;

 l_rev_component_tbl(i).projected_yield :=

 rc.component_yield_factor;

 l_rev_component_tbl(i).include_in_cost_rollup :=

 rc.include_in_cost_rollup;

 l_rev_component_tbl(i).wip_supply_type := rc.wip_supply_type;

 l_rev_component_tbl(i).so_basis := rc.so_basis;

 l_rev_component_tbl(i).optional := rc.optional;

 l_rev_component_tbl(i).mutually_exclusive :=

 rc.mutually_exclusive_options;

 l_rev_component_tbl(i).check_atp := rc.check_atp;

 l_rev_component_tbl(i).shipping_allowed :=

 rc.shipping_allowed;

 l_rev_component_tbl(i).required_to_ship := rc.required_to_ship;

 l_rev_component_tbl(i).required_for_revenue :=

 rc.required_for_revenue;

 l_rev_component_tbl(i).include_on_ship_docs :=

 rc.include_on_ship_docs;

 l_rev_component_tbl(i).quantity_related := rc.quantity_related;

 l_rev_component_tbl(i).supply_subinventory :=

 rc.supply_subinventory;

 l_rev_component_tbl(i).location_name := rc.location_name;

 l_rev_component_tbl(i).minimum_allowed_quantity :=

 rc.low_quantity;
5-40 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
 l_rev_component_tbl(i).maximum_allowed_quantity :=

 rc.high_quantity;

 l_rev_component_tbl(i).component_remarks :=

 rc.component_remarks;

 l_rev_component_tbl(i).transaction_type :=

 rc.transaction_type;

 i := i + 1;

 END LOOP;

 -- Fetch substitute component records

 i := 1;

 FOR sc IN c_sub_comps

 LOOP

 l_sub_component_tbl(i).eco_name := sc.change_notice;

 l_sub_component_tbl(i).organization_code:= sc.organization_code;

 l_sub_component_tbl(i).revised_item_name :=

 sc.assembly_item_number;

 l_sub_component_tbl(i).start_effective_date :=

 sc.effectivity_date;

 l_sub_component_tbl(i).new_revised_item_revision := NULL;

 l_sub_component_tbl(i).component_item_name :=

 sc.component_item_number;

 l_sub_component_tbl(i).alternate_bom_code :=

 sc.alternate_bom_designator;

 l_sub_component_tbl(i).substitute_component_name :=

 sc.substitute_comp_number;

 l_sub_component_tbl(i).acd_type := sc.acd_type;

 l_sub_component_tbl(i).operation_sequence_number :=

 sc.operation_seq_num;
Engineering Change Order Business Object Interface 5-41

Entity Process Flows
 l_sub_component_tbl(i).substitute_item_quantity :=

 sc.substitute_item_quantity;

 l_sub_component_tbl(i).transaction_type := sc.transaction_type;

 i := i + 1;

 END LOOP;

 -- Fetch reference designators

 i := 1;

 FOR rd IN c_ref_desgs

 LOOP

 l_ref_designator_tbl(i).eco_name := rd.change_notice;

 l_ref_designator_tbl(i).organization_code :=

 rd.organization_code;

 l_ref_designator_tbl(i).revised_item_name :=

 rd.assembly_item_number;

 l_ref_designator_tbl(i).start_effective_date :=

 rd.effectivity_date;

 l_ref_designator_tbl(i).new_revised_item_revision := null;

 l_ref_designator_tbl(i).operation_sequence_number :=

 rd.operation_seq_num;

 l_ref_designator_tbl(i).component_item_name :=

 rd.component_item_number;

 l_ref_designator_tbl(i).alternate_bom_code :=

 rd.alternate_bom_designator;

 l_ref_designator_tbl(i).reference_designator_name :=

 rd.component_reference_designator;

 l_ref_designator_tbl(i).acd_type := rd.acd_type;

 l_ref_designator_tbl(i).ref_designator_comment :=

 rd.ref_designator_comment;
5-42 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
 l_ref_designator_tbl(i).new_reference_designator :=

 rd.new_designator;

 l_ref_designator_tbl(i).transaction_type :=

 rd.transaction_type;

 END LOOP;

 Eng_Globals.G_WHO_REC.org_id := 207;

 Eng_Globals.G_WHO_REC.user_id := 2462;

 Eng_Globals.G_WHO_REC.login_id := 2462;

 Eng_Globals.G_WHO_REC.prog_appid := 703;

 Eng_Globals.G_WHO_REC.prog_id:= NULL;

 Eng_Globals.G_WHO_REC.req_id := NULL;

 ENG_GLOBALS.system_information.org_id := 207;

 fnd_global.apps_initialize

 (user_id => Eng_Globals.G_WHO_REC.user_id

 , resp_id => 20567

 , resp_appl_id => Eng_Globals.G_WHO_REC.prog_appid

);

 -- Call the private API

 Eng_Eco_PUB.Process_Eco

 (p_api_version_number => 1.0

 , x_return_status => l_return_status

 , x_msg_count => l_msg_count

 , p_eco_rec => l_eco_rec

 , p_eco_revision_tbl => l_eco_revision_tbl

 , p_revised_item_tbl => l_revised_item_tbl

 , p_rev_component_tbl => l_rev_component_tbl

 , p_sub_component_tbl => l_sub_component_tbl

 , p_ref_designator_tbl => l_ref_designator_tbl
Engineering Change Order Business Object Interface 5-43

Entity Process Flows
 , x_eco_rec => l_eco_rec

 , x_eco_revision_tbl => l_eco_revision_tbl

 , x_revised_item_tbl => l_revised_item_tbl

 , x_rev_component_tbl => l_rev_component_tbl

 , x_sub_component_tbl => l_sub_component_tbl

 , x_ref_designator_tbl => l_ref_designator_tbl

);

 --

 -- On return from the PUB API

 -- Perform all the error handler operations to verify that the

 -- error or warning are displayed and all the error table interface

 -- function provided to the user work correctly;

 --

 Error_Handler.Get_Message_List(x_message_list => l_error_table);

 FOR i IN 1..l_error_table.COUNT

 LOOP

 dbms_output.put_line('Entity Id: '||l_error_table(i).entity_id);

 dbms_output.put_line('Index: '||l_error_table(i).entity_index);

 dbms_output.put_line('Mesg: '||l_error_table(i).message_text);

 dbms_output.put_line('---------------------------------------');

 END LOOP;

 dbms_output.put_line('Total Messages: ' || to_char(i));

 l_msg_count := Error_Handler.Get_Message_Count;

 dbms_output.put_line('Message Count Function: '||to_char(l_msg_count));

 Error_Handler.Dump_Message_List;

 Error_Handler.Get_Entity_Message

 (p_entity_id => 'ECO'

 , x_message_list => l_error_table
5-44 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
);

 Error_Handler.Get_Entity_Message

 (p_entity_id => 'REV'

 , x_message_list => l_error_table

);

 Error_Handler.Get_Entity_Message

 (p_entity_id => 'RI'

 , x_message_list => l_error_table

);

 Error_Handler.Get_Entity_Message

 (p_entity_id => 'RC'

 , x_message_list => l_error_table

);

 Error_Handler.Get_Entity_Message

 (p_entity_id => 'SC'

 , x_message_list => l_error_table

);

 Error_Handler.Get_Entity_Message

 (p_entity_id => 'RD'

 , x_message_list => l_error_table

);

END Public_API_UT;
Engineering Change Order Business Object Interface 5-45

Entity Process Flows
Import Error Handling and Messaging

Error Handler Flow Diagram
This flow diagram charts the possible paths an error might take once it has exited the general
main ECO Business Object Interface process flow.

Error Handling Concepts
Error handling depends on the severity of the error, the entities the error extends itself over
(scope of the error) , and how the error affects the lineage (child record error states). When
an error occurs, records are marked so that erroneous records are not processed again.

Error Severity Levels
Severity levels help distinguish between different types of errors since the import program
behaves differently for each of these errors. The following is a list of the error severity levels
recognized by the import program:

Error States
Error states serve two purposes :

n They convey to the user the exact type of error in the record.

n They help the import program identify the records that do not need to be processed.

Table 5–12

CODE MEANING

‘W’ Warning / Debug

‘E’ Standard Error

‘E’ Severe Error

‘F’ Fatal Error

‘U’ Unexpected error

Table 5–13

CODE MEANING

‘S’ Success

‘E’ Error
5-46 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
Error Scope
This indicates what the depth of the error is in the business object, that is, how many other
records in the business object hierarchy the current error affects.

Child Error States
If an error in a record affects child records, the status of the child may vary based on the type
of error. There are two error states that indicate how the child is affected:

Error Classes
There are three major classes that determine the severity of the problem.

‘F’ Fatal Error

‘U’ Unexpected Error

‘N’ Not Processed

Table 5–14

CODE MEANING

‘R’ Error affects current ‘R’ecord

‘S’ Error affects all ‘S’ibling and child records

‘C’ Error affects ‘C’hild records

‘A’ Error affects ‘A’ll records in business object

Table 5–15

CODE MEANING

‘E’ Error

‘N’ Not Processed

Table 5–13

CODE MEANING
Engineering Change Order Business Object Interface 5-47

Entity Process Flows
Expected errors: These are errors the program specifically looks for in the business object,
before committing it to the production tables.

1. Standard Error: This error causes only the current record to be error-ed out, but is not
serious enough to affect any other records in the object. The current record status is set
to ‘E’. For example: Revised item cannot be updated to status=10.

2.
S
e
v
e
r
e

E
r
r
o
r

I
:

T
h
i
s

e
r
r
o
r

a
f
f
e
c
t
s

Error Handler

W rite M essage
To Statck

S TATU S = ' W '

Set record and
object status to

'E '

Set record and
object status to

'F '

Set record and
object status to

'U '

Set a ll record
statuses to 'F '

Set child record
statuses to 'E '

Set rem aining
record statuses

to 'N '

Set child record
statuses to 'F '

Set child record
statuses to 'N '

Set a ll record
statuses to 'E '

Set s ibling and
child record

statuses to 'F '

Set s ibling and
child record

statuses to 'E '

Status = 'F '

Status = 'U '

Status = 'E '

Scope = 'C '

Scope = 'C '

Scope = 'A '

Scope = 'A '

Scope = 'C '

Scope = 'S '

Scope = 'S '

Scope = 'R '
5-48 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
 all records. All record statuses are set to ‘E’. This error is usually a change
notice/organization uniformity error. All records must have the same change
notice/organization combination.

3. Severe Error II: This error affects all records that are children of this record’s parent,
when the parent is not in the business object. A characteristic of this record’s parent
caused the error, so all it’s siblings and their children also get a record status of ‘E’.
This error usually occurs when a lineage check fails.

4. Severe Error III: This error not only affects the current record but also its child records
in the business object. The child record statuses are set to ‘E’. Please check your child
records for errors as well as the current record. This error is usually a user-unique to
unique index conversion error.

5. Severe Error IV: This error affects the current record and its child records since the
program cannot properly process the child records. The child record statuses are set to
‘N’. This type of errors occur when there are errors on CREATEs.

6. Fatal Error I: These errors occur when it is not possible to perform any operation on the
ECO. Such errors affect the entire business object. All record statuses are set to ‘F’. The
following are situations that cause this error:

n ECO is implemented in the production tables

n ECO is canceled in the production tables

n Workflow activity is in progress for the ECO

n You do not have access to this ECO (change order type)

7. Fatal Error II: This error affects all records that are children of this record’s parent,
when the parent is not in the business object. A characteristic of this record’s parent
caused the error, so all it’s siblings and their children also get a record status of ‘F’.
This usually occurs when the user tries to create, update, or delete a component of a
revised item that was already implemented or cancelled.

8. Fatal Error III: These errors affects the current record and its children, since it is not
possible to perform any operation on these records. The current record and all its child
record statuses are set to ‘F’. The following situations cause this error:

n Revised item is implemented in the production tables

n Revised item is canceled in the production tables

n You do not have access to this revised item (BOM item type)
Engineering Change Order Business Object Interface 5-49

Entity Process Flows
Unexpected errors: All errors that are not expected errors are unexpected errors. These are
errors that the program is not specifically looking for, for example, the user somehow loses
the database connection.

Warnings: These are messages for information only. The purpose of warnings is:

1. to warn the user of problems that may occur when the ECO is implemented. For
example: Revised item is being referenced on another pending ECO.

2. to inform the user of any side-effects caused by user-entered data. For example: All
Approval History records associated with ECO have been deleted.

How it all works
In order to bring together all the concepts above into a workable algorithm, we must
introduce some terms that used extensively in this section, and the rest of the document.

Child record : All records carry the unique keys for all parents above them. A child record
(of a particular parent) is one that holds the same values for the unique key columns as the
parent record.

Sibling record : A sibling record (of the current record) is one that holds the same parent
unique key column values as the current record. For example, a component record that holds
the same parent revised item unique key column values as the current component record, is a
sibling of the current component record. Likewise, a reference designator record that holds
the same parent component unique key column values as a substitute component is a sibling
of the substitute component.

Business Object Error Status : This indicates the state of the whole business object after
the import. As soon as the import program encounters an erroneous record, it sets the
business object error status (also called return status) appropriately to convey this to the user.
It is then up to the user to locate the offending record(s) using the individual record error
statuses as indicated below. The caller may also use the business object return status to
choose an appropriate course of action (commit, rollback, or further processing by the
caller).

The following is a list of all the possible business object states:

Table 5–16

CODE MEANING

‘S’ Success

‘E’ Error

‘F’ Fatal Error

‘U’ Unexpected Error
5-50 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
Record Error Status : This is the state of the record after the import (success or error). The
error status is also referred to as return status or error state in this document. Please see the
Error States section above for a list of statuses a record can receive. The error status helps
locate erroneous records in a business object that has error-ed out. The following are
important pointers about the record error status.

n Every record is assigned an error status by the import program. Hence, if a record has a
NULL return status, it means that the import program has not gotten to it yet.

n The user must send in records with {return status = NULL}. The import program will
not look at records that already have an error status value, since it assumes that a record
with an error status value has already been looked at by the program.

The following shows how the error status, error scope, and child statuses relate together to
constitute the different error classes for records :

Table 5–17

Error Status Scope Child Statuses

Warning S: Success R: Record Only -N/A-

Standard Error E: Error R: Record Only -N/A-

Severe Error I E: Error A: All Records E: Error

Severe Error II E: Error S: Current, Sibling and Child
Records

E: Error

Severe Error III E: Error C: Current and Child Record E: Error

Severe Error IV E: Error C: Current and Child Records N: Not Processed

Fatal Error I F: Fatal Error A: All Records

Fatal Error II F: Fatal Error S: Current, Sibling and Child
Records

Fatal Error III F: Fatal Error C: Current and Child Record

Unexpected Error U: Unexpected Error -N/A- N: Not Processed
Engineering Change Order Business Object Interface 5-51

Entity Process Flows
This flow diagram charts the possible paths an error might take:

The list below shows the sequence of steps that need to be performed when warnings or
errors are encountered:

p_severity_level = Standard Error

Log error messages

Set record status to ‘E’

Set business object status to ‘E’

Error/W arning

W rite M essage to
AP I M essage List

Set record and
object s tatus to 'F '

Set record and
object s tatus to 'U '

Set record and
object s tatus to 'E '

Set child record
statuses to 'F '

Set a ll record
statuses to 'F '

Set s ib ling and child
record statuses to

'F '

Set rem aining
record statuses to

'N '

Set child record
statuses to 'N '

Set child record
statuses to 'E '

Set a ll record
statuses to 'E "

Set s ib ling and child
record statuses to

'E '

W arn ing F a ta l E rro r

Scope = 'C '

Scope = 'A '

Scope = 'S '

Scope = 'C '

Scope = 'C '

Scope = 'A '

Scope = 'S '

U nexpected E rro r

S tandard and
Severe E rro r

Scope = 'R '
5-52 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
p_severity_level = Severe Error I

Log error messages

Set record status to ‘E’

Set all business object record statuses to ‘E’

Set business object status to ‘E’

p_severity_level = Severe Error II

Log error messages

Set record status to ‘E’

Set direct and indirect children statuses to ’E’.
Also set statuses of sibling records and all their
children to ’E’.

Set business object status to ‘E’

p_severity_level = Severe Error III

Log error messages

Set record status to ‘E’

Set direct and indirect children statuses to ’E’.

Set business object status to ‘E’

p_severity_level = Severe Error IV

Log error messages

Set record status to ‘E’

Set direct and indirect children statuses to ’N’.

Set business object status to ‘E’
Engineering Change Order Business Object Interface 5-53

Entity Process Flows
p_severity_level = Fatal Error I

Log error messages

Set record status to ‘F’

Set all business object records to ’F’.

Set business object statuses to ‘F’

p_severity_level = Fatal Error II

Log error messages

Set record status to ‘F’

Set direct and indirect children statuses to ’F’.
Also set statuses of sibling records and all their
children to ’F’.

Set business object statuses to ‘F’

p_severity_level = Fatal Error III

Log error messages

Set record status to ‘F’

Set direct and indirect children statuses to ’F’.

Set business object statuses to ‘F’

p_severity_level = Unexpected Error

Log error messages

Set record status to ‘U’

Set all remaining un-processes business object
record statuses to ’N’.

Set business object statuses to ‘U’
5-54 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
API Messaging

API Message Table
All messages are logged in the API Error Message Table. This is a PL/SQL table (array) of
messages. Please see Accessing Messages in the Launching the Import section of this
document on how to access these messages.

The following is a description of the API Message Table:

Message formats
Expected errors and warnings: The message text contains the translated and token
substituted message text. Please note that the message text may contain tokens, some of
which will identify the entity instances that this message is for. The following tokens
identify the several entities:

n Revised Item : Revised_Item_Name

n Revised Component : Revised_Component_Number

n Substitute Component : Substitute_Component_Number

n Reference Designator : Reference_Designator_Name

p_severity_level = Warning

Log error messages

Table 5–18

Field Type Description

Message_Text VARCHAR2(2000) The actual message that the user sees. Please see
below for format information.

Entity_Id VARCHAR2(3) The entity that this message belongs to. This may
hold BO, ECO, REV, RI, RC, RD, or SC.BO -
Business ObjectECO - ECO HeaderREV - ECO
RevisionsRI - Revised ItemsRC - Revised
ComponentsRD - Reference DesignatorsSC -
Substitute Components

Entity_Index NUMBER The index of the entity array this record belongs to.

Message_Type VARCHAR2(1) Indicates whether message is an error or warning.
Engineering Change Order Business Object Interface 5-55

Entity Process Flows
n ECO Revisions : Revision

n ECO Header : ECO_Name

Unexpected errors:

<Package Name> <Procedure/Function Name> <SQL Error Number>

<SQL Error Message Text>

Other message:

An Other Message is a message that is logged for all records that are affected by an error in
a particular record. So if an error in a revised item record will cause all it’s children to error
out, then the following will be logged:

n For the revised item itself, the error message describing the problem.

n For all records affected by the type of error that occured in the revised item, the
other message. This message essentially mentions the following:

3. how the error has affected this record, that is, it has been error-ed out too, with a
severe or fatal error status, or that it has not been processed.

4. which record caused this record to be affected.

5. what process flow step in the offending record caused this record to be affected.

6. what transaction type in the offending record caused this record to be affected.

Essentially the purpose of the other message is to give the user as much information as
possible about the error that got propagated to this record.

Error Handler
The program performs all it’s error handling and messaging through the Error Handler. It
makes calls to the Error Handler when an error or warning needs to be issued. The following
are the functions of the Error Handler:

n Log the error/warning messages sent to it.

n Set the return status of the record in error.

n Set the return status of other records affected by this error.
5-56 Oracle Manufacturing APIs and Open Interfaces Manual

Entity Process Flows
The following is the input that the Error Handler expects from the calling program:

The calling program must trap the error and send the above details to the Error Handler. The
Error Handler handles the error and returns the altered object to the calling program.

Message and Token List Records
The Message and Token List, and the Other Message and Token List are temporary arrays
that the calling program maintains. They hold message-and-token records. The Error
Handler must log these messages into the API Message List. The calling program may want
some of these message record tokens to be translated (such tokens are typically messages
themselves).

For expected errors and warnings, the translated message text is retrieved using the message
name. Then, after any requested token translation is performed, the tokens are substituted
into the translated message text, and the message is logged. For unexpected errors, the
calling program itself sends a message text, so no message retrieval is needed. The message
is logged after token translation and substitution is performed.

Table 5–19

Input Description

Business Object Calling program must pass the whole business object as-is.

Message and Token
List

List of messages generated for error in the current record. See below for
description of this list.

Error Status Status the record in error should be set to.

Error Level Business Object hierarchy level that current record is an instance of. That is,
the entity that the record in error belongs to.

Entity Array Index Index of record in error in its encompassing entity array. Does not apply to
ECO Header.

Error Scope Indicates depth of error, that is, how many other records are affected by it.

Other Message and
Token List

Message generated for the other affected records. See below for
description.

Other Status Status the other affected records should be set to.

Table 5–20

Field Description

Message Name Name of the message used to retrieve the
translated message text. NULL for unexpected
errors.
Engineering Change Order Business Object Interface 5-57

Entity Process Flows
Since each message may have more than one token, the Message and Token List has as
many occurrences of the same message as there are tokens in it. The same applies to the
Other Message and Token List, except that this list needs to carry only one message which is
assigned to all other affected records. Since this lone message may have more than one
token, there may be more than one occurrence of the message in the list.

Please note that the API Message List is public, but the Message and Token Lists are not.

Message Text Message text for unexpected errors.

Token Name Name of the token in the message.

Token Value Value of the token in the message.

Translate Should this token value be translated ?

Table 5–20

Field Description
5-58 Oracle Manufacturing APIs and Open Interfaces Manual

Oracle Inventory Open Interfaces and
6

Oracle Inventory Open Interfaces and APIs

This chapter contains information about the following Oracle Inventory open interfaces and
application program interfaces:

■ Open Transaction Interface on page 6-2

■ Open Replenishment Interface on page 6-28

■ Open Item Interface on page 6-38

■ Customer Item and Customer Item Cross-Reference Open Interfaces on page 6-58

■ Cycle Count Entries Interface on page 6-73

■ Cycle Count Application Program Interface on page 6-79

■ Kanban Application Program Interface on page 6-82

■ Lot Application Program Interface on page 6-85

■ Material Reservation Application Program Interface on page 6-87

■ Reservations Manager Application Program Interface on page 6-99

■ Sales Order Application Program Interface on page 6-102

■ Move Order Application Program Interface on page 6-107

■ Pick Release Application Program Interface on page 6-122

■ Pick Confirm Application Program Interface on page 6-126
 APIs 6-1

Open Transaction Interface
Open Transaction Interface
Oracle Inventory provides an open interface for you to easily load transactions from external
applications and feeder systems. These transactions could include sales order shipment
transactions from an order entry system other than Oracle Order Entry, or they could be
simple material issues, receipts, or transfers loaded from data collection devices. The
following transaction types are supported by this interface:

■ Inventory issues and receipts (including user-defined transaction types)

■ Subinventory transfers

■ Direct inter-organization transfers

■ Intransit shipments

■ WIP component issues and returns

■ WIP assembly completions and returns

■ Sales order shipments

■ Inventory average cost updates

This interface is also used as an integration point with Oracle Order Entry for shipment
transactions. Oracle Order Management’s Inventory Interface program populates the
interface tables with transactions submitted through the Confirm Shipments window.

Functional Overview
The following data flow diagram shows the key tables and programs that comprise the
Transaction Interface for Inventory Movement Transactions, WIP Issue and Completion
Transactions, Sales Order Shipments, and Inventory Average Cost Update Transactions.
6-2 Oracle Manufacturing APIs and Open Interfaces Manual

Open Transaction Interface
Figure 6–1 Open Transaction Interface

You must write the load program that inserts a single row for each transaction into the MTL_
TRANSACTIONS_INTERFACE table. For material movement of items that are under lot
or serial control, you must also insert rows into MTL_TRANSACTION_LOTS_
INTERFACE and MTL_SERIAL_NUMBERS_INTERFACE respectively. If you insert
WIP assembly/completion transactions that complete or return job assemblies, you must also
Oracle Inventory Open Interfaces and APIs 6-3

Open Transaction Interface
insert rows into the CST_COMP_SNAP_ INTERFACE table if the organization referenced
uses average costing. The system uses this information to calculate completion cost.

There are two modes you can use to process your transactions through the interface. In the
first processing mode, you populate the interface table only. Then the Transaction Manager
polls the interface table asynchronously looking for transactions to process, groups the
transaction rows, and launches a Transaction Worker to process each group. In the second
processing mode, you insert the rows in the interface table and call a Transaction Worker
directly, passing the group identifier of the interfaced transactions as a parameter so that the
worker can recognize which subset of transactions to process.

The Transaction Worker calls the Transaction Validator which validates the row, updates the
error code and explanation if a validation or processing error occurs, and derives or defaults
any additional columns.

Next, the Transaction Processor records the transaction details in the transaction history
table along with relevant current cost information. All material movement transactions
update inventory perpetual balances for the issue, receipt, or transfer locations.

Once the transaction has been successfully processed, the corresponding row is deleted from
the interface table. Finally, the transaction is costed by the transaction cost processor which
runs periodically, picking up all transactions from the history table that have not yet been
marked as ‘costed’.

Additional Transaction Processing Flow Steps
The following transactions require additional processing by the transaction processor or
other modules.

Inventory Issue Transactions Inventory Issue transactions consume any existing
reservations where the Transaction Source Type and Source match. For example, if you
reserved 10 boxes of paper for the Finance department, and then you issue 4 boxes to that
department, the reservation will automatically be partially consumed, with a remaining
balance of 6 reserved boxes.

Average Cost Transactions In average cost organizations, receipts and average cost
update transactions modify the item’s average cost using the current average cost, on-hand
quantity, and the transaction value and quantity (if appropriate) to calculate the new average.

WIP Issue Transactions WIP issue transactions also update quantity issued for all
material requirements on the job or repetitive schedule and charge the costs of issued
components to the job/schedule.
6-4 Oracle Manufacturing APIs and Open Interfaces Manual

Open Transaction Interface
WIP Completion Transactions WIP completion transactions update the job or
repetitive schedule completed quantities, launch appropriate backflush transactions, and
relieve costs of completed assembly from the job/schedule. If you are completing an ATO
assembly, you must specify the sales order demand details so that Oracle Inventory can
reserve the completed units to the appropriate sales order line/shipment.

If the WIP completion/return transaction completes or return job assemblies in an average
costing organization, the rows in the CST_COMP_SNAP_INTERFACE table are transferred
to the CST_COMP_SNAPSHOT table so that completion costs can be calculated.

Sales Order Shipment Transactions For sales order shipment transactions, the
Transaction Processor attempts to consume any reservations that may have been created for
an order by matching the Order, Line, Delivery, and Picking Line identifiers. If MRP is
installed, the processor also creates an interface row in MRP_RELIEF_INTERFACE that the
MRP Planning Manager uses to relieve the Master Demand Schedule.

Lot and Serial Transaction Detail Relationships
If you are transacting items under lot and/or serial control, you need to link the lot/serial
transaction detail rows to their parent row. You accomplish this by populating MTL_
TRANSACTIONS_INTERFACE.
TRANSACTION_INTERFACE_ID with a unique value to be used as the primary key to
link the child lot/serial rows. If the item is under lot control, you populate the foreign key
MTL_TRANSACTION_
LOTS_INTERFACE.TRANSACTION_INTERFACE_ID with the same value for all child
lot rows of the transaction and ensure that the total of all the lot quantities adds up to the
transaction quantity on the parent row. Similarly, if the item is under serial control, you
populate the foreign key MTL_SERIAL_NUMBERS_INTERFACE.
TRANSACTION_INTERFACE_ID with the value in the parent row and ensure that the total
number of serial numbers adds up to the transaction quantity of the parent row.

If the item is under both lot and serial control, the serial interface rows must belong to lot
parent rows. This means that the relationship between MTL_TRANSACTIONS_
INTERFACE and MTL_
TRANSACTION_LOT_NUMBERS remains the same as in the case where the item is under
only lot control, but you also need to populate each lot row with a unique value in MTL_
TRANSACTION_LOT_
NUMBERS.SERIAL_TRANSACTION_TEMP_ID. You then need to populate the foreign
key MTL_SERIAL_NUMBERS_INTERFACE.
TRANSACTION_INTERFACE_ID with the value in the parent lot row and ensure that the
total number of serial numbers adds up to the lot quantity in the parent row.
Oracle Inventory Open Interfaces and APIs 6-5

Open Transaction Interface
Completion Cost Detail Relationships
If you are completing or returning WIP assembly items for a job in an average costing
organization, you need to link the completion cost detail rows to their parent rows. You
accomplish this by populating MTL_TRANSACTIONS_INTERFACE. TRANSACTION_
INTERFACE_ID with a unique value to be used as the primary key to link the child
completion cost rows. You must also populate the foreign key CST_COMP_SNAP_
INTERFACE.TRANSACTION_INTERFACE_ID with the same value for all child
completion cost calculation rows.

Setting Up the Transaction Interface

Setting Up the Inventory Concurrent Manager
For optimal processing in the Inventory Transaction Interface, you need to set up your
concurrent manager to best handle your transaction volumes while balancing your
performance requirements and your system load restrictions. Oracle Inventory ships the
Transaction Manager to be run in Inventory’s own concurrent manager named Inventory
Manager. It is defaulted to run in the Standard work shift with Target Processes = 1 and
Sleep Time of 60 seconds. See: Transaction Managers, Oracle Inventory User’s Guide.

With this configuration, the Material Transaction Manager and all Transaction Workers that
are spawned must share the same processing queue. If you have the available resources, you
can substantially reduce the time to process your interfaced transactions by increasing the
target processes and reducing the concurrent manager sleep time using the Concurrent
Managers window. This will allow Transaction Workers to run in parallel with the
Transaction Manager and with each other. See: Defining Managers and their Work Shifts,
Oracle Applications System Administrator’s Guide.

Starting the Inventory Transaction Manager
Once you have set up the Inventory concurrent manager, you can launch the Inventory
Transaction Manager in the Interface Managers window. This launches the Material
Transaction manager and lets you specify the polling interval and the number of transactions
to be processed by each worker. After polling the MTL_TRANSACTIONS_INTERFACE
table for eligible rows, the Transaction Manager creates the necessary number of Transaction
Workers to process the load. See: Launching Transaction Managers, Oracle Inventory
User’s Guide.
6-6 Oracle Manufacturing APIs and Open Interfaces Manual

Open Transaction Interface
Submitting a Transaction Worker Directly as a Concurrent Process
The transaction worker can be directly called either from an Oracle Form or a c program.
You can also launch a worker from the operating system using the Application Object library
CONCSUB utility. You need to specify the following parameters in the given order.

Setting Up Your Sales Order Flexfield
Oracle Inventory uses a flexfield to hold the unique Sales Order name so that it does not
need to join back to the feeder Order Entry system. This means that you must set up
Inventory’s Sales Order flexfield (MKTS) using the Key Flexfield Segments window with
enough segments so that the combination is unique across all orders. See: Key Flexfield
Segments, Oracle Flexfields User’s Guide.

For example, Oracle Order Entry guarantees uniqueness within an installation, order type,
and order number. Consequently, standard installation steps require that you set up three
segments. If you can guarantee that one segment is sufficient (for example, Order Number),
then that is all you need to enable in your flexfield definition.

When you enter shipment transactions into the interface, you should use the Sales Order
segment values to identify the order. The Material Transaction Manager will validate against
MTL_SALES_ORDERS, and if the code combination does not already exist will create a
new one. All references to the order number internal to Inventory in reports and inquiries
will be based on this relationship.

Inserting into the Transaction Interface Tables
This section provides a chart for each interface table that lists all columns, followed by a
section giving a brief description of a subset of columns requiring further explanation. The
chart identifies each column’s datatype and whether it is Required, Derived, or Optional.
Many of the columns are conditionally required. Reference numbers corresponding to notes
immediately following the table help identify the mandatory conditions.

HEADER_ID This is the transaction_header_id that you want the
worker to process. If no header id is passed the worker
will assign itself.

TABLE Pass 1 for the Interface table and 2 for the temp table.

SOURCE_HEADER_ID This column will be used to select rows to process if
HEADER_ID is not specified.

SOURCE_CODE This column is used to select rows to process if header id
is not specified.
Oracle Inventory Open Interfaces and APIs 6-7

Open Transaction Interface
LOC_SEGMENT1toLOC_
SEGMENT20

Varchar2(40) 3

TRANSACTION_QUANTITY Number x

TRANSACTION_UOM Varchar2(3) x

PRIMARY_QUANTITY Number x

TRANSACTION_DATE Date x

ACCT_PERIOD_ID Number x

TRANSACTION_SOURCE_ID Number x

DSP_SEGMENT1toDSP_
SEGMENT30

Varchar2(40) x

TRANSACTION_SOURCE_NAME Varchar2(30) x

TRANSACTION_SOURCE_TYPE_
ID

Number x

TRANSACTION_ACTION_ID Number x

TRANSACTION_TYPE_ID Number x

REASON_ID Number x

TRANSACTION_REFERENCE Varchar2(240) x

TRANSACTION_COST Number 4

DISTRIBUTION_ACCOUNT_ID Number 5

DST_SEGMENT1toDST_
SEGMENT30

Varchar2(25) 5

CURRENCY_CODE Varchar(30) x

CURRENCY_CONVERSION_TYPE Varchar(30) x

CURRENCY_CONVERSION_RATE Number x

CURRENCY_CONVERSION_DATE Date x

USSGL_TRANSACTION_CODE Varchar(30) x

ENCUMBRANCE_ACCOUNT Number x

ENCUMBRANCE_AMOUNT Number x

VENDOR_LOT_NUMBER Varchar2(30) x

Column Name Type Required Derived Optional
Oracle Inventory Open Interfaces and APIs 6-9

Open Transaction Interface
TRANSFER_SUBINVENTORY Varchar2(10) 6

TRANSFER_ORGANIZATION Number 6

TRANSFER_LOCATOR Number 3,6

XFER_LOC_SEGMENT1toXFER_
LOC_SE

Varchar2(40) 3,6

SHIPMENT_NUMBER Varchar2(30) 7

TRANSPORTATION_COST Number x

TRANSPORTATION_ACCOUNT Number x

TRANSFER_COST Number x

FREIGHT_CODE Varchar2(25) x

CONTAINERS Number x

WAYBILL_AIRBILL Varchar2(20) x

EXPECTED_ARRIVAL_DATE Date x

NEW_AVERAGE_COST Number 8

VALUE_CHANGE Number 8

PERCENTAGE_CHANGE Number 8

DEMAND_ID Number 9

PICKING_LINE_ID Number

DEMAND_SOURCE_HEADER_ID Number 10

DEMAND_SOURCE_LINE Varchar2(30) 10

DEMAND_SOURCE_DELIVERY Varchar(30) 10

WIP_ENTITY_TYPE Number 11,12

SCHEDULE_ID Number 11,12

OPERATION_SEQ_NUM Number 11 12

REPETITIVE_LINE_ID Number 13

NEGATIVE_REQ_FLAG Number x

TRX_SOURCE_LINE_ID Number 9

TRX_SOURCE_DELIVERY_ID Number 9

Column Name Type Required Derived Optional
6-10 Oracle Manufacturing APIs and Open Interfaces Manual

Open Transaction Interface
CUSTOMER_SHIP_ID Number x

SHIPPABLE_FLAG Varchar2(1) x

LAST_UPDATE_DATE Date x

LAST_UPDATED_BY Number x

CREATION_DATE Date x

CREATED_BY Number x

LAST_UPDATE_LOGIN Number x

REQUEST_ID Number x

PROGRAM_APPLICATION_ID Number x

PROGRAM_ID Number x

COST_GROUP_ID Number 8

PROGRAM_UPDATE_DATE Date x

ATTRIBUTE_CATEGORY Varchar2(30) x

ATTRIBUTE1 to ATTRIBUTE15 Varchar2(150) x

BOM_REVISION Varchar2(1) 15

BOM_REVISION_DATE Date 15

ROUTING_REVISION Varchar2(1) 15

ROUTING_REVISION_DATE Date 15

ALTERNATE_BOM_DESIGNATOR Varchar2(1) 14

ALTERNATE_ROUTING_
DESIGNATOR

Varchar2(1) 14

ACCOUNTING_CLASS Varchar2(1) 15

DEMAND_CLASS Varchar2(1) 14

PARENT_ID Number 14

SUBSTITUTION_ID Number 14

SUBSTITUTION_ITEM_ID Number 14

SCHEDULE_GROUP Number 14

BUILD_SCHEDULE Number 14

Column Name Type Required Derived Optional
Oracle Inventory Open Interfaces and APIs 6-11

Open Transaction Interface
SOURCE_CODE
This column is required for Sales Order transactions to identify the source Order Entry
system. For other transaction types, you can enter any useful value for tracking purposes.
The values entered are transferred directly to the transaction history table.

SOURCE_HEADER_ID
You can use this column as an external system reference. The values entered are transferred
directly to the transaction history table.

SOURCE_LINE_ID
You can use this column as an external system reference. The values entered are transferred
directly to the transaction history table.

REFERENCE_CODE Number 14

FLOW_SCHEDULE Varchar2(1) 16

SCHEDULED_FLAG 17

Notes:
1 If under revision control
2 All transaction types except average cost update
3 If under locator control
4 Inventory Issues and Receipts in an average cost organization
5 Inventory Issues/Receipts of an asset item to/from an asset subinventory and sales order shipment transactions
6 Inventory direct transfers (inter- or intra-organization)
7 Intransit shipments
8 Average cost update transactions only
9 Sales order shipment transactions
10 To reserve/unreserve ATO items to a sales order upon completion/return from a WIP job
11 WIP component issues/returns
12 WIP assembly completions/returns
13 Repetitive schedules
14 For work order-less completions
15 For work order-less completions, derived if null
16 Must be set to Y
17 Must be set to 2

Column Name Type Required Derived Optional
6-12 Oracle Manufacturing APIs and Open Interfaces Manual

Open Transaction Interface
PROCESS_FLAG
This column controls whether rows in the interface table are processed. You should insert a
row that you intend to be processed with a value of 1 (Yes). The valid values are:

1 - Yes

2 - No

3 - Error

TRANSACTION_MODE
This column determines how the interfaced transactions will be processed. The valid
options are:

2 - Concurrent

3 - Background

Interface transactions marked for Background processing will be picked up by the
transaction manager polling process and assigned to a transaction worker. These
transactions will not be processed unless the transaction manager is running.

You use Concurrent transaction mode if you want to launch a dedicated transaction worker
to explicitly process a set of transactions. The Transaction Manager does not process
transactions marked for concurrent processing.

LOCK_FLAG
The Transaction Manager uses this column to manage the worker assignment process. You
should need to update this column only if a transaction has failed due to an exceptional
failure such as the system going down in the middle of transaction worker processing. In
this case, you will need to reset the LOCK_FLAG to 2 so your failed transactions can be
reprocessed.

TRANSACTION_HEADER_ID
This column groups transactions for assignment to specific transaction workers. Depending
on the value of TRANSACTION_MODE, this column is either required (concurrent mode)
or derived by the transaction manager (background mode). This column maps to MTL_
MATERIAL_TRANSACTIONS.TRANSACTION_SET_ID in the transaction history tables.

ERROR_CODE DERIVED
If a transaction error occurs, the Transaction Validator populates this column with short
descriptive text indicating the type of error that has occurred.
Oracle Inventory Open Interfaces and APIs 6-13

Open Transaction Interface
ERROR_EXPLANATION DERIVED
If a transaction error occurs, the Transaction Validator populates this column with an
explanation of the error. If an explanation is not provided, check the log file for details using
the View Requests window.

VALIDATION_REQUIRED
You can use this flag to control whether the Transaction Validator skips certain validation
steps for certain transaction types. The options are:

1 - Full validation

2 - Validate only columns required for derivation

If you leave this field null, Full validation is used.

TRANSACTION_INTERFACE_ID
This column is required for transactions of items under lot or serial control. The value in the
column in this table is used to identify the child rows in the lot or serial interface tables
MTL_TRANSACTION_LOTS_INTERFACE and MTL_SERIAL_NUMBERS_
INTERFACE.

If the transacted item is under lot control, this column maps to MTL_TRANSACTION_
LOTS_INTERFACE.
TRANSACTION_INTERFACE_ID. If the transacted item is under serial control and not lot
control, this column maps to MTL_SERIAL_NUMBERS_INTERFACE.
TRANSACTION_INTERFACE_ID.

TRANSACTION_QUANTITY
Enter the transaction quantity in the transaction unit of measure. The quantity should be
positive for receipts into inventory, and negative for both issues out of inventory and
transfers. Enter a quantity of 0 for Average Cost Update transactions.

TRANSACTION_UOM
You can enter the TRANSACTION_QUANTITY in any unit of measure that has conversion
rates defined to the item’s primary unit of measure. Use this column to specify the
transacted unit of measure even if it is the same as the primary unit of measure.

Note: See: Validation on page 6-26.
6-14 Oracle Manufacturing APIs and Open Interfaces Manual

Open Transaction Interface
PRIMARY_QUANTITY
This column is the transaction quantity in the item’s primary unit of measure calculated
using TRANSACTION_QUANTITY and TRANSACTION_UOM.

ACCT_PERIOD_ID
This column is derived using the entered TRANSACTION_DATE to determine within
which period the transaction occurred. The transaction date must be on or before the system
date at time of transaction processing, and the transaction date must lie within the
boundaries of an open period (in ORG_ACCT_PERIODS).

TRANSACTION_TYPE_ID
Enter the type of transaction you are executing. The transaction types and internal IDs
supported by the interface are:

Table 6–1 Transaction Types and Internal IDs

Transaction Type Internal ID

Account Issue 01

Account Alias Issue 31

Miscellaneous Issue 32

Issue Components to WIP 35

Return Assemblies to WIP 17

Account Receipt 40

Account Alias Receipt 41

Miscellaneous Receipt 42

Return Components from WIP 43

WIP Assembly Completion 44

Subinventory Transfer 02

Direct Inter-Organization Transfer 03

Intransit Shipment 21

Average Cost Update 80

Sales Order Shipment 33
Oracle Inventory Open Interfaces and APIs 6-15

Open Transaction Interface
You can identify the TRANSACTION_TYPE_ID for user-defined transactions by selecting
from MTL_TRANSACTION_TYPES where TRANSACTION_TYPE_NAME is the
transaction type you wish to use.

TRANSACTION_SOURCE_TYPE_ID
This column is derived from MTL_TRANSACTION_TYPES using the value you enter in
TRANSACTION_TYPE_ID.

TRANSACTION_SOURCE_NAME
This column is required for user-defined transaction source types. Enter the value of the
source name, such as an order number, to be displayed on all transaction reports and
inquiries.

TRANSACTION_SOURCE_ID
TRANSACTION_SOURCE_ID or the corresponding flexfield segment columns (DSP_
SEGMENT1 to DSP_SEGMENT30) are required for all transaction source types other than
those that are user-defined. You should enter the foreign key ID that points to the context
table identified by the transaction source type.

DSP_SEGMENT1 TO DSP_SEGMENT30
You can use these flexfield segment columns instead of TRANSACTION_SOURCE_ID to
enter the more user-friendly information. For example, if the interfaced transaction is for an
Issue to Account transaction type, you would enter the GL Code Combination segment
values in these columns instead of putting the Code GL Code Combination ID in
TRANSACTION_SOURCE_ID.

TRANSACTION_ACTION_ID
This column is derived from MTL_TRANSACTION_TYPES using the value you enter in
TRANSACTION_TYPE_ID.

Table 6–2 TRANSACTION_SOURCE_ID, Foreign Key References

Source Type Foreign Key Reference

Account GL_CODE_COMBINATIONS.CODE_COMBINATION_ID

Account Alias MTL_GENERIC_DISPOSITIONS.DISPOSITION_ID

Job or Schedule WIP_ENTITIES.WIP_ENTITY_ID

Sales Order MTL_SALES_ORDERS.SALES_ORDER_ID
6-16 Oracle Manufacturing APIs and Open Interfaces Manual

Open Transaction Interface
OPERATION_SEQ_NUM
For assembly completions and returns, this value is derived. For WIP component issues and
returns with routings, this value is required. For WIP routings, enter 1.

WIP_ENTITY_TYPE
For WIP component issues and returns, and WIP assembly completions and returns, enter
one of the following values:

1 - Standard discrete jobs

2 - Repetitive schedules

3 - Non-standard discrete jobs

4 - Work Order-less Schedule

REASON_ID
Use this column to specify a transaction reason from the predefined list of reasons in MTL_
TRANSACTION_REASONS.

TRANSACTION_REFERENCE
Use this column to enter any transaction reference information to be displayed in transaction
inquiries and reports.

TRANSACTION_COST
You can use this column to specify a transaction unit cost for average cost Inventory issues
and receipts. If you leave it blank, the current system unit cost is used.

DISTRIBUTION_ACCOUNT_ID
Use this column (or the flexfield segment columns) to specify the account to charge for the
cost of the Inventory transaction. It is required for user-defined transactions, and derived by
the Transaction Worker based on the transaction source type and source for Account
Issue/Receipt and Account Alias Issue/Receipt transactions.

DST_SEGMENT1 TO DST_SEGMENT30
You can use these flexfield segment columns instead of DISTRIBUTION_ACCOUNT_ID to
enter the more user-friendly information. For example, if the interfaced transaction is for an
Issue to Account transaction type, you would enter the GL Code Combination segment
Oracle Inventory Open Interfaces and APIs 6-17

Open Transaction Interface
values in these columns instead of putting the Code GL Code Combination ID in
DISTRIBUTION_ACCOUNT_ID.

CURRENCY_CODE
If your transaction cost is in a different currency than the functional currency of your set of
books, enter the currency code.

CURRENCY_CONVERSION_TYPE
If you enter a currency code other than the functional currency for your set of books, enter
the conversion type.

CURRENCY_CONVERSION_RATE
If you enter a currency code other than the functional currency for your set of books, enter
the conversion rate

CURRENCY_CONVERSION_DATE
Enter the currency conversion date for which the conversion rate is valid for the transaction.

VENDOR_LOT_NUMBER
Use this column as transaction reference information and/or to cross-reference supplier lot
numbers against internal lot numbers.

TRANSFER_ORGANIZATION
This column is required for all inter-organization transfers. Enter the destination
organization’s internal ID.

TRANSFER_SUBINVENTORY
This column is required for subinventory transfers within the same organization and direct
transfers from one organization to another. For these scenarios, enter the destination
subinventory.

TRANSFER_LOCATOR
This column is required for subinventory transfers within the same organization and direct
transfers from one organization to another when the item being transferred is under locator
control in the destination subinventory. For these scenarios, enter the destination locator
internal ID.
6-18 Oracle Manufacturing APIs and Open Interfaces Manual

Open Transaction Interface
XFER_LOC_SEGMENT1-XFER_LOC_SEGMENT20
When a transfer locator is required, you can optionally use these columns instead of
TRANSFER_LOCATOR when you want to use the user-friendly flexfield representation of
the transfer locator instead of the internal ID.

SHIPMENT_NUMBER
This column is required for intransit shipments. It groups shipment lines in RCV_
SHIPMENT_LINES under a parent shipment number in RCV_SHIPMENT_HEADERS.

The Transaction Worker will not process intransit transactions if a shipment header already
exists in RCV_SHIPMENT_HEADERS that matches SHIPMENT_NUMBER. If you want
to group shipment lines under the same header, you must ensure they are processed by the
same worker. You can accomplish this using the concurrent processing mode, using the
TRANSACTION_HEADER_ID to group your interface transactions, and directly calling a
Transaction Worker to process that group.

NEW_AVERAGE_COST
Average cost update transactions require that either NEW_AVERAGE_COST, VALUE_
CHANGE, or PERCENTAGE_CHANGE be populated, depending on the type of cost
update being performed.

VALUE_CHANGE
See NEW_AVERAGE_COST.

PERCENTAGE_CHANGE
See NEW_AVERAGE_COST.

DEMAND_ID
Use this column for sales order shipment transactions to identify the exact reservation row to
be relieved in MTL_DEMAND. If you do not have the DEMAND_ID information, leave
this column blank, and the Transaction Processor will try to match reservations to relieve by
checking MTL_DEMAND to see if there are any reservations where there is a match on:
Oracle Inventory Open Interfaces and APIs 6-19

Open Transaction Interface
TRX_SOURCE_LINE_ID
Use this column to specify details of reservations to be relieved with an issue transaction.
See DEMAND_ID.

TRX_SOURCE_DELIVERY_ID
Use this column to specify details of reservations to be relieved with an issue transaction.
See DEMAND_ID.

DEMAND_SOURCE_HEADER_ID
Use this column for completion (and returns) of ATO items from a Final Assembly Order if
the quantity you are completing is to be reserved to an existing sales order. Enter values in
DEMAND_SOURCE_HEADER_ID, DEMAND_SOURCE_LINE_ID, and DEMAND_
SOURCE_DELIVERY_ID that match the appropriate demand rows in MTL_DEMAND.
The transaction processor will automatically create a reservation for the completed quantity
to that sales order.

DEMAND_SOURCE_LINE
See DEMAND_SOURCE_HEADER_ID.

DEMAND_SOURCE_DELIVERY
See DEMAND_SOURCE_HEADER_ID.

Table 6–3 Table Mapping: MTL_TRANSACTIONS_INTERFACE to MTL_DEMAND

MTL_TRANSACTIONS_INTERFACE MTL_DEMAND

ORGANIZATION_ID ORGANIZATION_ID

INVENTORY_ITEM_ID INVENTORY_ITEM_ID

TRANSACTION_SOURCE_TYPE_ID DEMAND_SOURCE_TYPE_ID

TRANSACTION_SOURCE_ID DEMAND_SOURCE_HEADER_ID

TRX_SOURCE_LINE_ID DEMAND_SOURCE_LINE

TRANSACTION_SOURCE_NAME DEMAND_SOURCE_NAME

TRX_DELIVERY_ID DEMAND_SOURCE_DELIVERY
6-20 Oracle Manufacturing APIs and Open Interfaces Manual

Open Transaction Interface
BOM_REVISION
The bill revision and date determine which version of the bill is used to explode work
order-less component requirements.

ROUTING_REVISION
The routing revision and date determines which version of the routing is used to create work
order-less component requirements.

ALTERNATE_BOM_DESIGNATOR
An alternate bill of material is optional if alternates have been defined for the assembly you
are building.

ALTERNATE_ROUTING_DESIGNATOR
An alternate routing is optional if alternates have been defined for the assembly you are
building.

PARENT_ID
This column identifies the work order-less completion interface ID.

SUBSTITUTION_ID
Use this column to specify the substitution type

3 - Add: Add a component at the operation.

2 - Delete: Delete a component from the operation.

1 - Change: Substitute one component for another at the operation.

4 - Lot/Serial: Specify lot/serial number information for items.

SUBSTITUTION_ITEM_ID
This column identifies the inventory item number of the substitute item.

SCHEDULE_GROUP
This column can specify any active schedule group.

BUILD_SEQUENCE
For future use.
Oracle Inventory Open Interfaces and APIs 6-21

Open Transaction Interface
REFERENCE_CODE
For future use.

MTL_TRANSACTION_LOTS_INTERFACE
The following graphic describes the MTL_TRANSACTION_LOTS_INTERFACE table:

Table 6–4 Transaction Lot Numbers Interface

Column Name Type Required Derived Optional

TRANSACTION_INTERFACE_
ID

Number 3

SOURCE_CODE Varchar2(30) x

SOURCE_LINE_ID Number x

LOT_NUMBER Varchar2(30) x

LOT_EXPIRATION_DATE Date 1

TRANSACTION_QUANTITY Number x

PRIMARY_QUANTITY Number x

SERIAL_TRANSACTION_TEMP_ID Number 2

ERROR_CODE Varchar2(30) x

LAST_UPDATE_DATE Date x

LAST_UPDATED_BY Number x

CREATION_DATE Date x

CREATED_BY Number x

LAST_UPDATE_LOGIN Number x

REQUEST_ID Number x

PROGRAM_APPLICATION_ID Number x

PROGRAM_ID Number x

PROGRAM_UPDATE_DATE Date x

Notes:
1 If item is under lot expiration control
2If item is under both lot and serial control
6-22 Oracle Manufacturing APIs and Open Interfaces Manual

Open Transaction Interface
LOT_NUMBER
Enter the lot number that is being transacted.

TRANSACTION_INTERFACE_ID
Use this column to associate lot transaction detail rows with the parent transaction row in
MTL_TRANSACTIONS_INTERFACE.

SERIAL_TRANSACTION_TEMP_ID
This column is required only for items under both lot and serial control. It is used to identify
the child rows in MTL_SERIAL_NUMBERS_INTERFACE.

MTL_SERIAL_NUMBERS_INTERFACE
The following graphic describes the MTL_SERIAL_NUMBERS_INTERFACE Interface
table:
Oracle Inventory Open Interfaces and APIs 6-23

Open Transaction Interface
FM_SERIAL_NUMBER
Enter the starting serial number in the range. If you enter only the ‘from’ serial number, the
Transaction Processor assumes that only one serial number is being transacted.

TO_SERIAL_NUMBER
You can enter a ‘to’ serial number to specify a range. The transaction processor will attempt
to transact all serial numbers within the range of the right-most numeric digits.

TRANSACTION_INTERFACE_ID
Use this column to associate serial number transaction detail rows with their parent rows. If
the item is under both lot and serial control, this should point to MTL_TRANSACTION_
LOTS_INTERFACE
SERIAL_TRANSACTION_TEMP_ID. Otherwise, it should point to MTL_

Table 6–5 Transaction Serial Numbers Interface

Column Name Type Required Derived Optional

TRANSACTION_INTERFACE_ ID Number x

SOURCE_CODE Varchar2(30) x

FM_SERIAL_NUMBER Varchar2(30) x

TO_SERIAL_NUMBER Varchar2(30) x

SOURCE_LINE_ID Number x

VENDOR_SERIAL_NUMBER Varchar2(30) x

ERROR_CODE Varchar2(30) x

LAST_UPDATE_DATE Date x

LAST_UPDATED_BY Number x

CREATION_DATE Date x

CREATED_BY Number x

LAST_UPDATE_LOGIN Number x

REQUEST_ID Number x

PROGRAM_APPLICATION_ID Number x

PROGRAM_ID Number x

PROGRAM_UPDATE_DATE Date x
6-24 Oracle Manufacturing APIs and Open Interfaces Manual

Open Transaction Interface
TRANSACTIONS_INTERFACE.
TRANSACTION_INTERFACE_ID

VENDOR_SERIAL_NUMBER
You can use this column to enter vendor cross-reference information. The vendor serial
number is stored in the serial number table MTL_SERIAL_NUMBERS.

CST_COMP_SNAP_INTERFACE
The following graphic describes the CST_COMP_SNAP_INTERFACE Interface table:

Table 6–6 Completion Cost Calculation Interface

Column Name Type Required Derived Optional

TRANSACTION_INTERFACE_ ID Number x

WIP_ENTITY_ID Number x

OPERATION_SEQ_NUMBER Number x

LAST_UPDATE_DATE Date x

LAST_UPDATED_BY Number x

CREATION_DATE Date x

CREATED_BY Number x

LAST_UPDATE_LOGIN Number x

NEW_OPERATION_FLAG x

PRIMARY_QUANTITY x

QUANTITY_COMPLETED Number x

PRIOR_COMPLETION_QUANTITY x

PRIOR_SCRAP_QUANTITY x

REQUEST_ID Number x

PROGRAM_APPLICATION_ID Number x

PROGRAM_ID Number x

PROGRAM_UPDATE_DATE Date x
Oracle Inventory Open Interfaces and APIs 6-25

Open Transaction Interface
WIP_ENTITY_ID
The job number.

OPERATION_SEQ_NUMBER
You can use this column to enter operation sequence information. The operation sequence
number is stored in the WIP operations table WIP_OPERATIONS.

Validation
Oracle Inventory lets you choose the level of validation you want performed against
interfaced transaction rows. Using the VALIDATION_REQUIRED flag, you can specify
whether you want full validation or only partial validation of columns required for derivation
of other required columns. For example, ORGANIZATION_ID is always validated because
there are dependent attributes such as LOCATOR_ID that require a valid organization for
derivation. REVISION, on the other hand, has no dependencies, and therefore is not
validated if the VALIDATION_REQUIRED flag is not set.

The validation and derivation processes will provide an error code and description for all
transaction rows that fail explicit validation checks. If an error occurs during reservation
relief for a specific transaction, all rows in the transaction processing group will be errored
out with a common error message. This should happen, however, only if there is an Oracle
error or table deadlock during processing.

If an error occurs in the transaction processor, the entire transaction processing group is
marked with the error code, while the transaction row(s) that actually failed will have an
error explanation.

Resolving Failed Transaction Interface Rows

Viewing Failed Transactions
You can view both pending and failed Inventory transactions in the MTL_
TRANSACTIONS_INTERFACE table using the Pending Transactions window. If your
transactions errored out and you would like to resubmit them, you can do so using this
window. If you set ‘Resubmit=Yes’, the interface processing flags will automatically be
reset so the Transaction Manager will pick them up. See: Viewing Pending Transactions,
Oracle Inventory User’s Guide.

Fixing Failed Transactions Options
Errors in the interface may be caused by problems unrelated to your interfaced transactions.
For example, there may be validation that failed because an entity that was being checked
6-26 Oracle Manufacturing APIs and Open Interfaces Manual

Open Transaction Interface
had the wrong status (for example, disabled), or the failure could even be the result of a
system error, such as running out of space. In these cases, it may be acceptable to simply
resolve the conflict and resubmit the same interfaced rows by either using the Pending
Transactions window to resubmit your transactions, or by directly updating the PROCESS_
FLAG and LOCK_FLAG values via SQL*PLUS.

If, however, you need to make changes to the transaction data itself, you need to either delete
the failed transactions and resubmit them from the feeder system, or update the transaction
in the interface table using SQL*PLUS. When you resubmit updated transactions for
processing, all validation is performed again.
Oracle Inventory Open Interfaces and APIs 6-27

Open Replenishment Interface
Open Replenishment Interface
Oracle Inventory provides an open interface for you to easily load replenishment requests
from external systems such as a bar-code application. Such requests may be in the form of
stock-take counts or requisition requests for subinventories in which you do not track
quantities.

You may also use the Replenishment Interface to process requisition requests generated by
external applications for tracked subinventories.

Functional Overview
The following data flow diagram shows the key tables and programs that comprise the
Replenishment Interface:

Figure 6–2

You must write the load program that inserts a single row for each replenishment
count/request into the MTL_REPLENISH_HEADERS _INT table. A record for each item
included in the count header must be inserted into the MTL_REPLENISH_LINES_INT
table.

There are two modes you can use to send your replenishment counts through the interface.
These are Concurrent and Background modes.
6-28 Oracle Manufacturing APIs and Open Interfaces Manual

Open Replenishment Interface
Under Concurrent mode processing, you populate the interface tables for a specific
replenishment count and then call the replenishment validator from the Oracle Inventory
menu (Counting/Replenishment Counts/Process Interface). The validator processes the
replenishment count specified as a parameter at process submission, validating rows in both
the MTL_REPLENISH_HEADER_INT and MTL_REPLENISH_LINES_INT tables. The
validator derives any additional columns and updates the error flag if an error is detected.

For Background mode processing, you populate the interface tables and then let the
Replenishment Validator asynchronously poll the tables for replenishment counts to process.

If the replenishment count, both header and lines, passes all required validation, the records
are inserted into the MTL_REPLENISH_
HEADERS and MTL_REPLENISH_LINES tables and are deleted from the interface tables.
If an error is detected during the validation process, the header and corresponding
replenishment lines will be left in the interface table.

Once the lines are in the internal replenishment tables, you use the Replenishment Processor
as described in the Oracle Inventory User’s Guide to process the counts and create
requisitions. See: Entering and Processing Replenishment Counts, Oracle Inventory User’s
Guide.

Setting Up the Replenishment Interface
Access the Replenishment Interface through the Oracle Inventory menu
(Counting/Replenishment Counts/Process Interface). Select the type of request by choosing
Single Request. In the Request Name field, select Validate Replenishment Interface. In the
Parameters window, select Concurrent or Background as the Processing Mode and select the
Count Name for processing. Select Submit Request to begin processing. You can also use
the Schedule button to specify resubmission parameters that will control how frequently the
Replenishment Validator polls for records in the interface tables.

Inserting into the Replenishment Interface Tables
This section provides a chart for each interface table that lists all columns, followed by a
section giving a brief description of a subset of columns requiring further explanation. The
chart identifies each column’s datatype and whether it is Required, Derived, or Optional.

Several of the attributes in the interface tables can be populated using either the user-friendly
values or the internal identifiers. For example, you have the choice of specifying either the
flexfield segment representation or the internal identifier (e.g. INVENTORY_ITEM_ID) for
the required value. When specifying the organization, you may either use the organization
code or the internal identifier (e.g. ORGANIZATION_ID).
Oracle Inventory Open Interfaces and APIs 6-29

Open Replenishment Interface
If you populate the user friendly values, the Replenishment Validator will validate them and
will derive the internal identifiers. If the translation is available to the external system, it
may be advantageous to use the internal identifiers to improve performance.

Replenishment Headers Interface Tables
The following graphic describes the MTL_REPLENISH_HEADERS_INT table:

Table 6–7 Oracle Inventory Replenishment Headers Interface

Column Name Type Required Derived Optional

REPLENISHMENT_HEADER_ID Number 3

REPLENISHMENT_COUNT_NAME Varchar2(10) 3

COUNT_DATE Date 3

LAST_UPDATE_DATE Date 3

CREATION_DATE Date 3

CREATED_BY Number 3

LAST_UPDATE_LOGIN Number 3

LAST_UPDATED_BY Number 3

ORGANIZATION_ID Number 3

ORGANIZATION_CODE Varchar2(3) 3

SUBINVENTORY_CODE Varchar2(10) 3

SUPPLY_CUTOFF_DATE Date 3

PROCESS_STATUS Number 3

PROCESS_MODE Number 3

ERROR_FLAG Number 3

REQUEST_ID Number 3

PROGRAM_APPLICATION_ID Number 3

PROGRAM_ID Number 3

PROGRAM_UPDATE_DATE Date 3

DELIVERY_LOCATION_ID Number 3

DELIVERY_LOCATION_CODE Varchar2(20) 3
6-30 Oracle Manufacturing APIs and Open Interfaces Manual

Open Replenishment Interface
ERROR_FLAG
If a validation error occurs, the replenishment validator populates this column with an error
code. The error flag for a replenishment header will be set if either the validation of the
header fails or if the validation of any of the lines of the header fails.

ORGANIZATION_ID
This column identifies the internal identifier of the organization from which the
replenishment count originated. You must enter either the internal organization identifier or
the user friendly organization code.

ORGANIZATION_CODE
This column is the user friendly code for the organization that is the source of the
replenishment count. It may be used instead of the internal identifier, in which case the
internal identifier will be derived.

PROCESS_MODE
This column determines how the interfaced replenishment count will be processed. The
valid options are:

2 - Concurrent

3 - Background

Interface replenishment counts marked for Background processing will be picked up by the
replenishment validator polling process. The validator will pick up and process all
replenishment counts with a process mode of Background each time it runs.

You use Concurrent processing mode if you want to launch a dedicated replenishment
validator process to explicitly process a single replenishment count, identified as a parameter
to the program, from the interface table.

PROCESS_STATUS
This column is used to identify the current processing status of the replenishment count.
You should insert rows that you intend to be processed with a value of 2 (Pending). The
valid values for this column are:

1 - Hold

2 - Pending

3 - Processing

4 - Error
Oracle Inventory Open Interfaces and APIs 6-31

Open Replenishment Interface
5 - Completed

If you want to insert records into the interface tables but temporarily prevent them from
being processed, you can use this column by setting the value to 1 (Hold).

After the validator has run, it will set the value of this column to 5 (Completed). This status
is used whenever the process completes, whether validation errors were detected or not.

A status of 4 (Error) indicates an internal error occurred. This error indicates an exceptional
condition and should not occur.

REPLENISH_HEADER_ID
Enter a unique identifier for the replenishment count. This column is used to group the lines
of a replenishment count with the header. You may use the sequence MTL_REPLENISH_
HEADERS_S to obtain a unique identifier.

REPLENISH_COUNT_NAME
Enter a unique name for the replenishment count.

SUBINVENTORY_CODE
This column identifies the subinventory that is the source of the replenishment count.

SUPPLY_CUTOFF_DATE
Enter the date after which planned supply will not be considered in available quantity
calculations. A null value here indicates that you do not want to consider planned supply
when performing replenishment calculations.

DELIVERY_LOCATION_ID
Enter the internal identifier for the location to which the replenishment should be delivered.
You may enter the delivery location identifier, the user friendly delivery location code or
neither. If neither is specified, the default delivery location for the organization from which
the replenishment originated is defaulted.

DELIVERY_LOCATION_CODE
Enter the user friendly code for the delivery location of the replenishment. You may enter
this code instead of the internal identifier, in which case the internal identifier will be
derived. You may specify neither the code or the identifier, in which case the default
delivery location of the organization originating the replenishment will be used.

The following graphic describes the MTL_REPLENISH_LINES_INT table:
6-32 Oracle Manufacturing APIs and Open Interfaces Manual

Open Replenishment Interface
REPLENISHMENT_HEADER_ID
Enter the unique identifier of the replenishment count. The identifier entered here is the
foreign key reference which links the header table with the lines table to associate a group of
lines with a single header.

REPLENISHMENT_LINE_ID
Enter the identifier for the line within the replenishment count. You may use the sequence
MTL_REPLENISH_LINES_S to obtain a unique identifier for the line.
Oracle Inventory Open Interfaces and APIs 6-33

Open Replenishment Interface
INVENTORY_ITEM_ID
Enter the internal identifier for the item to be replenished.

SEGMENT{1-20}
You may use these flexfield columns instead of INVENTORY_ITEM_ID to enter the item
identifier in a more user-friendly form.

ORGANIZATION_ID
This column identifies the internal identifier of the organization from which the
replenishment count originated. If you do not enter a value here, the organization identifier
will be derived from the replenishment header.

COUNT_TYPE_CODE
Enter the type of the replenishment count entry. The valid count types are:

1 - On-hand Quantity

2 - Order Quantity

3 - Order Maximum

Use On-hand Quantity to identify counts that are the result of stock-takes of subinventories
in which you do not track on-hand quantities.

Use Order Quantity when you want to specify the quantity to be ordered. This count type
may be used with either tracked or non-tracked subinventories.

Use Order Maximum when you want to place an order for the min-max maximum quantity
specified for item in the subinventory specified. This count type may be used with either
tracked or non-tracked subinventories.

COUNT_QUANTITY
This column is used to specify the count quantity that corresponds to the count type entered
for the line. When the count type is On-hand Quantity, the count quantity is the on-hand
balance determined during the stock-take. When the count type is Order Quantity, the count
quantity represents the quantity to be ordered. This column is not used when the count type
is Order Maximum.

REFERENCE
Use this column to enter any replenishment count reference information.
6-34 Oracle Manufacturing APIs and Open Interfaces Manual

Open Replenishment Interface
COUNT_UNIT_OF_MEASURE
Enter the count unit of measure identifier. This column may be used to specify the full name
for the unit of measure. This column is meaningful only when a value is entered in the
COUNT_QUANTITY columns.

COUNT_UOM_CODE
This column is represents the unit of measure code used for the count. You may specify the
code when populating this table or you may use the full name for the unit of measure, in
which case this column will be derived. This column is meaningful only when a value is
entered in the COUNT_QUANTITY columns.

ERROR_FLAG
This flag indicates the error status of the validation of a replenishment line. The
replenishment validator populates this column with a line corresponding to the error detected
during validation.

Validation
Oracle Inventory validates the following conditions:

■ The value of REPLENISH_HEADER_ID must be unique among existing
replenishment counts

■ The value of REPLENISH_COUNT_NAME must be unique among existing count
headers

■ The value of LAST_UPDATED_BY must be a valid user name

■ ORGANIZATION_ID must be a valid identifier of an organization

■ SUBINVENTORY_CODE must refer to an existing subinventory

■ DELIVERY_LOCATION_ID must be a valid identifier of a location associated with the
organization generating the replenishment

■ There must be at least one line per header

■ The ORGANIZATION_ID at the header level must be the same as that at the line level

■ COUNT_TYPE_CODE must be either 1, 2, or 3 and must be consistent with whether
the subinventory is tracked or non-tracked

■ The value of COUNT_QUANTITY must be consistent with COUNT_TYPE_CODE
and must be greater than zero
Oracle Inventory Open Interfaces and APIs 6-35

Open Replenishment Interface
■ INVENTORY_ITEM_ID must refer to a transactable item in the organization specified

■ The item must exist in the subinventory and must be min-max planned in that
subinventory

■ The COUNT_UOM_CODE must be valid and conversions to primary UOM must exist

■ Each line must correspond to a header

Viewing Failed Transactions
Replenishment counts that fail the validation process will remain in the MTL_REPLENISH_
HEADERS_INT and MTL_REPLENISH_LINES_INT tables. You may use SQL*PLUS to
identify the headers that have failed by selecting those rows with a process_status of 5
(Complete). The reason for the failure will be reflected in the ERROR_FLAG column.

Possible values for the ERROR_FLAG column in the MTL_REPLENISH_HEADERS_INT
table are:

1 - Non-unique replenishment header id

2 - Non-unique replenishment count name

3 - Invalid user name

4 - Invalid organization identifier

5 - Invalid subinventory

7 - Header with no corresponding replenishment lines

10 - Header failed because line failed

18 - Delivery location is not valid

Possible values for the ERROR_FLAG column in the MTL_REPLENISH_LINES_INT
table are:

1 - No corresponding header id

3 - Invalid user name

8 - Invalid item identifier or item isn’t transactable

9 - Invalid unit of measure or no conversion to primary unit of measure exists

11 - No item specified in either identifier or segments

12 - Invalid count type

13 - On-hand count type used for tracked subinventory
6-36 Oracle Manufacturing APIs and Open Interfaces Manual

Open Replenishment Interface
14 - Invalid count quantity

15 - Lines organization header does not match header organization identifier

17 - Item is not specified in the subinventory or is not min-max planned in the subinventory

Fixing Failed Transactions
Frequently, errors in the interface are caused by problems external to the replenishment
count itself. For example, there may be validation that failed because an entity that was
being validated had the wrong status (i.e. disabled), or the failure could even be the result of
a system error, such as running out of space. In these cases, the resolution is simple; once
you have made the necessary changes, you simply need to resubmit the replenishment
validator process.

If, however, you need to make changes to the data in the interface table, you need to either
delete the failed records, correct them in the external feeder system and resubmit them, or
update the interface record in the interface table using SQL*PLUS. When you resubmit
updated transactions for processing, all validation will be performed again.
Oracle Inventory Open Interfaces and APIs 6-37

Open Item Interface
Open Item Interface
You can import items from any source into Oracle Inventory and Oracle Engineering using
the Item Interface. With this interface, you can convert inventory items from another
inventory system, migrate assembly and component items from a legacy manufacturing
system, convert purchased items from a custom purchasing system, and import new items
from a Product Data Management package. The Item Interface validates your data, insuring
that your imported items contain the same item detail as items you enter manually in the
Master Item window. See: Defining Items, Oracle Inventory User’s Guide.

The purpose of this essay is to explain how to use the Item Interface.

Functional Overview
The Item Interface lets you import items into Oracle Inventory and, if installed at your site,
Oracle Engineering. When you import items through the Item Interface, you create new
items in your item master organization or assign existing items to additional organizations.
You can specify values for all the item attributes, or you can specify just a few attributes and
let the remainder default or remain null. The Item Interface also lets you import revision
details, including past and future revisions and effectivity dates. Validation of imported
items is done using the same rules as the item definition windows, so you are insured of
valid items. See: Overview of Engineering Prototype Environment, Oracle Engineering
User’s Guide and Defining Items, Oracle Inventory User’s Guide.

The Item Interface reads data from two tables for importing items and item details. You use
the MTL_SYSTEMS_ITEM_INTERFACE table for your new item numbers and all item
attributes. This is the main item interface table, and may be the only table you choose to
use. If you are importing revision details for your new items, you can use the MTL_ITEM_
REVISIONS_INTERFACE table. This table is used only for revision information, and is
not required. A third table, MTL_INTERFACE_ERRORS, is used for error tracking of all
items that the Item Interface fails.

Before you use the Item Interface, you must write and run a custom program that extracts
item information from your source system and inserts it into the MTL_SYSTEM_ITEM_
INTERFACE table, and (if revision detail is included) the MTL_ITEMS_REVISIONS_
INTERFACE table. After you load the items into these interface tables, you run the Item
Interface to import the data. The Item Interface assigns defaults, validates data you include,
and then imports the new items.
6-38 Oracle Manufacturing APIs and Open Interfaces Manual

Open Item Interface

You can also use the Item Interface to import item material cost, material overhead, and
revision details.

Setting Up the Item Interface

Create Indexes for Performance
You should create the following indexes to improve Item Interface performance.

First, determine which segments are enabled for the System Items flexfield.

Then, for example, if you have a two-segment flexfield, with segment8 and segment12
enabled, you would do the following:

SQL> create unique index MTL_SYSTEM_ITEMS_UC1 on mtl_system_items (organization_id,
segment8, segment12);
SQL> create unique index MTL_SYSTEM_ITEMS_INTERFACE_UC1 on mtl_system_items_interface
(organization_id, segment8, segment12);

If you plan to populate the ITEM_NUMBER column in mtl_system_items_interface instead
of the item segment columns, do not create the MTL_SYSTEM_ITEMS_INTERFACE_
UC1 unique index. Instead, create MTL_SYSTEM_ITEMS_INTERFACE_NC1 non-unique
index on the same columns.

Start the Concurrent Manager
Since you launch and manage the Item Interface concurrent program through the concurrent
manager, you must ensure that the concurrent manager is running before you can import any
items.

Set Profile Option Defaults
Some columns use profile options as default values. You must set these profiles if you want
them to default. See: Oracle Inventory Profile Options, Oracle Inventory User’s Guide and
Overview of Inventory Setup, Oracle Inventory User’s Guide.

Note: You must import items into a master organization before you
import items into additional organizations. You can accomplish this by
specifying only your master organization on a first pass run of the Item
Interface. Once this has completed, you can run the Item Interface again,
this time specifying an additional or all organizations.
Oracle Inventory Open Interfaces and APIs 6-39

Open Item Interface
Item Interface Runtime Options
To run the Item Interface, select Import Items from the Inventory menu or select Import
Items in the Request Name field in the All Reports window. See: Importing Customer Items,
Oracle Inventory User’s Guide.

When you run the Item Interface, you are prompted for report parameters. These are runtime
options for the Item Interface:

All Organizations

Validate Items

Process Items

Yes Run the interface for all organization codes in the item interface table.

No Run the interface only for the organization you are currently in. Item
interface rows for organizations other than your current organization
are ignored.

Yes Validate all items and their data residing in the interface table that have
not yet been validated. If items are not validated, they will not be
processed into Oracle Inventory.

No Do not validate items in the interface table. Note that items that have
not been validated will not be processed into Oracle Inventory. You
would use this option if you had previously run the item interface and
responded Yes for Validate Items and No for Process Items, and now
want to process your items.

Yes All qualifying items in the interface table are inserted into Oracle
Inventory.

No Do not insert items into Oracle Inventory. Use this option, along with
Yes for Delete Processed Items, to remove successfully processed
rows from the interface table without performing any other processing.
You can also use this option, along with Yes for Validate Items, if you
want to validate items without any processing.
6-40 Oracle Manufacturing APIs and Open Interfaces Manual

Open Item Interface
Delete Processed Rows

Process Set
Enter a number for the set id for the set of rows you want to process. The program picks up
the rows marked with that id in the SET_PROCESS_ID column. If you leave this field
blank, all rows are picked up for processing regardless of the SET_PROCESS_ID column
value.

Inserting into the Item Interface Table

Item Interface Table Description
The item interface table MTL_SYSTEM_ITEMS_INTERFACE contains every column in
the Oracle Inventory item master table, MTL_SYSTEM_ITEMS. The columns in the item
interface correspond directly to those in the item master table. Except for ITEM_NUMBER
or SEGMENTn columns, ORGANIZATION_CODE or ORGANIZATION_ID,
DESCRIPTION, PROCESS_FLAG, and TRANSACTION_TYPE, all of these columns are
optional, either because they have defaults that can be derived, or because the corresponding
attributes are optional and may be left null.

The item costing columns (those that begin MATERIAL_...) and the REVISION column
are used for importing item costs and revisions and are discussed in a later section of this
chapter.

You may also put in details about other interface tables not used by the Item Interface.

As currently running, the interface does not support the MTL_CROSS_REFERENCE_
INTERFACE, MTL_ITEM_CATEGORIES_INTERFACE, or MTL_SECONDARY_LOCS_
INTERFACE.

The MTL_ITEM_CATEGORIES_INTERFACE is used by the Item interface internally, but
should not be populated by the user.

Yes Delete successfully processed items from the item interface tables.

No Leave all rows in the item interface tables.
Oracle Inventory Open Interfaces and APIs 6-41

Open Item Interface

Required Data
Every row in the item interface table must identify the item and organization. To identify the
item when importing it, you may specify either the ITEM_NUMBER or SEGMENTn
columns—the Item Interface generates the INVENTORY_ITEM_ID for you. Specifying
either the ORGANIZATION_ID or ORGANIZATION_CODE adequately identifies the
organization. When more than one of these columns has been entered and they conflict,
ITEM_NUMBER overrides SEGMENTn and ORGANIZATION_ID overrides
ORGANIZATION_CODE. It is strongly recommended that you use SEGMENT column
instead of ITEM_NUMBER. See: Key Flexfield Segments, Oracle Flexfields User’s Guide.

Table 6–9 Partial List of Columns, Oracle Inventory Item Interface

MTL_SYSTEM_ITEMS_INTERFACE

(Partial List of Columns) Column Name Type Required Derived Optional

ITEM_NUMBER Varchar2(81) conditionally

DESCRIPTION Varchar2(240) conditionally

MATERIAL_COST Number x

MATERIAL_OVERHEAD_RATE Number x

MATERIAL_OVERHEAD_SUB_ELEM Varchar2(50) x

MATERIAL_OVERHEAD_SUB_ELEM_ID Number x

MATERIAL_SUB_ELEM Varchar2(50) x

MATERIAL_SUB_ELEM_ID Number x

ORGANIZATION_CODE Varchar2(3) conditionally

PROCESS_FLAG Number x

REVISION Varchar2(3) x

TRANSACTION_ID Number x

TRANSACTION_TYPE Varchar2(5) x

SET_PROCESS_ID Number x

Note: For information about columns not discussed in the Interface
Manual, see Table and View Definitions, Oracle Inventory Technical
Reference Manual.
6-42 Oracle Manufacturing APIs and Open Interfaces Manual

Open Item Interface

When you import a new item, you are also required to specify the DESCRIPTION. This has
to be the same as the master record when you import rows from the child organizations if the
description attribute is maintained at the item master level. Of course, if the description is at
the item-organization level, you are always able to override the master organization
description by giving this column a value.

There are two other columns the Item Interface uses to manage processing. They are
TRANSACTION_TYPE, which tells the Item Interface how to handle the row, and
PROCESS_FLAG, which indicates the current status of the row.

Always set the TRANSACTION_TYPE column to CREATE, to create an item record (true
when both importing a new item and assigning an already existing item to another
organization). This is the only value currently supported by the Item Interface.

The Item Interface uses the PROCESS_FLAG to indicate whether processing of the row
succeeded or failed. When a row is ready to be processed, give the PROCESS_FLAG a value
of 1 (Pending), so that the Item Interface can pick up the row and process it into the
production tables.

Note: If you enter a value for the ITEM_NUMBER column and you are
using a multi-segment item, you must insert the system item flexfield
separator between each segment of your item number. For example, if you
are using a two segment item and have defined a dash (-) as your separator,
a typical item would be entered as 1234-5678. When the Item Interface
derives the item’
Oracle Inventory Open Interfaces and APIs 6-43

Open Item Interface
A full list of values for the PROCESS_FLAG is in Table 1–14, but you are unlikely to see all
of these.

Other columns, although required in the production tables, are not required in the item
interface table, because they have default values or their values can be derived from other
sources. Check the defaults and derived values carefully, as they may not be the values you
desire.

If the Item Interface successfully processes a row in the item interface table or the revision
interface table, the program sets the PROCESS_FLAG to 7 (Import succeeded) for the row.
If the Item Interface cannot insert a row into the production table, the PROCESS_FLAG
column for the failed row is set to 4 (Import failed). If a row in the interface table fails
validation, the PROCESS_FLAG column is set to 3 (validation failed). A row is inserted into
the MTL_INTERFACE_ERRORS table for all failed rows. You can review and update any
failed rows in each interface table using custom reports and programs.

Derived Data
Many columns have defaults that the Item Interface uses when you leave that column null in
the item interface table. Columns with defaults are listed in Table 6–11 .

Table 6–10 Meaning of PROCESS_FLAG Values

Code Meaning

1 Pending

2 Assign complete

3 Assign/validation failed

4 Validation succeeded; import failed

5 Import in process

7 Import succeeded

Table 6–11 Column Defaults in the Item Interface

MTL_SYSTEM_ITEMS_INTERFACE

(Partial List of Columns) Column
Name Default Value Value Displayed in Window

SUMMARY_FLAG 1 Y

ENABLED_FLAG Y

PURCHASING_ITEM_FLAG N No
6-44 Oracle Manufacturing APIs and Open Interfaces Manual

Open Item Interface
SHIPPABLE_ITEM_FLAG N No

CUSTOMER_ORDER_FLAG N No

INTERNAL_ORDER_FLAG N No

SERVICE_ITEM_FLAG N No

SERVICE_STARTING_DELAY_DAYS 0 0

INVENTORY_ITEM_FLAG N No

ENG_ITEM_FLAG 2 N No

INVENTORY_ASSET_FLAG N No

PURCHASING_ENABLED_FLAG N No

CUSTOMER_ORDER_ENABLED_FLAG N No

INTERNAL_ORDER_ENABLED_FLAG N No

SO_TRANSACTIONS_FLAG N No

MTL_TRANSACTIONS_ENABLED_FLAG N No

STOCK_ENABLED_FLAG N No

BOM_ENABLED_FLAG N No

BUILD_IN_WIP_FLAG N No

WIP_SUPPLY_TYPE 1 Push

REVISION_QTY_CONTROL_CODE 1 Not under
revision quantity control

ALLOW_ITEM_DESC_UPDATE_FLAG from PO_SYSTEM_PARAMETERS_
ALL.

ALLOW_ITEM_DESC_UPDATE_
FLAG

from Purchasing Options, otherwise Yes

RECEIPT_REQUIRED_FLAG from PO_SYSTEM_PARAMETERS_
ALL.

RECEIVING_FLAG

from Purchasing Options, otherwise No

RFQ_REQUIRED_FLAG from PO_SYSTEM_PARAMETERS_
ALL.

RFQ_REQUIRED_FLAG

from Purchasing Options, otherwise No

LOT_CONTROL_CODE 1 No lot control

SHELF_LIFE_CODE 1 No shelf life control

Table 6–11 Column Defaults in the Item Interface

MTL_SYSTEM_ITEMS_INTERFACE

(Partial List of Columns) Column
Name Default Value Value Displayed in Window
Oracle Inventory Open Interfaces and APIs 6-45

Open Item Interface
SERIAL_NUMBER_CONTROL_CODE 1 No serial number control

RESTRICT_SUBINVENTORIES_CODE 2 Subinventories not restricted
to predefined list

RESTRICT_LOCATORS_CODE 2 Locators not restricted
to predefined list

LOCATION_CONTROL_CODE 1 No locator control

PLANNING_TIME__FENCE_CODE 4 User-defined time fence

PLANNING_TIME__FENCE_DAYS 1 1

BOM_ITEM_TYPE 4 Standard

PICK_COMPONENTS_FLAG N No

REPLENISH_TO_ORDER_FLAG N No

ATP_COMPONENTS_FLAG N No

ATP_FLAG N No

PRIMARY_UNIT_OF_MEASURE from profile
INV: Default Primary Unit of Measure

from Personal Profile Values

ALLOWED_UNITS_LOOKUP_CODE 3 Both standard and item specific

COST_OF_SALES_ACCOUNT from MTL_PARAMETERS.
COST_OF_SALES_ACCOUNT

from Organization Parameters

SALES_ACCOUNT_DSP from
MTL_PARAMETERS.SALES_

ACCOUNT

from Organization Parameters

ENCUMBRANCE_ACCOUNT from
MTL_

PARAMETERS.ENCUMBRANCE_
ACCOUNT

from Organization Parameters

EXPENSE_ACCOUNT from
MTL_PARAMETERS.EXPENSE_

ACCOUNT

from Organization Parameters

LIST_PRICE_PER_UNIT 0 0

INVENTORY_ITEM_STATUS_CODE from profile
INV: Default Item Status

from Personal Profile Values

INVENTORY_PLANNING_CODE 6 Not planned

PLANNING_MAKE_BUY_CODE 2 Buy

Table 6–11 Column Defaults in the Item Interface

MTL_SYSTEM_ITEMS_INTERFACE

(Partial List of Columns) Column
Name Default Value Value Displayed in Window
6-46 Oracle Manufacturing APIs and Open Interfaces Manual

Open Item Interface
MRP__SAFETY_STOCK_CODE 1 Non-MRP planned

TAXABLE_FLAG Y from Purchasing Options, otherwise No

MATERIAL_BILLABLE FLAG M Material

EXPENSE_BILLABLE_FLAG N No

TIME_BILLABLE_FLAG N No

SERVICE_DURATION 0 0

MARKET_PRICE 0 0

PRICE_TOLERANCE_PERCENT 0 0

SHELF_LIFE_DAYS 0 0

RESERVABLE_TYPE 1 Reservable

REPETITIVE_PLANNING_FLAG N No

ACCEPTABLE_RATE_DECREASE 0 0

ACCEPTABLE_RATE_INCREASE 0 0

END_ASSEMBLY_PEGGING_FLAG N None

POSTPROCESSING_LEAD_TIME 0 0

VENDOR_WARRANTY_FLAG N No

SERVICEABLE_COMPONENT_FLAG N No

SERVICEABLE_PRODUCT_FLAG Y Yes

PREVENTIVE_MAINTENANCE_FLAG N No

SHIP_MODEL_COMPLETE N No

RETURN_INSPECTION_REQUIREMENT 2 Inspection not required

PRORATE_SERVICE_FLAG N No

INVOICEABLE_ITEM_FLAG N No

INVOICE_ENABLED_FLAG N No

MUST_USE_APPROVED_VENDOR_FLAG N No

OUTSIDE_OPERATION_FLAG N No

COSTING_ENABLED_FLAG N No

Table 6–11 Column Defaults in the Item Interface

MTL_SYSTEM_ITEMS_INTERFACE

(Partial List of Columns) Column
Name Default Value Value Displayed in Window
Oracle Inventory Open Interfaces and APIs 6-47

Open Item Interface
You can import item descriptive flexfield values when you have implemented a descriptive
flexfield for items. To do this, simply include values for the descriptive flexfield columns
(ATTRIBUTE_CATEGORY and ATTRIBUTEn columns) in the item interface table. No
validation is performed on descriptive flexfield values.

In addition, the Item Interface uses the item’s status (INVENTORY_ITEM_STATUS_
CODE) to determine the value of attributes under status control. If an attribute is under
status control, then the attribute value always derives from the item’s status, and any value in
the attribute column of the item interface table is ignored. If an attribute is under default
status control, then the attribute value derives from the item’s status only if there is no value
in the attribute column of the item interface table. If an attribute is not under any status
control, then the item status has no effect on the attribute’s value for the imported item.

CYCLE_COUNT_ENABLED_FLAG N No

AUTO_CREATED_CONFIG_FLAG N No

MRP_PLANNING_CODE 6 Not planned

CONTAINER_ITEM_FLAG N No

VEHICLE_ITEM_FLAG N No

END_ASSEMBLY_PEGGING_FLAG N None

SERVICE_DURATION 0 0

SET_PROCESS_ID 0

Notes:
1Defaulted to Y by the Item Interface, but the Master Items window defaults N for this column.
2Defaulted to N by the Item Interface, but in the Master Items window the default value depends on whether the window is accessed from
Oracle Engineering.

Table 6–11 Column Defaults in the Item Interface

MTL_SYSTEM_ITEMS_INTERFACE

(Partial List of Columns) Column
Name Default Value Value Displayed in Window
6-48 Oracle Manufacturing APIs and Open Interfaces Manual

Open Item Interface

Whether you import a new item to an master organization or assign an existing item to a
non-master organization, the Item Interface always enters a unique numeric identifier in the
TRANSACTION_ID column of the item interface table, and the concurrent request number
in the REQUEST_ID column of the item master table.

Item Categories
When the Item Interface imports an item, it also assigns the item to the mandatory category
sets based on the item defining attributes. The default category for each category set is used.
The Item Interface does not allow you to assign items to other category sets, nor does the
interface allow you to specify an item’s category value. See: Defining Category Sets, Oracle
Inventory User’s Guide and Defining Default Category Sets, Oracle Inventory User’s Guide.

For example, suppose you define a category set Inventory with a default category of glass,
and you designate Inventory as the mandatory category set for inventory items. When the
interface imports an inventory item (INVENTORY_ITEM_FLAG = Y), the item is assigned
to the glass category in the Inventory category set, and a corresponding row is inserted into
MTL_ITEM_CATEGORIES.

Note: If an attribute is under status control, it still must follow the
attribute dependency rules. For example, if the BOM_ENABLED_FLAG
is under status control, and a status is used setting BOM_ENABLED_
FLAG to Yes, the INVENTORY_ITEM_FLAG must be set to Yes for the
imported item. If the item has INVENTORY_ITEM_FLAG set to No (or it
is left null and therefore defaults to No), the Item Interface processes the
item with the BOM_ENABLED_FLAG set to No. This is because the
attribute dependency rules stipulate that BOM_ENABLED_FLAG can be
only Yes for an Inventory Item.

Note: When you assign an item to a child organization, all item-level
attributes default down from the master organization—but only when the
attribute column is null in the item interface table. If you supply a value
for a item-level attribute in a child organization record, the Item Interface
rejects the record as an error. The exception is status attributes under status
control. These attributes always derive from the item’s status, never from
the master record. See Table 6–11 for the list of defaults supplied by the
Item Interface.
Oracle Inventory Open Interfaces and APIs 6-49

Open Item Interface
When using the Item Interface to assign an existing item to another organization, the item is
also assigned to mandatory category sets with the default category. As described above, the
item defining attributes determine to which mandatory category sets the item is assigned.
Even if the item is assigned to a item level category set (non-mandatory) in the master
organization, it is not assigned to that category set in the item’s new organization.

Validation
When you import an item, the Item Interface validates the data and any derived values the
same way manually entered items are validated. This validation ensures that:

■ Required columns have an included or defaulted value

■ Control levels are reflected in item attribute values

■ Status control settings for status attributes are maintained

■ Interdependences between item attribute values are consistent

When you import items, the Item Interface program validates all rows in the table that have a
PROCESS_FLAG set to 1 (Pending). The interface first assigns the default values to the
derived columns of the row, then updates the value of the PROCESS_FLAG column to 2
(Assign Succeeded).

The Item Interface then validates each row. If a row in the interface table fails validation, the
program sets the PROCESS_FLAG to 3 (Assign/Validation Failed) and inserts a row into the
error table.

For all successfully validated rows, the interface inserts the rows into Oracle Inventory’s
item master table, MTL_SYSTEM_ITEMS. If a row cannot be inserted into the item master
table, the program sets the PROCESS_FLAG to 4 (Import Failed) and inserts a row into the
error table.

Note: Before you can import an item into a child organization, it must
exist in the master organization. You cannot import an item into both a
master organization and a child organization at the same time. If you
populate the item interface table with both master and child item records,
you should run the Item Interface for the master organization only. After it
has successfully finished running, run the interface again for all
organizations. This second run inserts the items into the child
organizations. See: Defining Items, Oracle Inventory User’s Guide
6-50 Oracle Manufacturing APIs and Open Interfaces Manual

Open Item Interface
After this program inserts the imported item into the item master table, the row is deleted or,
depending on the runtime option, the PROCESS_FLAG is set to 7 (Import Succeeded).

To minimize the number of rows stored in the interface table, you can specify at run time
that the program delete successfully processed records after insertion. If you do not delete
successfully processed records automatically, you can write custom programs that report and
delete any successfully imported rows. The program can search for rows with a PROCESS_
FLAG value of 7 (Import Succeeded), list the rows in a report, and then delete them from the
table. By defining a report set in Oracle Application Object Library, you can automatically
run the custom program after each submission of the Item Interface. You can also run
multiple Item Interface processes. See: Multi-Thread Capability below.

Importing Additional Item Details
You can import additional cost and revision details for an imported item using interface
tables listed in Table 6–12. The Item Interface imports the details specified in these tables at
the same time that it imports the items themselves. The program validates all rows you insert
into the interface tables, derives additional columns, and creates the item and item details in
Oracle Inventory.

Before importing additional item details, you must complete the same setup steps required
for manually defining these item details. For example, you must define your cost types and
activities before you can assign item costs. The default cost category set must be specified
using the Default Category Sets window, and the starting Revision must be set for all
organizations. See: Overview of Inventory Setup, Oracle Inventory User’s Guide, Defining
Default Category Sets, Oracle Inventory User’s Guide, and Defining Item Revisions, Oracle
Inventory User’s Guide.

Table 6–12 Oracle Inventory Item Details Interface

Item Detail Interface Table Number of Rows per Item

Costs MTL_SYSTEM_ITEMS_INTERFACE 1

Revisions MTL_SYSTEM_ITEMS_INTERFACE
(for imported items only)

1

MTL_ITEM_REVISIONS_INTERFACE 1 or more

Note: Although there are many other tables in Oracle Inventory whose
names may imply use, the tables listed in Table 6–12 are the only
interface tables used by the Item Interface to import item details.
Oracle Inventory Open Interfaces and APIs 6-51

Open Item Interface
The Item Interface validates all required data and some optional data included in the item
detail interface tables. When you import your cost or revision data, this program validates
the included or derived values the same way Oracle Inventory validates manually entered
details.

Importing Cost Details
When the Item Interface imports an item, it may also import costing information into Oracle
Cost Management tables. The interface may import this costing information automatically
using organization and category defaults, or you may specify the information for the item
itself in the item interface table.

If you set up a default material overhead rate for the item’s organization or for the default
cost category, this material overhead rate is inserted into the cost details table, CST_ITEM_
COST_DETAILS, and summarized in the item costs table, CST_ITEM_COSTS. See:
Defining Material Sub-Elements, Oracle Cost Management User’s Guide and Defining
Overhead, Oracle Cost Management User’s Guide.

You may specify one material cost and one material overhead rate for the item directly in the
item interface table itself. Remember to include the material sub-element for the material
cost and overhead rate by specifying the sub-element.

The interface imports the basis type for the material sub-elements and material overhead
subelements from the BOM_RESOURCES table. If the default basis type is not defined, the
basis type of these sub-elements is set to Item and Total Value respectively.

Importing Revision Details
You can import detailed revision history with your new items in any one of the following
ways:

■ Specify revisions and effectivity dates in the revision interface table

■ Specify the current revision for each item in the item interface table

■ Do not specify any revisions and let the Item Interface default the revision based on the
starting revision defined in the Organization Parameters window. See: Organization
Parameters Window, Oracle Inventory User’s Guide.

To import multiple item revisions and effectivity dates, use the revision interface table,
MTL_ITEM_REVISIONS_INTERFACE. You may also include ECN information (see
Table 6–13). You need to create your own program for populating this table.

Since revisions exist at the item-organization level, you need revision data for each
item-organization you are updating. Include a row for each revision (with an effectivity date)
to import, in ascending order. In other words, for each item-organization combination,
6-52 Oracle Manufacturing APIs and Open Interfaces Manual

Open Item Interface
revision A must have an effectivity date less than or equal to revision B, and so on. Each row
in this table must correspond to a row in the item interface table. Each row must reference
the item’s ITEM_NUMBER and ORGANIZATION_ID or ORGANIZATION_CODE.

To import an item and its current revision only, include a value for the REVISION column in
the item interface table. The Item Interface automatically creates this revision with an
effective date equal to the system date when it imports the item. (Use the revision interface
table described above if you want to specify a revision effectivity date.)

If you choose not to use the revision interface table, and do not include a revision in the item
interface table, the Item Interface assigns each item a beginning revision, using the default
specified in the Organization Parameters. The system date is the effectivity date. Once
established, you cannot add revisions with effectivity dates earlier than the date assigned by
the Item Interface.

As with the item interface table, the column PROCESS_FLAG indicates the current state of
processing for a row in the revision interface table. Possible values for the column are listed
in Table 6–10.

When you insert rows into the revision interface table, you should set the PROCESS_FLAG
to 1 (Pending) and TRANSACTION_TYPE to CREATE.

Note: When importing multiple revisions for the same item, if one of the
revisions fails validation, all revisions for that item fail.

Note: Although most item information defaults from the master
organization when you assign an existing item to a child organization, the
Item Interface does not default an item’s revision detail from the master
organization. See: Defining Item Revisions, Oracle Inventory User’s
Guide.
Oracle Inventory Open Interfaces and APIs 6-53

Open Item Interface
You can import revision descriptive flexfield values when you have implemented a
descriptive flexfield for revisions. To do this, simply include values for the descriptive
flexfield columns (ATTRIBUTE_CATEGORY and ATTRIBUTEn columns) in the revision
interface table when you import revisions.

The Item Interface may also be used to create revisions for existing items. Only revision
labels and effectivity dates higher than existing revisions may be imported. To do this,
simply load revision detail for the existing items into MTL_ITEM_REVISIONS_
INTERFACE and run the Item Interface.

Resolving Failed Interface Rows
If a row fails validation, the Item Interface sets the PROCESS_FLAG to 3 (Assign/validation
failed) and inserts a row in the interface errors table, MTL_INTERFACE_ERRORS. To
identify the error message for the failed row, the program automatically populates the
TRANSACTION_ID column in this table with the TRANSACTION_ID value from the
corresponding item interface table. For example, if a row in the item interface table fails, the
program inserts a row into the interface errors table with the failed row’s TRANSACTION_
ID as the error row’s TRANSACTION_ID. Each error in the interface errors table has a

Table 6–13 Column-Mappings from Revision Interface Table to Oracle Inventory

MTL_ITEM_REVISIONS
Column Name

MTL_ITEM_REVISIONS_INTERFACE
Column Source

INVENTORY_ITEM_ID ITEM_NUMBER

ORGANIZATION_ID ORGANIZATION_ID
or ORGANIZATION_CODE

REVISION REVISION

CHANGE_NOTICE CHANGE_NOTICE

ECN_INITIATION_DATE ECN_INITIATION_DATE

IMPLEMENTATION_DATE IMPLEMENTATION_DATE

IMPLEMENTED_SERIAL_NUMBER IMPLEMENTED_SERIAL_NUMBER

EFFECTIVITY_DATE EFFECTIVITY_DATE

ATTRIBUTE_CATEGORY ATTRIBUTE_CATEGORY

ATTRIBUTEn ATTRIBUTEn

REVISED_ITEM_SEQUENCE_ID REVISED_ITEM_SEQUENCE_ID

DESCRIPTION DESCRIPTION
6-54 Oracle Manufacturing APIs and Open Interfaces Manual

Open Item Interface
value for the MESSAGE_NAME and REQUEST_ID columns. The Item Interface populates
these columns for item detail errors the same way it populates the table for item errors.

The UNIQUE_ID column in MTL_INTERFACE_ERRORS is populated from the sequence
MTL_SYSTEM_ITEMS_INTERFACE_S. Thus, for a given row, the sequence of errors can
be determined by examining UNIQUE_ID for a given TRANSACTION_ID.

For example, if your row with TRANSACTION_ID 2000 failed with two errors in the
MTL_INTERFACE_ERRORS table, then you can see which error occurred first by looking
at the row with the smallest UNIQUE_ID for TRANSACTION_ID 2000.

You should resolve errors in the sequence that they were found by the interface, that is, in
increasing order of UNIQUE_ID for any TRANSACTION_ID.

Quite often, resolving the first few errors and restarting the Item Interface will cause the
other (spurious) errors for that failed row to disappear.

The Item Interface inserts validated rows into the production tables in Oracle Inventory and
Oracle Cost Management. Depending on the item information you import, the interface
inserts these rows into the item master, item categories, item costs, cost details, item
revisions, pending item status, and uom conversions tables. If a row cannot be inserted into
one of these tables, the PROCESS_FLAG column for all remaining rows is set to 4 (Import
failed) and the Concurrent Item Interface inserts a row in the interface errors table. The
program handles these processing errors in the same way it handles validation errors.

Reviewing Failed Rows
You can review and report rows in any of the interface tables using SQL*Plus or any custom
reports you develop. Since all rows in the interface tables have a value for PROCESS_
FLAG, you can identify records that have not been successfully imported into Oracle
Inventory.

Resubmitting an Errored Row
During Item Interface processing, rows can error out either due to validation (indicated by
PROCESS_FLAG = 3 in MTL_SYSTEM_ITEMS_INTERFACE and the corresponding
error in MTL_INTERFACE_ERRORS) or due to an Oracle Error.

When an Oracle Error is encountered, the processing is stopped and everything is rolled
back to the previous save point. This could be at PROCESS_FLAG = 1, 2, 3, or 4.
Oracle Inventory Open Interfaces and APIs 6-55

Open Item Interface
When you encounter rows errored out due to validations, you must first fix the row
corresponding to the error with the appropriate value. Then reset PROCESS_FLAG = 1,
INVENTORY_ITEM_ID = null, and TRANSACTION_ID = null. Then resubmit the row for
reprocessing.

Multi-Thread Capability (Parallel Runs of the Item Interface)
The following tables have a NOT NULL NUMBER column called SET_PROCESS_ID:

■ MTL_SYSTEM_ITEMS_INTERFACE

■ MTL_ITEM_REVISIONS_INTERFACE

■ MTL_ITEM_CATEGORIES_INTERFACE

The SET_PROCESS_ID column has a database default value of zero in the three tables
above.

To have parallel runs of the Item Interface, the SET_PROCESS_ID column for records in
the interface tables has to be populated with a positive, nonzero number.

Example:

You have 1000 records in the MTL_SYSTEM_ITEMS_INTERFACE table that you want to
insert into MTL_SYSTEM_ITEMS, and you decide to have four parallel Item Interface
processes to accomplish this task.

Table 6–14 Oracle Inventory Item Details Interface

PROCESS
_FLAG

Error After and Before
PROCESS_FLAG Relaunch the Item Interface after

1 1 and 2 Fixing the Oracle Error

2 2 and 3 Fixing the Oracle Error

3 2 and 3 Updating MSII1 and fixing the corresponding
error in MIE2. Then setting PROCESS_FLAG
= 1 and INVENTORY_ITEM_ID = null in
MSII1, MICI3, and MIRI4.

4 4 and 7 Fixing the Oracle Error

Notes:
1MTL_SYSTEM_ITEMS_INTERFACE
2MTL_INTERFACE_ERRORS
3MTL_ITEM_CATEGORIES_INTERFACE
4MTL_ITEM_REVISIONS_INTERFACE
6-56 Oracle Manufacturing APIs and Open Interfaces Manual

Open Item Interface
In the scripts you use to insert data into the MTL_SYSTEM_ITEMS_INTERFACE table,
populate the first 250 records with SET_PROCESS_ID = 1, the next 250 records with SET_
PROCESS_ID = 2, and so on.

From the Item Interface SRS launch form, specify the Process Set for a given run in the
Process Set parameter. This initiates four Item Interface concurrent programs with the
Process Set parameter set to 1, 2, 3, and 4 respectively. The four Item Interface processes run
in parallel, each working on the set you specified.

Multi-threading Rules
The Applications DBA for the site should enforce these rules:

■ If you run an Item Interface process with the Process Set value null, you should not
concurrently run any other Item Interface processes.

■ Do not have parallel runs of the Item Interface on the same process set.

Not following these rules will cause multiple Item Interface processes trying to work on the
same set of rows and lead to unpredictable errors.

Note: If you have custom scripts to insert data into the MTL_SYSTEM_
ITEMS_INTERFACE table, you must modify them to include the SET_
PROCESS_ID column. Also remember that any corresponding records
that you enter in the MTL_ITEM_REVISIONS_INTERFACE table should
have the matching SET_PROCESS_ID values.

Note: Leaving a null in the Process Set parameter will process all rows
regardless of the process set value. If you do not want the new multi-thread
capability, you can populate the interface tables as you always have. The
SET_PROCESS_ID column will get the default value of zero. When you
run the Item Interface with the Process Set parameter blank, the interface
processes all rows (regardless of the SET_PROCESS_ID value) as it did in
earlier releases.
Oracle Inventory Open Interfaces and APIs 6-57

Customer Item and Customer Item Cross-Reference Open Interfaces
Customer Item and Customer Item Cross-Reference Open
Interfaces

A number of manufacturing industries are characterized by a multi-tiered, just-in-time
supply chain structure. Today’s manufacturing environment requires a close working
relationship between customers and suppliers along the entire supply chain. Suppliers must
be able to react quickly to their customers’ often changing requirements. By
cross-referencing customer items with their own inventory items, suppliers can achieve
faster order processing and shipments by allowing customers to place orders using customer
item numbers.

You can import customer items and customer item cross-references from any legacy system
into Oracle Inventory using the Customer Item Interface and the Customer Item
Cross-Reference Interface. These interfaces validate all data that you import into Oracle
Inventory. They also perform foreign key validation and check for attribute
inter-dependencies, acceptable values, and value ranges. The interfaces ensure that the
imported customer items and cross-references contain the same detail as items entered
manually using the Customer Items and Customer Item Cross-References windows. Error
codes and corresponding error messages for all errors detected during validation are written
to the interface tables.

Functional Overview - Customer Item Interface
The Customer Item Interface lets you import customer items into Oracle Inventory. For each
customer item you must define related information such as the Customer and Item Definition
Level. Customer Address is required if you set Item Definition Level 3 while Customer
Category is required for Item Definition Level 2. In addition, you can provide Master and
Detail Container information, Commodity Codes, Model Items and other attributes such as
Demand Tolerances and Departure Planning Flags for each customer item. See: Defining
Customer Items, Oracle Inventory User’s Guide.

After you add new customer items to the MTL_CI_INTERFACE table, you run the
Customer Item Interface. The Customer Item Interface reads each record from the interface
table and adds items that are successfully validated to the MTL_CUSTOMER_ITEMS table.
Validation of the customer items uses the same rules as the Customer Items window to
ensure that only valid items are imported.

Functional Overview - Customer Item Cross-Reference Interface
The Customer Item Cross-Reference Interface lets you import cross-references between
customer items and existing Oracle Inventory items into your Master organization. For each
customer item cross-reference, you must define the Customer, Customer Item, Customer
6-58 Oracle Manufacturing APIs and Open Interfaces Manual

Customer Item and Customer Item Cross-Reference Open Interfaces
Item Definition Level, and Rank. You create a cross-reference to the associated Oracle
Inventory item by specifying the item and its Master Organization.

You can create multiple cross-references between customer items and one Oracle Inventory
item. You can also create multiple cross-references between Oracle Inventory items and one
customer item. Cross references are defined at the Master Organization level of the
cross-referenced inventory item. Once a customer item cross-reference to an Inventory item
has been defined, it is applicable to all organizations assigned the cross-referenced Inventory
Item.

You first add the customer item cross-reference records to the MTL_CI_XREFS_
INTERFACE table. Then the Customer Item Cross-Reference Interface validates each record
and moves the successfully validated items to the MTL_CUSTOMER_ITEM_XREFS table.
Validation of the customer items cross-references uses the same rules as the Customer Item
Cross-References window to ensure that only valid cross-references are imported.

Workflow - Customer Item Interface and Customer Item
Cross-Reference Interface

Before you use the Customer Item and Customer Item Cross-Reference Interfaces, you must
write and run custom programs that extract customer item and customer item cross-reference
information from your source system and insert it into the MTL_CI_INTERFACE and
MTL_CI_XREFS_INTERFACE tables. After you load the customer items and customer
item cross-references into these interface tables, you run the Customer Item and Customer
Item Cross-Reference Interfaces to import the data. These interfaces assign defaults, validate
data you include, and then import the new customer items and customer item
cross-references.

Interface Runtime Options
You can access the Customer Item and Customer Item Cross-Reference Interfaces via the
Reports, All menu in Oracle Inventory. (See: Importing Customer Items, Oracle Inventory
User’s Guide and Importing Customer Item Cross-References, Oracle Inventory User’s

Attention: The Customer Item Interface must be run successfully
before the Customer Item Cross-Reference Interface. This is to ensure
that a customer item has been defined before an attempt is made to
cross-reference it with an Oracle Inventory item. The Customer Item
Cross-Reference Interface errors out if an attempt is made to create a
cross-reference to an invalid inventory item.
Oracle Inventory Open Interfaces and APIs 6-59

Customer Item and Customer Item Cross-Reference Open Interfaces
Guide.) Both Interfaces offer two options at runtime: Abort on Error and Delete Successful
Records.

Abort on Error
Valid values for this option are Yes or No. The default is No.

Yes - Both the Customer Item Interface and the Customer Item Cross-Reference Interface
will abort execution if an error is encountered during validation of a record. No additional
records will be processed. The ERROR_CODE and ERROR_EXPLANATION columns in
the MTL_CI_INTERFACE and MTL_CI_XREFS_INTERFACE tables are populated with
the appropriate error code and error explanation for the record that caused the Interface to
error out. Records that were successfully validated are transferred to the MTL_
CUSTOMER_ITEMS and MTL_CUSTOMER_ITEM_XREFS tables, respectively.

No - Processing of the records in the Interface tables continues until the end of the table is
reached. For all errors encountered during validation of records in the Customer Item
Interface or Customer Item Cross-Reference Interface, the ERROR_CODE and the
ERROR_EXPLANATION columns in the MTL_CI_INTERFACE and MTL_CI_XREFS_
INTERFACE tables are populated with the appropriate error code and error description.
Records that were successfully validated are transferred to the MTL_CUSTOMER_ITEMS
and MTL_CUSTOMER_ITEM_XREFS tables, respectively.

Delete Successful Records
Valid values for this option are Yes or No. The default is Yes.

Yes - Successfully validated records in the Customer Item Interface are copied over to the
MTL_CUSTOMER_ITEMS table and automatically deleted from the MTL_CI_
INTERFACE table. Similarly, for the Customer Item Cross-Reference Interface, successfully
validated records are copied to the MTL_CUSTOMER_ITEM_XREFS table and
automatically deleted from the MTL_CI_XREFS_INTERFACE table.

No - For successfully validated records, the Customer Item Interface and Customer Item
Cross-Reference Interface simply populate the MTL_CUSTOMER_ITEMS and MTL_
CUSTOMER_ITEM_XREFS tables without deleting records from the interface tables.

Customer Item Interface Table

Table Description
The Customer Item Interface table, MTL_CI_INTERFACE, includes all the columns in the
Customer Items table, MTL_CUSTOMER_ITEMS. The columns are discussed after the
table.
6-60 Oracle Manufacturing APIs and Open Interfaces Manual

Customer Item and Customer Item Cross-Reference Open Interfaces
For information about columns not discussed in the Interface manual, see Table and View
Definitions, Oracle Inventory Technical Reference Manual.

Note: Information about columns that need to be populated for audit
trail and maintenance purposes can be found in the Table Administration
and Audit Trail section. See: on page 6-72.

Table 6–15 List of Columns, Customer Item Interface

Field Name Type Required

PROCESS_FLAG Varchar2(1) x

PROCESS_MODE Number x

LAST_UPDATED_BY Number x

LAST_UPDATE_DATE Date x

LAST_UPDATE_LOGIN Number

CREATED_BY Number x

CREATION_DATE Date x

REQUEST_ID Number

PROGRAM_APPLICATION_ID Number

PROGRAM_ID Number

PROGRAM_UPDATE_DATE Date

TRANSACTION_TYPE Varchar2(6) x

CUSTOMER_NAME Varchar2(50) Conditionally

CUSTOMER_NUMBER Varchar2(30) Conditionally

CUSTOMER_ID Number Conditionally

CUSTOMER_CATEGORY_CODE Varchar2(30) Conditionally

CUSTOMER_CATEGORY Varchar2(80) Conditionally

ADDRESS1 Varchar2(240) Conditionally

ADDRESS2 Varchar2(240) Conditionally

ADDRESS3 Varchar2(240) Conditionally

ADDRESS4 Varchar2(240) Conditionally
Oracle Inventory Open Interfaces and APIs 6-61

Customer Item and Customer Item Cross-Reference Open Interfaces
CITY Varchar2(50) Conditionally

STATE Varchar2(50) Conditionally

COUNTY Varchar2(50) Conditionally

COUNTRY Varchar2(50) Conditionally

POSTAL_CODE Varchar2(30) Conditionally

ADDRESS_ID Number Conditionally

CUSTOMER_ITEM_NUMBER Varchar2(50) x

CUSTOMER_ITEM_DESC Varchar2(240)

ITEM_DEFINITION_LEVEL Varchar2(1) Conditionally

ITEM_DEFINITION_LEVEL_DESC Varchar2(30) Conditionally

MODEL_CUSTOMER_ITEM_NUMBER Varchar2(50)

MODEL_CUSTOMER_ITEM_ID Number

COMMODITY_CODE Varchar2(30)

COMMODITY_CODE_ID Number

MASTER_CONTAINER_SEGMENTn Varchar2(40)

MASTER_CONTAINER Varchar2(2000)

MASTER_CONTAINER_ITEM_ID Number

CONTAINER_ITEM_ORG_NAME Varchar2(60)

CONTAINER_ITEM_ORG_CODE Varchar2(3)

CONTAINER_ITEM_ORG_ID Number

DETAIL_CONTAINER_SEGMENTn Varchar2(40)

DETAIL_CONTAINER Varchar2(2000)

DETAIL_CONTAINER_ITEM_ID Number

MIN_FILL_PERCENTAGE Number

DEP_PLAN_REQUIRED_FLAG Varchar2(1)

DEP_PLAN_PRIOR_BLD_FLAG Varchar2(1)

INACTIVE_FLAG Varchar2(1) x

Table 6–15 List of Columns, Customer Item Interface

Field Name Type Required
6-62 Oracle Manufacturing APIs and Open Interfaces Manual

Customer Item and Customer Item Cross-Reference Open Interfaces
Customer Item Interface - Defining a Unique Customer Item
You must define a unique record in each row of the MTL_CI_INTERFACE table. To create a
unique record in the MTL_CI_INTERFACE table, you must define a Customer Item and the
associated Customer, Category Code, Address, and Item Definition Level for each record.

Customer Item
To create a unique Customer Item record in the MTL_CI_INTERFACE table, you must
define a Customer Item number and Customer Item Description in the CUSTOMER_ITEM_
NUMBER and CUSTOMER_ITEM_DESC fields respectively. The CUSTOMER_ITEM_
NUMBER is a required field and is sufficient by itself for validation. However, it is strongly
recommended that the CUSTOMER_ITEM_DESC field be populated with accurate
information to clearly identify customer items by their description.

Customer
You define a customer by populating either of the CUSTOMER_NAME, CUSTOMER_
NUMBER, or CUSTOMER_ID fields. Note that at least one of these fields must be entered
for validation. The information provided in these fields is validated against the Oracle table
RA_CUSTOMERS. The Interface will error out with the appropriate error code if the
customer information cannot be validated. If more than one field is populated to identify a
customer, then only the data in the highest priority field is used for validation according to
the following rules of precedence:

■ CUSTOMER_ID has priority over CUSTOMER_NUMBER.

■ CUSTOMER_NUMBER has priority over CUSTOMER_NAME.

ATTRIBUTE_CATEGORY Varchar2(30)

ATTRIBUTEn Varchar2(150)

DEMAND_TOLERANCE_POSITIVE Number

DEMAND_TOLERANCE_NEGATIVE Number

ERROR_CODE Varchar2(9)

ERROR_EXPLANATION Varchar2(2000)

Table 6–15 List of Columns, Customer Item Interface

Field Name Type Required
Oracle Inventory Open Interfaces and APIs 6-63

Customer Item and Customer Item Cross-Reference Open Interfaces
Address Category
Address Category is a grouping of multiple customer ship-to addresses that have been
defined in the RA_ADDRESSES table. This grouping is based on functional rules specific
to your business and allows you to select multiple customer addresses by specifying the
Address Category. The Address Category can be defined in the Interface tables by
populating either one of the CUSTOMER_CATEGORY_CODE or the CUSTOMER_
CATEGORY fields. However, these are conditionally required fields and may be Null.
Address Category information is required if Item Definition Level is set to 2 or Item
Definition Level Description is set to "Address Category.” Any information entered in these
fields is validated against the RA_ADDRESSES table.

If both fields are populated to define an Address Category, only data in the highest priority
field is used for validation against the RA_ADDRESSES table according to the following
rule of precedence:

■ CUSTOMER_CATEGORY_CODE has precedence over CUSTOMER_CATEGORY.

Customer Address
You can define the Customer Address information by entering either the detail customer
address or the customer ADDRESS_ID. You must enter the detail customer address
information, including the street address (ADDRESS1, ADDRESS2, ADDRESS3,
ADDRESS4), CITY, STATE, COUNTY, COUNTRY and POSTAL_CODE, exactly as it is
entered in Oracle’s RA_ADDRESSES table, including any blank spaces, special characters
and capitalized alphabets. The customer address you enter must exactly match the
information in the RA_ADDRESSES table for successful validation.

Alternatively, you can enter the customer’s ADDRESS_ID. This is also validated against the
RA_ADDRESSES table, and detail customer address information is picked up from this
table for successful validation.

Customer Address information is required if the Item Definition Level is set to 3 or the Item
Definition Level Description is set to Address.

Customer Item Definition Level
A customer item can be defined at one of three different levels: Customer level, Address
Category level or Address level.

A customer item defined at the Customer level is recognized across all Addresses and
Address Categories for that customer. However, if you ship an item to multiple customer
ship-to sites that have been grouped as an Address Category, you can define the customer
item for that specific Address Category. You can define a customer item at the Address level
if you ship the item to only one ship-to site for a customer.
6-64 Oracle Manufacturing APIs and Open Interfaces Manual

Customer Item and Customer Item Cross-Reference Open Interfaces
You must define the Customer Item Definition Level by populating either the ITEM_
DEFINITION_LEVEL or the ITEM_DEFINITION_LEVEL_DESC column. Valid values
for the ITEM_DEFINITION_LEVEL are 1, 2, or 3. The corresponding values for ITEM_
DEFINITION_LEVEL_DESC are seeded in the MFG_LOOKUPS table and are Customer,
Address Category, and Address respectively.

If both the fields are populated to identify the Item Definition Level, then only data in the
highest priority field is used for validation according to the following rule of precedence:

■ ITEM_DEFINITION_LEVEL has higher priority than the ITEM_DEFINITION_
LEVEL_DESC

Customer Item Interface - Other fields

Transaction_Type
TRANSACTION_TYPE is a required field. The interface will error out if a required field is
missing or contains invalid data. Always set the TRANSACTION_TYPE to CREATE to
create a new item in the MTL_CUSTOMER_ITEMS table. This is the only value supported
currently by this interface.

Model items
You can define a customer item as a model item that can be referenced by other customer
items. In order to define a model customer item, you must first reference the customer item
to a valid Oracle model item, which has the BOM Item Type attribute set to Model. (See:
Bills of Material Attribute Group, Oracle Inventory User’s Guide.) Once a model customer
item has been defined successfully, you can reference other customer items to it.

The Interface performs validation starting with the first record in MTL_CI_INTERFACE
until it reaches the end of the table, or errors out if the Abort on Error option is set to Yes.
Thus, the base model customer item must precede any Customer items that reference it, in
the MTL_CI_INTERFACE table. The base model customer item must be validated
successfully before other model customer items can be created that reference it; otherwise
the Interface will error out.

You can define a model customer item by either specifying the MODEL_CUSTOMER_
ITEM_ID or the MODEL_CUSTOMER_ITEM_NUMBER. If both the fields are specified,
then MODEL_CUSTOMER_ITEM_ID has precedence over MODEL_CUSTOMER_
ITEM_NUMBER for validation. Any information in MODEL_CUSTOMER_ITEM_
NUMBER is completely ignored in this case.
Oracle Inventory Open Interfaces and APIs 6-65

Customer Item and Customer Item Cross-Reference Open Interfaces
Commodity Codes
Commodity codes are used to group customer items in much the same fashion as the use of
category codes to group inventory items. The business functionality and meaning of these
codes are user-defined. For example, after the MTL_CUSTOMER_ITEMS table has been
successfully populated, commodity codes can be used to query up all customer items that
belong to a specific commodity code.

Commodity Codes are defined at the Master Organization level in Oracle Inventory and thus,
are applicable to all organizations belonging to the Master Organization. You must define the
Commodity code by specifying either the COMMODITY_CODE or the COMMODITY_
CODE_ID for each Customer Item. If both fields are populated to define a commodity code,
only data in the highest priority field is used for validation according to the following rule of
precedence:

■ COMMODITY_CODE_ID has higher priority than the COMMODITY_CODE

Containers
A container item could be a pallet, box, bag or any other inventory item that needs to be
tracked between a customer and a supplier. Container items can be defined by setting the
Container item attribute to Yes. See: Physical Attribute Group, Oracle Inventory User’s
Guide.

In the Customer Item Interface, you set the default master or detail container for a customer
item. A detail container is a subunit, or the inner container, of a larger outer unit, the master
container. For example, a box can be a detail container for a customer item, while a pallet
can be its master container.

Containers are defined at the master organization level in Oracle Inventory. You must specify
the master organization for each master container in the Customer Item Interface. Similarly,
you must specify the master container for each detail container. The interface will error out
with the appropriate error code if no master organization is specified for a master container
or if no master container is specified for a detail container.

A master container can be defined by populating either the MASTER_CONTAINER or the
MASTER_CONTAINER_ITEM_ID fields. Alternatively, you can use the MASTER_
CONTAINER_SEGMENTn field to specify a multi-segment container. If more than one
field is populated to identify a master container, then only data in the highest priority field is
used for validation according to the following rules of precedence:

■ MASTER_CONTAINER_ITEM_ID has priority over MASTER_CONTAINER.

■ MASTER_CONTAINER has priority over SEGMENTn values.
6-66 Oracle Manufacturing APIs and Open Interfaces Manual

Customer Item and Customer Item Cross-Reference Open Interfaces
Similarly, a detail container can be defined by populating either the DETAIL_CONTAINER,
DETAIL_CONTAINER_ITEM_ID or the SEGMENTn values for the descriptive flexfield.
The same rules of precedence apply as for master container above.

You can also specify the MIN_FILL_PERCENTAGE attribute when you define the master
container. The Minimum Fill Percentage item attribute defines the minimum percentage of
the master, or outer container, that should be filled by the detail, or inner container, before
the master container can be shipped. See: Physical Attribute Group, Oracle Inventory User’s
Guide.

Departure Planning Flags
The DEP_PLAN_REQUIRED_FLAG and DEP_PLAN_PRIOR_BLD_FLAG fields can
have the values of 1 for Yes and 2 for No.

The DEP_PLAN_REQUIRED_FLAG is used to signal Oracle Shipping to perform
Departure Planning for this item. The DEP_PLAN_PRIOR_BLD_FLAG is used to indicate
that Departure Planning is required before building this item. If the DEP_PLAN_PRIOR_
BLD_FLAG is Yes, then the DEP_PLAN_REQUIRED_FLAG must also be set to Yes.

Inactive_Flag
INACTIVE_FLAG is a required field and can be set to 1 for Yes or 2 for No. You can set the
INACTIVE_FLAG to Yes to deactivate a customer item in Oracle Inventory. The customer
item information is still carried over from MTL_CI_INTERFACE to the MTL_
CUSTOMER_ITEMS table if the record is successfully validated. However, the Customer
Item is considered as status Inactive in Oracle Inventory.

Warning: The interface derives each item’s segment values by
searching for the segment separator to indicate the end of one segment
value and the start of the next segment value. Include the appropriate
segment separator when populating the MASTER_CONTAINER or
DETAIL_CONTAINER fields for a multi-segment key flexfield.

Warning: If you enter values for SEGMENTn columns, ensure that
the segment values you populate correspond to the key flexfield
segments that you defined for your items. The interface assumes that
you are using segments in sequential order beginning with
SEGMENT1.
Oracle Inventory Open Interfaces and APIs 6-67

Customer Item and Customer Item Cross-Reference Open Interfaces
Descriptive Flex- SEGMENTn
The ATTRIBUTE_CATEGORY and ATTRIBUTE1 - ATTRIBUTE15 columns are used for
the descriptive flexfield information. Note that the interface does not perform any validation
on the SEGMENTn fields even though you may have defined a valid value set for the
descriptive flexfield.

Demand Tolerance Range
The DEMAND_TOLERANCE_POSITIVE and DEMAND_TOLERANCE_NEGATIVE
fields are used to define the percentage range within which the order quantities for a
customer item are acceptable. This range is based on a customer’s last order for the same
item. No range validation is performed for the first order of an item since no history
information exists in the demand tables.

If a customer order falls outside the range defined by these fields then the demand processor
will raise an exception to that order. This feature is designed to flag any order entry or EDI
transfer errors, and to draw your attention towards substantial changes in order volume
activity from a customer.

Error Codes
If any errors are found during validation, then the error codes and the corresponding error
description are written to the ERROR_CODE and the ERROR_EXPLANATION columns
respectively. Note that the interface overwrites any data already in these fields.

Record Status
The PROCESS_FLAG and PROCESS_MODE columns report the status of the record after
the import and validation process is complete. Data already in these columns is ignored and
overwritten if necessary. Note that these are required columns and should be populated with
1.

Customer Item Cross-Reference Interface Table

Table Description
The Customer Item Cross-Reference Interface table, MTL_CI_XREFS_INTERFACE,
contains all the columns in the Customer Item Cross-Reference table, MTL_CUSTOMER_
ITEM_XREFS.

Many columns in the Customer Item Cross-Reference Interface table are similar to columns
in the Customer Item Interface table. Columns that identify the Customer, Customer
Category, Address and Item Definition Level are subject to the same rules and definitions as
6-68 Oracle Manufacturing APIs and Open Interfaces Manual

Customer Item and Customer Item Cross-Reference Open Interfaces
those described for the Customer Item Interface table. You can also refer to the previous
section for explanation of Descriptive Flexfields, PROCESS_FLAG and PROCESS_MODE,
ERROR_CODE and ERROR_EXPLANATION, INACTIVE FLAG, and TRANSACTION_
TYPE columns. See: Customer Item Interface Table on page 6-60.

This section provides an explanation of fields used to define the Inventory Item, Master
Organization, and Rank in the MTL_CI_XREFS_INTERFACE table.

Note: Information about columns that need to be populated for audit
trail and maintenance purposes can be found in the Table Administration
and Audit Trail section. See: on page 6-72.

Note: For information about columns not discussed in the Interface
manual, see Table and View Definitions, Oracle Inventory Technical
Reference Manual.

Table 6–16 List of Columns, Customer Item Cross-Reference Interface

Field Name Type Required Derived Optional

PROCESS_FLAG Varchar2(1) x

PROCESS_MODE Number x

LAST_UPDATE_DATE Date x

LAST_UPDATED_BY Number(15) x

CREATION_DATE Date x

CREATED_BY Number(15) x

LAST_UPDATE_LOGIN Number(15)

REQUEST_ID Number(15)

PROGRAM_APPLICATION_ID Number(15)

PROGRAM_ID Number(15)

PROGRAM_UPDATE_DATE Date

TRANSACTION_TYPE Varchar2(6) x

CUSTOMER_NAME Varchar2(50) Conditionally

CUSTOMER_NUMBER Varchar2(30) Conditionally
Oracle Inventory Open Interfaces and APIs 6-69

Customer Item and Customer Item Cross-Reference Open Interfaces
CUSTOMER_ID Number Conditionally

CUSTOMER_CATEGORY_CODE Varchar2(30) Conditionally

CUSTOMER_CATEGORY Varchar2(80) Conditionally

ADDRESS1 Varchar2(240) Conditionally

ADDRESS2 Varchar2(240) Conditionally

ADDRESS3 Varchar2(240) Conditionally

ADDRESS4 Varchar2(240) Conditionally

CITY Varchar2(50) Conditionally

STATE Varchar2(50) Conditionally

COUNTY Varchar2(50) Conditionally

COUNTRY Varchar2(50) Conditionally

POSTAL_CODE Varchar2(30) Conditionally

ADDRESS_ID Number Conditionally

CUSTOMER_ITEM_NUMBER Varchar2(50) x

CUSTOMER_ITEM_ID Number

ITEM_DEFINITION_LEVEL_DESC Varchar2(30) Conditionally

ITEM_DEFINITION_LEVEL Varchar2(1) Conditionally

INVENTORY_ITEM_SEGMENTn Varchar2(40) Conditionally

INVENTORY_ITEM Varchar2(2000) Conditionally

INVENTORY_ITEM_ID Number Conditionally

MASTER_ORGANIZATION_NAME Varchar2(60) Conditionally

MASTER_ORGANIZATION_CODE Varchar2(3) Conditionally

MASTER_ORGANIZATION_ID Number Conditionally

PREFERENCE_NUMBER Number x

INACTIVE_FLAG Varchar2(1) x

ATTRIBUTE_CATEGORY Varchar2(30)

Table 6–16 List of Columns, Customer Item Cross-Reference Interface

Field Name Type Required Derived Optional
6-70 Oracle Manufacturing APIs and Open Interfaces Manual

Customer Item and Customer Item Cross-Reference Open Interfaces
Inventory Item
Oracle Inventory Open Interfaces and APIs 6-71

Customer Item and Customer Item Cross-Reference Open Interfaces
You must specify the Rank of the cross-referenced relationship for each cross-reference that
you define. The top ranked Inventory item is processed before a lower ranked item in the
supplying organization. Thus, an Inventory item with a rank of 1 will be processed before
another item with a rank of 2 that references the same Customer Item. This is a required
field and must be entered.
6-72 Oracle Manufacturing APIs and Open Interfaces Manual

Cycle Count Entries Interface
Cycle Count Entries Interface
You can import cycle count entries from an external system into Oracle Inventory using the
Cycle Count Entries Interface. This interface validates all data that you import into Oracle
Inventory. It also performs foreign key validation and checks for attribute
inter-dependencies, acceptable values, and value ranges. The interface ensures that the
imported cycle count entries contain the same detail as items entered manually using the
Cycle Count Entries window. Errors detected during validation are written to the Cycle
Count Interface Errors table.

Interface Runtime Options
You can access the Cycle Count Entries Interface via the Reports, All menu in Oracle
Inventory. The Interface offers the following options at runtime:

■ Cycle Count Name

■ Number of Workers

■ Commit Point

■ Error Report Level

■ Delete Successful Records

Cycle Count Entries Interface Table

Table Description
The Cycle Count Entries Interface table, MTL_CC_ENTRIES_INTERFACE, includes all
the columns in the Cycle Count Entries table, MTL_CYCLE_COUNT_ENTRIES.

Note: Information about columns that need to be populated for audit
trail and maintenance purposes can be found in the Table Administration
and Audit Trail section. See: Table Administration and Audit Trail on
page 6-77.

Note: For information about columns not discussed in the Interface
manual, see Table and View Definitions, Oracle Inventory Technical
Reference Manual.
Oracle Inventory Open Interfaces and APIs 6-73

Cycle Count Entries Interface
Table 6–17 List of Columns, Cycle Count Entries Interface

Field Name Type Null

CC_ENTRY_INTERFACE_ID Number N

ORGANIZATION_ID Number N

LAST_UPDATE_DATE Date N

LAST_UPDATED_BY Number N

CREATION_DATE Date N

CREATED_BY Number N

LAST_UPDATE_LOGIN Number Y

CC_ENTRY_INTERFACE_GROUP_ID Number Y

CYCLE_COUNT_ENTRY_ID Number Y

ACTION_CODE Number N

CYCLE_COUNT_HEADER_ID Number Y

CYCLE_COUNT_HEADER_NAME Varchar2(30) Y

COUNT_LIST_SEQUENCE Number Y

INVENTORY_ITEM_ID Number Y

ITEM_SEGMENT1-20 Varchar2(40) Y

REVISION Varchar2(3) Y

SUBINVENTORY Varchar2(10) Y

LOCATOR_ID Number Y

LOCATOR_SEGMENT1-20 Varchar2(40) Y

LOT_NUMBER Varchar2(30) Y

SERIAL_NUMBER Varchar2(30) Y

PRIMARY_UOM_QUANTITY Number Y

COUNT_UOM Varchar2(3) Y

COUNT_UNIT_OF_MEASURE Varchar2(25) Y

COUNT_QUANTITY Number Y

SYSTEM_QUANTITY Number Y

ADJUSTMENT_ACCOUNT_ID Number Y
6-74 Oracle Manufacturing APIs and Open Interfaces Manual

Cycle Count Entries Interface
ACCOUNT_SEGMENT1-30 Varchar2(25) Y

COUNT_DATE Date Y

EMPLOYEE_ID Number Y

EMPLOYEE_FULL_NAME Varchar2(240) Y

REFERENCE Varchar2(240)

TRANSACTION_REASON_ID Number Y

TRANSACTION_REASON Varchar2(30) Y

REQUEST_ID Number Y

PROGRAM_APPLICATION_ID Number Y

PROGRAM_ID Number Y

PROGRAM_UPDATE_DATE Date Y

LOCK_FLAG Number Y

PROCESS_FLAG Number Y

PROCESS_MODE Number Y

VALID_FLAG Number Y

DELETE_FLAG Number Y

STATUS_FLAG Number Y

ERROR_FLAG Number Y

ATTRIBUTE_CATEGORY Varchar2(30) Y

ATTRIBUTE1-15 Varchar2(150) Y

PROJECT_ID Number Y

TASK_ID Number Y

Table 6–17 List of Columns, Cycle Count Entries Interface

Field Name Type Null
Oracle Inventory Open Interfaces and APIs 6-75

Cycle Count Entries Interface
Cycle Count Interface Errors Table

Table Description
The Cycle Count Interface Errors table, MTL_CC_INTERFACE_ERRORS, is populated
with errors encountered while processing interface rows. This table provides for the
reporting of multiple errors for each interface record.

Note: Information about columns that need to be populated for audit
trail and maintenance purposes can be found in the Table Administration
and Audit Trail section. See: on page 6-72.

Note: For information about columns not discussed in the Interface
manual, see Table and View Definitions, Oracle Inventory Technical
Reference Manual.
6-76 Oracle Manufacturing APIs and Open Interfaces Manual

Cycle Count Entries Interface
Table Administration and Audit Trail
Some columns in the Interface tables are required for audit trail maintenance and table
administration data. This section explains the purpose of these Standard Who columns.

■ LAST_UPDATE_DATE should contain the date on which the record was last updated.
Use the SQL function SYSDATE in this column to automatically record the current
system date when the record is updated. This is a required field.

■ LAST_UPDATED_BY field is populated with the user identification number of the
person updating the customer item tables. Follow your organization’s convention for the
user identification number to populate this field. This is a required field.

■ CREATION_DATE contains the date on which a particular customer item record was
created. Populate this field according to your organization’s convention if this
information is not available from the legacy system. This is a required field.

Table 6–18 List of Columns, Cycle Count Interface Errors

Field Name Type Null

INTERFACE_ERROR_ID Number N

CC_ENTRY_INTERFACE_ID Number N

LAST_UPDATE_DATE Date N

LAST_UPDATED_BY Number N

CREATION_DATE Date N

CREATED_BY Number N

LAST_UPDATE_LOGIN Number Y

REQUEST_ID Number Y

PROGRAM_APPLICATION_ID Number Y

PROGRAM_ID Number Y

PROGRAM_UPDATE_DATE Date Y

ERROR_MESSAGE Varchar2(240) Y

ERROR_COLUMN_NAME Varchar2(32) Y

ERROR_TABLE_NAME Varchar2(30) Y

MESSAGE_NAME Varchar2(30) Y
Oracle Inventory Open Interfaces and APIs 6-77

Cycle Count Entries Interface
■ CREATED_BY contains the user identification number of the person who originally
created this customer item record. Follow your organization’s convention for generating
user identification numbers to populate this field if this information is not available from
the legacy system. This is a required field.

■ LAST_UPDATE_LOGIN is not a required field. This field is currently not being used
and should be populated with -1.

■ REQUEST_ID is the concurrent request identifier of the last concurrent program to
affect that record. This is not a required field and can be Null.

■ PROGRAM_APPLICATION_ID is the application identifier of the owner of the
program to last affect that record. This is not a required field and can be Null.

■ PROGRAM_ID is the program identifier of the last record to affect the record. This is
not a required field and can be Null.

■ PROGRAM_UPDATE_DATE is the last date on which a program updated that record.
This is not a required field and can be Null.
6-78 Oracle Manufacturing APIs and Open Interfaces Manual

Cycle Count Application Program Interface
Cycle Count Application Program Interface
The Cycle Count API is a public API that allows you to perform on-line processing for cycle
count records. This API takes a cycle count interface row that has been passed through the
p_interface_rec parameter and processes it based on the values of the parameter fields. The
Cycle Count API includes the public procedure import_countrequest.

Setting Up the Cycle Count API

Parameter Descriptions
The following chart lists all parameters used by the Cycle Count API. Additional
information on these parameters follows the chart.

IMPORT_COUNTREQUEST

p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initialize the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x

p_commit IN Varchar2 x

p_validation_level IN Number x

x_return_status OUT Varchar2

x_msg_count OUT Number

x_msg_data OUT Varchar2

p_interface_rec IN Record x
Oracle Inventory Open Interfaces and APIs 6-79

Cycle Count Application Program Interface
■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types Varchar2(2000 and
Number respectively.

Default Value: FND_API.G_FALSE

p_commit
Requests that the API update information for you after it completes its function.

Default Value: FND_API.G_FALSE

p_validation_level
Default Value: FND_API.G_VALID_LEVEL_FULL

x_return_status
Requests that the API return the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

p_interface_rec
Indicates the complete interface record.
6-80 Oracle Manufacturing APIs and Open Interfaces Manual

Cycle Count Application Program Interface
Validation of Cycle Count API

Standard Validation
Oracle Inventory validates all input parameters in the Cycle Count API. For specific
information on the data implied by these parameters, see your Oracle Inventory Technical
Reference Manual for details.

Error Handling
If any validation fails, the API will return an error status to the calling module. The Cycle
Count API processes the rows and reports the following values for every record.

See Also
Oracle Applications Message Reference Manual
This manual is available in HTML format on the documentation CD-ROM for Release 11i.

Condition Message Returned
Meaning of Message

Returned

Success S Process succeeded

Failure E Expected error

Failure U Unexpected error
Oracle Inventory Open Interfaces and APIs 6-81

Kanban Application Program Interface
Kanban Application Program Interface
The Kanban API is a public API that allows you to update the supply status of kanban cards.
To accomplish this task, you use the public procedure update_card_supply_status.

Setting Up the Kanban API

Parameter Descriptions
The following chart lists all parameters used by the update_card_supply_status procedure.
Additional information on these parameters follows the chart.

UPDATE_CARD_SUPPLY_STATUS

p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initialize the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_level IN Varchar2 x

p_commit IN Varchar2 x

x_msg_count OUT Number

x_msg_data OUT Varchar2

x_return_status OUT Varchar2

p_kanban_card_id IN Varchar2 x

p_supply_status IN Varchar2 x
6-82 Oracle Manufacturing APIs and Open Interfaces Manual

Kanban Application Program Interface
where 1_message and 1_msg_index_out are local variables of types Varchar2(2000 and
Number respectively.

Default Value: FND_API.G_FALSE

p_commit
Requests that the API update information for you after it completes its function.

Default Value: FND_API.G_FALSE

x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

x_return_status
Requests that the API return the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

p_kanban_card_id
Indicates the kanban card identifier to be updated.

p_supply_status
Indicates the updated status of the kanban card.

Validation of Kanban API

Standard Validation
Oracle Inventory validates all input parameters in the update_card_supply_status procedure.
For specific information on the data implied by these parameters, see your Oracle Inventory
Technical Reference Manual for details.
Oracle Inventory Open Interfaces and APIs 6-83

Kanban Application Program Interface
Error Handling
If any validation fails, the API will return an error status to the calling module. The Kanban
API processes the rows and reports the following values for every record.

See Also
Oracle Applications Message Reference Manual
This manual is available in HTML format on the documentation CD-ROM for Release 11i.

Condition Message Returned
Meaning of Message

Returned

Success S Process succeeded

Failure E Expected error

Failure U Unexpected error
6-84 Oracle Manufacturing APIs and Open Interfaces Manual

Lot Application Program Interface
Lot Application Program Interface
The Lot API is a public API that allows you to insert a lot into the MTL_LOT_NUMBERS
table. It performs all the necessary validation before it inserts the lot. This API derives the
expiration date from the controls set for shelf_life_code and shelf_life_days for the item. If
the API is able to insert the lot, it returns a status of success. If the lot already exists for the
same item and organization, the API also returns a status of success; however, it places a
message on the stack to indicate that the lot already exists. The Lot API returns an error
status if there is any validation error. Standard WHO information is used from the FND_
GLOBAL API. The Lot API has one public procedure, insertlot.

Setting Up the Lot API

Parameter Descriptions
The following chart lists all parameters used by the insertlot procedure. Additional
information on these parameters follows the chart.

INSERTLOT

p_inventory_item_id
Indicates the inventory item identifier.

p_organization_id
Indicates the organization identifier.

p_lot_number
Indicates the lot number.

Parameter Usage Type Required Derived Optional

p_inventory_item_id IN Number x

p_organization_id IN Number x

p_lot_number IN Varchar2 x

p_expiration_date IN/OUT Date x x

x_return_status OUT Varchar2 x
Oracle Inventory Open Interfaces and APIs 6-85

Lot Application Program Interface
p_expiration_date
Indicates the expiration date.

x_return_status
Requests that the API return the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

Validation of Lot API

Standard Validation
Oracle Inventory validates all input parameters in the Lot API. For specific information on
the data implied by these parameters, see your Oracle Inventory Technical Reference
Manual for details.

Error Handling
If any validation fails, the API will return error status to the calling module. The Pick
Release API processes the rows and reports the following values for every record.

See Also
Oracle Applications Message Reference Manual
This manual is available in HTML format on the documentation CD-ROM for Release 11i.

Condition Message Returned
Meaning of Message

Returned

Success S Process succeeded

Failure E Expected error

Failure U Unexpected error
6-86 Oracle Manufacturing APIs and Open Interfaces Manual

Material Reservation Application Program Interface
Material Reservation Application Program Interface
The Material Reservation API is a public API that allows you to do the following:

■ Query existing reservations

■ Create reservations

■ Update existing reservations

■ Transfer existing reservations

■ Delete existing reservations

Functional Overview
The Material Reservation API provides the following public procedures that allow you to
accomplish the tasks listed above:

■ query_reservation

Returns all reservations that match the specified criteria.

■ create_reservation

Creates a material reservation for an item.

■ update_reservation

Updates the demand and supply information, including quantity, of an existing
reservation.

■ transfer_reservation

Transfers either supply or demand information from one source to another.

■ delete_reservation

Deletes existing reservations. Used when a reservation is no longer needed or has been
fulfilled.

Setting Up the Material Reservation API

Parameter Descriptions
The following charts list all parameters used by the procedures listed above. Additional
information on these parameters follows each chart.
Oracle Inventory Open Interfaces and APIs 6-87

Material Reservation Application Program Interface
QUERY_RESERVATION

p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initialize the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types Varchar2(2000 and
Number respectively.

Default Value: FND_API.G_FALSE

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x

x_return_status OUT Varchar2

x_msg_count OUT Number

x_msg_data OUT Varchar2

p_query_input IN Record x

p_lock_records IN Varchar2 x

p_sort_by_rec_date IN Number x

p_cancel_order_mode IN Number x

x_mtl_reservation_tbl OUT PL/SQL Table

x_mtl_reservation_tbl_
count

OUT Number

x_error_code OUT Number
6-88 Oracle Manufacturing APIs and Open Interfaces Manual

Material Reservation Application Program Interface
x_return_status
Requests that the API returns the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_EXC_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

p_query_input
Contains information to be used to identify the reservations.

p_lock_records
Specifies whether to lock matching records.

Default Value: FND_API.G_FALSE

p_sort_by_req_date
Specifies whether to sort the return records by requirement date.

Default Value: INV_RESERVATION_GLOBAL.G_QUERY_NO_SORT

p_cancel_order_mode
If you intend to cancel an order and want to query related reservations, the reservations will
be returned in a specific order.

Default Value: INV_RESERVATION_GLOBAL.G_CANCEL_ORDER_NO

x_mtl_reservation_tbl
Indicates reservations that match the criteria.

Default Value: INV_RESERVATION_GLOBAL.MTL_RESERVATION_TBL_TYPE
Oracle Inventory Open Interfaces and APIs 6-89

Material Reservation Application Program Interface
x_mtl_reservation_tbl_count
Indicates the number of records in x_mtl_reservation_tbl.

x_error_code
This error code is meaningful only if x_return_status equals fnd_api.g_ret_sts_error.

CREATE_RESERVATION

p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initialize the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x

x_return_status OUT Varchar2

x_msg_count OUT Number

x_msg_data OUT Varchar2

p_rsv_rec IN Record x

p_serial_number IN PL/SQL Table x

x_serial_number OUT PL/SQL Table

p_partial_reservation_
flag

IN Varchar2

p_force_reservation_
flag

IN Varchar2

x_quantity_reserved OUT Number

x_reservation_id OUT Number
6-90 Oracle Manufacturing APIs and Open Interfaces Manual

Material Reservation Application Program Interface
■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types Varchar2(2000 and
Number respectively.

Default Value: FND_API.G_FALSE

x_return_status
Requests that the API returns the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_EXC_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

p_rsv_rec
Contains information to create the reservations.

Default Value: INV_RESERVATION_GLOBAL.MTL_RESERVATION_REC_TYPE

p_serial_number
Contains serial numbers to be reserved.

Default Value: INV_RESERVATION_GLOBAL.SERIAL_NUMBER_TBL_TYPE

X_serial_number
The serial numbers actually reserved if procedure succeeded.

Default Value: INV_RESERVATION_GLOBAL.SERIAL_NUMBER_TBL_TYPE

p_partial_reservation_flag
If not enough quantity is available, specifies whether to reserve the amount that is available.
Possible values are FND_API_.G_FALSE and FND_API_.G_TRUE
Oracle Inventory Open Interfaces and APIs 6-91

Material Reservation Application Program Interface
Default Value: FND_API_.G_FALSE

p_force_reservation_flag
Specifies whether to reserve the quantity without performing a quantity check.

Default Value: FND_API_.G_FALSE

p_validation_flag
Specifies whether to reserve the quantity without performing a validation.

Default Value: FND_API_.G_TRUE.

x_quantity_reserved
The actual quantity reserved if the procedure succeeded.

x_reservation_id
This reservation identifier for the reservation is created if the procedure succeeded.

UPDATE_RESERVATION

p_api_version_number
Indicates the API version number.

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x

x_return_status OUT Varchar2

x_msg_count OUT Number

x_msg_data OUT Varchar2

p_original_rsv_rec IN Record x

p_to_rsv_rec IN Record x

p_original_serial_
number

IN PL/SQL Table

p_to_serial_number IN PL/SQL Table

p_validation_flag IN Varchar2
6-92 Oracle Manufacturing APIs and Open Interfaces Manual

Material Reservation Application Program Interface
p_init_msg_list
Requests that the API initialize the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types Varchar2(2000 and
Number respectively.

Default Value: FND_API.G_FALSE

x_return_status
Requests that the API returns the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_EXC_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

p_original_rsv_rec
Contains information to identify the existing reservation. If the reservation identifier is
passed (not null and not equal to FND_API.G_MISS_NUM), it identifies the existing
reservation and all other attributes in this record are ignored.

Default Value: INV_RESERVATION_GLOBAL.MTL_RESERVATION_REC_TYPE
Oracle Inventory Open Interfaces and APIs 6-93

Material Reservation Application Program Interface
p_to_rsv_rec
Contains new values of the attributes to be updated. If the value of an attribute of the
existing reservation requires updating, the new value of the attribute is assigned to the
attribute in this record.

Default Value: INV_RESERVATION_GLOBAL.MTL_RESERVATION_REC_TYPE

p_original_serial_number
Contains the serial numbers reserved by the existing reservation.

Default Value: INV_RESERVATION_GLOBAL.SERIAL_NUMBER_TBL_TYPE

p_to_serial_number
Contains the new serial numbers to be reserved.

Default Value: INV_RESERVATION_GLOBAL.SERIAL_NUMBER_TBL_TYPE

p_validation_flag
Indicates whether to reserve without validation.

Default Value: FND_API.G_TRUE

TRANSFER_RESERVATION

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x

x_return_status OUT Varchar2

x_msg_count OUT Varchar2

x_msg_data OUT Varchar2

p_is_transfer_supply IN Varchar2 x

p_original_rsv_rec IN Record x

p_original_serial_
number

IN Number x

p_to_serial_number IN Number x

p_validation_flag IN Varchar2
6-94 Oracle Manufacturing APIs and Open Interfaces Manual

Material Reservation Application Program Interface
p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initialize the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types Varchar2(2000 and
Number respectively.

Default Value: FND_API.G_FALSE

x_return_status
Requests that the API returns the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_EXC_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

x_to_reservation_id OUT Number

Parameter Usage Type Required Derived Optional
Oracle Inventory Open Interfaces and APIs 6-95

Material Reservation Application Program Interface
p_is_transfer_supply
Default Value: FND_API.G_TRUE

p_original_rsv_rec
Contains information to identify the existing reservation. If the reservation identifier is
passed (not null and not equal to FND_API.G_MISS_NUM), it identifies the existing
reservation and all other attributes in this record are ignored.

Default Value: INV_RESERVATION_GLOBAL.MTL_RESERVATION_REC_TYPE

p_to_rsv_rec
Contains new values of the attributes to be updated. If the value of an attribute of the
existing reservation requires updating, the new value of the attribute is assigned to the
attribute in this record.

Default Value: INV_RESERVATION_GLOBAL.MTL_RESERVATION_REC_TYPE

p_original_serial_number
Contains the serial numbers reserved by the existing reservation.

Default Value: INV_RESERVATION_GLOBAL.SERIAL_NUMBER_TBL_TYPE

p_to_serial_number
Contains the new serial numbers to be reserved.

Default Value: INV_RESERVATION_GLOBAL.SERIAL_NUMBER_TBL_TYPE

p_validation_flag
Indicates whether to reserve without validation.

Default Value: FND_API.G_TRUE

x_to_reservation_id
Indicates the new reservation identifier.

DELETE_RESERVATION

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x
6-96 Oracle Manufacturing APIs and Open Interfaces Manual

Material Reservation Application Program Interface
p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initialize the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types Varchar2(2000 and
Number respectively.

Default Value: FND_API.G_FALSE

x_return_status
Requests that the API returns the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_EXC_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

p_init_msg_list IN Varchar2 x

x_return_status OUT Varchar2

x_msg_count OUT Number

x_msg_data OUT Varchar2

p_rsv_rec IN Record x

p_serial_number IN x

Parameter Usage Type Required Derived Optional
Oracle Inventory Open Interfaces and APIs 6-97

Material Reservation Application Program Interface
x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

p_rsv_rec
Contains information to identify the existing reservation.

Default Value: INV_RESERVATION_GLOBAL.MTL_RESERVATION_REC_TYPE

p_serial_number
Contains serial numbers reserved by the existing reservation.

Default Value: INV_RESERVATION_GLOBAL.SERIAL_NUMBER_TBL_TYPE

Validation of Material Reservation API

Standard Validation
Oracle Inventory validates all input parameters in the Material Reservation API. For specific
information on the data implied by these parameters, see your Oracle Inventory Technical
Reference Manual for details.

Error Handling
If any validation fails, the API will return an error status to the calling module. The Material
Reservation API processes the rows and reports the following values for every record.

See Also
Oracle Applications Message Reference Manual
This manual is available in HTML format on the documentation CD-ROM for Release 11i.

Condition Message Returned
Meaning of Message

Returned

Success S Process succeeded

Failure E Expected error

Failure U Unexpected error
6-98 Oracle Manufacturing APIs and Open Interfaces Manual

Reservations Manager Application Program Interface
Reservations Manager Application Program Interface
The Reservations Manager API is a public API that allows you to call the reservation
manager on-line or submit reservation requests concurrently. The Reservations Manager
processes reservation requests from the MTL_RESERVATIONS_INTERFACE table for
creating, updating, transferring, and deleting reservations. The Reservations Manager API
includes the public procedure rsv_interface_manager.

Setting Up the Reservations Manager API

Parameter Descriptions
The following chart lists all parameters used by Reservations Manager API. Additional
information on these parameters follow the chart.

RSV_INTERFACE_MANAGER

x_errbuf
A mandatory concurrent program parameter.

x_retcode
A mandatory concurrent program parameter.

p_api_version_number
Indicates the API version number.

Default Value: 1

Parameter Usage Type Required Derived Optional

x_errbuf OUT Varchar2

x_retcode OUT Number

p_api_version_number IN Number x

p_init_msg_lst IN Varchar2 x

p_form_mode IN Varchar2 x
Oracle Inventory Open Interfaces and APIs 6-99

Reservations Manager Application Program Interface
p_init_msg_list
Requests that the API initialize the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types Varchar2(2000) and
Number respectively.

Default Value: FND_API.G_FALSE

p_form_mode
Specifies whether the Reservations Manager is called from the form. Possible values
include:

Y to indicate the Reservations Manager is called from the form.

N to indicate the Reservations Manager is not called from the form

Default Value: N

Validation of Reservations Manager API

Standard Validation
Oracle Inventory validates all input parameters in the Reservations Manager API. For
specific information on the data implied by these parameters, see your Oracle Inventory
Technical Reference Manual for details.

Error Handling
If any validation fails, the API will return an error status to the calling module. The
Reservations Manager API processes the rows and reports the following values for every
record.

Condition Message Returned
Meaning of Message

Returned

Success S Process succeeded
6-100 Oracle Manufacturing APIs and Open Interfaces Manual

Reservations Manager Application Program Interface
See Also
Oracle Applications Message Reference Manual
This manual is available in HTML format on the documentation CD-ROM for Release 11i.

Failure E Expected error

Failure U Unexpected error

Condition Message Returned
Meaning of Message

Returned
Oracle Inventory Open Interfaces and APIs 6-101

Sales Order Application Program Interface
Sales Order Application Program Interface
The Sales Order API is a public API that allows you to do the following:

■ Create a sales order in Oracle Inventory’s local definition of a sales order

■ Update a sales order in Oracle Inventory’s local definition of a sales order

■ Get a corresponding Oracle Order Management order header identifier given a sales
order identifier

■ Get a corresponding sales order identifier given an Order Management order header
identifier.

Functional Overview
The Sales Order API provides three public procedures that allow you to accomplish the tasks
listed above. The procedures are as follows:

■ create_salesorder

Creates a sales order in Oracle Inventory’s local definition of a sales order.

■ get_oeheader_for_salesorder

Allows you to get a corresponding Oracle Order Management order header identifier
given a sales order identifier. A value of negative one (-1) is returned if the sales order
identifierwas created by a system other than Oracle Order Management.

■ get_salesorder_for_oeheader

Allows you to get a corresponding sales order identifier given an Oracle Order
Management order header identifier. If there is no matching sales order identifier, a
null is returned.

Setting Up the Sales Order API

Parameter Descriptions
The following charts list all parameters used by the Sales Order API. Additional
information on these parameters follows each chart.

CREATE_SALESORDER

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x
6-102 Oracle Manufacturing APIs and Open Interfaces Manual

Sales Order Application Program Interface
p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initialize the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out
Oracle Inventory Open Interfaces and APIs 6-103

Sales Order Application Program Interface
p_segment3
Indicates the order source.

p_validate_full
Indicates whether flexfield APIs are used to create sales order flexfields. When set to a value
of 1, flexfield APIs are used to create sales order flexfields. When set to a value of 0, the
sales order flexfield is created manually.

Default Value: 1

p_validation_date
Indicates the date of creation.

x_salesorder_id
Indicates the returned sales order identifier.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

x_msg_count
Indicates the number of error messages the API has encountered.

x_return_status
Requests that the API return the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_SUCCESS

■ Error: FND_API.G _EXC_ERROR

■ Unexpected Error: FND_API.G_EXC_UNEXPECTED_ERROR

GET_OEHEADER_FOR_SALESORDER

Parameter Usage Type Required Derived Optional

p_salesorder_id IN Number x

x_oe_header_id OUT Number
6-104 Oracle Manufacturing APIs and Open Interfaces Manual

Sales Order Application Program Interface
p_salesorder_id
Indicates the sales order identifier

x_oe_header_id
Indicates the Oracle Order Management order header identifier.

x_return_status
Requests that the API return the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_SUCCESS

■ Error: FND_API.G _EXC_ERROR

■ Unexpected Error: FND_API.G_EXC_UNEXPECTED_ERROR

GET_SALESORDER_FOR_OEHEADER

p_oe_header_id
Returns a sales order identifier when an Oracle Order Management order header is passed to
it.

Validation of Sales Order API

Standard Validation
Oracle Inventory validates all input parameters in the Sales Order API. For specific
information on the data implied by these parameters, see your Oracle Inventory Technical
Reference Manual for details.

x_return_status OUT Varchar2

Parameter Usage Type Required Derived Optional

p_oe_header_id IN Number x

Parameter Usage Type Required Derived Optional
Oracle Inventory Open Interfaces and APIs 6-105

Sales Order Application Program Interface
Error Handling
If any validation fails, the API will return an error status to the calling module. The Sales
Order API processes the rows and reports the following values for every record.

See Also
Oracle Applications Message Reference Manual
This manual is available in HTML format on the documentation CD-ROM for Release 11i.

Condition Message Returned
Meaning of Message

Returned

Success S Process succeeded

Failure E Expected error

Failure U Unexpected error
6-106 Oracle Manufacturing APIs and Open Interfaces Manual

Move Order Application Program Interface
Move Order Application Program Interface
The Move Order API is a public API that allows you to do the following:

■ Create a move order header

■ Create a move order line

■ Process a move order (create or update)

■ Lock a move order

■ Get a move order for a given header or header identifier

■ Process a move order line (cancel or update)

Functional Overview
The Move Order API provides the following public procedures that allow you to accomplish
the tasks listed above:

■ create_move_order_header

■ create_move_order_lines

■ process_move_order

■ lock_move_order

■ get_move_order

■ process_move_order_line

Setting Up the Move Order API

Parameter Descriptions
The following charts list all parameters used by the Move Order API. Additional
information on the parameters follows each chart.

CREATE_MOVE_ORDER_HEADER

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x

p_return_values IN Varchar2 x
Oracle Inventory Open Interfaces and APIs 6-107

Move Order Application Program Interface
p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initializes the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types Varchar2(2000) and
Number respectively.

Default Value: FND_API.G_FALSE

p_return_values
Requests that the API sends back the values on your behalf.

Default Value: FND_API.G_FALSE

p_commit
Requests that the API update information for you after it completes its function.

Default Value: FND_API.G_FALSE

p_commit IN Varchar2 x

x_return_status OUT Varchar2

x_msg_count OUT Number

x_msg_data OUT Varchar2

p_trohdr_rec IN Record x

p_trohdr_val_rec IN Record x

x_trohdr_rec OUT Record

x_trohdr_val_rec OUT Record

Parameter Usage Type Required Derived Optional
6-108 Oracle Manufacturing APIs and Open Interfaces Manual

Move Order Application Program Interface
x_return_status
Requests that the API return the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

p_trohdr_rec
The record that contains the information to be used to create the move order header.

 Default Value: G_MISS_TROHDR_REC

p_trohdr_val_rec
Contains information values rather than internal identifiers used to create the move order
header.

Default Value: G_MISS_TRODHDR_VAL_REC

x_trohdr_rec
The information of the move order header that was created.

x_trohdr_val_rec
The information values of the move order header that was created.

CREATE_MOVE_ORDER_LINES

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x
Oracle Inventory Open Interfaces and APIs 6-109

Move Order Application Program Interface
p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initializes the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types Varchar2(2000) and
Number respectively.

Default Value: FND_API.G_FALSE

p_return_values
Requests that the API sends back the values on your behalf.

Default Value: FND_API.G_FALSE

p_commit
Requests that the API update information for you after it completes its function.

p_return_values IN Varchar2 x

p_commit IN Varchar2 x

x_return_status OUT Varchar2

x_msg_count OUT Number

x_msg_data OUT Varchar2

p_trolin_tbl IN PL/SQL Table x

p_trolin_val_tbl IN PL/SQL Table x

x_trolin_tbl OUT PL/SQL Table

x_trolin_val_tbl OUT PL/SQL Table

Parameter Usage Type Required Derived Optional
6-110 Oracle Manufacturing APIs and Open Interfaces Manual

Move Order Application Program Interface
Default Value: FND_API.G_FALSE

x_return_status
Requests that the API return the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

p_trolin_tbl
A table of records that contains the information to be used to create the move order lines.

Default Value: G_MISS_TROLIN_TBL

p_trolin_val_tbl
Contains information values rather than internal identifiers used to create the move order
header.

Default Value: G_MISS_TROLIN_VAL_TBL

x_trolin_tbl
The information of the move order lines that were created.

x_trolin_val_tbl
The information values of the move order lines that were created.

PROCESS_MOVE_ORDER

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x
Oracle Inventory Open Interfaces and APIs 6-111

Move Order Application Program Interface
p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initializes the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types Varchar2(2000) and
Number respectively.

Default Value: FND_API.G_FALSE

p_init_msg_list IN Varchar2 x

p_return_values IN Varchar2 x

p_commit IN Varchar2

x_return_status OUT Varchar2 x

x_msg_count OUT Number

x_msg_data OUT Varchar2

p_trohdr_rec IN Record x

p_trohdr_val_rec IN Record x

p_trolin_tbl IN PL/SQL Table x

p_trolin_val_tbl IN PL/SQL Table x

x_trohdr_rec OU Record

x_trohdr_val_rec OUT Record

x_trolin_tbl OUT PL/SQL Table

x_trolin_val_tbl OUT PL/SQL Table

Parameter Usage Type Required Derived Optional
6-112 Oracle Manufacturing APIs and Open Interfaces Manual

Move Order Application Program Interface
p_return_values
Requests that the API sends back the values on your behalf.

Default Value: FND_API.G_FALSE

p_commit
Requests that the API update information for you after it completes its function.

Default Value: FND_API.G_FALSE

x_return_status
Requests that the API return the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

p_trohdr_rec
The record that contains the information to be used to create the move order header.

 Default Value: G_MISS_TROHDR_REC

p_trohdr_val_rec
Contains information values rather than internal identifiers used to create the move order
header.

Default Value: G_MISS_TROHDR_VAL_REC

p_trolin_tbl
A table of records that contains the information to create the move order lines.

 Default Value: G_MISS_TROLIN_TBL
Oracle Inventory Open Interfaces and APIs 6-113

Move Order Application Program Interface
p_trolin_val_tbl
Contains information values rather than internal identifiers used to create the move order
header.

Default Value: G_MISS_TROLIN_VAL_TBL

x_trohdr_rec
The information of the move order header that was created.

x_trohdr_val_rec
The information values of the move order header that was created.

x_trolin_tbl
The information of the move order lines that were created.

x_trolin_val_tbl
The information values of the move order lines that were created.

LOCK_MOVE_ORDER

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x

p_return_values IN Varchar2 x

x_return_status OUT Varchar2

x_msg_count OUT Number

x_msg_data OUT Varchar2

p_trohdr_rec IN Record x

p_trohdr_val_rec IN Record x

p_trolin_tbl IN PL/SQL Table x

p_trolin_val_tbl IN PL/SQL Table x

x_trohdr_rec OUT Record

x_trohdr_val_rec OUT Record
6-114 Oracle Manufacturing APIs and Open Interfaces Manual

Move Order Application Program Interface
p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initializes the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types Varchar2(2000) and
Number respectively.

Default Value: FND_API.G_FALSE

p_return_values
Requests that the API sends back the values on your behalf.

Default Value: FND_API.G_FALSE

x_return_status
Requests that the API return the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

x_trolin_tbl OUT PL/SQL Table

x_trolin_val_tbl OUT PL/SQL Table

Parameter Usage Type Required Derived Optional
Oracle Inventory Open Interfaces and APIs 6-115

Move Order Application Program Interface
x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

p_trohdr_rec
The record that contains the information to create the move order header.

 Default Value: G_MISS_TROHDR_REC

p_trohdr_val_rec
Contains information values rather than internal identifiers used to create the move order
header.

Default Value: G_MISS_TROHDR_VAL_REC

p_trolin_tbl
A table of records that contains the information to create the move order lines.

 Default Value: G_MISS_TROLIN_TBL

p_trolin_val_tbl
Contains information values rather than internal identifiers used to create the move order
header.

Default Value: G_MISS_TROLIN_VAL_TBL

x_trohdr_rec
The information of the move order header that was created.

x_trohdr_val_rec
The information values of the move order header that was created.

x_trolin_tbl
The information of the move order lines that were created.

x_trolin_val_tbl
The information values of the move order lines that were created.
6-116 Oracle Manufacturing APIs and Open Interfaces Manual

Move Order Application Program Interface
GET_MOVE_ORDER

p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initializes the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x

p_return_values IN Varchar2 x

x_return_status OUT Varchar2

x_msg_count OUT Number

x_msg_data OUT Varchar2

p_header_id IN Number x

(you must indicate
either this parameter
or the following)

p_header IN Varchar2 x

(you must indicate
either this parameter
or the preceding)

x_trohdr_rec OUT Record

x_trohdr_val_rec OUT Record

x_trolin_tbl OUT PL/SQL Table

x_trolin_val_tbl OUT PL/SQL Table
Oracle Inventory Open Interfaces and APIs 6-117

Move Order Application Program Interface
where 1_message and 1_msg_index_out are local variables of types Varchar2(2000) and
Number respectively.

Default Value: FND_API.G_FALSE

p_return_values
Requests that the API sends back the values on your behalf.

Default Value: FND_API.G_FALSE

x_return_status
Requests that the API return the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

p_header_id
The header identifier of the move order that you want to get.

Default Value: FND_API.G_MISS_NUM

p_header
The header description of the move order that you want to get.

Default Value: FND_API.G_MISS_CHAR

x_trohdr_rec
The information of the move order header that was created.

x_trohdr_val_rec
The information values of the move order header that was created.
6-118 Oracle Manufacturing APIs and Open Interfaces Manual

Move Order Application Program Interface
x_trolin_tbl
The information of the move order lines that were created.

x_trolin_val_tbl
The information values of the move order lines that were created.

PROCESS_MOVE_ORDER_LINE

p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initializes the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x

p_return_values IN Varchar2 x

p_commit IN Varchar2 x

x_return_status OUT Varchar2

x_msg_count OUT Number

x_msg_data OUT Varchar2

p_trolin_tbl IN PL/SQL Table x

p_trolin_old_tbl IN PL/SQL Table x

x_trolin_tbl OUT PL/SQL Table x
Oracle Inventory Open Interfaces and APIs 6-119

Move Order Application Program Interface
where 1_message and 1_msg_index_out are local variables of types Varchar2(2000) and
Number respectively.

Default Value: FND_API.G_FALSE

p_return_values
Requests that the API sends back the values on your behalf.

Default Value: FND_API.G_FALSE

p_commit
Requests that the API update information for you after it completes its function.

Default Value: FND_API.G_TRUE

x_return_status
Requests that the API return the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

p_trolin_tbl
Contains information to be used to process move order lines.

Validation of Move Order API

Standard Validation
Oracle Inventory validates all input parameters in the Move Order API. For specific
information on the data implied by these parameters, see your Oracle Inventory Technical
Reference Manual for details.
6-120 Oracle Manufacturing APIs and Open Interfaces Manual

Move Order Application Program Interface
Error Handling
If any validation fails, the API will return an error status to the calling module. The Move
Order API processes the rows and reports the following values for every record.

See Also
Oracle Applications Message Reference Manual
This manual is available in HTML format on the documentation CD-ROM for Release 11i.

Condition Message Returned
Meaning of Message

Returned

Success S Process succeeded

Failure E Expected error

Failure U Unexpected error
Oracle Inventory Open Interfaces and APIs 6-121

Pick Release Application Program Interface
Pick Release Application Program Interface
The Pick Release API is a public API that allows you to release a set of move order lines for
pick wave move orders. This API creates move order line details for the lines that are
released, and, depending on the parameters passed in, runs the pick confirm process
immediately afterwards. The Pick Release API includes the public procedure pick_release.

Setting Up the Pick Release API

Parameter Descriptions
The following chart lists all parameters used by the pick_release procedure. Additional
information on these parameters follows the chart.

PICK_RELEASE

p_api_version_number
Indicates the API version number.

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x

p_commit IN Varchar2 x

x_return_status OUT Varchar2

x_msg_count OUT Number

x_msg_data OUT Varchar2

p_mo_line_tbl IN PL/SQL Table x

p_auto_pick_confirm IN Number x

p_grouping_rule_id IN Number x

x_return_status OUT Varchar2

x_msg_count OUT Varchar2

x_msg_data OUT Varchar2

x_pick_release_status Out PL/SQL Table
6-122 Oracle Manufacturing APIs and Open Interfaces Manual

Pick Release Application Program Interface
p_init_msg_list
Requests that the API initialize the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types Varchar2(2000 and
Number respectively.

Default Value: FND_API.G_FALSE

p_commit
Requests that the API update information for you after it completes its function.

Default Value: FND_API.G_FALSE

x_return_status
Requests that the API return the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

p_mo_line_tbl
Indicates the PL/SQL table from which move order line records are chosen.
Oracle Inventory Open Interfaces and APIs 6-123

Pick Release Application Program Interface
p_auto_pick_confirm
Overrides the organization level parameter to indicate whether the Pick Confirm API is
automatically called after the records have been pick released.

Default Value: FND_API.G_MISS_NUM

p_grouping_rule_id
Overrides the organization level parameter and the move order header level grouping rule
for generating pick slip numbers.

Default Value: FND_API.G_MISS_NUM

x_return_status
Requests that the API return the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

x_pick_release_status
A table of records that specifies the pick release status for each move order line that is
passed in.

Validation of Pick Release API

Standard Validation
Oracle Inventory validates all input parameters in the Pick_Release procedure. For specific
information on the data implied by these parameters, see your Oracle Inventory Technical
Reference Manual for details.
6-124 Oracle Manufacturing APIs and Open Interfaces Manual

Pick Release Application Program Interface
Error Handling
If any validation fails, the API will return an error status to the calling module. The Pick
Release API processes the rows and reports the following values for every record.

See Also
Oracle Applications Message Reference Manual
Oracle Inventory Open Interfaces and APIs 6-125

Pick Confirm Application Program Interface
Pick Confirm Application Program Interface
The Pick Confirm API is a public API that allows you to perform pick confirmations on
move order line detail records. To transact the records, the API calls the transaction
processor, which then updates the move order line delivered quantity as well as shipping and
reservation information.

Functional Overview
The Pick Confirm API provides one public procedure, pick_confirm, which transfers move
order line detail records from the MTL_MATERIAL_TRANSACTIONS_TEMP table into
the MTL_MATERIAL_TRANSACTIONS table.

Setting Up the Pick Confirm API

Parameter Descriptions
The following chart lists all parameters used by the Pick_Confirm procedure. Additional
information on these parameters follows the chart.

PICK_CONFIRM

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x

p_commit IN Varchar2 x

x_return_status OUT Varchar2

x_msg_count OUT Varchar2

x_msg_data OUT Varchar2

p_move_order_type IN Number x

p_transaction_mode IN Number x

p_trolin_tbl IN x

(you must indicate
either this parameter
or the following)
6-126 Oracle Manufacturing APIs and Open Interfaces Manual

Pick Confirm Application Program Interface
p_api_version_number
Indicates the API version number.

p_init_msg_list
Requests that the API initialize the message list on your behalf. If the x_msg_count is
greater than 1, then the list of messages must be retrieved using the call FND_MSG_
PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types Varchar2(2000 and
Number respectively.

Default Value: FND_API.G_FALSE

p_commit
Requests that the API updates information for you after it completes its function.

Default Value: FND_API.G_FALSE

x_return_status
Requests that the API returns the status of the data for you after it completes its function.
Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

p_mold_tbl IN x

(you must indicate
either this parameter
or the preceding)

x_mmtt_tbl OUT

x_trolin_tbl OUT

Parameter Usage Type Required Derived Optional
Oracle Inventory Open Interfaces and APIs 6-127

Pick Confirm Application Program Interface
x_msg_count
Indicates the number of error messages the API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the actual
message.

p_move_order_type
Indicates the move order type.

p_transaction_mode
Indicates the transaction mode. A value of 1 refers to on-line, 2 to concurrent, and 3 to
background.

p_trolin_tbl
Indicates the PL/SQL table from which the move order line records are chosen.

p_mold_tbl
Indicates the PL/SQL table from which the move order line detail records are chosen.

x_mmtt_tbl
Indicates the return value of the p_mold_tbl parameter.

x_trolin_tbl
Indicates the return value of the p_trolin_tbl parameter.

Validation of Pick Confirm API

Standard Validation
Oracle Inventory validates all input parameters in the Pick_Confirm procedure. For specific
information on the data implied by these parameters, see your Oracle Inventory Technical
Reference Manual for details.

Error Handling
If any validation fails, the API will return an error status to the calling module. The Pick
Confirm API processes the rows and reports the following values for every record.
6-128 Oracle Manufacturing APIs and Open Interfaces Manual

Pick Confirm Application Program Interface
See Also
Oracle Applications Message Reference Manual
This manual is available in HTML format on the documentation CD-ROM for Release 11i.

Condition Message Returned
Meaning of Message

Returned

Success S Process succeeded

Failure E Expected error

Failure U Unexpected error
Oracle Inventory Open Interfaces and APIs 6-129

Pick Confirm Application Program Interface
6-130 Oracle Manufacturing APIs and Open Interfaces Manual

Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and
7

Oracle Master Scheduling/MRP and

Oracle Supply Chain Planning
Open Interfaces and APIs

This chapter contains information about the following Oracle Master
Scheduling/MRP and Oracle supply Chain Planing open interfaces and application
program interfaces:

■ Open Forecast Interface on page 7-2

■ Open Master Schedule Interface on page 7-8

■ Open Forecast Entries Application Program Interface on page 7-14

■ Sourcing Rule Application Program Interface on page 7-21
 APIs 7-1

Open Forecast Interface
Open Forecast Interface
You can import forecasts from any source using the Open Forecast Interface table.
Oracle Master Scheduling/MRP automatically validates and implements imported
forecasts as new forecasts in Oracle Master Scheduling/MRP.

The purpose of this essay is to explain how to use the Open Forecast Interface so
that you can integrate other applications with Oracle Master Scheduling/MRP.

Functional Overview
All processing is performed by the Forecast Interface Load program. The Forecast
Interface Load program is launched by the Planning Manager, which periodically
checks the Open Forecast Interface to see if there are any new rows waiting to be
processed.

Setting Up the Open Forecast Interface
You must define at least one organization, item, forecast set, and forecast name
before using the Open Forecast Interface. Since the Planning Manager decides
when to call the Forecast Interface Load program, the Planning Manager must also
be running before you can import forecasts via the Open Forecast Interface.

Inserting into the Open Forecast Interface Table
You must load your forecasts into the MRP_FORECAST_INTERFACE table. The
Forecast Interface Load program validates your forecasts, derives any additional
data as necessary, and then processes it by creating new forecasts in Oracle Master
Scheduling/MRP.

Open Forecast Interface Table Description
The Open Forecast Interface Table is described in the following table. This is
typically used for batch loads, performed when the load is low on the concurrent
processing system. It is not interactive.

Table 7–1 Open Forecast Interface Table Description

Column Name Type Required Derived Optional

INVENTORY_ITEM_ID Number

FORECAST_DESIGNATOR Varchar2(10) x

ORGANIZATION_ID Number x
7-2 Oracle Manufacturing APIs and Open Interfaces Manual

Open Forecast Interface
FORECAST_DATE Date x

LAST_UPDATE_DATE Date x

LAST_UPDATED_BY Number x

CREATION_DATE Date x

CREATED_BY Number x

LAST_UPDATE_LOGIN Number x

QUANTITY Number x

PROCESS_STATUS Number x

CONFIDENCE_PERCENTAGE Number x

COMMENTS Varchar2(240) x

ERROR_MESSAGE Varchar2(240) x

REQUEST_ID Number x

PROGRAM_APPLICATION_ID Number x

PROGRAM_ID Number x

PROGRAM_UPDATE_DATE Date x

WORKDAY_CONTROL Number x

BUCKET_TYPE Number x

FORECAST_END_DATE Date x

TRANSACTION_ID Number x

SOURCE_CODE Varchar2(10) x

SOURCE_LINE_ID Number x

ATTRIBUTE_CATEGORY Varchar230) x

ATTRIBUTE1 - ATTRIBUTE15 Varchar2(150) x

PROJECT ID Number(15) x

TASK ID Number(15 x

LINE ID Number(15 x

Table 7–1 Open Forecast Interface Table Description

Column Name Type Required Derived Optional
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-3

Open Forecast Interface
Legend
1: Multiple Period Forecast Entries only

Required Data
ORGANIZATION_ID, FORECAST_DESIGNATOR, INVENTORY_ITEM_ID,
FORECAST_DATE, and QUANTITY are used by the Forecast Interface Load
program to create new forecast entries in MRP_FORECAST_DATES.

PROCESS_STATUS indicates the current state of processing of each new forecast
entry in the Open Forecast Interface. Valid values include:

■ 1. Do not process

■ 2. Waiting to be processed

■ 3. Being processed

■ 4. Error

■ 5. Processed

When you first load a new forecast entry into the Open Forecast Interface, set
PROCESS_STATUS to 2 (Waiting to be processed).

Derived Data
ERROR_MESSAGE indicates a problem that prevents the Forecast Interface Load
program from successfully processing a new forecast entry in the Open Forecast
Interface.

The Forecast Interface Load program creates a new row in MRP_FORECAST_
ITEMS for each new forecast entry that refers to an item that has not been assigned
to the forecast referenced in the Open Forecast Interface.

Optional Data
Use WORKDAY_CONTROL to indicate the action that the Forecast Interface Load
should take if it finds a forecast date or forecast end date that is not a valid workday.
Enter one of the following:

■ 1. Reject

■ 2. Shift forward

■ 3. Shift backward
7-4 Oracle Manufacturing APIs and Open Interfaces Manual

Open Forecast Interface
If WORKDAY_CONTROL is set to Null, the Forecast Interface Load program
assumes a value of 1 (Reject).

Use BUCKET_TYPE to indicate the bucket type of each new forecast entry. Enter
one of the following:

■ 1. Days

■ 2. Weeks

■ 3. Periods

If BUCKET_TYPE is null, the Forecast Interface Load program assumes a value of 1
(Days).

Use FORECAST_END_DATE for forecast entries that span multiple periods.

Use TRANSACTION_ID if you wish to replace an existing entry in MRP_
FORECAST_DATES with a new forecast entry that you have loaded into the Open
Forecast Interface. The Forecast Interface Load deletes any existing entries in MRP_
FORECAST_DATES with the same TRANSACTION_ID before importing the new
forecast entry.

Use SOURCE_CODE and SOURCE_LINE_ID to identify the source of new forecast
entries.

See Also
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Technical
Reference Manual

Validation

Standard Validation
Oracle Master Scheduling/MRP validates all required columns in the interface
table. For specific information on the data implied by these columns, see your
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Technical Reference
Manual for details.

Other Validation
Oracle Master Scheduling/MRP also performs the following validation:

INVENTORY_ITEM_ID Must be a valid item defined IN MTL_SYSTEM_ITEMS.
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-5

Open Forecast Interface
ORGANIZATION_ID Must be a valid organization defined in ORG_ORGANIZATION_
DEFINITIONS.

FORECAST_DESIGNATOR Must be a valid, non-disabled forecast name defined in
MRP_FORECAST_DESIGNATORS.

FORECAST_DATE Must be less than or equal to RATE_END_DATE if RATE_END_
DATE is provided.

FORECAST_END_DATE Must be greater than or equal to FORECAST_DATE.

FORECAST_QUANTITY Must be greater than 0 and less than or equal to 99999999.9.

PROCESS_STATUS Must be one of:

■ 1. Do not process

■ 2. Waiting to be processed

■ 3. Being processed

■ 4. Error

■ 5. Processed

WORKDAY_CONTROL Must be one of:

■ 1. Reject

■ 2. Shift forward

■ 3. Shift backward

BUCKET_TYPE Must be one of:

■ 1. Days

■ 2. Weeks

■ 3. Periods

TRANSACTION_ID If provided, TRANSACTION_ID must match an existing
TRANSACTION_ID in MRP_FORECAST_DATES.
7-6 Oracle Manufacturing APIs and Open Interfaces Manual

Resolving Failed Open Forecast Interface Rows
Resolving Failed Open Forecast Interface Rows

Error Messages
Oracle Master Scheduling/MRP may display specific error messages during
interface processing.

See Also
The Oracle Applications Message Reference Manual. This manual is available in HTML
format on the documentation CD-ROM for Release 11i.

Viewing Failed Transactions
Use SQL*Plus to view failed transactions in the Open Forecast Interface. The
ERROR_MESSAGE column indicates why the Forecast Interface Load program was
unable to successfully process each failed transaction.

Fixing Failed Transactions Options
Use SQL*Plus to manually correct failed transactions. You can either:

■ Delete the failed row in the Open Forecast Interface, correct the error in your
external forecast, and reload the corrected forecast into the Open Forecast
Interface, or

■ Correct the error in the Open Forecast Interface, reset the PROCESS_STATUS
column to 2 (Waiting to be processed), and set the REQUEST_ID and ERROR_
MESSAGE columns to Null

The Planning Manager will detect the new rows when it next checks the Open
Forecast Interface, and launch the Forecast Interface Load program accordingly.
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-7

Open Master Schedule Interface
Open Master Schedule Interface
You can import master schedules from any source using the Open Master Schedule
Interface. Oracle Master Scheduling/MRP automatically validates and implements
imported master schedules as new master schedules in Oracle Master
Scheduling/MRP.

The purpose of this essay is to explain how to use the Open Master Schedule
Interface so that you can integrate other applications with Oracle Master
Scheduling/MRP.

Functional Overview
All processing is performed by the Master Schedule Interface Load program. The
Master Schedule Interface Load program is launched by the Planning Manager,
which periodically checks the Open Master Schedule Interface to see if there are any
new rows waiting to be processed.

Setting Up the Open Master Schedule Interface
You must define at least one organization, item, and master schedule name before
using the Open Master Schedule Interface. Since the Planning Manager decides
when to call the Master Schedule Interface Load program, the Planning Manager
must also be running before you can import master schedules via the Open Master
Schedule Interface.

Inserting into the Open Master Schedule Interface Table
You must load your master schedules into the MRP_SCHEDULE_INTERFACE
table. The Master Schedule Interface Load program validates your master
schedules, derives any additional data as necessary, and then processes it by
creating new master schedules in Oracle Master Scheduling/MRP.

Open Master Schedule Interface Table Description
The Open Master Schedule Interface Table is described in the following table:

Table 7–2 Open Master Schedule Interface Table Description

Column Name Type Required Derived Optional

INVENTORY_ITEM_ID Number x

SCHEDULE_DESIGNATOR Varchar2(10) x
7-8 Oracle Manufacturing APIs and Open Interfaces Manual

Open Master Schedule Interface
ORGANIZATION_ID Number x

LAST_UPDATE_DATE Date x

LAST_UPDATED_BY Number x

CREATION_DATE Date x

CREATED_BY Number x

LAST_UPDATE_LOGIN Number x

SCHEDULE_DATE Date x

NEW_SCHEDULE_DATE Date x

RATE_END_DATE Date x

NEW_RATE_END_DATE Date x

SCHEDULE_QUANTITY Number x

SCHEDULE_COMMENTS Varchar2(240) x

ERROR_MESSAGE Varchar2(240) x

WORKDAY_CONTROL Number x

TRANSACTION_ID Number x

PROCESS_STATUS Number x

SOURCE_CODE Varchar2(10) x

SOURCE_LINE_ID Number x

REQUEST_ID Number x

PROGRAM_APPLICATION_ID Number x

PROGRAM_ID Number x

PROGRAM_UPDATE_DATE Date x

ATTRIBUTE_CATEGORY Varchar2(30) x

ATTRIBUTE1 - ATTRIBUTE15 Varchar2(150) x

PROJECT ID Number(15) x

TASK ID Number(15 x

LINE ID Number(15 x

Table 7–2 Open Master Schedule Interface Table Description

Column Name Type Required Derived Optional
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-9

Open Master Schedule Interface
Legend
1: Rate-based Master Schedule Entries only

Required Data
ORGANIZATION_ID, SCHEDULE_DESIGNATOR, INVENTORY_ITEM_ID,
SCHEDULE_DATE, and SCHEDULE_QUANTITY are used by the Master Schedule
Interface Load program to create new schedule entries in MRP_SCHEDULE_
DATES.

PROCESS_STATUS indicates the current state of processing of each new schedule
entry in the Open Master Schedule Interface. Possible values include:

■ 1. Do not process

■ 2. Waiting to be processed

■ 3. Being processed

■ 4. Error

■ 5. Processed

When you first load a new schedule entry into the Open Master Schedule Interface,
set PROCESS_STATUS to 2 (Waiting to be processed).

Derived Data
ERROR_MESSAGE indicates a problem that prevents the Master Schedule Interface
Load program from successfully processing a new schedule entry in the Open
Master Schedule Interface.

The Master Schedule Interface Load program creates a new row in MRP_
SCHEDULE_ITEMS for each new schedule entry that refers to an item that has not
been assigned to the master schedule referenced in the Open Master Schedule
Interface.

Optional Data
Use WORKDAY_CONTROL to indicate the action that the Master Schedule
Interface Load should take if it finds a schedule date or schedule end date that is not
a valid workday. Enter one of the following:

■ 1. Reject

■ 2. Shift forward

■ 3. Shift backward
7-10 Oracle Manufacturing APIs and Open Interfaces Manual

Open Master Schedule Interface
If WORKDAY_CONTROL is set to Null, the Master Schedule Interface Load
program assumes a value of 1 (Reject).

Use SCHEDULE_END_DATE for rate-based master schedule entries.

Use TRANSACTION_ID if you wish to replace an existing entry in MRP_
SCHEDULE_DATES with a new schedule entry that you have loaded into the Open
Master Schedule Interface. The Master Schedule Interface Load deletes any existing
entries in MRP_SCHEDULE_DATES with the same TRANSACTION_ID before
importing the new schedule entry.

Use SOURCE_CODE and SOURCE_LINE_ID to identify the source of new schedule
entries.

See Also
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Technical
Reference Manual

Validation

Standard Validation
Oracle Master Scheduling/MRP validates all required columns in the interface
table. For specific information on the data implied by these columns, see your Oracle
Master Scheduling/MRP and Oracle Supply Chain Planning Technical Reference Manual
for details.

Other Validation
Oracle Master Scheduling/MRP also performs the following validation:

INVENTORY_ITEM_ID Must be a valid item defined IN MTL_SYSTEM_ITEMS. Master
Demand Schedules can only include MPS planned or MRP planned items. Master
Production Schedules can only include MPS planned items.

ORGANIZATION_ID Must be a valid organization defined in ORG_ORGANIZATION_
DEFINITIONS.

SCHEDULE_DESIGNATOR Must be a valid, non-disabled master schedule name
defined in MRP_SCHEDULE_DESIGNATORS.
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-11

Open Master Schedule Interface
SCHEDULE_DATE Must be less than or equal to RATE_END_DATE if RATE_END_
DATE is provided.

RATE_END_DATE Must be greater than or equal to SCHEDULE_DATE.

Only repetitively planned items can have a RATE_END_DATE.

SCHEDULE_QUANTITY Must be greater than 0 and less than or equal to 99999999.9.

WORKDAY_CONTROL Must be one of:

■ 1. Reject

■ 2. Shift forward

■ 3. Shift backward

PROCESS_STATUS Must be one of:

■ 1. Do not process

■ 2. Waiting to be processed

■ 3. Being processed

■ 4. Error

■ 5. Processed

TRANSACTION_ID If provided, TRANSACTION_ID must match an existing
TRANSACTION_ID in MRP_SCHEDULE_DATES.

Resolving Failed Open Master Schedule Interface Rows

Error Messages
Oracle Master Scheduling/MRP may display specific error messages during
interface processing.

See Also
The Oracle Applications Message Reference Manual. This manual is available in HTML
format on the documentation CD-ROM for Release 11i.
7-12 Oracle Manufacturing APIs and Open Interfaces Manual

Open Master Schedule Interface
Viewing Failed Transactions
Use Scalpels to view failed transactions in the Open Master Schedule Interface. The
ERROR_MESSAGE column indicates why the Master Schedule Interface Load
program was unable to successfully process each failed transaction.

Fixing Failed Transactions Options
Use Scalpels to manually correct failed transactions. You can either:

■ Delete the failed row in the Open Master Schedule Interface, correct the error in
your external schedule, and reload the corrected schedule into the Open Master
Schedule Interface, or

■ Correct the error in the Open Master Schedule Interface, reset the PROCESS_
STATUS column to 2 (Waiting to be processed), and set the REQUEST_ID and
ERROR_MESSAGE columns to Null

The Planning Manager will detect the new rows when it next checks the Open
Master Schedule Interface, and launch the Master Schedule Interface Load program
accordingly.
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-13

Open Forecast Entries Application Program Interface
Open Forecast Entries Application Program Interface
The Open Forecast Entries Application Program Interface(API) allows you to create,
replace, or delete forecast entries for existing forecasts and forecast sets in Oracle
Master Scheduling/MRP.

The purpose of this essay is to explain how to use the Open Forecast Entries API so
that you can integrate other applications with Oracle Master Scheduling/MRP. The
Open Forecast Entries API differs from the Open Forecast Interface in two ways:

■ There is tighter coupling between the calling interface and the MRP system.

■ It is used for synchronous actions on the forecasting data, and you can
manipulate data within a commit cycle controlled by the calling module.

This is achieved by the use of a PL/SQL table instead of a database table.

Functional Overview
You can process MRP Forecast Entries directly from within your calling module
without running a concurrent process, it is PL/SQL based. This program allows you
to create new forecasts, replace existing forecasts, and delete forecast entries within
a defined forecast name or designator. The forecast data that needs to be imported is
loaded from a table and inserted into the MRP_FORECAST_DATES parameter.

Setting Up the Open Forecast Entries API
The Open Forecast Entries API is a stored PL/SQL function,
MRP_FORECAST_INTERFACE_PK.MRP_FORECAST_INTERFACE,with two
parameters. One parameter is a PL/SQL table structured the same as MRP_
FORECAST_INTERFACE. The second parameter is a table defining the forecast and
organization.

Inserting into the Open Forecast Entries API Tables
You must load your forecast data into the T_FORECAST_INTERFACE PL/SQL
table, and the FORECAST_DESIGNATOR PL/SQL table.

Open Forecast Entries Application Program Interface PL/SQL Table Description
The Open Forecast Entries Application Program Interface PL/SQL table is
described in the following table:
7-14 Oracle Manufacturing APIs and Open Interfaces Manual

Open Forecast Entries Application Program Interface
Table 7–3 Oracle Master Scheduling/MRP Open Forecast Entries API

T_FORECAST_INTERFACE
Column Name Type Required Derived Optional

INVENTORY_ITEM_ID Number x

FORECAST_DESIGNATOR Varchar2(10) x

ORGANIZATION_ID Number x

FORECAST_DATE Date x

LAST_UPDATE_DATE Number x

CREATION_DATE Date x

CREATED_BY Number x

LAST_UPDATE_LOGIN Number x x

QUANTITY Number x

PROCESS_STATUS Number x

CONFIDENCE_PRECENTAGE Number x

COMMENTS Varchar2(240) x

ERROR_MESSAGE Varchar2(240) x

REQUEST_ID Number x

PROGRAM_APPLICATION_ID Number x

PROGRAM_ID Number x

PROGRAM_UPDATE_DATE Date x

WORKDAY_CONTROL Number x

BUCKET_TYPE Number x

FORECAST_END_DATE Date x

TRANSACTION_ID Number x

SOURCE_CODE Varchar2(10) x

SOURCE_LINE_ID Number x

ATTRIBUTE1 - ATTRIBUTE15 Varchar2(150) x

PROJECT ID Number(15) x

TASK ID Number(15 x
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-15

Open Forecast Entries Application Program Interface
Open Forecast Interface Designator Table Description
The Open Forecast Interface Designator Table is described in the following table:

Legend
1: Multiple Period Forecast Entries only

Returns
True if successful.
False if failure.

Parameters

Required Data
ORGANIZATION_ID, FORECAST_DESIGNATOR, INVENTORY_ITEM_ID,
FORECAST_DATE, and QUANTITY are used by the Forecast Interface Entries
program to create, replace, or delete forecast entries in T_FORECAST_INTERFACE.

LINE ID Number(15 x

Table 7–4 Oracle Master Scheduling/MRP Open Forecast Interface Designator

T_FORECAST_DESIGNATOR
Column Name Type Required Derived Optional

ORGANIZATION_ID Number x

FORECAST_DESIGNATOR Varchar2(10) x

Name Type In/Out

T_FORECAST_
INTERFACE

Table of
MRP_FORECAST_INTERFACE ROWTYPE

In and Out

T_FORECAST_
DESIGNATOR

Table of User-defined record REC_FORECAST_
DESG
(Organization_id number, Forecast Designator
Varchar2(10)

In

Table 7–3 Oracle Master Scheduling/MRP Open Forecast Entries API

T_FORECAST_INTERFACE
Column Name Type Required Derived Optional
7-16 Oracle Manufacturing APIs and Open Interfaces Manual

Open Forecast Entries Application Program Interface
PROCESS_STATUS indicates the current state of processing of each new forecast
entry. Valid values include:

■ 1. Do not process

■ 2. Waiting to be processed

When you first load a new forecast entry into the Open Forecast Entries Interface,
set PROCESS_STATUS to 2 (Waiting to be processed). The values 3 (Being
processed), 4 (Error), and 5 (Processed) are used to report back to the calling
program.

Derived Data
The concurrent program and WHO columns, along with the error message column,
are derived and set by the API accordingly.

Optional Data
Use WORKDAY_CONTROL to indicate the action that the Forecast Interface Entry
should take if it finds a forecast date or forecast end date that is not a valid workday.
Enter one of the following:

■ 1. Reject

■ 2. Shift forward

■ 3. Shift backward

If WORKDAY_CONTROL is set to Null, the Forecast Interface Entry program
assumes a value of 1 (Reject).

Use BUCKET_TYPE to indicate the bucket type of each new forecast entry. Enter
one of the following:

■ 1. Days

■ 2. Weeks

■ 3. Periods

If BUCKET_TYPE is null, the Forecast Interface Load program assumes a value of 1
(Days).

Use FORECAST_END_DATE for forecast entries that span multiple periods.

Use TRANSACTION_ID if you wish to replace an existing entry in MRP_
FORECAST_DATES with a new forecast entry that you have loaded into the Open
Forecast Interface. The Forecast Interface Load deletes any existing entries in MRP_
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-17

Open Forecast Entries Application Program Interface
FORECAST_DATES with the same TRANSACTION_ID before importing the new
forecast entry.

Use SOURCE_CODE and SOURCE_LINE_ID to identify the source of new forecast
entries.

See Also
Oracle Master Scheduling/MRP Technical Reference Manual

Validation

Standard Validation
Oracle Master Scheduling/MRP validates all required columns in the interface
table. For specific information on the data implied by these columns, see your
Oracle Master Scheduling/MRP Reference Manual for details.

Other Validation
Oracle Open Forecast Entries Interface also performs the following validation:

INVENTORY_ITEM_ID Must be a valid item defined IN MTL_SYSTEM_ITEMS.

FORECAST_DESIGNATOR Must be a valid, non-disabled forecast name defined in
MRP_FORECAST_DESIGNATORS.

ORGANIZATION_ID Must be a valid organization defined in ORG_ORGANIZATION_
DEFINITIONS.

FORECAST_DATE Must be less than or equal to FORECAST_END_DATE if
FORECAST_END_DATE is provided.

PROCESS_STATUS Must be one of:

■ 1. Do not process

■ 2. Waiting to be processed

FORECAST_END_DATE Must be greater than or equal to FORECAST_DATE.

Must be greater than 0 and less than or equal to 99999999.9.

FORECAST_QUANTITY Must be greater than 0 and less than or equal to 99999999.9.
7-18 Oracle Manufacturing APIs and Open Interfaces Manual

Open Forecast Entries Application Program Interface
WORKDAY_CONTROL Must be one of:

■ 1. Reject

■ 2. Shift forward

■ 3. Shift backward

BUCKET_TYPE Must be one of:

■ 1. Days

■ 2. Weeks

■ 3. Periods

TRANSACTION_ID If provided, TRANSACTION_ID must match an existing
TRANSACTION_ID in MRP_FORECAST_DATES.

Using the Open Forecast Entries API

Creating New Forecast Entries
■ Populate table T_FORECAST_INTERFACE with all the forecast data that needs

to be imported. Set PROCESS_STATUS to a value of 2 for all rows.

■ Call MRP_FORECAST_INTERFACE_PK.MRP
_FORECAST_INTERFACE
using parameter T_FORECAST_INTERFACE and T_FORECAST_
DESIGNATOR.

■ The Forecast Interface Entry program creates a new row in MRP_FORECAST_
ITEMS for each new forecast entry that refers to an item that has not been
assigned to the forecast referenced in the Open Forecast Interface.

■ The application program interface will process the rows and set the column
PROCESS_STATUS to a value of either 4 or 5:

– 4 an error occurred, the column ERROR_MESSAGE will indicate the error

– 5 the row was inserted into MRP_FORECAST_DATES

Replacing Forecast Entries
■ Populate table T_FORECAST_INTERFACE with all the forecast data that needs

to be imported. Set PROCESS_STATUS to a value of 2 for all rows.
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-19

Open Forecast Entries Application Program Interface
■ Populate table T_FORECAST_DESIGNATOR with all the forecast desIgnators
for which entries need to be deleted.

■ Call MRP_FORECAST_INTERFACE_PK.MRP_FORECAST_INTERFACE
with the following parameters:
FORECAST_INTERFACE, T_FORECAST_DESIGNATOR.

■ The application program interface will delete the existing entries for each
forecast designator in T_FORECAST_DESIGNATOR. It will process the rows in
T_FORECAST_INTERFACE and set the column PROCESS_STATUS to a value
of either 4 or 5:

– 4 an error occurred, the column ERROR_MESSAGEwill indicate the error

– 5 the row was inserted into MRP_FORECAST_DATES

Deleting All Forecast Entries in Multiple Forecast Designators
■ Populate table T_FORECAST_DESIGNATOR with all the forecast desIgnators

for which entries need to be deleted.

■ Call MRP_FORECAST_INTERFACE_PK.MRP
_FORECAST_INTERFACE
with parameter T_FORECAST_DESIGNATOR.

■ The application program interface will delete the existing entries for each
forecast desIgnator in T_FORECAST_DESIGNATOR.

Error Handling
The Open Forecast Entries Interface program will process the rows and report the
following values for every record in the FORECAST__INTERFACE entry table.

Condition PROCESS_STATUS ERROR_MESSAGE

Success
Failure

5
4

Null
actual error message
7-20 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
Sourcing Rule Application Program Interface
The Sourcing Rule Application Program Interface (API) is a public API that allows
you to create, maintain, and delete sourcing rule or bill of distribution information
in Oracle Master Scheduling/MRP and Oracle Supply Chain Planning.

This API differs from the planning interfaces because it puts information directly
into the Oracle Master Scheduling/MRP tables rather than inserting information
into an interface table. You can process sourcing rule entries directly from within
your calling module without running a concurrent process. It is PL/SQL based, you
can process one sourcing rule or bill of distribution per call.

It can be used for both custom applications and legacy systems. The Sourcing Rule
API consists of two objects: the Sourcing Rule object and the Assignment object.
Each of these objects consists of several entities.

This section explains how to use the Sourcing Rule API and how it functions in
Oracle planning products.

Sourcing Rule/Bill of Distribution API Features
The Sourcing Rule/Bill of Distribution API object consists of three entities:

■ Sourcing Rule/Bill of Distribution

You can create new entries, update existing sourcing rule/bill of distribution
information, and delete entries.

Table: MRP_SOURCING_RULES

Sourcing Rule/Bill of Distribution

Receiving Organization

Shipping Organization
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-21

Sourcing Rule Application Program Interface
■ Receiving Organization

You can process multiple receiving organizations belonging to the sourcing
rule/bill of distribution. You can create new entries, update existing
information, and delete receiving organizations.

Table: MRP_SR_RECEIPT_ORG

■ Shipping Organization

You can process multiple shipping organizations belonging to the sourcing
rule/bill of distribution. You can create new entries, update existing
information, and delete shipping organizations.

Table: MRP_SR_SOURCE_ORG

The relationships between these tables create the sourcing information used in MPS,
MRP, and DRP plans. The MRP_SOURCING_RULES table stores sourcing rule
names and descriptions. It contains receiving organization data for material sources.
The receiving organization information is in the MRP_SR_RECEIPT_ORG table,
each row of the table specifies a receiving organization for a date range. The MRP_
SR_SOURCE_ORG table stores data on the source suppliers for the sourcing rule or
bill of distribution.

A sourcing rule is paired with an assignment from the MRP_SR_ASSIGNMENTS
table, all this information is fed into the material items and categories tables.

For more information on planning table, see: Oracle Master Scheduling/MRP and
Oracle Supply Chain Planning Technical Reference Manual.

Functional Overview
The Sourcing Rule/Bill of Distribution API provides three public procedures for
calling the create, update, delete, and get operations:

■ Process_Sourcing_Rule

Accepts object specific information (through the parameters) and handles
Create, Update and Delete operation.

■ Get_Sourcing_Rule

Handles the Select Operation Lock_Sourcing_Rule.

■ Select Operation Lock_Sourcing_Rule

Locks records that define a particular Sourcing Rule and associated child
entities.
7-22 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
Each of these three procedures first performs a check for call compatibility and then
calls the respective private API. There is a specific order of processing information
into the parameters and it is as follows:

■ First, Sourcing Rule information is processed by passing in through the p_
sourcing _rule_rec parameter.

■ Next, the receiving organization information is passed to the p_receiving_org
parameter.

■ And then the shipping organization information is processed through the p_
shipping_org parameter.

Setting Up the Sourcing Rule/Bill of Distribution API
The Sourcing Rule API is a stored PL/SQL function. Before using the API, set up
and activate the following parameters:

■ Version number

■ Sourcing rule

■ Receiving organization

■ Shipping organization

Procedure Parameter Descriptions

MRP_SOURCING_RULE_PUB.PROCESS_SOURCING_RULE

The following chart describes all parameters used by the public API MRP_
SOURCING_RULE_PUB.PROCESS_SOURCING_RULE procedure. All of the
inbound and outbound parameters are listed. Additional information on these
parameters follows.

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x

p_return_values IN Varchar2 x

p_commit IN Varchar2 x

x_return_status OUT Varchar2 x
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-23

Sourcing Rule Application Program Interface
p_api_version_number
Used to compare the incoming API call's version number with the current version
number. An error is returned if the version numbers are incompatible.

p_init_msg_list
Requests that the API initialize the message list on your behalf. If the x_msg_count
is greater than 1, then the list of messages must be retrieved using the call FND_
MSG_PUB.GET. The values are:

■ p_msg_index => I

■ p_encoded => F

■ p_data => 1_message

■ p_msg_index_out => 1_msg_index_out

where 1_message and 1_msg_index_out are local variables of types
Varchar2(2000 and Number respectively.

Default Value: FND_API.G_FALSE

x_msg_count OUT Number x

x_msg_data OUT Varchar2 x

p_sourcing_rule_rec IN Record x

p_sourcing_rule_val_rec IN Record x

p_receiving_org_tbl IN PL/SQL Table x

p_receiving_org_val_tbl IN PL/SQL Table x

p_shipping_org_tbl IN PL/SQL Table x

p_shipping_org_val_tbl IN PL/SQL Table x

x_sourcing_rule_rec OUT Record x

x_sourcing_rule_val_rec OUT Record x

x_receiving_org_tbl OUT PL/SQL Table x

x_receiving_org_val_tbl OUT PL/SQL Table x

x_shipping_org_tbl OUT PL/SQL Table x

x_shipping_org_val_tbl OUT PL/SQL Table x

Parameter Usage Type Required Derived Optional
7-24 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
p_return_values
Requests that the API send back the values on your behalf.

Default Value: FND_API.G_FALSE

p_commit
Requests that the API update information for you after it completes its function.

Default Value: FND_API.G_FALSE

x_return_status
Requests that the API return the status of the data for you after it completes its
function. Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates number of error messages API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the
actual message.

p_sourcing_rule_rec
The sourcing rule or bill of distribution record referenced by the API.

Default Value: G_MISS_SOURCING_RULE_REC

p_sourcing_rule_val_rec
Resolves the values for the API, and then returns the information for the sourcing
rule/bill of distribution record.

Default Value: G_MISS_SOURCING_RULE_VAL_REC

p_receiving_org_tbl
The receiving organization information listed in the rule is returned to this
parameter.

Default Value: G_MISS_RECEIVING_ORG_TBL
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-25

Sourcing Rule Application Program Interface
p_receiving_org_val_tbl
Resolves the values for the API, and then returns the information for the receiving
organization listed in the sourcing rule.

Default Value: G_MISS_RECEIVING_ORG_VAL_TBL

p_shipping_org_tbl
The shipping organization information listed in the rule is returned to this
parameter.

Default Value: G_MISS_SHIPPING_ORG_TBL

p_shipping_org_val_tbl
Resolves the values for the API, and then returns the information for the shipping
organization listed in the sourcing rule.

Default Value: G_MISS_SHIPPING_ORG_VAL_TBL

x_sourcing_rule_rec
Result of the API data after it completes its function for the sourcing rule/bill of
distribution record.

x_sourcing_rule_val_rec
Resolves the values for the API, and then returns the information for the sourcing
rule/bill of distribution record.

x_receiving_org_tbl
Resolves the values for the API, and then returns the information for the receiving
organization listed in the sourcing rule/bill of distribution record.

x_receiving_org_val_tbl
Resolves the values for the API, and then returns the information for the receiving
organization listed in the rule.

x_shipping_org_tbl
Resolves the values for the API, and then returns the information for the shipping
organization listed in the sourcing rule/bill of distribution record.
7-26 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
x_shipping_org_val_tbl
Resolves the values for the API, and then returns the information for the shipping
organization listed in the rule.

Record Parameter Descriptions

SOURCING_RULE_REC_TYPE

The procedure passes information to record groups and PL/SQL tables. The chart
below describes all records that are used by the SOURCING_RULE_REC_TYPE
record. Additional information on these parameters follows.

Parameter Type Required Derived Optional

sourcing_rule_id Number x
update, delete

attribute 1 - 15 Varchar2(150) x

attribute_category Varchar2(30) x

created_by Number x

creation_date Date x

description Varchar2(80) x

last_updated_by Number x

last_update_date Date x

last_update_login Number x

organization_id Number x

planning_active Number x

program_application_id Number x

program_id Number x

program_update_date Date x

request_id Number x

sourcing_rule_name Varchar2(30) x
insert

x

sourcing_rule_type Number x x

status Number x
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-27

Sourcing Rule Application Program Interface
sourcing_rule_id
Identification number for the sourcing rule or bill of distribution record referenced
by the API.

Default Value: FND_API.G_MISS_NUM

attribute 1 - 15
Descriptive text for flexfields.

Default Value: FND_API.G_MISS_CHAR

attribute_category
The category of the flexfield described in the attribute column.

Default Value: FND_API.G_MISS_CHAR

created_by
Identification number for user initiating this program session.

Default Value: FND_API.G_MISS_NUM

creation_date
Date this program session was created.

Default Value: FND_API.G_MISS_DATE

description
Text describing the sourcing rule record type.

Default Value: FND_API.G_MISS_CHAR

last_updated_by
User ID for user creating this program session.

Default Value: FND_API.G_MISS_NUM

return_status Varchar2(1) x

db_flag Varchar2(1) x

operation Varchar2(30) x

Parameter Type Required Derived Optional
7-28 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
last_update_date
Date program was last updated.

Default Value: FND_API.G_MISS_DATE

last_update_login
User login for user updating this program.

Default Value: FND_API.G_MISS_NUM

organization_id
The identification number for the organization referenced in the sourcing rule or bill
of distribution record.

Default Value: FND_API.G_MISS_NUM

planning_active

Rule is active when the sum of the allocation percentages equals 100.

Default Value: FND_API.G_MISS_NUM

program_application_id

Application identifier of the program that has made a call to the
Sourcing Rule API if it is registered as a concurrent program in Oracle
Application Object Library.

Default Value: FND_API.G_MISS_NUM

program_id

Identifier of the program that has made a call to the Sourcing Rule
API, if it is registered as a concurrent program in Oracle Application
Object Library.

Default Value: FND_API.G_MISS_NUM

program_update_date
The date when the program inserts or updates the sourcing records into the
appropriate tables.

Default Value: FND_API.G_MISS_DATE
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-29

Sourcing Rule Application Program Interface
request_id
The request ID determines which profile values are used as a default.

Default Value: FND_API.G_MISS_NUM

sourcing_rule_name
Valid name of rule defined in the MRP_SOURCING _RULES table.

Default Value: FND_API.G_MISS_CHAR

sourcing_rule_type
Valid types must be one of the following values:

■ (1) Sourcing Rule

■ (2) Bill of Distribution

Default Value: FND_API.G_MISS_NUM

status
If any validation fails, the API will return error status to the calling module. The
Sourcing Rule API processes the rows and reports the following values for every
record. If the sourcing rule does not already exist in the system - the Status attribute
is set to 1.

Processing status of the sourcing rule, valid values are:

■ (1)

■ (2)

Default Value: FND_API.G_MISS_NUM

return_status
Processing status of the API after it completes its function. Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

Default Value: FND_API.G_MISS_CHAR
7-30 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
db_flag
Indicator of the record existing in the database.

Default Value: FND_API.G_MISS_CHAR

operation
Indicator of whether the record is inserted, updated, or deleted. Valid values
include:

■ Create

■ Update

■ Delete

Default Value: FND_API.G_MISS_CHAR

See Also
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Technical Reference
Manual

RECEIVING_ORG_REC_TYPE

The procedure passes information to record groups and PL/SQL tables. The chart
below describes all records that are used by the RECEIVING_ORG_REC_TYPE
record. Additional information on these parameters follows.

Parameter Type Required Derived Optional

sr_receipt_id Number x

attribute 1 - 15 Varchar2(150) x

attribute_category Varchar2(30) x

created_by Number x

creation_date Date x

disable_date Date x

effective_date Date x

last_updated_by Number x

last_update_date Date x

last_update_login Number x
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-31

Sourcing Rule Application Program Interface
sr_receipt_id
Identification number for the receiving organization referenced in the sourcing rule
or bill of distribution record.

Default Value: FND_API.G_MISS_NUM

attribute 1 - 15
Descriptive text for flexfields.

Default Value: FND_API.G_MISS_CHAR

attribute_category
The category of the flexfield described in the attribute column.

Default Value: FND_API.G_MISS_CHAR

created_by
Identification number for user initiating this program session.

Default Value: FND_API.G_MISS_NUM

creation_date
Date this program session was created.

Default Value: FND_API.G_MISS_DATE

program_application_id Number x

program_id Number x

program_update_date Date x

receipt_organization_id Number x

request_id Number x

sourcing_rule_id Number x

return_status Varchar2(1) x

db_flag Varchar2(1) x

operation Varchar2(30) x

Parameter Type Required Derived Optional
7-32 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
disable_date
Date the receipt organization is no longer effective.

Default Value: FND_API.G_MISS_DATE

effective_date
Beginning date the receipt organization becomes effective.

Default Value: FND_API.G_MISS_DATE

last_updated_by
User ID for user creating this program session.

Default Value: FND_API.G_MISS_NUM

last_update_date
Date program was last updated.

Default Value: FND_API.G_MISS_DATE

last_update_login
User login for user updating this program.

Default Value: FND_API.G_MISS_NUM

program_application_id
Application identifier of the program that has made a call to the Sourcing Rule API
if it is registered as a concurrent program in Oracle Application Object Library.

Default Value: FND_API.G_MISS_NUM

program_id
Identifier of the program that has made a call to the Sourcing Rule API, if it is
registered as a concurrent program in Oracle Application Object Library.

Default Value: FND_API.G_MISS_NUM

program_update_date
The date when the program inserts or updates the sourcing records into the
appropriate tables.

Default Value: FND_API.G_MISS_DATE
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-33

Sourcing Rule Application Program Interface
receipt_organization_id
Identifier of the organization that serves as the destination for the sourcing rule or
bill of distribution.

Default Value: FND_API.G_MISS_NUM

request_id
The request ID determines which profile values are used as a default.

Default Value: FND_API.G_MISS_NUM

sourcing_rule_id
Identification number for the sourcing rule or bill of distribution record referenced
by the API.

Default Value: FND_API.G_MISS_NUM

return_status
Processing status of the API after it completes its function. Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

Default Value: FND_API.G_MISS_CHAR

db_flag
Indicator of the record existing in the database.

Default Value: FND_API.G_MISS_CHAR

operation
Indicator of whether the record is inserted, updated, or deleted. Valid values
include:

■ Create

■ Update

■ Delete

Default Value: FND_API.G_MISS_CHAR
7-34 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
SHIPPING_ORG_REC_TYPE

The procedure passes information to record groups and PL/SQL tables. The chart
below describes all records that are used by the SHIPPING_ORG_REC_TYPE
record. Additional information on these parameters follows.

Parameter Type Required Derived Optional

sr_source_id Number x

allocation_percent Number x

attribute 1 - 15 Varchar2(150) x

attribute_category Varchar2(30) x

created_by Number x

creation_date Date x

last_updated_by Number x

last_update_date Date x

last_update_login Number x

program_application_id Number x

program_id Number x

program_update_date Date x

rank Number x

request_id Number x

secondary_inventory Varchar2(10) x

ship_method Varchar2(30) x

source_organization_id Number x

source_type Number

sr_receipt_id Number

vendor_id Number

vendor_site_id Number

return_status Varchar2(1) x

db_flag Varchar2(1) x

operation Varchar2(30) x
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-35

Sourcing Rule Application Program Interface
sr_source_id
Primary key in the sourcing rule or bill of distribution table.

Default Value: FND_API.G_MISS_NUM

allocation_percent
Percentage allocated to each source organization/supplier site destination.

Default Value: FND_API.G_MISS_NUM

attribute 1 - 15
Descriptive text for flexfields.

Default Value: FND_API.G_MISS_CHAR

attribute_category
The category of the flexfield described in the attribute column.

Default Value: FND_API.G_MISS_CHAR

created_by
Identification number for user initiating this program session.

Default Value: FND_API.G_MISS_NUM

creation_date
Date this program session was created.

Default Value: FND_API.G_MISS_DATE

last_updated_by
User ID for user creating this program session.

Default Value: FND_API.G_MISS_NUM

receiving_org_index Number

Parameter Type Required Derived Optional
7-36 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
last_update_date
Date program was last updated.

Default Value: FND_API.G_MISS_DATE

last_update_login
User login for user updating this program.

Default Value: FND_API.G_MISS_NUM

program_application_id
Application identifier of the program that has made a call to the Sourcing Rule API
if it is registered as a concurrent program in Oracle Application Object Library.

Default Value: FND_API.G_MISS_NUM

program_id
Identifier of the program that has made a call to the Sourcing Rule API, if it is
registered as a concurrent program in Oracle Application Object Library.

Default Value: FND_API.G_MISS_NUM

program_update_date
The date when the program inserts or updates the sourcing records into the
appropriate tables.

Default Value: FND_API.G_MISS_DATE

rank
Rank of the sources, valid values are non-zero integers.

Default Value: FND_API.G_MISS_NUM

request_id
The request ID determines which profile values are used as a default.

Default Value: FND_API.G_MISS_NUM

secondary_inventory
Currently not used.
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-37

Sourcing Rule Application Program Interface
ship_method
Method used when transporting material between source and destination.

Default Value: FND_API.G_MISS_CHAR

source_organization_id
Identifier of the source organization.

Default Value: FND_API.G_MISS_NUM

source_type
Indicator of the type of source. Valid values are:

■ Make

■ Transfer

■ Buy

Default Value: FND_API.G_MISS_NUM

sr_receipt_id
Identification number for the receiving organization referenced in the sourcing rule
or bill of distribution record.

Default Value: FND_API.G_MISS_NUM

vendor_id
Identifier of the vendor suppling the materials.

Default Value: FND_API.G_MISS_NUM

vendor_site_id
Identifier where the vendor’s materials are located.

Default Value: FND_API.G_MISS_NUM
7-38 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
return_status
Processing status of the API after it completes its function. Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

Default Value: FND_API.G_MISS_CHAR

db_flag
Indicator of the record existing in the database.

Default Value: FND_API.G_MISS_CHAR

operation
Indicator of whether the record is inserted, updated, or deleted. Valid values
include:

■ Create

■ Update

■ Delete

Default Value: FND_API.G_MISS_CHAR

receiving_org_index
Foreign key to the receipt organization PL/SQL table.

Default Value: FND_API.G_MISS_NUM

See Also
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Technical Reference
Manual
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-39

Sourcing Rule Application Program Interface
Validation of Sourcing Rule /Bill of Distribution API

Standard Validation
Oracle Master Scheduling/MRP validates all required columns in the Sourcing
Rule/Bill of Distribution API. For specific information on the data implied by these
columns, see your Oracle Master Scheduling/MRP Technical Reference Manual for
details.

If you do not want to update a particular column in:

❏ MRP_SOURCING_RULE_PUB.PROCESS_SOURCING_RULE

do not enter NULL for its corresponding interface parameter unless the default in
the PL/SQL specification is NULL. Either use one of the missing parameter
constants defined in the FND_API package (G_MISS_...), or do not pass any value
at all.

For all flag parameters, pass in a Boolean constant defined in FND_API (G_TRUE or
G_FALSE).

Each time the API is called, it will check the allocation percent for each receiving
organization that belongs to the sourcing rule or bill of distribution. If the total
allocation percent is 100, the plannning_active attribute is set to a value of 1.
Otherwise the attribute is set to 2.

Creating Sourcing Rule API Entries
When you create a new sourcing rule the following item level validations:

■ sourcing_rule_name: must be defined in the MRP_SOURCING _RULES table.

■ sourcing_rule_type: must be a either (1) Sourcing Rule or (2) Bill of
Distribution.If the sourcing rule does not already exist in the system - the Status
attribute is set to 1.

When you create a new sourcing rule, the following record level validations occur:

■ organization_id: must be a valid organization defined in ORG_
ORGANIZATION_DEFINITIONS.

■ The organization_id attribute is associated with a valid organization, unless it is
null.

When you create a new sourcing rule, the following object level validations occur:

■ At least one receiving organization record is created.
7-40 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
■ At least one shipping organization record is created.

If validation is successful, a record is inserted into the MRP_SOURCING_RULES
table.

Updating Sourcing Rule API Entries
When you update an existing sourcing rule, the following item level validations
occur:

■ If the sourcing rule name is changed, the new name cannot already exist in the
system.

■ The organization cannot be changed and the sourcing rule type cannot be
changed.

When you update an existing sourcing rule, the following record level validations
occur:

■ Required attributes are either sourcing_rule_id, or sourcing _rule_name, and
organization_id, and all flexfields must be validated.

If validation is successful, a record is updated in the MRP_SOURCING_RULES
table.

Deleting Sourcing Rule API Entries
You cannot delete a sourcing rule if assignment data exists for the rule. When you
delete an existing sourcing rule, the following record level validation occurs:

❏ Required attributes are either sourcing_rule_id, or sourcing _rule_nam,e and
organization_id.

 When you delete an existing sourcing rule, the following object level validations
occur:

■ All receiving organization records associated with the rule/bill of distribution
record in the MRP_SR_RECEIPT_ORG table.

■ All shipping organization records associated with the rule/bill of distribution
record in the MRP_SR_SOURCE_ORG table.

■ The sourcing rule/bill of distribution record from MRP_SOURCING_RULES
table.

If deletion is successful, the API returns a success status to the calling module.
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-41

Sourcing Rule Application Program Interface
Error Handling
If any validation fails, the API will return error status to the calling module. The
Sourcing Rule API processes the rows and reports the following values for every
record.

See Also
Oracle Applications Message Reference Manual

Condition PROCESS_STATIS ERROR_MESSAGE

Success 5 null

Failure 4 actual error message
7-42 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
Sourcing Rule Assignment API Features
The Sourcing Rule Assignment API object consists of two entities. The following
chart demonstrates the relationship between the assignment object and the sourcing
rule /bill of distribution object:

■ Assignment Set

You can create new entries, update existing assignment information, and delete
entries.

Table: MRP_ASSIGNMENT_SETS

■ Assignment

You can process multiple assignments belonging to the sourcing rule/bill of
distribution. This includes creating new, updating or deleting existing entries.

Table: MRP_SR_ASSIGNMENTS

The relationship between these tables create the sourcing assignment information
used in MPS, MRP, and DRP plans. Once you have defined your sourcing rules and
bills of distribution, you must assign them to items and organizations. These
assignments are grouped together in sets. The MRP_ASSIGNMENT_SET table
stores assignment set names and the different levels of assignment. For example,
you may assign an items in all organizations, or just in an inventory organization.
The MRP_SR_ASSIGNMENTS table stores data on the sourcing rule or bill of
distribution for the assignment.

See Also
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Technical Reference
Manual

Assignment Set Assignment Sourcing Rule/BOD

Assignment object Sourcing Rule object
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-43

Sourcing Rule Application Program Interface
Functional Overview
The Sourcing Assignment API provides three public procedures for calling the
create, update, delete and get operations:

■ Process_Assignment

Accepts object specific information (through the parameters) and handles
Create, Update and Delete Operation.

■ Get_Assignment

Handles the Select Operation Lock_Assignment.

■ Select Operation Lock_Assignment

Locks records that define a particular Sourcing Rule and associated child
entities.

Each of these three procedures first performs a check for call compatibility and then
calls the respective private API. There is a specific order of processing information
into the parameters and it is as follows:

■ Assignment set information is processed by passing in through the p_
assignment_set_rec table parameter.

■ Next, the assignment information is passed to the p_assignment_set_tbl table
parameter.

Setting Up the Sourcing Rule Assignment API
The Sourcing Rule Assignment API is a stored PL/SQL function. You need to define
certain data before you create or update assignment information. Before using the
API, set up and/or activate the following parameters:

■ Version number

■ Sourcing Assignment Set Number

■ Assignment records
7-44 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
Procedure Parameter Descriptions

MRP_SRC_ASSIGNMENT_PUB.PROCESS_ASSIGNMENT

The table below describes all parameters that are used by the public API MRP_
SRC_ASSIGNMENT_PUB.PROCESS_ASSIGNMENTprocedure. All of the
inbound and outbound parameters are listed. Additional information on these
parameters follows.

p_api_version_number
Used to compare the incoming API call's version number with the current version
number. An error is returned if the version numbers are incompatible.

Parameter Usage Type Required Derived Optional

p_api_version_number IN Number x

p_init_msg_list IN Varchar2 x

p_return_values IN Varchar2 x

p_commit IN Varchar2 x

x_return_status OUT Varchar2 x

x_msg_count OUT Number x

x_msg_data OUT Varchar2 x

p_assignment_set_rec IN Record x

p_assignment_set_val_
rec

IN Record x

p_assignment_tbl IN PL/SQL Table x

p_assignment_val_tbl IN PL/SQL Table x

x_assignment_set_rec OUT Record x

x_assignment_set_val_
rec

OUT Record x

x_assignment_tbl OUT PL/SQL Table x

x_assignment_val_tbl OUT PL/SQL Table x
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-45

Sourcing Rule Application Program Interface
p_init_msg_list
Requests that the API initialize the message list on your behalf. If the x_msg_count
is greater than 1, then the list of messages must be retrieved using the call FND_
MSG_PUB.GET.

Default Value: FND_API.G_FALSE

p_return_values
Requests that the API send back the values on your behalf.

Default Value: FND_API.G_FALSE

p_commit
Requests that the API update information for you after it completes its function.

Default Value: FND_API.G_FALSE

x_return_status
Requests that the API return the status of the data for you after it completes its
function. Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count
Indicates number of error messages API has encountered.

x_msg_data
Displays error message text. If the x_msg_count is equal to 1, then this contains the
actual message.

p_assignment_set_rec
Enter the assignment set record.

Default Value: G_MISS_ASSIGNMENT_SET_REC

p_assignment_set_val_rec
Resolves the values for the API, and then returns the information for the assignment
set listed in the sourcing rule/bill of distribution record.
7-46 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
Default Value: G_MISS_ASSIGNMENT_SET_VAL_REC

p_assignment_tbl
References the assignment parameters listed in the assignment set.

Default Value: G_MISS_ASSIGNMENT_TBL

p_assignment_val_tbl
Resolves the values for the API, and then returns the information for the assignment
set listed in the rule.

Default Value: G_MISS_ASSIGNMENT_VAL_TBL

x_assignment_set_rec
The assignment set record.

x_assignment_set_val_rec
Resolves the values for the API, and then returns the information for the assignment
set listed in the sourcing rule/bill of distribution record.

x_assignment_tbl
References the assignment listed in the assignment set.

Resolves the values for the API, and then returns the information for the assignment
set listed in the sourcing rule/bill of distribution record.

x_assignment_val_tbl
Resolves the values for the API, and then returns the information for the assignment
set listed in the rule.

See Also
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Technical Reference
Manual
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-47

Sourcing Rule Application Program Interface
Record Parameter Descriptions

ASSIGNMENT_SET_REC_TYPE

The procedure passes information to record groups and PL/SQL tables. The table
below describes all record parameters that are used by the ASSIGNMENT_SET_
REC_TYPE record. Additional information on these parameters follows.

assignment_set_id
Identification number for the assignment set record referenced by the API.

Default Value: FND_API.G_MISS_NUM

Parameter Type Required Derived Optional

assignment_set_id Number x

assignment_set_name Varchar2(30) x

attribute 1 - 15 Varchar2(150) x

attribute_category Varchar2(30) x

created_by Number x

creation_date Date x

description Varchar2(80) x

last_updated_by Number x

last_update_date Date x

last_update_login Number x

program_application_id Number x

program_id Number x

program_update_date Date x

request_id Number x

return_status Varchar2(1) x

db_flag Varchar2(1) x

operation Varchar2(30) x
7-48 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
assignment_set_name
Valid name of the assignment set defined in the MRP_ASSIGNMENT_SETS table.

Default Value: FND_API.G_MISS_CHAR

attribute 1 - 15
Descriptive text for flexfields.

Default Value: FND_API.G_MISS_CHAR

attribute_category
The category of the flexfield described in the attribute column.

Default Value: FND_API.G_MISS_CHAR

created_by
Identification number for user initiating this program session.

Default Value: FND_API.G_MISS_NUM

creation_date
Date this program session was created.

Default Value: FND_API.G_MISS_DATE

description
Text describing the sourcing rule record type.

Default Value: FND_API.G_MISS_CHAR

last_updated_by
User ID for user creating this program session.

Default Value: FND_API.G_MISS_NUM

last_update_date
Date program was last updated.

Default Value: FND_API.G_MISS_DATE
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-49

Sourcing Rule Application Program Interface
last_update_login
User login for user updating this program.

Default Value: FND_API.G_MISS_NUM

program_application_id
Application identifier of the program that has made a call to the Sourcing Rule API
if it is registered as a concurrent program in Oracle Application Object Library.

Default Value: FND_API.G_MISS_NUM

program_id
Identifier of the program that has made a call to the Sourcing Rule API, if it is
registered as a concurrent program in Oracle Application Object Library.

Default Value: FND_API.G_MISS_NUM

program_update_date
The date when the program inserts or updates the sourcing records into the
appropriate tables.

Default Value: FND_API.G_MISS_DATE

request_id
The request ID determines which profile values are used as a default.

Default Value: FND_API.G_MISS_NUM

return_status
Processing status of the API after it completes its function. Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

Default Value: FND_API.G_MISS_CHAR

db_flag
Indicator of the record existing in the database.

Default Value: FND_API.G_MISS_CHAR
7-50 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
operation
Indicator of whether the record is inserted, updated, or deleted. Valid values
include:

■ Create

■ Update

■ Delete

Default Value: FND_API.G_MISS_CHAR

See Also
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Technical Reference
Manual

ASSIGNMENT_REC_TYPE

The procedure passes information to record groups and PL/SQL tables. The table
below describes all record parameters that are used by the ASSIGNMENT_REC_
TYPE record. Additional information on these parameters follows.

Parameter Type Required Derived Optional

assignment_id Number x

assignment_set_id Number x

assignment_type Number x

attribute 1 - 15 Varchar2(150) x

attribute_category Varchar2(30)

category_id Number

category_set_id Number

created_by Number

creation_date Date

customer_id Number

inventory_item_id Number

last_updated_by Number

last_update_date Date
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-51

Sourcing Rule Application Program Interface
assignment_id
Identification number for the assignment record referenced by the API.

Default Value: FND_API.G_MISS_NUM

assignment_set_id
Identification number for the assignment set record referenced by the API.

Default Value: FND_API.G_MISS_NUM

assignment_type
Valid types of sourcing assignments include the following values:

■ (1) Global

■ (2) Category

■ (3) Item

■ (4) Organization

■ (5) Category/Organization

last_update_login Number

organization _id Number

program_application_id Number

program_id Number

program_update_date Date

request_id Number

secondary_inventory Varchar2(10)

ship_to_site_id Number

sourcing_rule_id Number

sourcing_rule_type Number

return_status Varchar2(1)

db_flag Varchar2(1)

operation Varchar2(30) x

Parameter Type Required Derived Optional
7-52 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
■ (6) Item/Organization

Default Value: FND_API.G_MISS_NUM

attribute 1 - 15
Descriptive text for flexfields.

Default Value: FND_API.G_MISS_CHAR

attribute_category
The category of the flexfield described in the attribute column.

Default Value: FND_API.G_MISS_CHAR

created_by
Identification number for user initiating this program session.

Default Value: FND_API.G_MISS_NUM

creation_date
Date this program session was created.

Default Value: FND_API.G_MISS_DATE

customer_id
Identification number for the customer record referenced by the API.

Default Value: FND_API.G_MISS_NUM

inventory_item_id
Identification number for the item record referenced by the API.

Default Value: FND_API.G_MISS_NUM

last_updated_by
User ID for user creating this program session.

Default Value: FND_API.G_MISS_NUM

last_update_date
Date program was last updated.

Default Value: FND_API.G_MISS_DATE
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-53

Sourcing Rule Application Program Interface
last_update_login
User login for user updating this program.

Default Value: FND_API.G_MISS_NUM

organization_id
The identification number for the organization referenced in the assignment record.

program_application_id
Application identifier of the program that has made a call to the Sourcing Rule API
if it is registered as a concurrent program in Oracle Application Object Library.

Default Value: FND_API.G_MISS_NUM

program_id
Identifier of the program that has made a call to the Sourcing Rule API, if it is
registered as a concurrent program in Oracle Application Object Library.

Default Value: FND_API.G_MISS_NUM

program_update_date
The date when the program inserts or updates the sourcing records into the
appropriate tables.

Default Value: FND_API.G_MISS_DATE

request_id
The request ID determines which profile values are used as a default.

Default Value: FND_API.G_MISS_NUM

secondary_inventory
Currently not used.

ship_to_site_id
Used with customer identification attribute and organization assignment type to
define shipping location.

Default Value: FND_API.G_MISS_NUM
7-54 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
sourcing_rule_id
Identification number for the sourcing rule or bill of distribution record referenced
by the API.

Default Value: FND_API.G_MISS_NUM

sourcing_rule_type
Valid types must be one of the following values:

■ (1) Sourcing Rule

■ (2) Bill of Distribution

Default Value: FND_API.G_MISS_NUM

return_status
Processing status of the API after it completes its function. Valid values include:

■ Success: FND_API.G_RET_STS_SUCCESS

■ Error: FND_API.G_RET_STS_ERROR

■ Unexpected Error: FND_API.G_RET_STS_UNEXP_ERROR

Default Value: FND_API.G_MISS_CHAR

db_flag
Indicator of the record existing in the database.

Default Value: FND_API.G_MISS_CHAR

operation
Indicator of whether the record is inserted, updated, or deleted. Valid values
include:

■ Create

■ Update

■ Delete

Default Value: FND_API.G_MISS_CHAR

See Also
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Technical Reference
Manual
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-55

Sourcing Rule Application Program Interface
Validation of Sourcing Rule Assignment API

Standard Validation
Oracle Master Scheduling/MRP validates all required columns in the Sourcing
Assignment API. For specific information on the data implied by these columns,
see your Oracle Master Scheduling/MRP Reference Manual for details.

If you do not want to update a particular column in:

❏ MRP_SRC_ASSIGNMENT_PUB.PROCESS_ASSIGNMENT

do not enter NULL for its corresponding interface parameter unless the default in
the PL/SQL specification is NULL. Either use one of the missing parameter
constants defined in the FND_API package (G_MISS_...), or do not pass any value
at all.

For all flag parameters, pass in a Boolean constant defined in FND_API (G_TRUE or
G_FALSE).

For each call, the procedure performs a check for call compatibility and then
processes the assignment set and the assignment information.

Creating Assignment API Entries
When you create a new assignment, the following item level validations occur:

■ Assignment_type must be Global Category, item, organization, Category-Org,
Item-Org

■ Sourcing_rule_id

■ Assignment_set_id

■ Organization_id

When you create a new assignment, the following record level validations occur:

■ Assignment type attributes are conditionally required:

■ Global—sourcing rule type

■ Category—item/category, sourcing rule type

■ Item—tem/category, sourcing rule type

■ Organization—organization id, customer id, ship-to -site id, sourcing rule
type
7-56 Oracle Manufacturing APIs and Open Interfaces Manual

Sourcing Rule Application Program Interface
■ Category-Org—organization id, customer id, ship-to -site id, item/category,
sourcing rule type

■ Item-Org— organization id, customer id, ship-to -site id, item/category,
sourcing rule type

When you create a new assignment, the following object level validations occur:

■ Sourcing rules or bills of distribution are applicable to different assignment
types:

■ Global—bill of distribution, global sourcing rule

■ Category—bill of distribution, global sourcing rule

■ Item—bill of distribution, global sourcing rule

■ Organization—local sourcing rule, global sourcing rule

■ Category-Org—local sourcing rule, global sourcing rule

■ Item-Org—local sourcing rule, global sourcing rule

■ API can only assign a sourcing rule or bill of distribution to a category if there is
a default value in the profile option MRP:Sourcing Rule Category Set.

If validation is successful, a record is inserted into the MRP_SR_ASSIGNMENTS
table.

Updating Assignment API Entries
When you update an existing assignment, the following item level validations
occur:

■ Assignment_type

■ Sourcing_rule_id

■ Assignment_set_id

■ Organization_id

■ Assignment_id attribute

■ If the assignment set name is changed, the new name cannot already exist in
the system.

■ Either assignment set name or assignment set id is required.

When you update an assignment, the following record level validation occurs:
Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs 7-57

Sourcing Rule Application Program Interface
❏ Assignment type attributes are conditionally required depending on
assignment type. See: Creating Assignment API Entries.

When you update an assignment, the following object level validation occurs:

❏ Sourcing rules or bills of distribution are applicable to different assignment
types. See: Creating Assignment API Entries.

If validation is successful, a record is updated in the MRP_ASSIGNMENT_SETS
table.

Deleting Assignment API Entries
When you delete an existing assignment set, the following item level validations
occur:

■ Assignment_id is required.

■ The assignment record is deleted from MRP_SR_ASSIGNMENT table.

Error Handling
If any validation fails, the API will return error status to the calling module. The
Sourcing Assignment API processes the rows and reports the following values for
every record.

See Also
Oracle Applications Message Reference Manual

Condition PROCESS_STATIS ERROR_MESSAGE

Success 5 null

Failure 4 actual error message
7-58 Oracle Manufacturing APIs and Open Interfaces Manual

 Oracle Purchasing Open Inter
8

Oracle Purchasing Open Interfaces

This chapter contains information about the following Oracle Purchasing open
interfaces:

■ Requisitions Open Interface on page 8-2

■ Purchasing Documents Open Interface on page 8-27

■ Receiving Open Interface on page 8-70
faces 8-1

Requisitions Open Interface
Requisitions Open Interface
You can automatically import requisitions from other Oracle Applications or your
existing non-Oracle systems using the Requisitions Open Interface. This interface
lets you integrate Oracle Purchasing quickly with new or existing applications such
as material requirements planning, inventory management, and production control
systems. Purchasing automatically validates your data and imports your
requisitions. You can import requisitions as often as you want. Then, you can
review these requisitions, approve or reserve funds for them if necessary, and place
them on purchase orders or internal sales orders.

The purpose of this essay is to explain how to use the Requisitions Open Interface
so that you can integrate other applications with Purchasing.

Functional Overview

Figure 8–1 Functional Overview

The diagram above shows the inputs and outputs that comprise the interface
process.
8-2 Oracle Manufacturing APIs and Open Interfaces Manual

Requisitions Open Interface
You must write the program that inserts a single row into the PO_REQUISITIONS_
INTERFACE_ALL and/or the PO_REQ_DIST_INTERFACE_ALL table for each
requisition line that you want to import. Then you use the Submit Request window
to launch the Requisition Import program for any set of rows. You identify the set
of rows you want to import by setting the INTERFACE_SOURCE_CODE and
BATCH_ID columns appropriately in the PO_REQUISITIONS_INTERFACE_ALL
table. You then pass these values as parameters to the Requisition Import program.
If you do not specify any values for these parameters, the program imports all the
requisition lines in the PO_REQUISITIONS_INTERFACE_ALL table. You also
specify the requisition grouping and numbering criteria as parameters to the
Requisition Import program.

Each run of the Requisition Import program picks up distribution information from
either the PO_REQUISITIONS_INTERFACE_ALL or the PO_REQ_DIST_
INTERFACE_ALL table. The PO_REQ_DIST_INTERFACE_ALL table was used in
Release 11, for Self-Service Purchasing (known then as Web Requisitions). In
Self-Service Purchasing 4.0 and later, multiple distributions and the PO_REQ_DIST_
INTERFACE_ALL table are not used, since Self-Service Purchasing updates the
Purchasing interface tables directly rather than using Requisition Import. Therefore,
in Release 11i, you should use the PO_REQ_DIST_INTERFACE_ALL table to create
multiple distributions only for requisitions created in non-Oracle systems that use
multiple distributions. As long as the Multiple Distributions field in the Requisition
Import program is No (or blank), Requisition Import looks for distribution
information in the PO_REQUISITIONS_INTERFACE_ALL table.

If MULTI_DISTRIBUTIONS is set to Y, the column REQ_DIST_SEQUENCE_ID in
the PO_REQUISITIONS_INTERFACE_ALL table points to the primary key column,
DIST_SEQUENCE_ID, in the PO_REQ_DIST_INTERFACE_ALL table to determine
what distributions belong to which requisition line.

The Requisition Import program operates in three phases. In the first phase, the
program validates your data and derives or defaults additional information. The
program generates an error message for every validation that fails and creates a row
in the PO_INTERFACE_ERRORS table with detailed information about each error.
If the column MULTI_DISTRIBUTIONS in the PO_REQUISITIONS_INTERFACE_
ALL table is Y, Requisition Import also checks for any records in the PO_

Note: If you import the requisitions from Oracle Master
Scheduling/MRP, Oracle Order Management, or Oracle Inventory
(INV), enter No for Multiple Distributions (set MULTI_
DISTRIBUTIONS to N).
 Oracle Purchasing Open Interfaces 8-3

Requisitions Open Interface
REQUISITIONS_INTERFACE_ALL table without corresponding distribution
information in the PO_REQ_DIST_INTERFACE_ALL table and loads these as errors
in the PO_INTERFACE_ERRORS table.

In the second phase, the program groups and numbers the validated requisition
lines according to the following criteria. If you specify a value in the REQ_
NUMBER_SEGMENT1 column of the PO_REQUISITIONS_INTERFACE_ALL
table, all lines with the same value for this column are grouped together under a
requisition header. If you provide a value in the GROUP_CODE column, all lines
with the same value in this column are grouped together under a requisition header.
If you do not provide values in either of these columns, the Requisition Import
program uses the Group By parameter to group lines together. If you do not
provide a value for this parameter, the program uses the default Group By that you
set up to group requisition lines. You can group requisition lines in one of the
following ways that the Requisition Import program supports by:

■ BUYER

■ CATEGORY

■ LOCATION

■ VENDOR

■ ITEM

■ ALL (all requisition lines grouped under one header)

If you provide a value in the REQ_NUMBER_SEGMENT1 column of the PO_
REQUISITIONS_INTERFACE_ALL table, this value becomes the requisition
number. If not, the Requisition Import program uses either the Last Requisition
Number parameter if specified or the next unique number stored in the PO_
UNIQUE_IDENTIFIER_CONTROL table, adds 1 to this number, and starts
numbering requisitions. If any of the requisition numbers generated already exists,
the program loops until it finds a unique number. For every line that is successfully
imported, a default distribution is created with the account information that you
specify. (You specify account information in any of the following columns in either
the PO_REQUISITIONS_INTERFACE_ALL or the PO_REQ_DIST_INTERFACE_
ALL table: CHARGE_ACCOUNT_ID, ACCRUAL_ACCOUNT_ID, VARIANCE_
ACCOUNT_ID, BUDGET_ACCOUNT_ID, or any of the CHARGE_ACCOUNT_
SEGMENT columns.) Requisition supply is also created for every approved
requisition that is successfully imported.

In the third phase, the program deletes all the successfully processed rows in the
interface tables, and creates a report which lists the number of interface records that
were successfully imported and the number that were not imported. This report
8-4 Oracle Manufacturing APIs and Open Interfaces Manual

Requisitions Open Interface
can be viewed by choosing View Output for the Requisition Import concurrent
Request ID in the Requests window.

You can launch the Requisition Import Exceptions Report to view the rows that
were not imported by the Requisition Import program along with the failure
reason(s) for each row.

You can import approved or unapproved requisitions using the Requisitions Open
Interface. If you are using requisition encumbrance, approved requisitions that you
import automatically become pre-approved.

See Also
Requisition Import Process, Oracle Purchasing User's Guide

Requisition Import Exceptions Report, Oracle Purchasing User's Guide

Setting Up the Requisitions Interface
You must complete the following setup steps in Oracle Purchasing to use the
Requisitions Open Interface. You must define a Requisition Import Group-By
method in the Default region of the Purchasing Options window. For internally
sourced requisitions, you must associate a customer with your deliver-to location
using the Customer Addresses window.

All processing is initiated through standard report submission using the Submit
Request window. The concurrent manager manages all processing, and as such it
must be set up and running.

See Also
Defining Default Options, Oracle Purchasing User's Guide

Assigning a Business Purpose to a Customer Address, Oracle Receivables User’s
Guide

Inserting into the Requisitions Interface Tables
You load requisition lines from your source system or form into the requisitions
interface table and/or the requisition distributions interface table. You insert one
row for each requisition line that you want to import. You must provide values for
all columns that are required. You may also have to provide values for columns
that are conditionally required.
 Oracle Purchasing Open Interfaces 8-5

Requisitions Open Interface
Requisitions Interface Table Description
The following graphic describes the requisitions interface table.

Table 8–1 Requisitions Open Interface (Requisitions)

PO_REQUISITIONS_INTERFACE_ALL

Column Name Type Required Derived Optional

TRANSACTION_ID Number x

PROCESS_FLAG Varchar2 x

REQUEST_ID Number x

PROGRAM_ID Number x

PROGRAM_APPLICATION_ID Number x

PROGRAM_UPDATE_DATE Date x

LAST_UPDATED_BY Number x

LAST_UPDATE_DATE Date x

LAST_UPDATE_LOGIN Number x

CREATION_DATE Date x

CREATED_BY Number x

INTERFACE_SOURCE_CODE Varchar2 x

INTERFACE_SOURCE_LINE_ID Number x

BATCH_ID Number x

GROUP_CODE Varchar2 x

DELETE_ENABLED_FLAG Varchar2 No longer used

UPDATE_ENABLED_FLAG Varchar2 No longer used

SOURCE_TYPE_CODE Varchar2 conditionally conditionally

REQUISITION_TYPE Varchar2 x

DESTINATION_TYPE_CODE Varchar2 x

AUTHORIZATION_STATUS Varchar2 x

PREPARER_ID Number x conditionally

PREPARER_NAME Varchar2 x

APPROVER_ID Number x

APPROVER_NAME Varchar2 x

APPROVAL_PATH_ID Number x
8-6 Oracle Manufacturing APIs and Open Interfaces Manual

Requisitions Open Interface
REQUISITION_HEADER_ID Number x

REQUISITION_LINE_ID Number x

REQ_DISTRIBUTION_ID Number x

REQ_NUMBER_SEGMENT1 Varchar2 x

REQ_NUMBER_SEGMENT2 Varchar2 x

REQ_NUMBER_SEGMENT3 Varchar2 x

REQ_NUMBER_SEGMENT4 Varchar2 x

REQ_NUMBER_SEGMENT5 Varchar2 x

HEADER_DESCRIPTION Varchar2 x

HEADER_ATTRIBUTE_CATEGORY Varchar2 x

HEADER_ATTRIBUTE1 Varchar2 x

HEADER_ATTRIBUTE2 Varchar2 x

HEADER_ATTRIBUTE3 Varchar2 x

HEADER_ATTRIBUTE4 Varchar2 x

HEADER_ATTRIBUTE5 Varchar2 x

HEADER_ATTRIBUTE6 Varchar2 x

HEADER_ATTRIBUTE7 Varchar2 x

HEADER_ATTRIBUTE8 Varchar2 x

HEADER_ATTRIBUTE9 Varchar2 x

HEADER_ATTRIBUTE10 Varchar2 x

HEADER_ATTRIBUTE11 Varchar2 x

HEADER_ATTRIBUTE12 Varchar2 x

HEADER_ATTRIBUTE13 Varchar2 x

HEADER_ATTRIBUTE14 Varchar2 x

HEADER_ATTRIBUTE15 Varchar2 x

URGENT_FLAG Varchar2 x

RFQ_REQUIRED_FLAG Varchar2 x

JUSTIFICATION Varchar2 x

Table 8–1 Requisitions Open Interface (Requisitions)

PO_REQUISITIONS_INTERFACE_ALL

Column Name Type Required Derived Optional
 Oracle Purchasing Open Interfaces 8-7

Requisitions Open Interface
8-8

Requisitions Open Interface
CATEGORY_SEGMENT2 Varchar2 x

CATEGORY_SEGMENT3 Varchar2 x

CATEGORY_SEGMENT4 Varchar2 x

CATEGORY_SEGMENT5 Varchar2 x

CATEGORY_SEGMENT6 Varchar2 x

CATEGORY_SEGMENT7 Varchar2 x

CATEGORY_SEGMENT8 Varchar2 x

CATEGORY_SEGMENT9 Varchar2 x

CATEGORY_SEGMENT10 Varchar2 x

CATEGORY_SEGMENT11 Varchar2 x

CATEGORY_SEGMENT12 Varchar2 x

CATEGORY_SEGMENT13 Varchar2 x

CATEGORY_SEGMENT14 Varchar2 x

CATEGORY_SEGMENT15 Varchar2 x

CATEGORY_SEGMENT16 Varchar2 x

CATEGORY_SEGMENT17 Varchar2 x

CATEGORY_SEGMENT18 Varchar2 x

CATEGORY_SEGMENT19 Varchar2 x

CATEGORY_SEGMENT20 Varchar2 x

QUANTITY Number x

UNIT_PRICE Number x

CHARGE_ACCOUNT_ID Number x conditionally

CHARGE_ACCOUNT_SEGMENT1 Varchar2 x

CHARGE_ACCOUNT_SEGMENT2 Varchar2 x

CHARGE_ACCOUNT_SEGMENT3 Varchar2 x

CHARGE_ACCOUNT_SEGMENT4 Varchar2 x

CHARGE_ACCOUNT_SEGMENT5 Varchar2 x

CHARGE_ACCOUNT_SEGMENT6 Varchar2 x

Table 8–1 Requisitions Open Interface (Requisitions)

PO_REQUISITIONS_INTERFACE_ALL

Column Name Type Required Derived Optional
 Oracle Purchasing Open Interfaces 8-9

Requisitions Open Interface
CHARGE_ACCOUNT_SEGMENT7 Varchar2 x

CHARGE_ACCOUNT_SEGMENT8 Varchar2 x

CHARGE_ACCOUNT_SEGMENT9 Varchar2 x

CHARGE_ACCOUNT_SEGMENT10 Varchar2 x

CHARGE_ACCOUNT_SEGMENT11 Varchar2 x

CHARGE_ACCOUNT_SEGMENT12 Varchar2 x

CHARGE_ACCOUNT_SEGMENT13 Varchar2 x

CHARGE_ACCOUNT_SEGMENT14 Varchar2 x

CHARGE_ACCOUNT_SEGMENT15 Varchar2 x

CHARGE_ACCOUNT_SEGMENT16 Varchar2 x

CHARGE_ACCOUNT_SEGMENT17 Varchar2 x

CHARGE_ACCOUNT_SEGMENT18 Varchar2 x

CHARGE_ACCOUNT_SEGMENT19 Varchar2 x

CHARGE_ACCOUNT_SEGMENT20 Varchar2 x

CHARGE_ACCOUNT_SEGMENT21 Varchar2 x

CHARGE_ACCOUNT_SEGMENT22 Varchar2 x

CHARGE_ACCOUNT_SEGMENT23 Varchar2 x

CHARGE_ACCOUNT_SEGMENT24 Varchar2 x

CHARGE_ACCOUNT_SEGMENT25 Varchar2 x

CHARGE_ACCOUNT_SEGMENT26 Varchar2 x

CHARGE_ACCOUNT_SEGMENT27 Varchar2 x

CHARGE_ACCOUNT_SEGMENT28 Varchar2 x

CHARGE_ACCOUNT_SEGMENT29 Varchar2 x

CHARGE_ACCOUNT_SEGMENT30 Varchar2 x

ACCRUAL_ACCOUNT_ID Number x

VARIANCE_ACCOUNT_ID Number x

BUDGET_ACCOUNT_ID Number x

UNIT_OF_MEASURE Varchar2 conditionally conditionally

Table 8–1 Requisitions Open Interface (Requisitions)

PO_REQUISITIONS_INTERFACE_ALL

Column Name Type Required Derived Optional
8-10 Oracle Manufacturing APIs and Open Interfaces Manual

Requisitions Open Interface
UOM_CODE Varchar2 x

LINE_TYPE_ID Number x

LINE_TYPE Varchar2 x

UN_NUMBER_ID Number conditionally

UN_NUMBER Varchar2 x

HAZARD_CLASS_ID Number conditionally

HAZARD_CLASS Varchar2 x

MUST_USE_SUGG_VENDOR_FLAG Varchar2 x

REFERENCE_NUM Varchar2 x

SOURCE_ORGANIZATION_ID Number conditionally

SOURCE_ORGANIZATION_CODE Varchar2 x

SOURCE_SUBINVENTORY Varchar2 x

DESTINATION_ORGANIZATION_ID Number x conditionally

DESTINATION_ORGANIZATION_
CODE

Varchar2 x

DESTINATION_SUBINVENTORY Varchar2 conditionally

DELIVER_TO_LOCATION_ID Number x conditionally

DELIVER_TO_LOCATION_CODE Varchar2 x

DELIVER_TO_REQUESTOR_ID Number x conditionally

DELIVER_TO_REQUESTOR_NAME Varchar2 x

AUTOSOURCE_FLAG Varchar2 x

AUTOSOURCE_DOC_HEADER_ID Number conditionally

AUTOSOURCE_DOC_LINE_NUM Number conditionally

DOCUMENT_TYPE_CODE Varchar2 conditionally

SUGGESTED_BUYER_ID Number conditionally

SUGGESTED_BUYER_NAME Varchar2 x

SUGGESTED_VENDOR_ID Number conditionally

SUGGESTED_VENDOR_NAME Varchar2 x

Table 8–1 Requisitions Open Interface (Requisitions)

PO_REQUISITIONS_INTERFACE_ALL

Column Name Type Required Derived Optional
 Oracle Purchasing Open Interfaces 8-11

Requisitions Open Interface
SUGGESTED_VENDOR_SITE_ID Number conditionally

SUGGESTED_VENDOR_SITE Varchar2 x

SUGGESTED_VENDOR_CONTACT_ID Number conditionally

SUGGESTED_VENDOR_CONTACT Varchar2 conditionally

SUGGESTED_VENDOR_PHONE Varchar2 conditionally

SUGGESTED_VENDOR_ITEM_NUM Varchar2 x

LINE_ATTRIBUTE_CATEGORY Varchar2 x

LINE_ATTRIBUTE1 Varchar2 x

LINE_ATTRIBUTE2 Varchar2 x

LINE_ATTRIBUTE3 Varchar2 x

LINE_ATTRIBUTE4 Varchar2 x

LINE_ATTRIBUTE5 Varchar2 x

LINE_ATTRIBUTE6 Varchar2 x

LINE_ATTRIBUTE7 Varchar2 x

LINE_ATTRIBUTE8 Varchar2 x

LINE_ATTRIBUTE9 Varchar2 x

LINE_ATTRIBUTE10 Varchar2 x

LINE_ATTRIBUTE11 Varchar2 x

LINE_ATTRIBUTE12 Varchar2 x

LINE_ATTRIBUTE13 Varchar2 x

LINE_ATTRIBUTE14 Varchar2 x

LINE_ATTRIBUTE15 Varchar2 x

NEED_BY_DATE Date conditionally

NOTE1_ID Number conditionally

NOTE2_ID Number conditionally

NOTE3_ID Number conditionally

NOTE4_ID Number conditionally

NOTE5_ID Number conditionally

Table 8–1 Requisitions Open Interface (Requisitions)

PO_REQUISITIONS_INTERFACE_ALL

Column Name Type Required Derived Optional
8-12 Oracle Manufacturing APIs and Open Interfaces Manual

Requisitions Open Interface
NOTE6_ID Number conditionally

NOTE7_ID Number conditionally

NOTE8_ID Number conditionally

NOTE9_ID Number conditionally

NOTE10_ID Number conditionally

NOTE1_TITLE Varchar2 x

NOTE2_TITLE Varchar2 x

NOTE3_TITLE Varchar2 x

NOTE4_TITLE Varchar2 x

NOTE5_TITLE Varchar2 x

NOTE6_TITLE Varchar2 x

NOTE7_TITLE Varchar2 x

NOTE8_TITLE Varchar2 x

NOTE9_TITLE Varchar2 x

NOTE10_TITLE Varchar2 x

DIST_ATTRIBUTE_CATEGORY Varchar2 x

DISTRIBUTION_ATTRIBUTE1 Varchar2 x

DISTRIBUTION_ATTRIBUTE2 Varchar2 x

DISTRIBUTION_ATTRIBUTE3 Varchar2 x

DISTRIBUTION_ATTRIBUTE4 Varchar2 x

DISTRIBUTION_ATTRIBUTE5 Varchar2 x

DISTRIBUTION_ATTRIBUTE6 Varchar2 x

DISTRIBUTION_ATTRIBUTE7 Varchar2 x

DISTRIBUTION_ATTRIBUTE8 Varchar2 x

DISTRIBUTION_ATTRIBUTE9 Varchar2 x

DISTRIBUTION_ATTRIBUTE10 Varchar2 x

DISTRIBUTION_ATTRIBUTE11 Varchar2 x

DISTRIBUTION_ATTRIBUTE12 Varchar2 x

Table 8–1 Requisitions Open Interface (Requisitions)

PO_REQUISITIONS_INTERFACE_ALL

Column Name Type Required Derived Optional
 Oracle Purchasing Open Interfaces 8-13

Requisitions Open Interface
DISTRIBUTION_ATTRIBUTE13 Varchar2 x

DISTRIBUTION_ATTRIBUTE14 Varchar2 x

DISTRIBUTION_ATTRIBUTE15 Varchar2 x

GOVERNMENT_CONTEXT Varchar2 x

GL_DATE Date conditionally

USSGL_TRANSACTION_CODE Varchar2 x

PREVENT_ENCUMBRANCE_FLAG Varchar2 x

CURRENCY_CODE Varchar2 x

CURRENCY_UNIT_PRICE Number conditionally

RATE Number conditionally

RATE_DATE Date conditionally

RATE_TYPE Varchar2 conditionally

WIP_ENTITY_ID Number conditionally

WIP_LINE_ID Number x

WIP_OPERATION_SEQ_NUM Number x

WIP_RESOURCE_SEQ_NUM Number x

WIP_REPETITIVE_SCHEDULE_ID Number conditionally

BOM_RESOURCE_ID Number conditionally

EXPENDITURE_ORGANIZATION_ID Number conditionally

EXPENDITURE_TYPE Varchar2 conditionally

PROJECT_ACCOUNTING_CONTEXT Varchar2 x

PROJECT_ID Number conditionally conditionally

PROJECT_NUM Varchar2 x

TASK_ID Number conditionally conditionally

TASK_NUM Varchar2 x

EXPENDITURE_ITEM_DATE Date x

TRANSACTION_REASON_CODE Varchar2 x

ORG_ID Number conditionally

Table 8–1 Requisitions Open Interface (Requisitions)

PO_REQUISITIONS_INTERFACE_ALL

Column Name Type Required Derived Optional
8-14 Oracle Manufacturing APIs and Open Interfaces Manual

Requisitions Open Interface
Requisition Distributions Interface Table Description
The following graphic describes the requisition distributions interface table. This
table was used in Release 11 to create multiple distributions for Self-Service
Purchasing requisitions but is no longer used by Self-Service Purchasing in Release
11i. The table remains in case you need to import multiple-distribution requisitions
from non-Oracle systems.

ALLOCATION_TYPE Varchar2 x

ALLOCATION_VALUE Number x

MULTI_DISTRIBUTIONS Varchar2 x

REQ_DIST_SEQUENCE_ID Number x

KANBAN_CARD_ID Number x

EMERGENCY_PO_NUM Varchar2 No longer used

AWARD_ID Number

TAX_NAME Varchar2 No longer used

END_ITEM_UNIT_NUMBER Varchar2 x

TAX_CODE_ID Number x

Table 8–2 Requisitions Open Interface (Distributions)

PO_REQ_DIST_INTERFACE_ALL

Column Name Type Required Derived Optional

PROJECT_ACCOUNTING_CONTEXT Varchar2 x

EXPENDITURE_ORGANIZATION_ID Number conditionally

PROJECT_ID Number conditionally conditionally

TASK_ID Number conditionally conditionally

EXPENDITURE_ITEM_DATE Date x

GL_DATE Date conditionally

DIST_ATTRIBUTE_CATEGORY Varchar2 x

DISTRIBUTION_ATTRIBUTE1 Varchar2 x

DISTRIBUTION_ATTRIBUTE2 Varchar2 x

Table 8–1 Requisitions Open Interface (Requisitions)

PO_REQUISITIONS_INTERFACE_ALL

Column Name Type Required Derived Optional
 Oracle Purchasing Open Interfaces 8-15

Requisitions Open Interface
DISTRIBUTION_ATTRIBUTE3 Varchar2 x

DISTRIBUTION_ATTRIBUTE4 Varchar2 x

DISTRIBUTION_ATTRIBUTE5 Varchar2 x

DISTRIBUTION_ATTRIBUTE6 Varchar2 x

DISTRIBUTION_ATTRIBUTE7 Varchar2 x

DISTRIBUTION_ATTRIBUTE8 Varchar2 x

DISTRIBUTION_ATTRIBUTE9 Varchar2 x

DISTRIBUTION_ATTRIBUTE10 Varchar2 x

DISTRIBUTION_ATTRIBUTE11 Varchar2 x

DISTRIBUTION_ATTRIBUTE12 Varchar2 x

DISTRIBUTION_ATTRIBUTE13 Varchar2 x

DISTRIBUTION_ATTRIBUTE14 Varchar2 x

DISTRIBUTION_ATTRIBUTE15 Varchar2 x

CHARGE_ACCOUNT_ID Number x conditionally

CHARGE_ACCOUNT_SEGMENT1 Varchar2 x

CHARGE_ACCOUNT_SEGMENT2 Varchar2 x

CHARGE_ACCOUNT_SEGMENT3 Varchar2 x

CHARGE_ACCOUNT_SEGMENT4 Varchar2 x

CHARGE_ACCOUNT_SEGMENT5 Varchar2 x

CHARGE_ACCOUNT_SEGMENT6 Varchar2 x

CHARGE_ACCOUNT_SEGMENT7 Varchar2 x

CHARGE_ACCOUNT_SEGMENT8 Varchar2 x

CHARGE_ACCOUNT_SEGMENT9 Varchar2 x

CHARGE_ACCOUNT_SEGMENT10 Varchar2 x

CHARGE_ACCOUNT_SEGMENT11 Varchar2 x

CHARGE_ACCOUNT_SEGMENT12 Varchar2 x

CHARGE_ACCOUNT_SEGMENT13 Varchar2 x

CHARGE_ACCOUNT_SEGMENT14 Varchar2 x

Table 8–2 Requisitions Open Interface (Distributions)

PO_REQ_DIST_INTERFACE_ALL

Column Name Type Required Derived Optional
8-16 Oracle Manufacturing APIs and Open Interfaces Manual

Requisitions Open Interface
CHARGE_ACCOUNT_SEGMENT15 Varchar2 x

CHARGE_ACCOUNT_SEGMENT16 Varchar2 x

CHARGE_ACCOUNT_SEGMENT17 Varchar2 x

CHARGE_ACCOUNT_SEGMENT18 Varchar2 x

CHARGE_ACCOUNT_SEGMENT19 Varchar2 x

CHARGE_ACCOUNT_SEGMENT20 Varchar2 x

CHARGE_ACCOUNT_SEGMENT21 Varchar2 x

CHARGE_ACCOUNT_SEGMENT22 Varchar2 x

CHARGE_ACCOUNT_SEGMENT23 Varchar2 x

CHARGE_ACCOUNT_SEGMENT24 Varchar2 x

CHARGE_ACCOUNT_SEGMENT25 Varchar2 x

CHARGE_ACCOUNT_SEGMENT26 Varchar2 x

CHARGE_ACCOUNT_SEGMENT27 Varchar2 x

CHARGE_ACCOUNT_SEGMENT28 Varchar2 x

CHARGE_ACCOUNT_SEGMENT29 Varchar2 x

CHARGE_ACCOUNT_SEGMENT30 Varchar2 x

GROUP_CODE Varchar2 x

PROJECT_NUM Varchar2 x

TASK_NUM Varchar2 x

EXPENDITURE_TYPE Varchar2 conditionally

DIST_SEQUENCE_ID Number conditionally

ALLOCATION_TYPE Varchar2 conditionally

ALLOCATION_VALUE Number conditionally

BATCH_ID Number x

DISTRIBUTION_NUMBER Number x

ITEM_ID Number conditionally conditionally

ACCRUAL_ACCOUNT_ID Number x

VARIANCE_ACCOUNT_ID Number x

Table 8–2 Requisitions Open Interface (Distributions)

PO_REQ_DIST_INTERFACE_ALL

Column Name Type Required Derived Optional
 Oracle Purchasing Open Interfaces 8-17

Requisitions Open Interface
BUDGET_ACCOUNT_ID Number x

USSGL_TRANSACTION_CODE Varchar2 x

GOVERNMENT_CONTEXT Varchar2 x

PREVENT_ENCUMBRANCE_FLAG Varchar2 x

TRANSACTION_ID Number x

PROCESS_FLAG Varchar2 x

REQUEST_ID Number x

PROGRAM_ID Number x

PROGRAM_APPLICATION_ID Number x

PROGRAM_UPDATE_DATE Date x

LAST_UPDATED_BY Number x

LAST_UPDATE_DATE Date x

LAST_UPDATE_LOGIN Number x

CREATION_DATE Date x

DESTINATION_ORGANIZATION_ID Number x conditionally

DESTINATION_SUBINVENTORY Varchar2 conditionally

DESTINATION_TYPE_CODE Varchar2 x

CREATED_BY Number x

INTERFACE_SOURCE_CODE Varchar2 x

INTERFACE_SOURCE_LINE_ID Number x

REQUISITION_HEADER_ID Number x

REQUISITION_LINE_ID Number x

REQ_DISTRIBUTION_ID Number x

REQ_NUMBER_SEGMENT1 Varchar2 x

QUANTITY Number conditionally conditionally

ORG_ID Number conditionally

UPDATE_ENABLED_FLAG Varchar2 No longer used

Table 8–2 Requisitions Open Interface (Distributions)

PO_REQ_DIST_INTERFACE_ALL

Column Name Type Required Derived Optional
8-18 Oracle Manufacturing APIs and Open Interfaces Manual

Requisitions Open Interface
Required Data
You must always enter values for the following required columns when you load
rows into the PO_REQUISITIONS_INTERFACE_ALL table:

■ INTERFACE_SOURCE_CODE to identify the source of your imported
requisitions

■ DESTINATION_TYPE_CODE

■ AUTHORIZATION_STATUS

■ PREPARER_ID or PREPARER_NAME

■ QUANTITY

■ CHARGE_ACCOUNT_ID or charge account segment values

■ DESTINATION_ORGANIZATION_ID or DESTINATION_ORGANIZATION_
CODE

■ DELIVER_TO_LOCATION_ID or DELIVER_TO_LOCATION_CODE

■ DELIVER_TO_REQUESTOR_ID or DELIVER_TO_REQUESTOR_NAME

You must always enter values for the following required columns if you load rows
into the PO_REQ_DIST_INTERFACE_ALL table:

■ CHARGE_ACCOUNT_ID or charge account segment values

■ DISTRIBUTION_NUMBER (Although Requisition Import won't give an error
if you don't provide a value, a DISTRIBUTION_NUMBER makes it easier to
query multiple distributions in the Distributions windows in Purchasing.)

■ DESTINATION_ORGANIZATION_ID

■ DESTINATION_TYPE_CODE

■ INTERFACE_SOURCE_CODE

Additionally, you may have to enter values for the following conditionally required
columns.

In the PO_REQUISITIONS_INTERFACE_ALL table:

■ You must provide a SOURCE_TYPE_CODE if the DESTINATION_TYPE_
CODE is 'EXPENSE' or 'SHOP FLOOR'. You must provide an ITEM_ID or item
segment values if the SOURCE_TYPE_CODE or DESTINATION_TYPE_CODE
is 'INVENTORY'.
 Oracle Purchasing Open Interfaces 8-19

Requisitions Open Interface
■ For one-time items and amount-based line types, you must provide a
CATEGORY_ID or category segment values. You must additionally provide a
UNIT_OF_MEASURE or UOM_CODE for one-time items. For MRP or
Inventory planned items, you must also provide a NEED_BY_DATE.

■ You must provide the RATE_DATE and RATE_TYPE if you provide a value in
the CURRENCY_CODE column.

■ If you are using Oracle Work in Process and the DESTINATION_TYPE_CODE
is 'SHOP FLOOR', you must provide values for the following columns:

WIP_ENTITY_ID

BOM_RESOURCE_ID

WIP_REPETITIVE_SCHEDULE_ID, if the entity is a repetitive schedule

■ ITEM_ID may also be required. See: Validation on page 8-24.

In the PO_REQ_DIST_INTERFACE_ALL table:

■ You must provide a DIST_SEQUENCE_ID if MULTI_DISTRIBUTIONS is
set to Y.

■ If you do not enter a value in the QUANTITY column, you must enter
values in the ALLOCATION_TYPE and ALLOCATION_VALUE columns.

In both the PO_REQUISITIONS_INTERFACE_ALL and PO_REQ_DIST_
INTERFACE_ALL tables:

■ You must provide an ORG_ID if you have a Multiple Organization Support
setup.

■ If you are using Oracle Projects and the PROJECT_ACCOUNTING_CONTEXT
is 'Y', you must enter the relevant project accounting information in the
following columns:

PROJECT_NUM or PROJECT_ID

TASK_NUM or TASK_ID

EXPENDITURE_TYPE

EXPENDITURE_ORGANIZATION_ID

If Oracle Project Manufacturing is installed, Project Reference Enabled is
selected in the Project Manufacturing Organization Parameters window, and
the PROJECT_ACCOUNTING_CONTEXT is 'Y', you must enter the relevant
project information in the following columns:
8-20 Oracle Manufacturing APIs and Open Interfaces Manual

Requisitions Open Interface
PROJECT_NUM or PROJECT_ID

TASK_NUM or TASK_ID, if the destination type is Inventory or Shop Floor

If you are creating multiple distributions, project information must be entered
in the PO_REQ_DIST_INTERFACE_ALL table.

■ You must provide a DESTINATION_SUBINVENTORY if the DESTINATION_
TYPE_CODE is 'INVENTORY'.

For additional information on conditionally required columns, see: Validation on
page 8-24.

Derived Data
The Requisition Import program derives or defaults the columns identified as
derived using logic similar to that used by the Requisitions window. Oracle
Purchasing never overrides information that you provide in derived columns.
(Supplier sourcing is an exception to this rule). Column pairs like APPROVER_ID/
APPROVER_NAME, NOTE_ID / NOTE_TITLE, and DESTINATION_
ORGANIZATION_ID / DESTINATION_ORGANIZATION_CODE in the
requisitions interface table allow you to enter the user-displayed value in the
interface table and the program derives the associated unique identifier. If there is a
conflict between the two values, the identifier overrides the user-displayed value.

In the PO_REQUISITIONS_INTERFACE_ALL table:

■ For interface lines with a DESTINATION_TYPE_CODE of 'INVENTORY', the
program derives the SOURCE_TYPE_CODE. The REQUISITION_TYPE is
derived from the SOURCE_TYPE_CODE.

■ The Requisition Import program automatically derives sourcing information for
both your inventory and purchase requisition lines if you set the
AUTOSOURCE_FLAG to 'Y' and set up the sourcing rules for the item. For
inventory-sourced requisition lines, the program derives the following columns:

SOURCE_ORGANIZATION_ID

SOURCE_SUBINVENTORY

For supplier-sourced requisition lines, the program derives the following
columns:

SUGGESTED_VENDOR_ID

SUGGESTED_VENDOR_SITE_ID

SUGGESTED_VENDOR_CONTACT_ID
 Oracle Purchasing Open Interfaces 8-21

Requisitions Open Interface
SUGGESTED_BUYER_ID

AUTOSOURCE_DOC_HEADER_ID

AUTOSOURCE_DOC_LINE_NUM

DOCUMENT_TYPE_CODE

■ If you set the AUTOSOURCE_FLAG to 'P' (for Partially required) and set up the
sourcing rules for the item, the program derives the following columns for
inventory-sourced requisition lines:

SOURCE_ORGANIZATION_ID

SOURCE_SUBINVENTORY

If you set the AUTOSOURCE_FLAG to 'P' and set up the sourcing rules for the
item, the program uses the following columns for supplier-sourced requisition
lines, if they're provided in the requisitions interface table:

SUGGESTED_VENDOR_ID

SUGGESTED_VENDOR_SITE_ID

If the above columns are not provided when the AUTOSOURCE_FLAG is set to
'P', the program derives them from the sourcing rules.

■ If you set the AUTOSOURCE_FLAG to 'P' and set up the sourcing rules for the
item, the program derives the following columns for supplier-sourced
requisition lines:

SUGGESTED_VENDOR_CONTACT_ID

SUGGESTED_BUYER_ID

AUTOSOURCE_DOCUMENT_HEADER_ID

AUTOSOURCE_DOCUMENT_LINE_NUM

DOCUMENT_TYPE_CODE

■ Item pricing information is also derived in the UNIT_PRICE and CURRENCY_
UNIT_PRICE columns. If no sourcing rules are found for the item, supplier
sourcing fails and the UNIT_PRICE is defaulted from the item master for
supplier requisition lines and from the CST_ITEM_COSTS_FOR_GL_VIEW for
internal requisitions.

In the PO_REQ_DIST_INTERFACE_ALL table:
8-22 Oracle Manufacturing APIs and Open Interfaces Manual

Requisitions Open Interface
■ The Requisition Import program derives the QUANTITY (if a QUANTITY is
not indicated) if ALLOCATION_TYPE and ALLOCATION_VALUE are
provided.

In both the PO_REQUISITIONS_INTERFACE_ALL and PO_REQ_DIST_
INTERFACE_ALL tables:

■ You can provide the segment values for the item, category, and charge account.
The Requisition Import program derives the ITEM_ID and CATEGORY_ID
from the requisitions interface table and the CHARGE_ACCOUNT_ID from
either the requisitions interface table or the requisition distributions interface
table. In both the requisitions and requisition distributions interface tables, the
ACCRUAL_ACCOUNT_ID, BUDGET_ACCOUNT_ID, and VARIANCE_
ACCOUNT_ID are derived based on the DESTINATION_TYPE_CODE.

■ The following columns are control columns that the Requisition Import
program derives to provide audit trail and relational integrity throughout the
interface process:

CREATION_DATE

CREATED_BY

LAST_UPDATE_DATE

LAST_UPDATED_BY

LAST_UPDATE_LOGIN

PROGRAM_ID

PROGRAM_APPLICATION_ID

PROGRAM_UPDATE_DATE

REQUEST_ID

Optional Data
You can enter header, line, and distribution-level descriptive flexfield information in
the interface tables. You can enter up to ten notes for each requisition that you
import. The Requisitions Open Interface also lets you enter foreign currency
information, project accounting information, UN number, and hazard class
information. You can enter the justification for the requisition and indicate whether
the requisition is urgent. You can also provide item revision, source, and
destination subinventory information. If you are using requisition encumbrance,
you can also provide a USSGL transaction code.
 Oracle Purchasing Open Interfaces 8-23

Requisitions Open Interface
Validation

Standard Validation
Oracle Purchasing validates all required columns in the interface table. For specific
information on the data implied by these columns, see the Oracle Purchasing
Technical Reference Manual, Release 11i, for details.

Other Validation
Purchasing also performs the following cross validations. If a row in the interface
tables fails validation for any reason, the program sets the PROCESS_FLAG in the
interface table to 'ERROR' and enters details about every error on that row into the
PO_INTERFACE_ERRORS table.

If you enter a SOURCE_TYPE_CODE of 'INVENTORY', the ITEM_ID is required
and the item must be stock-enabled for the source organization and
internal-order-enabled for the purchasing and destination organizations. The
DELIVER_TO_LOCATION_ID must be valid for the destination organization and a
customer must be associated with that location in Purchasing. If you also enter a
SOURCE_SUBINVENTORY, the item must either be valid in the subinventory, or it
must not be restricted to a subinventory. For MRP-sourced internal requisitions, the
SOURCE_SUBINVENTORY must be a non-nettable subinventory for
intra-organization transfers.

If you enter a SOURCE_TYPE_CODE of 'VENDOR' and provide an ITEM_ID, the
item must be purchasing-enabled for the purchasing and destination organizations.

If you enter a DESTINATION_TYPE_CODE of 'INVENTORY', the ITEM_ID is
required and it must be stock-enabled for the destination organization. If you also
enter a DESTINATION_SUBINVENTORY, the item must either be valid in the
subinventory or it must not be restricted to a subinventory.

If you enter a DESTINATION_TYPE_CODE of 'SHOP FLOOR', the ITEM_ID is
required, and it must be an outside-operation item and purchasing-enabled for the
purchasing and destination organizations. The LINE_TYPE_ID must be an
outside-operation line type as well.

If you provide a CURRENCY_CODE, the RATE, RATE_DATE, and RATE_TYPE
must be provided.

If you are using requisition encumbrance, the GL_DATE that you enter must be in
an open or future General Ledger period and an open Purchasing period.
Furthermore, if you are using Oracle Inventory, the GL_DATE must be in an open
Inventory period for inventory-sourced requisitions.
8-24 Oracle Manufacturing APIs and Open Interfaces Manual

Requisitions Open Interface
Resolving Failed Requisitions Interface Rows

Error Messages
Oracle Purchasing may display specific error messages during interface processing.
For more details on these messages, please see the Oracle Applications Message
Reference Manual, in HTML format on the documentation CD-ROM for Release 11i.

Viewing Failed Transactions
You can report on all rows that failed validation by using the Requisition Import
Exceptions report. For every transaction in the interface table that fails validation,
the Requisition Import Exceptions report lists all the columns that failed validation
along with the reason for the failure.

You can identify failed transactions in the requisitions interface tables by selecting
rows with a PROCESS_FLAG of 'ERROR'. For any previously processed set of rows
identified by INTERFACE_SOURCE_CODE and BATCH_ID, only rows that failed
validation remain in the interface table, as all the successfully imported rows are
deleted.

For each row in the requisitions interface or requisition distributions interface table
that fails validation, the Requisition Import program creates one or more rows with
error information in the PO_INTERFACE_ERRORS table.

Rescheduling Requisitions
If you use Oracle Master Scheduling/MRP or a non-Oracle MRP system with
Oracle Purchasing, you may find that you need to reschedule requisitions as your
planning requirements change. Purchasing's Requisition Import program lets you
reschedule requisition lines according to changes in your planned orders.

Reschedule Interface Table
You can reschedule requisitions from your planning application with the
Reschedule Interface table. Since you have already loaded your requisitions into
Purchasing, you simply need to identify for Purchasing the requisition lines you
want to reschedule. After you identify each line to reschedule, you can update the
quantity and the need-by date for the corresponding requisition line. You decide
when to import the information from the requisitions interface table into
Purchasing. Purchasing lets you use the Reschedule Interface table as often as you
want.
 Oracle Purchasing Open Interfaces 8-25

Requisitions Open Interface
Understanding the PO_RESCHEDULE_INTERFACE Table
PO_RESCHEDULE_INTERFACE is the table Purchasing uses to import information
for requisition lines your planning system has rescheduled. One row in the table
corresponds to a requisition line whose quantity or need-by date you want to
change. Requisition Import updates your requisition lines within Purchasing with
the information in this table. The table PO_RESCHEDULE_INTERFACE consists of
columns Purchasing uses to identify requisition lines for update. The table PO_
RESCHEDULE_INTERFACE contains the following columns:

The columns listed below are foreign keys to the following tables and columns:

Table 8–3 PO_RESCHEDULE_INTERFACE

Column Name Null? Type

LINE_ID NOT NULL NUMBER

QUANTITY NUMBER

NEED_BY_DATE DATE

PROCESS_ID NUMBER

LAST_UPDATE_DATE DATE

LAST_UPDATED_BY NUMBER

LAST_UPDATE_LOGIN NUMBER

CREATION_DATE DATE

CREATED_BY NUMBER

REQUEST_ID NUMBER

PROGRAM_APPLICATION_ID NUMBER

PROGRAM_ID NUMBER

PROGRAM_UPDATE_DATE DATE

Table 8–4 Foreign Keys

Foreign Key Table Column

LINE_ID PO_REQUISITION_LINES LINE_ID

QUANTITY PO_REQUISITION_LINES QUANTITY

NEED_BY_DATE PO_REQUISITION_LINES NEED_BY_DATE
8-26 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface
The column LINE_ID identifies a requisition line which your planning system
reschedules. The columns QUANTITY and NEED_BY_DATE contain new
information for the requisition lines your planning system updates.

The other columns in the table store the same information the PO_REQUISITIONS_
INTERFACE_ALL table uses to track when you place data in the PO_
RESCHEDULE_INTERFACE table.

Columns Reserved for Requisition Import
Requisition Import inserts values into the column PROCESS_ID. Requisition
Import inserts the PROCESS_ID to identify all requisition lines which you
reschedule at one time. You should not insert any data in this column.

Purchasing Documents Open Interface
You can automatically import and update price/sales catalog information and
request for quotation (RFQ) responses from suppliers through the Purchasing
Documents Open Interface. The Purchasing Documents Open Interface uses
Application Program Interfaces (APIs) to process catalog data in the Oracle
Applications interface tables to ensure that it is valid before importing it into Oracle
Purchasing. After validating the price/sales catalog information or RFQ responses,
the Purchasing Documents Open Interface program converts the information,
including price break information, in the interface tables into blanket purchase
agreements or catalog quotations in Purchasing.

You can choose whether to import the data as blanket purchase agreements or
catalog quotations. You can also choose to update your item master and apply
sourcing rules and release generation methods to the imported item for both
blanket purchase agreements and quotations. Blanket purchase agreements or
quotations can also be replaced with the latest price/sales catalog information when
your supplier sends a replacement catalog, or updated when the supplier sends an
updated catalog.

One way to import price/sales catalog data is through Electronic Data Interchange
(EDI). The Purchasing Documents Open Interface supports the EDI transmissions
of the price/sales catalogs (ANSI X12 832 or EDIFACT PRICAT) and responses to
RFQs (ANSI X12 843 or EDIFACT QUOTES).
 Oracle Purchasing Open Interfaces 8-27

Purchasing Documents Open Interface
Functional Overview

Figure 8–2 Functional Overview

The figure above shows the flow of price/sales catalog information from the
supplier or trading partner, to Oracle e-Commerce Gateway, to the Purchasing
Documents Open Interface, and finally into Purchasing. The PO_HEADERS_
INTERFACE and PO_LINES_INTERFACE tables can also be loaded manually,
through a program you write.

If you load the interface tables through e-Commerce Gateway, then the supplier
must provide the price/sales catalog information as a flat file using an EDI
translator according to the EDI interface file definitions. Then, the EDI Catalog
Inbound program (or the EDI Response to RFQ Inbound program) loads the
8-28 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface
information into the PO_HEADERS_INTERFACE table and the PO_LINES_
INTERFACE table, which includes line, shipment, and price break information.

In the Parameters window of the EDI Catalog Inbound program (or EDI Response
to RFQ Inbound program), you specify the name of the flat file and designate how
the data sent by the supplier is to be used—if blanket purchase agreements or
catalog quotations are to be created, if items are created or updated in the item
master, if sourcing rules are created or updated. (You also specify the location of the
flat file through an e-Commerce Gateway profile option. See: Oracle e-Commerce
Gateway User's Guide.)

The EDI inbound program and the Purchasing Documents Open Interface program
are run as a request set when you choose Submit Request in the EDI import
programs window. The EDI inbound program loads the interface tables; the
Purchasing Documents Open Interface program validates the data and loads the
validated data into Purchasing. You can also run the Purchasing Documents Open
Interface program separately in the Submit Request window in Purchasing, after the
data is loaded into the interface tables.

You can view the status of your submission by making note of the Request ID
number and selecting View My Requests from the Help menu.

The Purchasing Documents Open Interface program receives the data, derives and
defaults any missing data, and validates the data. If no errors are found in the
submission process, the data in the Purchasing Documents Open Interface tables is
loaded into the PO_HEADERS, PO_LINES, and PO_LINE_LOCATIONS tables in
Purchasing to create the blanket purchase agreement or catalog quotation, including
price breaks if any. The creation of items (if you allow updating of the item master)
or sourcing rules also populates the corresponding tables (such as MTL_SYSTEM_
ITEMS, ASL_ITEMS, ASL_SUPPLIERS, and ASL_DOCUMENTS).

If the Purchasing Documents Open Interface program finds errors in the interface
tables, such as incomplete information from the supplier, the record identification
number and the details of the error are written to the PO_INTERFACE_ERRORS
table. You can launch the Purchasing Interface Errors Report in Purchasing to view
the rows that were not imported by the Purchasing Documents Open Interface
along with the failure reason(s) for each row.

Record and Error Processing
To detect errors, the Purchasing Documents Open Interface program first processes
a record from the PO_HEADERS_INTERFACE table. Then, the program processes
the child records in the PO_LINES_INTERFACE table before going on to the next
PO_HEADERS_INTERFACE record.
 Oracle Purchasing Open Interfaces 8-29

Purchasing Documents Open Interface
If the program gets an error while processing a record, the program writes the error
details to the PO_INTERFACE_ERRORS table and increments the record's error
counter. It then flags the record as "Not Processable."

The Purchasing Documents Open Interface saves or errors out on a line-by-line
basis. This means that if an error is found in a document line, only that line is rolled
back (not submitted to Purchasing), and you can find the error in the PO_
INTERFACE_ERRORS table. Because the Purchasing Documents Open Interface
saves or errors out line by line, it can accept partial documents.

If an error is found in a header, none of its lines are processed. The Purchasing
Documents Open Interface rolls back the header, does not process its lines, and does
the following:

■ Sets the PROCESS_CODE column value to REJECTED in the PO_HEADERS_
INTERFACE table.

■ Writes out the record identification number and the details of the error to the
PO_INTERFACE_ERRORS table.

■ Begins processing the next header record.

If no processing errors are found during processing, the header record and all
successfully submitted child records are loaded into Purchasing, and then flagged
as processed by setting the PROCESS_CODE column to ACCEPTED.

When the supplier sends an updated price/sales catalog, the Purchasing
Documents Open Interface sets the PROCESS_CODE column to NOTIFIED for
those lines with prices that exceed your price tolerance. For these price updates
only, the Purchasing Documents Open Interface waits for you to accept or reject the
price increase in the Exceeded Price Tolerances window before completing or
rejecting the price change.
8-30 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface
Original, Replace, and Update Submissions
If you are using e-Commerce Gateway to import the data (in the form of flat files)
into the Purchasing Documents Open Interface, your supplier can send you a flat
file with one of three action codes (in the ACTION column of the PO_HEADERS_
INTERFACE table): Original, Replace, or Update. If you're not using e-Commerce
Gateway, your import program needs to specify the action code.

Your supplier should use the Original action code for a new price/sales catalog
submission, and Replace or Update action codes for subsequent submissions.

Original
A file with an action code of Original is one in which all the price/sales catalog
information is new to your system.

Choose Original when you're submitting price/sales catalog information for the
first time.

For an Original submission, the Purchasing Documents Open Interface first checks
if a document in the submission already exists in Purchasing. It checks for a
document with the same supplier document number (VENDOR_DOC_NUM) and
supplier (VENDOR_ID or VENDOR_NAME) that is not finally closed or canceled.
If an active, matching document already exists, the document in the Original
submission is not created and an error is logged in the Purchasing Interface Errors
report.

Replace
A file with an action code of Replace replaces already-created blanket purchase
agreements or catalog quotations with new documents containing the new
price/sales catalog information. The Purchasing Documents Open Interface
replaces these documents by doing the following:

Attention: It is important to check the Purchasing Interface
Errors report (a report of the errors in the PO_INTERFACE_
ERRORS table) after you import the price/sales catalog. Because
the Purchasing Documents Open Interface saves or errors out line
by line, it can accept partial documents. Therefore, to see which
document lines were not submitted because of errors, you must
check the Purchasing Interface Errors report.
 Oracle Purchasing Open Interfaces 8-31

Purchasing Documents Open Interface
■ First, it looks for documents that have the same document type (DOCUMENT_
TYPE_CODE), supplier (VENDOR_ID or VENDOR_NAME), and supplier
document number (VENDOR_DOC_NUM) as the replacement documents. (A
supplier document number is a field that is specified in the flat file that the
supplier sends.)

■ Next, among the matching documents, it looks for documents with effectivity
dates that are the same as, or within the effectivity dates of, the replacement
documents.

■ Then, it invalidates the old documents by setting their expiration dates to
START_DATE -1 (the start date, minus one day) and creates new documents
with the new price/sales catalog information, within the original effectivity
dates.

Choose Replace when you want to replace the whole document because most of its
fields, header, and line information have changed or are out of date.

As with an Original submission, the Purchasing Documents Open Interface checks
that there are no duplicate documents in Purchasing, but it does not consider finally
closed or canceled documents as duplicates. That is, if two documents in
Purchasing match an incoming document in the Replace submission, Purchasing
replaces the one that is not canceled or finally closed. If one document in
Purchasing matches an incoming document, but is canceled or finally closed,
Purchasing still replaces it with the new document.

Update
A file with an action code of Update updates the following information on
already-submitted blanket purchase agreements or catalog quotations without
creating completely new documents:

■ Unit Price

If the price update exceeds the price tolerance you set, the price and price
breaks are not updated until or unless the buyer accepts the price update in the
Exceeded Price Tolerances window. Any other updates, however, are made to
the document when the price/sales catalog is imported.

The price is updated on the document only, not in the item master. Only the
item description is updated in the item master, if you've enabled item
description updates as described in Setting Up the Purchasing Documents
Open Interface on page 8-39.

■ Item Description
8-32 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface
■ UOM

■ Price Breaks (for blanket purchase agreements)

■ Expiration Date (for blanket purchase agreements)

■ URL descriptive flexfield (if you have one)

A URL descriptive flexfield provides a supplier URL for additional information
about an item.

Expired lines in Purchasing (lines whose Expiration Date has been reached) do not
get updated. An Update submission for an expired line is treated as a new line to
be added to the blanket purchase agreement. Finally closed or canceled documents,
or those that are no longer effective, do not get updated.

Choose Update when you want to update the fields listed above on existing
documents, and you want to preserve the existing documents' sourcing rules. For
example, an Update submission can be used for daily, weekly, or even quarterly
updates to existing documents, while for annual or bi-annual updates, a Replace
submission may be better for your business needs.

When the Purchasing Documents Open Interface updates a line on a blanket
purchase agreement, it does not update the open release for that line. Only future
releases use the updated information.

The Purchasing Documents Open Interface updates documents by doing the
following:

■ First, it identifies the catalog quotation or blanket purchase agreement that
needs to be updated by comparing the supplier document number (VENDOR_
DOC_NUM in the PO_HEADERS_INTERFACE table) with the existing
supplier document number (VENDOR_ORDER_NUM for a blanket agreement
or QUOTE_VENDOR_QUOTE_NUMBER for a catalog quotation in the PO_
HEADERS table). The supplier (VENDOR_ID or VENDOR_NAME) and
document type (DOCUMENT_TYPE_CODE) must also match. The Purchasing

Note: The Purchasing Documents Open Interface cannot update
the UOM on an agreement line for which an open release exists. In
this case, the Purchasing Documents Open Interface uses the
Expiration Date field to expire the line on the agreement, and
creates a new line with the updated UOM, which will be used on
future releases.
 Oracle Purchasing Open Interfaces 8-33

Purchasing Documents Open Interface
Documents Open Interface matches only to currently or future-effective
documents that are not canceled or finally closed.

■ Next, the Purchasing Documents Open Interface processes all the changed lines
in the PO_LINES_INTERFACE table. It identifies which lines on the existing
documents need to be updated by matching the following, in order:

– Supplier item number

– Item number used by your organization, revision number, and item
category

– Item description and item category

If it can't match the supplier item number, it tries to match the item number
used by your organization (along with the revision number and item category),
and so on.

If more than one line on the existing document matches the incoming line, the
Purchasing Documents Open Interface updates the first line on the existing
catalog quotation or blanket purchase agreement that matches the incoming
line. This first line is also the line that is picked up for sourcing, as long as it has
not expired.

For a one-time item, the item description is updated only if a supplier item
number (VENDOR_PRODUCT_NUM) is provided and can be used to find a
matching line on the original document.

The following figure shows the flow of an Update price/sales catalog submission to
Purchasing:
8-34 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface
Figure 8–3 Update Submission Process
 Oracle Purchasing Open Interfaces 8-35

Purchasing Documents Open Interface
Sourcing
When you import price/sales catalog information into Purchasing, you have the
option of choosing Yes or No in the Create Sourcing Rules field in the Parameters
window to enable Purchasing to create sourcing rules out of the supplier, item, and
document information that the supplier sends.

If you choose Yes to create sourcing rules in an Original or Replace submission,
Purchasing checks if a sourcing rule is assigned to the item at the item level and
does the following:

■ If no sourcing rules exist for the item, Purchasing generates a sourcing rule
automatically, allocating 100 percent to the supplier providing the information.

■ If a sourcing rule exists for the item, Purchasing compares the effectivity dates
of the incoming document with those of the existing sourcing rule for the item.
To ensure that only one sourcing rule is used for the item, Purchasing does the
following:

– If the effectivity dates of the incoming document are the same as the
existing sourcing rule's effectivity dates, Purchasing checks if the supplier is
in the sourcing rule. If not, Purchasing adds the supplier to the existing
sourcing rule with an allocation of 0 percent. Later, you can query the
sourcing rule and define your own percentage splits between suppliers.

– If the effectivity dates of the incoming document are different than the
existing sourcing rule's effectivity dates, but are within or overlap the
existing effectivity dates, then a new sourcing rule is not created, so as not
to conflict with the existing sourcing rule.

– If the effectivity dates of the incoming document do not overlap the existing
sourcing rule's effectivity dates, Purchasing updates the item's sourcing rule
with the new effectivity dates, adding the supplier at an allocation of 100
percent.

■ Purchasing checks for an Approved Supplier List entry for the item and
supplier/site combination. If an entry exists, Purchasing adds the document to
the entry. If an entry does not exist, Purchasing creates a new entry with the
new source document.

If you choose Yes to create sourcing rules in an Update submission, new sourcing
information is created (as described above) only if the Update submission results in
a new line being created. See: Adding or Deleting Lines in an Update Submission
on page 8-38.
8-36 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface
Price Breaks
All action codes (Original, Replace, and Update) support the importing of price
breaks through the Purchasing Documents Open Interface.

If one price break is rejected, the whole line to which the price break belongs is
rejected.

For Original or Replace Submissions
The following, additional columns are required in the PO_LINES_INTERFACE
table if you want to import price break information:

■ LINE_NUM

■ SHIPMENT_NUM

■ QUANTITY

■ UNIT_PRICE

If you are importing price break information through catalog quotations, you can
also optionally populate the following columns in the PO_LINES_INTERFACE
table:

■ MIN_ORDER_QUANTITY

■ MAX_ORDER_QUANTITY

Recall that the PO_LINES_INTERFACE table contains both line and shipment
information, and imports data into both the PO_LINES and PO_LINE_LOCATIONS
tables in Purchasing. To create two price breaks corresponding to one blanket
agreement or quotation line, you would create two records in the PO_LINES_
INTERFACE table. That is, one header-level record in the PO_HEADERS_
INTERFACE table would have two records in the PO_LINES_INTERFACE table,
and both of these line records would have the same INTERFACE_HEADER_ID:

■ One header-level record (row) in the PO_HEADERS_INTERFACE table
corresponds to:

– Line 1: one line-level record (row) in the PO_LINES_INTERFACE table,
with Shipment 1 information included

– Line 1: the same line-level record (another row) in the PO_LINES_
INTERFACE table, with Shipment 2 information included
 Oracle Purchasing Open Interfaces 8-37

Purchasing Documents Open Interface
8-38 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface
Revision Numbering and Archiving
For the Update action code, the document revision number is increased every time
the unit Price, item Description, UOM, or Expiration Date is updated, or when a
new line is added (unless Archive on Approval is chosen in the Document Types
window and PO: Archive Catalog on Approval is set to No).

For all action codes, a document is archived upon approval or printing, depending
on which option you chose in the Document Types window. When importing
price/sales catalog information, you also have the option of choosing Approved or
Incomplete in the Approval Status field in the Parameters window. See the table on
page 8-44.

The profile option PO: Archive Catalog on Approval enables you to choose whether
Purchasing archives blanket purchase agreements in a price/sales catalog
submission upon approval. (Quotations are not archived in Purchasing.)

If Archive on Approval is chosen in the Document Types window in Purchasing and
the document is imported as Approved, then:

■ Setting PO: Archive Catalog on Approval to Yes archives the price/sales catalog
documents once they are approved—in this case, as soon as you import them.

■ Setting PO: Archive Catalog on Approval to No does not archive the price/sales
catalog documents. This may be helpful if you receive frequent price/sales
catalog submissions and do not want Purchasing to take up extra space
archiving every change.

If the document is imported as Incomplete (see the table on page 8-44), it does not
matter how the PO: Archive Catalog on Approval profile option is set. Purchasing
archives the document later upon approval or later upon printing, depending on
the option chosen in the Document Types window.

If Archive on Print is chosen in the Document Types window, Purchasing archives
the imported price/sales catalog documents once they are printed.

By default the PO: Archive Catalog on Approval profile option is set to No. The user
can update this profile option. It can also be updated at the system administrator
user, responsibility, application, and site levels.

Note: Once a line has expired, the supplier cannot send more
updates to it. If the supplier does send an update to an expired
line, the update is treated as a new line to be added to the blanket
purchase agreement.
 Oracle Purchasing Open Interfaces 8-39

Purchasing Documents Open Interface
The blanket purchase agreement is archived and its revision number increased only
after all of its lines have been either accepted or rejected in the Exceeded Price
Tolerances window.

See Also
Document Revision Numbering, Oracle Purchasing User’s Guide

Setting Up the Purchasing Documents Open Interface
If you want to import supplier price/sales catalog information or responses to RFQs
information into the Purchasing Documents Open Interface using the 832/PRICAT
or 843/QUOTES transaction, you need to install and set up e-Commerce Gateway
for your organization, including defining your supplier as a trading partner,
enabling EDI Catalog Inbound/EDI Response to RFQ transactions for that partner,
and setting up code conversion categories and values. See: Oracle e-Commerce
Gateway Implementation Manual.

The concurrent manager(s) that manages all processing also must be set up and
running.

Purchasing Setup

Allow Updating of the Item Master When you allow updating of the item master, the
Purchasing Documents Open Interface updates the item description not just on
blanket purchase agreements or quotations, but in the item master as well. Only the
item description is updated in the item master. If the supplier includes a change to
the item description in the price/sales catalog, allowing updating of the item master
is required for the transaction to go through.

To allow updating of the item master:

1. Navigate to the Purchasing Options window and, in the Control options region,
check Allow Item Description Update. See: Defining Control Options, Oracle
Purchasing User's Guide.

This allows updating of item descriptions.

Note: You can monitor changes to blanket purchase agreements
by using the PO Change History feature. See: Viewing Purchase
Order Changes, Oracle Purchasing User's Guide.
8-40 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface
2. Navigate to the Personal Profiles window and make sure that INV: Default Item
Status is set to Active.

This allows updating of item status codes at the site level.

Set Up Default Category Sets Make sure default category sets are set up appropriately
for both Purchasing and Inventory by performing the following steps:

1. Navigate to the Default Category Sets window by choosing Setup > Items >
Categories > Default Category Sets in the Purchasing responsibility.

Make sure that both Purchasing and Inventory are listed in the Functional Area
column and each has a default Category Set defined for it.

2. Navigate to the Category Sets window by choosing Setup > Items > Categories
> Category Sets in the Purchasing responsibility.

Make sure that you have a default category set each for both Purchasing and
Inventory in the Category Sets window.

If you've selected the Enforce List of Valid Categories check box in the Category
Sets window, make sure that the Default Category also appears in that List of
Valid Categories. If not, enter it in the list.

See: Defining Category Sets, Oracle Inventory User's Guide.

Set the profile option PO: Archive Catalog on Approval If you typically archive documents
on approval, setting this profile option to No means that Purchasing will not
archive those changes made through the Purchasing Documents Open Interface.
See: Revision Numbering and Archiving on page 8-39.

Set the profile option PO: Write Server Output to File Set this profile option when you are
debugging the Purchasing Documents Open Interface. When you import a
price/sales catalog with a large number of items (about 100 or more), the concurrent
manager details log (viewable through the View Log button in the Submit Request
window) can overflow and create errors. The profile option PO: Write Server Output
to File enables you to write these log details to a flat file in the $APPL_TOP/log
directory to avoid this overflow.

If you set this profile option to Yes, the log details are written to a flat file, which
will not overflow. If you set this profile option to No, the log details are written to
the concurrent manager log screen as usual, which can cause overflow problems for
large catalogs. If you leave this profile option blank, log details are not written at
all, which improves performance. By default, the profile option is left blank.
 Oracle Purchasing Open Interfaces 8-41

Purchasing Documents Open Interface
The user can update this profile option. It can also be updated at the system
administrator user, responsibility, application, and site levels.

To write log details to a file using Oracle Applications setup:

1. Set PO: Write Server Output to File to Yes.

2. After you run the Purchasing Documents Open Interface, look for a
system-generated log file in the $APPL_TOP/log directory.

To debug using SQL*Plus, do the following before you run the Purchasing
Documents Open Interface:

1. Set PO: Write Server Output to File to Yes.

2. Make sure the directory for the log file you want to write to in the next step is
set in the environment variable APPLPTMP and that it is listed in the UTL_FILE_
DIR parameter in the init.ora file.

3. Specify the file name using FND_FILE.put_names('logfile', 'outfile',
'directory');

For example:

fnd_file.put_names('mylog.log', 'myout.out', '/sqlcom/out');

This will create a file called mylog.log in the /sqlcom/out directory. It is better
to use /sqlcom/out because of write-access issues. If you have problems
writing to the file, log into the machine where the database is installed.

Set the Price Tolerance for the Update Submission Define your price tolerance for price
increases in an Update submission. Optionally use function security to control
buyers' access to the Exceeded Price Tolerances window. See: Monitoring Price
Increases on page 8-45.

Set the Workflow Timeout for the Update Submission If you import an Update price/sales
catalog, decide whether you want to keep the default Timeout of seven days after
notifying the buyer of a price update that exceeded the price tolerance. The default
Timeout of seven days means if the buyer does not respond after seven days, the
buyer will receive the notification again. If want to change this Timeout period, use

Note: This profile option applies to the Purchasing Documents
Open Interface only.
8-42 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface
the Workflow Builder. See: Price/Sales Catalog Notification Workflow, Oracle
Purchasing User’s Guide.

For the Timeout feature to work, the Workflow Background Process must be
running. See: To Schedule Background Engines, Oracle Workflow Guide.

Importing the Price/Sales Catalog
The import programs window in e-Commerce Gateway initiates both the EDI
Catalog Inbound program (or EDI Response to RFQ Inbound program) to import
the data from the supplier, and the Purchasing Documents Open Interface program
to import the data into Purchasing.

After you submit the information in the Parameters window, make note of the
Request ID number by selecting View My Requests from the Help menu so that you
can later view the status of your submission.

The Purchasing Documents Open Interface program is also available separately in
the Requests window in Purchasing; it can be run only after you've successfully
loaded the price/sales catalog data into the PO_HEADERS_INTERFACE and PO_
LINES_INTERFACE tables.

Create Sourcing Rules If you choose Yes in the Create Sourcing Rules field, make sure
the Approval Status field for the submitted documents is Approved. Sourcing rules
can be created only when the Purchasing documents have a status of Approved. See
also: Sourcing on page 8-36.

Attention: It is important to check the Purchasing Interface
Errors report after you import the price/sales catalog. Because the
Purchasing Documents Open Interface saves or errors out line by
line, it can accept partial documents. Therefore, to see which
document lines were not submitted because of errors, you must
check the Purchasing Interface Errors report.
 Oracle Purchasing Open Interfaces 8-43

Purchasing Documents Open Interface
Approval Status The following table shows the effects of the import Approval Status
on a document's current status, when you import an Update price/sales catalog.

Note that while a document is Incomplete, you cannot source from it until it is
approved. Even in an Update submission, where you are updating only certain
lines on a blanket purchase agreement or catalog quotation, if you choose
Incomplete, the entire document, including the lines that weren't updated, is
considered Incomplete.

Purging the Open Interface Tables after Importing the Catalog
If you want to purge data in the open interface tables after you have imported the
data into Purchasing, use the Purge Purchasing Documents Open Interface
Processed Data program, available through the Submit Request window in
8-44 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface
Monitoring Price Increases
You can optionally set a price update tolerance in the Supplier-Item Attributes
window, on the blanket purchase agreement, or in the PO: Price Tolerance (%) for
Catalog Updates profile option.

If a price update in an Update price/sales catalog exceeds your tolerance, the buyer
receives a notification for each affected document in the Notifications Summary
window. From there, the buyer can access the Exceeded Price Tolerances window
and accept or reject the price increase.

The Purchasing Documents Open Interface Update submission makes all changes to
documents except price changes that have exceeded your price tolerance. For these
lines only, the Purchasing Documents Open Interface waits for the buyer to accept
or reject the price increases in the Exceeded Price Tolerances window before
completing or rejecting the price change. All other line changes, however, are made.

Purchasing performs the price tolerance check against the price on the current
revision of the document. The price tolerance check is performed only on Update
price/sales catalog submissions and only on price increases. If the price decreases,
Purchasing does not check the decrease against your tolerance or notify you of the
decrease.

The Exceeded Price Tolerances window can also be used with function security to
control buyers' access to it.

The Purchasing Documents Open Interface uses Oracle Workflow to handle
exceeded price tolerance notifications. A default workflow in Purchasing, the PO
Catalog Price Tolerance Notifications workflow, automatically sends a notification
to the buyer when the price tolerance has been exceeded. The workflow also
provides you with function activities that you can modify to enable the workflow to
send automatic notifications to your suppliers when you have rejected a price
increase. For detailed information about the workflow, see: Price/Sales Catalog
Notification Workflow, Oracle Purchasing User’s Guide.

◗◗ To limit buyers' access to the Exceeded Price Tolerances window:
❏ Exclude the Accept/Reject Exceeded Price Tolerances subfunction from the

buyer's responsibility.

Buyers can then only view the Exceeded Price Tolerances window.

See: Overview of Function Security, Oracle Applications System Administrator's
Guide. See: Forms and Subfunctions, Oracle Applications System Administrator's
Guide.
 Oracle Purchasing Open Interfaces 8-45

Purchasing Documents Open Interface
◗◗ To set the price update tolerance:
❏ Specify a price update tolerance at any of the following levels:

■ The Price Update Tolerance field on the original blanket purchase
agreement, in the Terms and Conditions window.

■ The Price Update Tolerance field in the Supplier-Item Attributes window, at
the item-supplier level.

■ The Price Update Tolerance field in the Supplier-Item Attributes window, at
the commodity-supplier level.

■ The PO: Price Tolerance (%) for Catalog Updates profile option if you want the
price tolerance to apply to everything, not just to specific documents, or
supplier-item or supplier-commodity levels.

For blanket purchase agreements, Purchasing uses the first price tolerance it
finds to determine the price tolerance: it looks first at the document, then the
item level in the Approved Supplier List, then the category level in the
Approved Supplier List, then the profile option. For quotations, since you
cannot define a price tolerance at the document level, Purchasing looks first at
the item level in the Approved Supplier List, then the category level in the
Approved Supplier List, then the profile option. If you set one price update
tolerance, it does not default to the other levels. If you set more than one price
update tolerance, Purchasing uses the first one it finds in the order described
above. If no Price Update Tolerance is set at any of these levels, then Purchasing
performs no price tolerance checking.

The Price Update Tolerance fields and profile option apply only to documents
in a price/sales catalog submission.

The Price Tolerance field in the Purchasing Options window has nothing to do
with these Price Update Tolerance fields.

Example 8–1 Price Tolerance Checking

If you set the Price Update Tolerance field to 20 at the item-supplier level in the
Supplier-Item Attributes window (and you haven't set the price tolerance on
the agreement), a price increase of more than 20 percent for that item and
supplier will send the buyer a notification. If you set the Price Update
Tolerance to 20 on the agreement, a price increase of more than 20 percent on
that document will issue a notification. If you set the Price Update Tolerance to
0, and you haven't set it to something else at a lower level, then no automatic
price updates are allowed. That is, you will receive a notification of every price
increase that occurs at that level.
8-46 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface Table Descriptions
◗◗ To accept or reject price increases:
1. Navigate to the Exceeded Price Tolerances window, accessible under the

Purchase Orders menu.

You can also navigate to the Exceeded Price Tolerances window from the
notification. Look for a notification titled Price tolerance exceeded during
BLANKET update or Price tolerance exceeded during QUOTATION update.

2. Choose Accept or Reject.

For more information, see: Monitoring Price Increases in a Price/Sales Catalog
Update, Oracle Purchasing User’s Guide. Or see the online help for the window.

Purchasing Documents Open Interface Table Descriptions
Values for the columns in the PO_HEADERS_INTERFACE and PO_LINES_
INTERFACE tables can come from multiple sources. Your suppliers can send the
data, you can enter data yourself through the Parameters windows in the EDI
Catalog Inbound program or EDI Response to RFQ Inbound program, and the
Purchasing Documents Open Interface program in Purchasing can derive (or
default) some of the data into the Purchasing tables. Most of the columns in these
tables correspond to columns in the PO_HEADERS and PO_LINES tables in
Purchasing.

Most of the columns that end with ID refer to internal identifier columns that
uniquely identify a row in a table in Purchasing. The INTERFACE_HEADER_ID
column in the PO_HEADERS_INTERFACE table is the primary key (or unique
identifier) for this table that other Purchasing tables can reference. Most other ID
columns are foreign keys—or identifiers that point—to other tables in Purchasing.
For example, VENDOR_SITE_ID and VENDOR_SITE_CODE point to the PO_
VENDOR_SITES table.

Some columns described below are not used currently by the Purchasing
Documents Open Interface, but are reserved for future functionality.

The table descriptions below are based on what the Purchasing Documents Open
Interface itself requires, whether the data is imported through e-Commerce
Gateway or a program you write. The following definitions are used:

■ Required: The Purchasing Documents Open Interface requires these values at a
minimum, whether they are imported through a program you write or through
e-Commerce Gateway. For example, the Purchasing Documents Open Interface
requires a value for the column INTERFACE_HEADER_ID, but e-Commerce
Gateway provides a value automatically.
 Oracle Purchasing Open Interfaces 8-47

Purchasing Documents Open Interface Table Descriptions
■ Derived and/or Defaulted: The Purchasing Documents Open Interface can derive
or default columns in this category, depending on whether other values are
provided. For example, the column AGENT_ID is a Derived and/or Defaulted
column if a valid AGENT_NAME is provided.

■ Optional: You do not have to enter values for columns in this category.

■ Reserved for Future Use: As of this release, the Purchasing Documents Open
Interface does not validate columns in this category before passing them into
Purchasing, but has reserved these columns for future enhancements. Do not
enter values in these columns.

See Also
Oracle Purchasing Applications Technical Reference Manual, Release 11i

Purchasing Documents Headers Table Description
The following table describes the PO_HEADERS_INTERFACE table.

Table 8–6 Purchasing Documents Open Interface (Headers)

PO_HEADERS_INTERFACE

Column Name Type Required

Derived
and/or

Defaulted Optional

Reserved
for Future

Use

INTERFACE_HEADER_ID Number x

BATCH_ID Number x

INTERFACE_SOURCE_CODE Varchar2 x

PROCESS_CODE Varchar2 x

ACTION Varchar2 x

GROUP_CODE Varchar2 x

ORG_ID Number x x

DOCUMENT_TYPE_CODE Varchar2 x

DOCUMENT_SUBTYPE Varchar2 x

DOCUMENT_NUM Varchar2 x x

PO_HEADER_ID Number x x

RELEASE_NUM Number x

PO_RELEASE_ID Number x

RELEASE_DATE Date x
8-48 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface Table Descriptions
CURRENCY_CODE Varchar2 x x

RATE_TYPE Varchar2 x

RATE_TYPE_CODE Varchar2 x x

RATE_DATE Date x x

RATE Number x x

AGENT_NAME Varchar2 x

AGENT_ID Number x x

VENDOR_NAME Varchar2 x

VENDOR_ID Number x x

VENDOR_SITE_CODE Varchar2 x

VENDOR_SITE_ID Number x x

VENDOR_CONTACT Varchar2 x

VENDOR_CONTACT_ID Number x x

SHIP_TO_LOCATION Varchar2 x

SHIP_TO_LOCATION_ID Number x x

BILL_TO_LOCATION Varchar2 x

BILL_TO_LOCATION_ID Number x x

PAYMENT_TERMS Varchar2 x

TERMS_ID Number x x

FREIGHT_CARRIER Varchar2 x x

FOB Varchar2 x x

FREIGHT_TERMS Varchar2 x x

APPROVAL_STATUS Varchar2 x

APPROVED_DATE Date x

REVISED_DATE Date x

REVISION_NUM Number x

NOTE_TO_VENDOR Varchar2 x

NOTE_TO_RECEIVER Varchar2 x

Table 8–6 Purchasing Documents Open Interface (Headers)

PO_HEADERS_INTERFACE

Column Name Type Required

Derived
and/or

Defaulted Optional

Reserved
for Future

Use
 Oracle Purchasing Open Interfaces 8-49

Purchasing Documents Open Interface Table Descriptions
CONFIRMING_ORDER_FLAG Varchar2 x

COMMENTS Varchar2 x

ACCEPTANCE_REQUIRED_
FLAG

Varchar2 x x

ACCEPTANCE_DUE_DATE Date x

AMOUNT_AGREED Number x

AMOUNT_LIMIT Number x

MIN_RELEASE_AMOUNT Number x x

EFFECTIVE_DATE Date conditionally

EXPIRATION_DATE Date conditionally

PRINT_COUNT Number x x

PRINTED_DATE Date x

FIRM_FLAG Varchar2 x

FROZEN_FLAG Varchar2 x x

CLOSED_CODE Varchar2 x x

CLOSED_DATE Date x

REPLY_DATE Date x x

REPLY_METHOD Varchar2 x

RFQ_CLOSE_DATE Date x

QUOTE_WARNING_DELAY Number x x

VENDOR_DOC_NUM Varchar2 x

APPROVAL_REQUIRED_FLAG Varchar2 x x

VENDOR_LIST Varchar2 x

VENDOR_LIST_HEADER_ID Number x

FROM_HEADER_ID Number x x

FROM_TYPE_LOOKUP_CODE Varchar2 x x

USSGL_TRANSACTION_CODE Varchar2 x

ATTRIBUTE_CATEGORY Varchar2 x

Table 8–6 Purchasing Documents Open Interface (Headers)

PO_HEADERS_INTERFACE

Column Name Type Required

Derived
and/or

Defaulted Optional

Reserved
for Future

Use
8-50 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface Table Descriptions
ATTRIBUTE1 Varchar2 x

ATTRIBUTE2 Varchar2 x

ATTRIBUTE3 Varchar2 x

ATTRIBUTE4 Varchar2 x

ATTRIBUTE5 Varchar2 x

ATTRIBUTE6 Varchar2 x

ATTRIBUTE7 Varchar2 x

ATTRIBUTE8 Varchar2 x

ATTRIBUTE9 Varchar2 x

ATTRIBUTE10 Varchar2 x

ATTRIBUTE11 Varchar2 x

ATTRIBUTE12 Varchar2 x

ATTRIBUTE13 Varchar2 x

ATTRIBUTE14 Varchar2 x

ATTRIBUTE15 Varchar2 x

CREATION_DATE Date x x

CREATED_BY Number x x

LAST_UPDATE_DATE Date x x

LAST_UPDATED_BY Number x x

LAST_UPDATE_LOGIN Number x x

REQUEST_ID Number x x

PROGRAM_APPLICATION_ID Number x x

PROGRAM_ID Number x x

PROGRAM_UPDATE_DATE Date x x

REFERENCE_NUM Varchar2 x

LOAD_SOURCING_RULES_
FLAG

Varchar2 x

VENDOR_NUM Varchar2 x

Table 8–6 Purchasing Documents Open Interface (Headers)

PO_HEADERS_INTERFACE

Column Name Type Required

Derived
and/or

Defaulted Optional

Reserved
for Future

Use
 Oracle Purchasing Open Interfaces 8-51

Purchasing Documents Open Interface Table Descriptions
Following is a description of all of the required and conditionally required columns
in the PO_HEADERS_INTERFACE table, and some other columns. Remaining
column descriptions can be found in the Oracle Purchasing Applications Technical
Reference Manual, Release 11i.

INTERFACE_HEADER_ID Required
This column indicates an identifier for the purchase order or catalog header. If you
import price/sales catalog information through e-Commerce Gateway, this
identifier is provided automatically.

BATCH_ID Optional
When you import the price/sales catalog information through e-Commerce
Gateway, it provides a concurrent program grouping identifier for the submission.

INTERFACE_SOURCE_CODE Reserved for Future Use
This column identifies the source (for example, e-Commerce Gateway) of the
price/sales catalog data.

PROCESS_CODE Optional
This column indicates the status of a row in the interface table. It accepts values of
PENDING, ACCEPTED, REJECTED, or NOTIFIED. A PENDING transaction has
not yet been processed. An ACCEPTED transaction has been successfully
processed. A REJECTED transaction contains an error which shows up in the
Purchasing Interface Errors Report. A NOTIFIED transaction, which includes a
price update that exceeded the price tolerance, has been communicated to the buyer
through the Notifications Summary window.

When you import price/sales catalog information through e-Commerce Gateway,
e-Commerce Gateway defaults a value of PENDING in this column automatically.

FROM_RFQ_NUM Varchar2 x

WF_GROUP_ID Number x

PCARD_ID Number x

PAY_ON_CODE Varchar2 x

Table 8–6 Purchasing Documents Open Interface (Headers)

PO_HEADERS_INTERFACE

Column Name Type Required

Derived
and/or

Defaulted Optional

Reserved
for Future

Use
8-52 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface Table Descriptions
Then, the Purchasing Documents Open Interface sets the value to ACCEPTED,
REJECTED, or NOTIFIED.

ACTION Required
This column indicates whether the price/sales catalog information is an original
(new), replacement, or update file. This column accepts values of ORIGINAL,
REPLACE, or UPDATE.

GROUP_CODE Reserved for Future Use
This column indicates an identifier for the batch being imported.

DOCUMENT_TYPE_CODE Required
This column accepts values of BLANKET or QUOTATION. It is required to match
incoming documents with existing documents.

VENDOR_NAME or VENDOR_ID Required
VENDOR_NAME indicates the supplier for the document. VENDOR_ID indicates
the supplier identifier number. Make sure the supplier is also set up as a trading
partner in the e-Commerce Gateway application, if you're importing data through
e-Commerce Gateway. If you provide a value for one of these columns, you do not
have to provide a value for the other.

VENDOR_SITE_CODE or VENDOR_SITE_ID Required
This column indicates the supplier site for the document. If the supplier has more
than one site, the Purchasing Documents Open Interface cannot default a site. The
site also needs to be set up in e-Commerce Gateway, if you're importing data
through e-Commerce Gateway. If you provide a value for one of these columns,
you do not have to provide a value for the other.

EFFECTIVE_DATE Conditionally Required
This column must be populated when replacing an existing purchasing document.
The value in this column is used to locate the old price/sales catalog and expire it.

EXPIRATION_DATE Conditionally Required
This column must be populated when replacing an existing purchasing document.
The value in this column is used to locate the old price/sales catalog and expire it.
 Oracle Purchasing Open Interfaces 8-53

Purchasing Documents Open Interface Table Descriptions
VENDOR_DOC_NUM Required
This column must be populated when replacing or updating an existing purchasing
document. It is also required to make sure that documents in an Original
submission don't already exist in Purchasing.

LOAD_SOURCING_RULES_FLAG Optional
This column indicates whether to create sourcing rules with the purchasing
document. You choose this option in the Parameters window when importing the
price/sales catalog.

Purchasing Documents Lines Table Description
The following table describes the PO_LINES_INTERFACE table.

Table 8–7 Purchasing Documents Open Interface (Lines)

PO_LINES_INTERFACE

Column Name Type Required

Derived
and/or

Defaulted Optional

Reserved
for Future

Use

INTERFACE_LINE_ID Number x

INTERFACE_HEADER_ID Number x

ACTION Varchar2 x

GROUP_CODE Varchar2 x

LINE_NUM Number x x

PO_LINE_ID Number x x

SHIPMENT_NUM Number x x

LINE_LOCATION_ID Number x x

SHIPMENT_TYPE Varchar2 x x

REQUISITION_LINE_ID Number x

DOCUMENT_NUM Number x

RELEASE_NUM Number x

PO_HEADER_ID Number x x

PO_RELEASE_ID Number x

EXPIRATION_DATE Date x

SOURCE_SHIPMENT_ID Number x

CONTRACT_NUM Varchar2 x
8-54 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface Table Descriptions
LINE_TYPE Varchar2 x

LINE_TYPE_ID Number x x

ITEM Varchar2 conditionally

ITEM_ID Number x x

ITEM_REVISION Varchar2 x

CATEGORY Varchar2 x

CATEGORY_ID Number x x

ITEM_DESCRIPTION Varchar2 conditionally x

VENDOR_PRODUCT_NUM Varchar2 x x

UOM_CODE Varchar2 x x

UNIT_OF_MEASURE Varchar2 x x

QUANTITY Number x x

COMMITTED_AMOUNT Number x

MIN_ORDER_QUANTITY Number x

MAX_ORDER_QUANTITY Number x

UNIT_PRICE Number x x

LIST_PRICE_PER_UNIT Number x x

MARKET_PRICE Number x x

ALLOW_PRICE_OVERRIDE_
FLAG

Varchar2 x x

NOT_TO_EXCEED_PRICE Number x

NEGOTIATED_BY_PREPARER_
FLAG

Varchar2 x x

UN_NUMBER Varchar2 x

UN_NUMBER_ID Number x x

HAZARD_CLASS Varchar2 x

HAZARD_CLASS_ID Number x x

NOTE_TO_VENDOR Varchar2 x

Table 8–7 Purchasing Documents Open Interface (Lines)

PO_LINES_INTERFACE

Column Name Type Required

Derived
and/or

Defaulted Optional

Reserved
for Future

Use
 Oracle Purchasing Open Interfaces 8-55

Purchasing Documents Open Interface Table Descriptions
TRANSACTION_REASON_
CODE

Varchar2 x

TAXABLE_FLAG Varchar2 x x

TAX_NAME Varchar2 x x

TYPE_1099 Varchar2 x

CAPITAL_EXPENSE_FLAG Varchar2 x x

INSPECTION_REQUIRED_FLAG Varchar2 x x

RECEIPT_REQUIRED_FLAG Varchar2 x x

PAYMENT_TERMS Varchar2 x

TERMS_ID Number x x

PRICE_TYPE Varchar2 x x

MIN_RELEASE_AMOUNT Number x x

PRICE_BREAK_LOOKUP_CODE Varchar2 x x

USSGL_TRANSACTION_CODE Varchar2 x

CLOSED_CODE Varchar2 x x

CLOSED_REASON Varchar2 x

CLOSED_DATE Date x

CLOSED_BY Number x

INVOICE_CLOSE_TOLERANCE Number x

RECEIVE_CLOSE_TOLERANCE Number x

FIRM_FLAG Varchar2 x

DAYS_EARLY_RECEIPT_
ALLOWED

Number x

DAYS_LATE_RECEIPT_
ALLOWED

Number x

ENFORCE_SHIP_TO_
LOCATION_CODE

Varchar2 x

ALLOW_SUBSTITUTE_
RECEIPTS_FLAG

Varchar2 x

RECEIVING_ROUTING Varchar2 x

Table 8–7 Purchasing Documents Open Interface (Lines)

PO_LINES_INTERFACE

Column Name Type Required

Derived
and/or

Defaulted Optional

Reserved
for Future

Use
8-56 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface Table Descriptions
RECEIVING_ROUTING_ID Number x

QTY_RCV_TOLERANCE Number x x

OVER_TOLERANCE_ERROR_
FLAG

Varchar2 x

QTY_RCV_EXCEPTION_CODE Varchar2 x x

RECEIPT_DAYS_EXCEPTION_
CODE

Varchar2 x

SHIP_TO_ORGANIZATION_
CODE

Varchar2 x

SHIP_TO_ORGANIZATION_ID Number x x

SHIP_TO_LOCATION Varchar2 x

SHIP_TO_LOCATION_ID Number x x

NEED_BY_DATE Date x

PROMISED_DATE Date x

ACCRUE_ON_RECEIPT_FLAG Varchar2 x

LEAD_TIME Number x

LEAD_TIME_UNIT Varchar2 x

PRICE_DISCOUNT Number x

FREIGHT_CARRIER Varchar2 x x

FOB Varchar2 x x

FREIGHT_TERMS Varchar2 x x

EFFECTIVE_DATE Date conditionally

EXPIRATION_DATE Date conditionally

FROM_HEADER_ID Number x

FROM_LINE_ID Number x

FROM_LINE_LOCATION_ID Number x

LINE_ATTRIBUTE_CATEGORY_
LINES

Varchar2 x

LINE_ATTRIBUTE1 Varchar2 x

LINE_ATTRIBUTE2 Varchar2 x

Table 8–7 Purchasing Documents Open Interface (Lines)

PO_LINES_INTERFACE

Column Name Type Required

Derived
and/or

Defaulted Optional

Reserved
for Future

Use
 Oracle Purchasing Open Interfaces 8-57

Purchasing Documents Open Interface Table Descriptions
LINE_ATTRIBUTE3 Varchar2 x

LINE_ATTRIBUTE4 Varchar2 x

LINE_ATTRIBUTE5 Varchar2 x

LINE_ATTRIBUTE6 Varchar2 x

LINE_ATTRIBUTE7 Varchar2 x

LINE_ATTRIBUTE8 Varchar2 x

LINE_ATTRIBUTE9 Varchar2 x

LINE_ATTRIBUTE10 Varchar2 x

LINE_ATTRIBUTE11 Varchar2 x

LINE_ATTRIBUTE12 Varchar2 x

LINE_ATTRIBUTE13 Varchar2 x

LINE_ATTRIBUTE14 Varchar2 x

LINE_ATTRIBUTE15 Varchar2 x

SHIPMENT_ATTRIBUTE_
CATEGORY

Varchar2 x

SHIPMENT_ATTRIBUTE1 Varchar2 x

SHIPMENT_ATTRIBUTE2 Varchar2 x

SHIPMENT_ATTRIBUTE3 Varchar2 x

SHIPMENT_ATTRIBUTE4 Varchar2 x

SHIPMENT_ATTRIBUTE5 Varchar2 x

SHIPMENT_ATTRIBUTE6 Varchar2 x

SHIPMENT_ATTRIBUTE7 Varchar2 x

SHIPMENT_ATTRIBUTE8 Varchar2 x

SHIPMENT_ATTRIBUTE9 Varchar2 x

SHIPMENT_ATTRIBUTE10 Varchar2 x

SHIPMENT_ATTRIBUTE11 Varchar2 x

SHIPMENT_ATTRIBUTE12 Varchar2 x

SHIPMENT_ATTRIBUTE13 Varchar2 x

Table 8–7 Purchasing Documents Open Interface (Lines)

PO_LINES_INTERFACE

Column Name Type Required

Derived
and/or

Defaulted Optional

Reserved
for Future

Use
8-58 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface Table Descriptions
SHIPMENT_ATTRIBUTE14 Varchar2 x

SHIPMENT_ATTRIBUTE15 Varchar2 x

LAST_UPDATE_DATE Date x

LAST_UPDATED_BY Number x x

LAST_UPDATE_LOGIN Number x x

CREATION_DATE Date x x

CREATED_BY Number x x

REQUEST_ID Number x x

PROGRAM_APPLICATION_ID Number x x

PROGRAM_ID Number x x

PROGRAM_UPDATE_DATE Date x x

ORGANIZATION_ID Number x x

ITEM_ATTRIBUTE_CATEGORY Varchar2 x

ITEM_ATTRIBUTE1 Varchar2 x

ITEM_ATTRIBUTE2 Varchar2 x

ITEM_ATTRIBUTE3 Varchar2 x

ITEM_ATTRIBUTE4 Varchar2 x

ITEM_ATTRIBUTE5 Varchar2 x

ITEM_ATTRIBUTE6 Varchar2 x

ITEM_ATTRIBUTE7 Varchar2 x

ITEM_ATTRIBUTE8 Varchar2 x

ITEM_ATTRIBUTE9 Varchar2 x

ITEM_ATTRIBUTE10 Varchar2 x

ITEM_ATTRIBUTE11 Varchar2 x

ITEM_ATTRIBUTE12 Varchar2 x

ITEM_ATTRIBUTE13 Varchar2 x

ITEM_ATTRIBUTE14 Varchar2 x

ITEM_ATTRIBUTE15 Varchar2 x

Table 8–7 Purchasing Documents Open Interface (Lines)

PO_LINES_INTERFACE

Column Name Type Required

Derived
and/or

Defaulted Optional

Reserved
for Future

Use
 Oracle Purchasing Open Interfaces 8-59

Purchasing Documents Open Interface Table Descriptions
Following is a description of all of the required and conditionally required columns
in the PO_LINES_INTERFACE table, and some other columns. Remaining column
descriptions can be found in the Oracle Purchasing Applications Technical Reference
Manual, Release 11i.

INTERFACE_LINE_ID Required
This column indicates the unique identifier of the line record in the PO_LINES_
INTERFACE table. If you import price/sales catalog information through
e-Commerce Gateway, this identifier is provided automatically.

INTERFACE_HEADER_ID Required
This column indicates the unique identifier of the header record to which this line
belongs. If you import price/sales catalog information through e-Commerce
Gateway, this identifier is provided automatically.

UNIT_WEIGHT Number x

WEIGHT_UOM_CODE Varchar2 x

VOLUME_UOM_CODE Varchar2 x

UNIT_VOLUME Number x

TEMPLATE_ID Number x x

TEMPLATE_NAME Varchar2 x

LINE_REFERENCE_NUM Varchar2 x

SOURCING_RULE_NAME Varchar2 x

TAX_STATUS_INDICATOR Varchar2 x

PROCESS_CODE Varchar2 for internal use only

PRICE_CHG_ACCEPT_FLAG Varchar2 for internal use only

PRICE_BREAK_FLAG Varchar2 for internal use only

PRICE_UDATE_TOLERANCE Number x

TAX_USER_OVERRIDE_FLAG Varchar2 x

TAX_ID Number x

TAX_CODE_ID Number x

Table 8–7 Purchasing Documents Open Interface (Lines)

PO_LINES_INTERFACE

Column Name Type Required

Derived
and/or

Defaulted Optional

Reserved
for Future

Use
8-60 Oracle Manufacturing APIs and Open Interfaces Manual

Purchasing Documents Open Interface Table Descriptions
GROUP_CODE Reserved for Future Use
This column indicates an identifier for the batch being imported.

EFFECTIVE_DATE Conditionally Required
If you choose to create sourcing rules with the imported price/sales catalog
information, then you need to provide a value in this column.

EXPIRATION_DATE Conditionally Required
In an Original or Replace submission: If you choose to create sourcing rules with the
imported price/sales catalog information, then you need to provide a value in this
column.

In an Update submission: When updating an existing line, the value in this column is
used to expire the line. When adding a new line, the value in this column is
required if you choose to create sourcing rules with the imported price/sales
catalog information.

ITEM or ITEM_DESCRIPTION Conditionally Required
If you want to create items in the item master, then you need to supply the item
information.

Both an ITEM and an ITEM_DESCRIPTION are required if an item is being created
in the item master. If an item is being updated, the ITEM_DESCRIPTION is
required.

SOURCING_RULE_NAME Optional
If sourcing rules are being used, this column indicates the name of the sourcing rule.

PROCESS_CODE Internal Use Only
This column indicates the status of a row in the interface table. It is updated
internally with values of null (which means PENDING), ACCEPTED, or
NOTIFIED. A PENDING transaction has not yet been processed. An ACCEPTED
transaction has been successfully processed. A NOTIFIED transaction, which
includes a price update that exceeded the price tolerance, has been communicated
to the buyer through the Notifications Summary window. The Purchasing
Documents Open Interface sets the value of this column to ACCEPTED or
NOTIFIED.

This column is for internal use only. Unless you are debugging the open interface,
do not use a program or script to update this column yourself.
 Oracle Purchasing Open Interfaces 8-61

Derivation
PRICE_CHG_ACCEPT_FLAG Internal Use Only
This column indicates internally whether a price has changed in an Update
submission. If the PROCESS_CODE value is NOTIFIED, NULL means that the item
price update is pending—waiting for the buyer to respond with Accept or Reject in
the Exceeded Price Tolerances window. Y means that the price update was
accepted. N means that it was rejected.

This column is for internal use only. Unless you are debugging the open interface,
do not use a program or script to update this column yourself.

PRICE_BREAK_FLAG Internal Use Only
This column indicates internally whether a record in an Update submission
includes price breaks.

This column is for internal use only. Unless you are debugging the open interface,
do not use a program or script to update this column yourself.

Derivation
In general, the same derivation and defaulting rules apply to the interface tables as
apply when you enter information in the Purchase Orders or Quotations windows.
For example, the column ITEM_DESCRIPTION is derived or defaulted only if a
valid ITEM or ITEM_ID is provided.

The Purchasing Documents Open Interface supports column value passing by user
value; for example, if you provide a VENDOR_NAME or VENDOR_NUM, the
VENDOR_ID is derived. Purchasing uses the derivation source according to the
following rules:

■ Key (ID) columns always override value columns. If you populate both the key
column and the corresponding value column, then the key column is always
used for processing. For example, if VENDOR_NAME and VENDOR_ID
contradict each other, VENDOR_ID is used.

■ Derivation is performed before defaulting, and generally overrides defaulting.
(Derivation refers to deriving a full value from a partial value given; defaulting
refers to using a default value in Purchasing when no value is given.) For
example, if you load the SHIP_TO_LOCATION value in the interface tables,
Purchasing derives the SHIP_TO_LOCATION_ID from it instead of from the
default ship-to information associated with your supplier.
8-62 Oracle Manufacturing APIs and Open Interfaces Manual

Validation
Defaulting
The Purchasing Documents Open Interface supports the same defaulting
mechanisms as the Purchasing document entry windows. Defaults can come from
many sources, such as the Purchasing Options, Financial Options, Suppliers, and
Master Item (or Organization Items) windows.

Defaulting rules are applied as follows:

■ Defaults do not override values that you specify.

■ Default values that are no longer active or valid are not used.

Validation
The Purchasing Documents Open Interface does not validate those columns
described as "Reserved for Future Use" on the previous pages.

Standard Validation
Purchasing validates all required columns in the interface table. For specific
information on the data implied by these columns, see your Oracle Purchasing
Applications Technical Reference Manual, Release 11i, for details.

Other Validation
The Purchasing Documents Open Interface performs the same validation as the
Purchasing document entry windows before allowing the data to be committed to
the base tables.

If multiple errors are detected, each error is written to the PO_INTERFACE_
ERRORS table and displayed in the Purchasing Interface Errors Report.

Not only are all required columns validated so that they are populated with
acceptable values, but also errors are signaled for those columns that have values
but should not. For example, if a RATE_TYPE does not need to be defined (because
exchange rate information is not needed) but contains a value, an error will be
signaled.
 Oracle Purchasing Open Interfaces 8-63

Resolving Failed Purchasing Interface Rows
Resolving Failed Purchasing Interface Rows

Error Messages
Purchasing may display specific error messages during interface processing. For
more details on these messages, please see the Oracle Applications Message Reference
Manual, in HTML format on the documentation CD-ROM for Release 11i.

A Note about Debugging
If you receive an error in a document, you can fix the error and resubmit the
document again by reusing a header record in the PO_HEADERS_INTERFACE
table using SQL*Plus, if you’re using a test environment. If you do this, set the
PROCESS_CODE column in the PO_HEADERS_INTERFACE table to PENDING
and be sure to reset the following columns to NULL for all lines belonging to that
header in the PO_LINES_INTERFACE table:

■ PROCESS_CODE

■ PRICE_CHG_ACCEPT_FLAG

■ PRICE_BREAK_FLAG

Viewing Failed Transactions
You can report on all rows that failed validation by using the Purchasing Interface
Errors Report. For each row in the Purchasing Documents Open Interface tables
that fails validation, the Purchasing Documents Open Interface creates one or more
rows with error information in the PO_INTERFACE_ERRORS table. The
Purchasing Interface Errors Report lists all the columns in the PO_INTERFACE_
ERRORS table that failed validation along with the reason for the failure. This
report is generated through the Submit Request window and processed as other
standard reports in Purchasing.

The following table shows the error messages and their meaning:

Table 8–8 Purchasing Documents Open Interface Error Messages

Error Message Meaning

PO_PDOI_AMT_LIMIT_LT_AGREED Amount Limit (VALUE= &AMOUNT_LIMIT) is less
than Amount Agreed (VALUE=&VALUE).

PO_PDOI_AMT_LIMIT_LT_RELEASE Amount Limit (VALUE= &AMOUNT_LIMIT) is less
than Minimum Release Amount (VALUE=&VALUE).

PO_PDOI_AMT_LIMIT_LT_TOTREL Amount Limit (VALUE= &AMOUNT_LIMIT) is less
than Total Amount Released (VALUE=&VALUE).
8-64 Oracle Manufacturing APIs and Open Interfaces Manual

Resolving Failed Purchasing Interface Rows
PO_PDOI_CATG_ALREADY_EXISTS Catalog being created with supplier document number
[DOC_NUMBER] already exists.

PO_PDOI_COLUMN_NOT_NULL Column &COLUMN_NAME should not be NULL.

PO_PDOI_COLUMN_NOT_ZERO Column &COLUMN_NAME should be 0.

PO_PDOI_COLUMN_NULL Column &COLUMN_NAME (VALUE=&VALUE) must
be NULL.

PO_PDOI_DERV_ERROR Derivation Error: &COLUMN_NAME (VALUE=
&VALUE) specified is invalid.

PO_PDOI_DERV_PART_NUM_ERROR Cannot derive ITEM_ID for the specified buyer item_
number or VENDOR_PRODUCT_NUM.

PO_PDOI_DIFF_ITEM_DESC Pre-defined item description cannot be changed for this
item.

PO_PDOI_DOC_NUM_UNIQUE Document Num must have a unique value. &VALUE
already exists.

PO_PDOI_EFF_DATE_GT_HEADER Effective Date (VALUE =&VALUE) specified should
not be less than the effective date specified.

PO_PDOI_EXCEED_PRICE_NULL NOT TO
EXCEED PRICE (VALUE= &VALUE)

Must be NULL if ALLOW_PRICE_OVERRIDE_FLAG
is N.

PO_PDOI_INVALID_ACTION Action (VALUE= &VALUE) is invalid.

PO_PDOI_INVALID_BILL_LOC_ID Bill-To Location ID (VALUE=&VALUE) is not valid.

PO_PDOI_INVALID_BUYER Buyer (VALUE=&VALUE) specified is not a valid
buyer.

PO_PDOI_INVALID_CATEGORY_ID CATEGORY ID (VALUE =&VALUE) specified is
inactive or invalid.

PO_PDOI_INVALID_CURRENCY Currency Code (VALUE =&VALUE) specified is
inactive or invalid.

PO_PDOI_INVALID_DISCOUNT DISCOUNT (VALUE =&VALUE) specified is invalid.

PO_PDOI_INVALID_DOC_NUM Document Number (VALUE= &VALUE) specified is
invalid.

PO_PDOI_INVALID_DOC_STATUS Sourcing rule can be created only if document is loaded
as an approved document.

PO_PDOI_INVALID_FLAG_VALUE &COLUMN_NAME (VALUE =&VALUE) is invalid. It
can either be Y or N.

PO_PDOI_INVALID_FOB FOB (VALUE=&VALUE) specified is inactive or
invalid.

PO_PDOI_INVALID_FREIGHT_CARR FREIGHT CARRIER (VALUE =&VALUE) specified is
inactive or invalid.

Table 8–8 Purchasing Documents Open Interface Error Messages

Error Message Meaning
 Oracle Purchasing Open Interfaces 8-65

Resolving Failed Purchasing Interface Rows
PO_PDOI_INVALID_FREIGHT_TERMS FREIGHT TERMS (VALUE =&VALUE) specified is
inactive or invalid.

PO_PDOI_INVALID_HAZ_ID HAZARD CLASS ID (VALUE =&VALUE) specified is
inactive or invalid.

PO_PDOI_INVALID_INTER_LINE_REC Record specified in PO_LINES_INTERFACE is invalid.
It is neither a new record in PO_LINES nor PO_LINE_
LOCATIONS.

PO_PDOI_INVALID_ITEM_FLAG Item Flag (VALUE= &VALUE) is invalid.

PO_PDOI_INVALID_ITEM_ID ITEM ID (VALUE =&VALUE) is not a valid
purchasable item.

PO_PDOI_INVALID_ITEM_REVISION REVISION NUM (VALUE =&VALUE) specified is
inactive or invalid.

PO_PDOI_INVALID_ITEM_UOM_CODE ITEM UOM CODE (VALUE =&VALUE) specified is
inactive or invalid.

PO_PDOI_INVALID_LEAD_TIME Lead Time Unit (VALUE=&VALUE) specified is
inactive or invalid.

PO_PDOI_INVALID_LINE_TYPE_ID LINE TYPE ID (VALUE =&VALUE) specified is
inactive or invalid.

PO_PDOI_INVALID_LINE_TYPE_INFO &COLUMN_NAME (VALUE=&VALUE) must match
the value from the PO_LINE_TYPES table
(VALUE=&LINE_TYPE).

PO_PDOI_INVALID_LOCATION_REC Information specified in PO_LINES_INTERFACE table
does not match the parent record in PO_LINES table.

PO_PDOI_INVALID_NUM_OF_LINES &COLUMN_NAME There should be at least one line
per document.

PO_PDOI_INVALID_OP_ITEM_ID ITEM ID (VALUE =&VALUE) is not a valid
purchasable and outside operational item.

PO_PDOI_INVALID_ORIG_CATALOG &DOC_NUMBER specified is not a valid original
catalog.

PO_PDOI_INVALID_PAY_TERMS PAYMENT TERMS (VALUE =&VALUE) specified is
inactive or invalid.

PO_PDOI_INVALID_PRICE NOT TO EXCEED PRICE. (VALUE= &VALUE) has to
be greater or equal to UNIT PRICE (VALUE=&UNIT_
PRICE).

PO_PDOI_INVALID_PRICE_BREAK PRICE BREAK LOOKUP CODE (VALUE=&VALUE)
specified is inactive or invalid.

PO_PDOI_INVALID_PRICE_TYPE PRICE TYPE (VALUE =&VALUE) specified is inactive
or invalid.

Table 8–8 Purchasing Documents Open Interface Error Messages

Error Message Meaning
8-66 Oracle Manufacturing APIs and Open Interfaces Manual

Resolving Failed Purchasing Interface Rows
PO_PDOI_INVALID_QUOTE_TYPE_CD Document Subtype (VALUE= &VALUE) specified is
invalid.

PO_PDOI_INVALID_RATE The rate value (VALUE=&VALUE) specified is invalid.

PO_PDOI_INVALID_RATE_TYPE Rate Type (VALUE =&VALUE) specified is invalid.

PO_PDOI_INVALID_RCV_EXCEP_CD RCV EXCEPTION CODE (VALUE =&VALUE)
specified is inactive or invalid.

PO_PDOI_INVALID_REPLY_METHOD REPLY METHOD (VALUE =&VALUE) specified is
inactive or invalid.

PO_PDOI_INVALID_SHIPMENT_TYPE SHIPMENT TYPE (VALUE= &TYPE) specified is not
valid for TYPE LOOKUP CODE (VALUE=&VALUE)

PO_PDOI_INVALID_SHIP_LOC_ID SHIP_TO_LOCATION_ID (VALUE=&VALUE) is not
valid.

PO_PDOI_INVALID_SHIP_TO_LOC_ID SHIP_TO_LOCATION_ID (VALUE=&VALUE)
specified is inactive or invalid.

PO_PDOI_INVALID_SHIP_TO_ORG_ID SHIP_TO_ORGANIZATION_ID (VALUE=&VALUE)
specified is inactive or invalid.

PO_PDOI_INVALID_START_DATE Effective Date (VALUE =&VALUE) specified should be
less than the end date specified.

PO_PDOI_INVALID_STATUS Approval Status specified is invalid.

PO_PDOI_INVALID_TAX_NAME TAX NAME (VALUE =&VALUE) specified is inactive
or invalid.

PO_PDOI_INVALID_TEMPLATE_ID TEMPLATE ID (VALUE =&VALUE) specified is
inactive or invalid.

PO_PDOI_INVALID_TYPE_LKUP_CD Document Type Code (VALUE =&VALUE) specified is
invalid.

PO_PDOI_INVALID_UN_NUMBER_ID UN NUMBER ID (VALUE =&VALUE) specified is
inactive or invalid.

PO_PDOI_INVALID_UOM_CODE UNIT OF MEASURE (VALUE =&VALUE) specified is
inactive or invalid.

PO_PDOI_INVALID_USSGL_TXN_CODE USSGL Transaction Code (VALUE =&VALUE)
specified is invalid.

PO_PDOI_INVALID_VALUE &COLUMN_NAME must have a value of &VALUE.

PO_PDOI_INVALID_VDR_CNTCT Supplier Contact (VALUE=&VALUE) is not an active
and valid contact for the specified supplier site.

PO_PDOI_INVALID_VENDOR Supplier (VALUE=&VALUE) specified is invalid or
inactive.

Table 8–8 Purchasing Documents Open Interface Error Messages

Error Message Meaning
 Oracle Purchasing Open Interfaces 8-67

Resolving Failed Purchasing Interface Rows
PO_PDOI_INVALID_VENDOR_SITE Supplier Site (VALUE=&VALUE) is not an active and
valid purchasing supplier site.

PO_PDOI_INVAL_MULT_ORIG_CATG Multiple catalogs can be found with the same
document number (&DOC_NUMBER).

PO_PDOI_ITEM_NOT_NULL ITEM_ID should not be null for outside operation
LINE_TYPE.

PO_PDOI_ITEM_RELATED_INFO &COLUMN_NAME (VALUE=&VALUE) specified is
inactive or invalid for ITEM_ID (VALUE=&ITEM).

PO_PDOI_ITEM_UPDATE_NOT_ALLOW Item attribute(s) required update. However, this
execution does not allow item update/creation.

PO_PDOI_LINE_ID_UNIQUE LINE_ID must have a unique value. &VALUE already
exists.

PO_PDOI_LINE_LOC_ID_UNIQUE LINE_LOCATION_ID must be unique. &VALUE
already exists.

PO_PDOI_LINE_NUM_UNIQUE LINE_NUM must have a unique value. &VALUE
already exists.

PO_PDOI_LT_ZERO &COLUMN_NAME (VALUE =&VALUE) specified is
less than zero.

PO_PDOI_MULT_BUYER_PART Multiple buyer parts are found which match the
specified Item Num (VALUE=&VALUE).

PO_PDOI_NO_DATA_FOUND No rate found for currency_code
(VALUE=&CURRENCY) and RATE_TYPE_CODE
(VALUE=&RATE_TYPE).

PO_PDOI_OVERLAP_AUTO_RULE Sourcing rule (VALUE=&START_DATE) and
(VALUE=&END_DATE) overlaps with an existing
sourcing rule.

PO_PDOI_PO_HDR_ID_UNIQUE PO_HEADER_ID must be unique. (VALUE =
&VALUE) already exists.

PO_PDOI_PRICE_BRK_AMT_BASED_LN Cannot create price breaks for amount-based lines in a
BLANKET order agreement.

PO_PDOI_QT_MIN_GT_MAX Minimum Quantity (VALUE =&MIN) specified is
greater than maximum Quantity (VALUE =&MAX).

PO_PDOI_RATE_INFO_NULL The RATE TYPE, RATE_DATE and RATE must be null
because the purchasing document’s currency is the
same as your base (functional) currency. Therefore,
exchange rate information is not needed.

PO_PDOI_RULE_NAME_UNIQ Rule Name (VALUE= &VALUE) and Item Id (ID
=&VALUE) should be unique.

PO_PDOI_SHIPMENT_NUM_UNIQUE Shipment Num must have a unique value. &VALUE
already exists.

Table 8–8 Purchasing Documents Open Interface Error Messages

Error Message Meaning
8-68 Oracle Manufacturing APIs and Open Interfaces Manual

Resolving Failed Purchasing Interface Rows
Fixing Failed Transactions
Some examples of errors could be that the supplier's information does not conform
with Purchasing data requirements (for example, date fields are in an incorrect
format), cross-reference rules set up between you and your supplier are inaccurate,
or your own Purchasing or Oracle Applications data is not up to date. If errors exist
in the supplier's data, ask the supplier to correct and resend the data.

Other errors could be the result of the following:

■ If you create sourcing rules along with the imported data, make sure the
documents in the data are submitted as approved. Sourcing rules can be
created only when the Purchasing documents have a status of Approved.

■ Flexfields may need to be frozen and recompiled. Navigate to the Descriptive
Flexfield Segments window by choosing Setup > Flexfields > Descriptive >
Segments. See: Defining Descriptive Flexfield Structures, Oracle Applications
Flexfields Guide.

See Also
Purchasing Interface Errors Report, Oracle Purchasing User's Guide

PO_PDOI_SPECIF_DIFF_IN_LINES &COLUMN_NAME (VALUE= &PO_HEADER_ID)
specified in line is different from (VALUE=&VALUE) in
header.

PO_PDOI_VALUE_NUMERIC &COLUMN_NAME (VALUE= &VALUE) needs to be a
numeric value.

ORIGINAL_RFQ_NUM is invalid The original RFQ number that is transmitted already
exists. Select another RFQ number.

Category ID is invalid for Item ID. The category ID transmitted with the Item ID does not
match the category ID already set up in the system for
that item. If it is null, make sure that Purchasing is
defaulting a category ID and that the category ID is
enabled. Default item categories are specified in Setup
> Items > Category > Category Set. Make sure that the
default item category is one of the values in the rows.

Table 8–8 Purchasing Documents Open Interface Error Messages

Error Message Meaning
 Oracle Purchasing Open Interfaces 8-69

Receiving Open Interface
Receiving Open Interface
The Receiving Open Interface is used for processing and validating receipt data that
comes from sources other than the Receipts window in Purchasing. These sources
include the following:

■ Receipt information from other Oracle Applications or your existing non-Oracle
systems.

■ Barcoded and other receiving information from scanners and radio frequency
devices.

■ Advance Shipment Notices (ASNs) sent from suppliers.

The Receiving Open Interface maintains the integrity of the new data as well as the
receipt data already in Purchasing.

The Receiving Open Interface does not support lot or serial numbering, separate
receive and deliver transactions (it supports receive transactions and direct
receipts), corrections, returns, movement statistics, or dynamic locators.

The purpose of this essay is to explain how to use the Receiving Open Interface so
that you can integrate other applications with Purchasing.
8-70 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
Functional Overview

Figure 8–4 Functional Overview

The diagram above shows the inputs and outputs that comprise the interface
process.

Within the Receiving Open Interface, receipt data is validated for compatibility with
Purchasing. There are two Receiving Open Interface tables:

■ RCV_HEADERS_INTERFACE

■ RCV_TRANSACTIONS_INTERFACE

EDI Transaction Types
The Electronic Data Interchange (EDI) transaction types supported by the Receiving
Open Interface are as follows:

■ Inbound Advance Shipment Notices (ANSI X12 856 or EDIFACT DESADV).
These include Original (New), Cancellation, and Test ASNs.

■ Inbound ASNs with billing information (ANSI X12 857). These also include
Original (New), Cancellation, and Test ASNs.
 Oracle Purchasing Open Interfaces 8-71

Receiving Open Interface
■ Outbound Application Advices (ANSI X12 824 or EDIFACT APERAK).

An ASN is transmitted through EDI from a supplier to let the receiving organization
know that a shipment is coming. For a detailed description of the ASN process,
ASN types, Application Advices, and the effects of ASNs on Purchasing supply, see:
Advance Shipment Notices (ASNs), Oracle Purchasing User’s Guide.

Validation and Overview
Receipt data that is entered through the Receipts window in Purchasing is derived,
defaulted, and validated by the Receipts window. Most receipt data that is
imported through the Receiving Open Interface is derived, defaulted, and validated
by the receiving transaction pre-processor. The pre-processor is a program that the
Receiving Transaction Processor initiates for data entered in the Receiving Open
Interface. The pre-processor simulates, in Batch mode, what the receiving windows
do when you save a transaction.

The following steps provide an overview of what the Receiving Open Interface does
for each receipt:

Pre-processor Header-Level Validation
■ You load the receipt data into the RCV_HEADERS_INTERFACE and RCV_

TRANSACTIONS_INTERFACE tables, using EDI or your own program.

■ The pre-processor selects unprocessed rows in the RCV_HEADERS_
INTERFACE table for preprocessing. It preprocesses rows with a
PROCESSING_STATUS_CODE of ’PENDING’ and a VALIDATION_FLAG of
’Y’.

■ The pre-processor derives or defaults any missing receipt header information in
the RCV_HEADERS_INTERFACE table. For example, if you provide a TO_
ORGANIZATION_CODE, the pre-processor defaults the correct TO_
ORGANIZATION_ID.

■ The pre-processor validates the receipt header information in the RCV_
HEADERS_INTERFACE table to ensure the integrity of the information. For
example, the SHIPPED_DATE should not be later than today. Only successfully
validated header information is imported into the Purchasing tables.

■ If no fatal errors are detected at the header level, the Receiving Transaction
Processor selects all the lines in the RCV_TRANSACTIONS_INTERFACE table
associated with each header and calls the pre-processor to perform line-level
pre-processing.
8-72 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
Pre-processor Line-Level Validation
■ The pre-processor derives and defaults any missing receipt line information in

the RCV_TRANSACTIONS_INTERFACE table.

■ The pre-processor validates the receipt line information to ensure the integrity
of the information.

■ For successfully validated lines, the pre-processor deletes the original RCV_
TRANSACTIONS_INTERFACE line and creates the new, validated lines.
Sometimes two or more validated rows are created in the RCV_
TRANSACTIONS_INTERFACE table to correctly represent the original
imported row.

Errors
If errors are detected in any of the above steps, the Receiving Open Interface
populates the PO_INTERFACE_ERRORS table and the outbound Application
Advice e-Commerce Gateway interface tables. A separate process in e-Commerce
Gateway downloads the contents of the outbound Application Advice interface
tables to the outbound Application Advice flat file. For ASNs with billing
information (also called ASBNs), if any lines are rejected, the Receiving Open
Interface sets the INVOICE_STATUS_CODE to RCV_ASBN_NO_AUTO_INVOICE
so that an invoice will not be created automatically from the rejected ASBN lines.
You can view errors through the Receiving Interface Errors Report in Purchasing. To
view errors specifically for ASBNs, use the Purchasing Interface Errors Report.

Rows that fail validation in the Receiving Open Interface tables, producing errors,
do not get imported into Purchasing (into the RCV_SHIPMENT_HEADERS, RCV_
SHIPMENTS_LINES, and other applicable Purchasing tables). For example, an ASN
can contain shipments from multiple purchase orders. If the purchase order number
for one of the shipments is wrong, the shipment or the entire ASN will fail,
depending on how the profile option RCV: Fail All ASN Lines if One Line Fails is set.

Receiving Transaction Processor Activities
After performing header- and line-level validation, the pre-processor checks the
profile option RCV: Fail All ASN Lines if One Line Fails. If the profile option is set to
’Yes’ and any line failed validation, the pre-processor fails the entire transaction. If
the profile option is set to ’No’ (and TEST_FLAG is not ’Y’), the Receiving
Transaction Processor takes over and, for all successfully processed records,
performs the same steps that occur when you normally save receipt information in
Purchasing:
 Oracle Purchasing Open Interfaces 8-73

Receiving Open Interface
■

8-74 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
an item number is provided). The Receiving Open Interface references all PO_
LINE_LOCATIONS associated with the specified purchase order or blanket that
have the same ship-to organization specified on the ASN to determine which
shipment lines to consume. The order-by clause, NVL (PROMISED_DATE, NEED_
BY_DATE, CREATION_DATE), determines the order in which quantities are
consumed in a first-in/first-out basis. Therefore, multiple shipment lines matching
the various purchase order shipment lines are created based on the allocation to the
PO_LINE_LOCATIONS table, which stores lines corresponding to purchase order
shipments.

The cascade works on a line-by-line basis, applying the remaining quantity to the
last shipment line. At the last line, the Receiving Open Interface cascades up to the
over-receipt tolerance. For example:

■ There are 10 purchase order shipment lines of 100 units each, all with the same
Need-By Date.

■ In the Receiving Controls window in Purchasing, the Over Receipt Quantity
Tolerance is 10%, meaning the Receiving Open Interface can consume 10 more
units for the last shipment line if necessary.

■ The actual ASN total quantity is 1,111, which exceeds your tolerance.

If the Over Receipt Quantity Action code is set to Reject (and RCV: Fail All ASN
Lines if One Line Fails is set to No), then Purchasing rejects the last ASN line (or
the whole ASN if the ASN has just one line) and creates an error in the PO_
INTERFACE_ERRORS table. Purchasing receives none of the units for those
ASN lines that were rejected.

Purchasing does not require a Promised or Need-By date for an item that is
unplanned; for unplanned items, Purchasing uses the CREATION_DATE in the
order-by clause, NVL (PROMISED_DATE, NEED_BY_DATE, CREATION_DATE).
If the cascade tries to allocate to an open shipment where the Receipt Date tolerance
(the date after which a shipment cannot be received) is exceeded and the Receipt
Date Action in the Receiving Controls window is set to Reject, Purchasing skips that
shipment and goes to the next.

Setting Up the Receiving Open Interface
You must complete the following setup steps in Purchasing to use the Receiving
Open Interface:

■ Provide a Yes or No value for the profile option RCV: Fail All ASN Lines if One
Line Fails. See: Purchasing Profile Options, Oracle Purchasing User’s Guide.
 Oracle Purchasing Open Interfaces 8-75

Receiving Open Interface
■ In the Receiving Options window in Purchasing, select Warning, Reject, or
None in the ASN Control field to determine how Purchasing handles the receipt
against a purchase order shipment for which an ASN exists. See: Defining
Receiving Options, Oracle Purchasing User’s Guide.

■ If you’re receiving ASNs in the Receiving Open Interface, install and set up
e-Commerce Gateway. See: Oracle e-Commerce Gateway User’s Guide.

All processing is initiated through standard report submission using the Submit
Request window and choosing the Receiving Transaction Processor program. The
concurrent manager manages all processing, and as such it must be set up and
running.

See also: Debugging on page 8-100.

Inserting into the Receiving Open Interface Table
You load receipt data from your source system or e-Commerce Gateway into the
receiving headers and receiving transactions interface tables. For each row you
insert into the RCV_HEADERS_INTERFACE table, the Receiving Open Interface
creates a shipment header; for each row you insert into the RCV_TRANSACTIONS_
INTERFACE table, the Receiving Open Interface creates one or more shipment lines.
You must provide values for all columns that are required. You may also have to
provide values for columns that are conditionally required.

When describing the table columns in the following graphics, the following
definitions are used:

Required
You must specify values for columns in this category. The Receiving Open Interface
requires values in these columns to process a receiving transaction whether the data
is imported through e-Commerce Gateway or a program you write. For example,
HEADER_INTERFACE_ID is a required column; however, when receiving ASNs
from suppliers through e-Commerce Gateway, e-Commerce Gateway provides the
HEADER_INTERFACE_ID automatically. If a required value is not entered, the
Receiving Open Interface inserts an error record in the PO_INTERFACE_ERRORS
table.

Derived
The Receiving Open Interface is capable of deriving or defaulting columns in this
category. If you provide your own value, the Receiving Open Interface uses it, if it
is valid. If you leave the column blank, the Receiving Open Interface can derive it,
8-76 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
based on other column values, if they’re provided. For example, the column
VENDOR_ID is defaulted in the RCV_HEADERS_INTERFACE table only if a value
is provided in the VENDOR_NUM or VENDOR_NAME column. In general, the
default values are defaulted in the same way that they are defaulted when you
manually enter receipts in the Receipts, Receiving Transactions, or Manage
Shipments windows in Purchasing.

Columns like those in the following example indicate that one of the pair can be
derived if the other is provided:

Optional
You do not have to enter values for columns in this category.

Reserved for Future Use
The Receiving Open Interface does not support (validate) columns in this category
as of this initial release. You should not populate values in these columns.

Receiving Headers Interface Table Description
The following graphic describes the receiving headers interface table.

Example Column Name Type Required Derived Optional

EXAMPLE_CODE Varchar2 conditionally

EXAMPLE_ID Number

Attention: A Derived column marked with an asterisk (x*)
indicates that the Receiving Transaction Processor inserts values
into these columns automatically, so you should not insert your
own values.

Table 8–9 Receiving Open Interface Headers Table

RCV_HEADERS_INTERFACE
Column Name Type Required Derived Optional

Reserved
for Future

Use

HEADER_INTERFACE_ID Number x

GROUP_ID Number x

EDI_CONTROL_NUM Varchar2 x
 Oracle Purchasing Open Interfaces 8-77

Receiving Open Interface
PROCESSING_STATUS_CODE Varchar2 x

RECEIPT_SOURCE_CODE Varchar2 x

ASN_TYPE Varchar2 conditionally

TRANSACTION_TYPE Varchar2 x

AUTO_TRANSACT_CODE Varchar2 conditionally

TEST_FLAG Varchar2 x

LAST_UPDATE_DATE Date x

LAST_UPDATED_BY Number x

LAST_UPDATE_LOGIN Number x

CREATION_DATE Date x

CREATED_BY Number x

NOTICE_CREATION_DATE Date x

SHIPMENT_NUM Varchar2 conditionally

RECEIPT_NUM Varchar2 conditionally

RECEIPT_HEADER_ID Number conditionally

VENDOR_NAME Varchar2 x conditionally

VENDOR_NUM Varchar2

VENDOR_ID Number

VENDOR_SITE_CODE Varchar2 conditionally x

VENDOR_SITE_ID Number

FROM_ORGANIZATION_
CODE

Varchar2 x

FROM_ORGANIZATION_ID Number

SHIP_TO_ORGANIZATION_
CODE

Varchar2 conditionally conditionally

SHIP_TO_ORGANIZATION_ID Number

LOCATION_CODE Varchar2 conditionally x

LOCATION_ID Number

BILL_OF_LADING Varchar2 x

Table 8–9 Receiving Open Interface Headers Table

RCV_HEADERS_INTERFACE
Column Name Type Required Derived Optional

Reserved
for Future

Use
8-78 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
PACKING_SLIP Varchar2 x

SHIPPED_DATE Date conditionally

FREIGHT_CARRIER_CODE Varchar2 x

EXPECTED_RECEIPT_DATE Date x

RECEIVER_ID Number x

NUM_OF_CONTAINERS Number x

WAYBILL_AIRBILL_NUM Varchar2 x

COMMENTS Varchar2 x

GROSS_WEIGHT Number x

GROSS_WEIGHT_UOM_CODE Varchar2 x

NET_WEIGHT Number x

NET_WEIGHT_UOM_CODE Varchar2 x

TAR_WEIGHT Number x

TAR_WEIGHT_UOM_CODE Varchar2 x

PACKAGING_CODE Varchar2 x

CARRIER_METHOD Varchar2 x

CARRIER_EQUIPMENT Varchar2 x

SPECIAL_HANDLING_CODE Varchar2 x

HAZARD_CODE Varchar2 x

HAZARD_CLASS Varchar2 x

HAZARD_DESCRIPTION Varchar2 x

FREIGHT_TERMS Varchar2 x

FREIGHT_BILL_NUMBER Varchar2 x

INVOICE_NUM Varchar2 conditionally

INVOICE_DATE Date conditionally

TOTAL_INVOICE_AMOUNT Number conditionally

TAX_NAME Varchar2 x

TAX_AMOUNT Number x

Table 8–9 Receiving Open Interface Headers Table

RCV_HEADERS_INTERFACE
Column Name Type Required Derived Optional

Reserved
for Future

Use
 Oracle Purchasing Open Interfaces 8-79

Receiving Open Interface
FREIGHT_AMOUNT Number x

CURRENCY_CODE Varchar2 x

CONVERSION_RATE Number x

CONVERSION_RATE_TYPE Varchar2 x

CONVERSION_RATE_DATE Date x

PAYMENT_TERMS_NAME Varchar2 conditionally x

PAYMENT_TERMS_ID Number

ATTRIBUTE_CATEGORY Varchar2 x

ATTRIBUTE1 Varchar2 x

ATTRIBUTE2 Varchar2 x

ATTRIBUTE3 Varchar2 x

ATTRIBUTE4 Varchar2 x

ATTRIBUTE5 Varchar2 x

ATTRIBUTE6 Varchar2 x

ATTRIBUTE7 Varchar2 x

ATTRIBUTE8 Varchar2 x

ATTRIBUTE9 Varchar2 x

ATTRIBUTE10 Varchar2 x

ATTRIBUTE11 Varchar2 x

ATTRIBUTE12 Varchar2 x

ATTRIBUTE13 Varchar2 x

ATTRIBUTE14 Varchar2 x

ATTRIBUTE15 Varchar2 x

USSGL_TRANSACTION_CODE Varchar2 x

EMPLOYEE_NAME Varchar2 conditionally conditionally

EMPLOYEE_ID Number

INVOICE_STATUS_CODE Varchar2 x

VALIDATION_FLAG Varchar2 x

Table 8–9 Receiving Open Interface Headers Table

RCV_HEADERS_INTERFACE
Column Name Type Required Derived Optional

Reserved
for Future

Use
8-80 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
Receiving Transactions Interface Table Description
The following graphic describes the receiving transactions interface table.

REQUEST_ID Number x *

PROCESSING_REQUEST_ID Number x *

Attention: A Derived column marked with an asterisk (x*)
indicates that the Receiving Transaction Processor inserts values
into these columns automatically, so you should not insert your
own values.

Table 8–10 Receiving Open Interface Transactions Table

RCV_TRANSACTIONS_
INTERFACE
Column Name Type Required Derived Optional

Reserved
for Future

Use

INTERFACE_TRANSACTION_ID Number x

GROUP_ID Number x

LAST_UPDATE_DATE Date x

LAST_UPDATED_BY Number x

CREATION_DATE Date x

CREATED_BY Number x

LAST_UPDATE_LOGIN Number x

REQUEST_ID Number x

PROGRAM_APPLICATION_ID Number x

PROGRAM_ID Number x

PROGRAM_UPDATE_DATE Date x

TRANSACTION_TYPE Varchar2 x

TRANSACTION_DATE Date x

PROCESSING_STATUS_CODE Varchar2 x

Table 8–9 Receiving Open Interface Headers Table

RCV_HEADERS_INTERFACE
Column Name Type Required Derived Optional

Reserved
for Future

Use
 Oracle Purchasing Open Interfaces 8-81

Receiving Open Interface
PROCESSING_MODE_CODE Varchar2 x

PROCESSING_REQUEST_ID Number x *

TRANSACTION_STATUS_CODE Varchar2 x

CATEGORY_ID Number conditionally conditionally

ITEM_CATEGORY Varchar2

QUANTITY Number x

UNIT_OF_MEASURE Varchar2 x

INTERFACE_SOURCE_CODE Varchar2 x

INTERFACE_SOURCE_LINE_ID Number x

INV_TRANSACTION_ID Number x

ITEM_ID Number conditionally conditionally

ITEM_NUM Varchar2

ITEM_DESCRIPTION Varchar2 x

ITEM_REVISION Varchar2 conditionally conditionally

UOM_CODE Varchar2 x

EMPLOYEE_ID Number conditionally conditionally

AUTO_TRANSACT_CODE Varchar2 x

SHIPMENT_HEADER_ID Number x

SHIPMENT_LINE_ID Number x

SHIP_TO_LOCATION_ID Number conditionally conditionally

SHIP_TO_LOCATION_CODE Varchar2

PRIMARY_QUANTITY Number x

PRIMARY_UNIT_OF_MEASURE Varchar2 x

RECEIPT_SOURCE_CODE Varchar2 x

VENDOR_ID Number x conditionally

VENDOR_NUM Varchar2

VENDOR_NAME Varchar2

Table 8–10 Receiving Open Interface Transactions Table

RCV_TRANSACTIONS_
INTERFACE
Column Name Type Required Derived Optional

Reserved
for Future

Use
8-82 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
VENDOR_SITE_ID Number x x

VENDOR_SITE_CODE Varchar2

FROM_ORGANIZATION_ID Number x

TO_ORGANIZATION_CODE Varchar2 conditionally conditionally

TO_ORGANIZATION_ID Number

ROUTING_HEADER_ID Number x

ROUTING_STEP_ID Number x

SOURCE_DOCUMENT_CODE Varchar2 x

PARENT_TRANSACTION_ID Number x

PO_HEADER_ID Number x conditionally

DOCUMENT_NUM Varchar2

PO_REVISION_NUM Number x

PO_RELEASE_ID Number conditionally x

RELEASE_NUM Number

PO_LINE_ID Number conditionally conditionally

DOCUMENT_LINE_NUM Number

PO_LINE_LOCATION_ID Number conditionally x

DOCUMENT_SHIPMENT_LINE_
NUM

Number

PO_UNIT_PRICE Number x

CURRENCY_CODE Varchar2 x

CURRENCY_CONVERSION_
TYPE

Varchar2 x

CURRENCY_CONVERSION_
RATE

Number x

CURRENCY_CONVERSION_
DATE

Date x

PO_DISTRIBUTION_ID Number conditionally x

DOCUMENT_DISTRIBUTION_
NUM

Number

Table 8–10 Receiving Open Interface Transactions Table

RCV_TRANSACTIONS_
INTERFACE
Column Name Type Required Derived Optional

Reserved
for Future

Use
 Oracle Purchasing Open Interfaces 8-83

Receiving Open Interface
REQUISITION_LINE_ID Number x

REQ_DISTRIBUTION_ID Number x

CHARGE_ACCOUNT_ID Number x

SUBSTITUTE_UNORDERED_
CODE

Varchar2 x

RECEIPT_EXCEPTION_FLAG Varchar2 x

ACCRUAL_STATUS_CODE Varchar2 x

INSPECTION_STATUS_CODE Varchar2 x

INSPECTION_QUALITY_CODE Varchar2 x

DESTINATION_TYPE_CODE Varchar2 conditionally x

SUBINVENTORY Varchar2 conditionally conditionally

WIP_ENTITY_ID Number x

WIP_LINE_ID Number x

DEPARTMENT_CODE Varchar2 x

WIP_REPETITIVE_SCHEDULE_
ID

Number x

WIP_OPERATION_SEQ_NUM Number x

WIP_RESOURCE_SEQ_NUM Number x

BOM_RESOURCE_ID Number x

SHIPMENT_NUM Varchar2 x

FREIGHT_CARRIER_CODE Varchar2 conditionally

BILL_OF_LADING Varchar2 conditionally

PACKING_SLIP Varchar2 x

SHIPPED_DATE Date x

EXPECTED_RECEIPT_DATE Date conditionally conditionally

ACTUAL_COST Number x

TRANSFER_COST Number x

TRANSPORTATION_COST Number x

Table 8–10 Receiving Open Interface Transactions Table

RCV_TRANSACTIONS_
INTERFACE
Column Name Type Required Derived Optional

Reserved
for Future

Use
8-84 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
TRANSPORTATION_ACCOUNT_
ID

Number x

NUM_OF_CONTAINERS Number x

WAYBILL_AIRBILL_NUM Varchar2 x

VENDOR_ITEM_NUM Varchar2 conditionally conditionally

VENDOR_LOT_NUM Varchar2 x

RMA_REFERENCE Varchar2 x

COMMENTS Varchar2 x

ATTRIBUTE_CATEGORY Varchar2 x

ATTRIBUTE1 Varchar2 x

ATTRIBUTE2 Varchar2 x

ATTRIBUTE3 Varchar2 x

ATTRIBUTE4 Varchar2 x

ATTRIBUTE5 Varchar2 x

ATTRIBUTE6 Varchar2 x

ATTRIBUTE7 Varchar2 x

ATTRIBUTE8 Varchar2 x

ATTRIBUTE9 Varchar2 x

ATTRIBUTE10 Varchar2 x

ATTRIBUTE11 Varchar2 x

ATTRIBUTE12 Varchar2 x

ATTRIBUTE13 Varchar2 x

ATTRIBUTE14 Varchar2 x

ATTRIBUTE15 Varchar2 x

SHIP_HEAD_ATTRIBUTE_
CATEGORY

Varchar2 x

SHIP_HEAD_ATTRIBUTE1 Varchar2 x

SHIP_HEAD_ATTRIBUTE2 Varchar2 x

SHIP_HEAD_ATTRIBUTE3 Varchar2 x

Table 8–10 Receiving Open Interface Transactions Table

RCV_TRANSACTIONS_
INTERFACE
Column Name Type Required Derived Optional

Reserved
for Future

Use
 Oracle Purchasing Open Interfaces 8-85

Receiving Open Interface
8-86 Oracle Manufacturing

Receiving Open Interface
SHIP_LINE_ATTRIBUTE15 Varchar2 x

USSGL_TRANSACTION_CODE Varchar2 x

GOVERNMENT_CONTEXT Varchar2 x

REASON_ID Number x

DESTINATION_CONTEXT Varchar2 x

SOURCE_DOC_QUANTITY Number x

SOURCE_DOC_UNIT_OF_
MEASURE

Varchar2 x

FROM_SUBINVENTORY Varchar2 x

INTRANSIT_OWNING_ORG_ID Number x

MOVEMENT_ID Number x

USE_MTL_LOT Number x

USE_MTL_SERIAL Number x

TAX_NAME Varchar2 x

TAX_AMOUNT Number x

NOTICE_UNIT_PRICE Number x

HEADER_INTERFACE_ID Number x

VENDOR_CUM_SHIPPED_
QUANTITY

Number x

TRUCK_NUM Varchar2 x

CONTAINER_NUM Varchar2 x

LOCATION_CODE Varchar2 conditionally x

LOCATION_ID Number

FROM_ORGANIZATION_CODE Varchar2 x

INTRANSIT_OWNING_ORG_
CODE

Varchar2 x

ROUTING_CODE Varchar2 x

ROUTING_STEP Varchar2 x

Table 8–10 Receiving Open Interface Transactions Table

RCV_TRANSACTIONS_
INTERFACE
Column Name Type Required Derived Optional

Reserved
for Future

Use
 Oracle Purchasing Open Interfaces 8-87

Receiving Open Interface
DELIVER_TO_PERSON_NAME Varchar2 conditionally conditionally

DELIVER_TO_PERSON_ID Number

DELIVER_TO_LOCATION_CODE Varchar2 conditionally conditionally

DELIVER_TO_LOCATION_ID Number

LOCATOR Varchar2 conditionally conditionally

LOCATOR_ID Number

REASON_NAME Varchar2 x

VALIDATION_FLAG Varchar2 x

SUBSTITUTE_ITEM_ID Number conditionally x

SUBSTITUTE_ITEM_NUM Varchar2

QUANTITY_SHIPPED Number x

QUANTITY_INVOICED Number x

REQ_NUM Varchar2 x

REQ_LINE_NUM Number x

REQ_DISTRIBUTION_NUM Number x

WIP_ENTITY_NAME Varchar2 x

WIP_LINE_CODE Varchar2 x

RESOURCE_CODE Varchar2 x

SHIPMENT_LINE_STATUS_
CODE

Varchar2 x *

BARCODE_LABEL Varchar2 x

TRANSFER_PERCENTAGE Number x

QA_COLLECTION_ID Number x

COUNTRY_OF_ORIGIN_CODE Varchar2 x

OE_ORDER_HEADER_ID Number x

OE_ORDER_LINE_ID Number x

CUSTOMER_ID Number x

CUSTOMER_SITE_ID Number x

Table 8–10 Receiving Open Interface Transactions Table

RCV_TRANSACTIONS_
INTERFACE
Column Name Type Required Derived Optional

Reserved
for Future

Use
8-88 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
Required Data for RCV_HEADERS_INTERFACE
You must always enter values for the following required columns when you load
rows into the RCV_HEADERS_INTERFACE table:

HEADER_INTERFACE_ID
Purchasing provides a unique-sequence generator to generate a unique identifier
for this column. If you’re importing data through e-Commerce Gateway, a value is
provided automatically.

GROUP_ID
Purchasing provides a group identifier for a set of transactions that should be
processed together.

PROCESSING_STATUS_CODE
This columns indicates the status of each row in the RCV_HEADERS_INTERFACE
table. The Receiving Open Interface selects a row for processing only when the
value in this column is ’PENDING’.

RECEIPT_SOURCE_CODE
This column indicates the source of the shipment. It tells the Receiving Open
Interface whether the shipment is from an external supplier or an internal
organization. Currently, this column can accept a value only of ’VENDOR’.

TRANSACTION_TYPE
This column indicates the transaction purpose code for the shipment header. This
column accepts a value of ’NEW’ or ’CANCEL’.

LAST_UPDATE_DATE, LAST_UPDATED_BY, CREATION_DATE,
and CREATED_BY
LAST_UPDATE_DATE indicates the date the header record was last created or
updated. LAST_UPDATED_BY indicates the loading program or user name

CUSTOMER_ITEM_NUM Varchar2 x

Table 8–10 Receiving Open Interface Transactions Table

RCV_TRANSACTIONS_
INTERFACE
Column Name Type Required Derived Optional

Reserved
for Future

Use
 Oracle Purchasing Open Interfaces 8-89

Receiving Open Interface
identifier (ID) that was used to import the header record. CREATION_DATE
indicates the date the header record was created. CREATED_BY indicates the
loading program or user ID that was used to import the header record. If you’re
importing data through e-Commerce Gateway, values are provided in these
columns automatically.

VENDOR_NAME, VENDOR_NUM, or VENDOR_ID
VENDOR_NAME and VENDOR_NUM indicate the supplier name and number for
the shipment. Both must be a valid name or number in Purchasing. Either one
must be specified. (If you specify one, the Receiving Open Interface can derive the
other.)

VENDOR_ID can be derived if either a VENDOR_NAME or VENDOR_NUM is
provided. If no VENDOR_NAME or VENDOR_NUM is provided, you must
provide a VENDOR_ID.

VALIDATION_FLAG
This column indicates whether to validate a row before processing it. It accepts
values of ’Y’ or ’N’. The Receiving Open Interface provides a default value of ’Y’.

Conditionally Required Data for RCV_HEADERS_INTERFACE
Additionally, you may have to enter values for the following conditionally required
columns in the RCV_HEADERS_INTERFACE table:

ASN_TYPE
This column accepts values of ’ASN’ or ’ASBN’ to indicate whether the transaction
is for an ASN or an ASN with billing information. A value is required only when
importing ASNs or ASBNs through e-Commerce Gateway. Leaving this column
blank means that the transaction is not for an ASN or ASBN, but for a receipt,
depending on the values in the AUTO_TRANSACT_CODE and TRANSACTION_
TYPE columns.

AUTO_TRANSACT_CODE
This column accepts values of ’SHIP’, ’RECEIVE’, or ’DELIVER’. A value is
required for ASN (ASN_TYPE) transactions. The value should be ’RECEIVE’ if you
want to do a receiving transaction and if you provide an EMPLOYEE_NAME or
EMPLOYEE_ID at the header level.
8-90 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
SHIPMENT_NUM
This column indicates the shipment number from the supplier. If no value is
provided in this column, the Receiving Open Interface tries to default a value from
the PACKING_SLIP or INVOICE_NUM columns. The value in this column must be
unique from the supplier for a period of one year.

RECEIPT_NUM
This column indicates the receipt number from the supplier. You must provide a
value in this column if AUTO_TRANSACT_CODE is not ’SHIP’, the
TRANSACTION_TYPE or AUTO_TRANSACT_CODE in the RCV_
TRANSACTIONS_INTERFACE table is not ’SHIP’, and the Receipt Number
Options Entry method (in the Receiving Options window) is Manual. The value in
this column must be unique from the supplier for a period of one year.

SHIP_TO_ORGANIZATION_CODE or SHIP_TO_ORGANIZATION_ID
These columns indicate the destination organization for the shipment. A valid
inventory organization code in Purchasing is required for an ASN. If the supplier
does not know the ship-to organization, then it can provide a ship-to location
(SHIP_TO_LOCATION_CODE or SHIP_TO_LOCATION_ID) that is tied to an
inventory organization in the Locations window, and the Receiving Open Interface
can derive the inventory organization that way. A SHIP_TO_ORGANIZATION_
CODE or SHIP_TO_ORGANIZATION_ID can be specified here in the RCV_
HEADERS_INTERFACE table, at the header level, or in the RCV_
TRANSACTIONS_INTERFACE table, at the transaction line level. If it is specified
at the header level, then it must apply to all shipments on the ASN. If it is specified
at the line level, then it can be different for each line.

A SHIP_TO_ORGANIZATION_CODE or SHIP_TO_ORGANIZATION_ID enables
the Receiving Open Interface to validate information at the line level before
cascading quantities at the shipment level. This information helps the Receiving
Open Interface determine if the supplier is providing valid item and shipment
information.

SHIPPED_DATE
This column indicates the date the shipment was shipped. The value in this column
is required for an ASN_TYPE of ’ASN’ or ’ASBN’ (for an ASN with billing
information), and must be earlier than or equal to the system date. It must also be
earlier than or equal to the EXPECTED_RECEIPT_DATE.
 Oracle Purchasing Open Interfaces 8-91

Receiving Open Interface
INVOICE_NUM
A value for this column is required for ASBN transactions (if the ASN_TYPE is
’ASBN’, for an ASN with billing information). The value must be unique for the
given supplier.

INVOICE_DATE
An invoice date is required for an ASBN transaction (if the ASN_TYPE is ’ASBN’,
for an ASN with billing information).

TOTAL_INVOICE_AMOUNT
This column is required for ASBN transactions (ASNs with billing information).
For ASBN transactions, you must provide a non-negative value in this column, even
if that value is 0.

EMPLOYEE_NAME or EMPLOYEE_ID
This column indicates the employee who created the shipment. You must provide a
value in one of these columns if no value is provided in the corresponding columns
in the RCV_TRANSACTIONS_INTERFACE table and if the AUTO_TRANSACT_
CODE is ’RECEIVE’. The value must be a valid employee name in Purchasing or
Oracle Applications.

Required Data for RCV_TRANSACTIONS_INTERFACE
You must always enter values for the following required columns when you load
rows into the RCV_TRANSACTIONS_INTERFACE table:

INTERFACE_TRANSACTION_ID
Purchasing provides a unique-sequence generator to generate a unique identifier
for the receiving transaction line. If you’re importing data through e-Commerce
Gateway, a value is provided automatically.

GROUP_ID
Purchasing provides a group identifier for a set of transactions that should be
processed together. The value in this column must match the GROUP_ID in the
RCV_HEADERS_INTERFACE table.
8-92 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
LAST_UPDATE_DATE, LAST_UPDATED_BY, CREATION_DATE,
and CREATED_BY
LAST_UPDATE_DATE indicates the date the line was last created or updated.
LAST_UPDATED_BY indicates the loading program or user name identifier (ID)
that was used to import the line. CREATION_DATE indicates the date the line was
created. CREATED_BY indicates the loading program or user ID that was used to
import the line. If you’re importing data through e-Commerce Gateway, values are
provided in these columns automatically.

TRANSACTION_TYPE
This column indicates the transaction purpose code. It accepts values of ’SHIP’ for
a standard shipment (an ASN or ASBN) or ’RECEIVE’ for a standard receipt.

TRANSACTION_DATE
This column indicates the date of the transaction. The date must be in an open
Purchasing and General Ledger period and, if Inventory is installed, also be in an
open Inventory period.

PROCESSING_STATUS_CODE
This column indicates the status of each row in the RCV_TRANSACTIONS_
INTERFACE table. The Receiving Open Interface selects a row for processing only
when the value in this column is ’PENDING’.

PROCESSING_MODE_CODE
This column defines how the Receiving Open Interface is to be called. It accepts a
value of ’BATCH’ only. You initiate one of these values when you submit the
Receiving Transaction Processor program through the Submit Request window.

TRANSACTION_STATUS_CODE
This column indicates the status of the transaction record. The Receiving Open
Interface provides a value of ’ERROR’ or ’COMPLETED’.

QUANTITY
This column indicates the shipment quantity. The value in this column must be a
positive number.

During the cascade process this quantity is allocated across all purchase order
shipments in a first-in/first-out manner if the DOCUMENT_SHIPMENT_LINE_
 Oracle Purchasing Open Interfaces 8-93

Receiving Open Interface
NUM is not specified. The cascade applies up to the amount ordered. However, if
the quantity exceeds the quantity on the purchase order shipments, then the last
purchase order shipment consumes the quantity ordered plus the allowable
over-receipt tolerance.

All tolerances are checked as the quantity is cascaded. If the expected delivery date
is not within the Receipt Date tolerance (the date after which a shipment cannot be
received), and the Receipt Date Action in the Receiving Controls window is set to
Reject, Purchasing skips the PO_LINE_LOCATIONS row and goes to the next.

UNIT_OF_MEASURE
This column indicates the shipment quantity unit of measure (UOM). If the UOM is
different from the primary UOM defined in Purchasing and/or the source
document UOM, then a conversion must be defined between the two UOMs.
Navigate to the Unit of Measure Conversions window by choosing Setup > Units of
Measure > Conversions.

ITEM_DESCRIPTION
This column indicates the item description. If no item description is provided, the
Receiving Open Interface gets the item description from the purchase order line if a
PO_LINE_ID or similar column is provided. See the next description.

DOCUMENT_LINE_NUM, ITEM_NUM, VENDOR_ITEM_NUM, ITEM_ID, or PO_
LINE_ID
You must provide a value for at least one of these columns, or for the CATEGORY_
ID (or ITEM_CATEGORY) and ITEM_DESCRIPTION columns. If at least one value
is provided, the Receiving Open Interface can derive the other values. If a PO_
LINE_ID is provided, the Receiving Open Interface can derive the ITEM_NUM and
ITEM_ID.

DOCUMENT_LINE_NUM indicates the line number against which you are
receiving. The value in this column must be a valid number for the purchase order
you are receiving against.

ITEM_NUM indicates the Purchasing item number of the item you are receiving.
The item number must be defined in Purchasing for the DOCUMENT_NUM
provided and the SHIP_TO_ORGANIZATION_CODE.

VENDOR_ITEM_NUM indicates the supplier item number of the item you are
receiving. The value in this column must be defined in Purchasing as a supplier
item number on the specified purchase order.
8-94 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
AUTO_TRANSACT_CODE
This column indicates the automatic transaction creation code of the shipment. It
accepts values of ’RECEIVE’ for a standard receipt, ’DELIVER’ for a standard
receipt and delivery transaction, and ’SHIP’ for a shipment (ASN or ASBN)
transaction.

Whether or not you can perform a standard receipt (’RECEIVE’) or direct receipt
(’DELIVER’) depends on the ROUTING_HEADER_ID in the PO_LINE_
LOCATIONS table and the Purchasing profile option RCV: Allow routing override.

The AUTO_TRANSACT_CODE in the RCV_TRANSACTIONS_INTERFACE table
overrides that in the RCV_HEADERS_INTERFACE table, if the two values differ.

The table below shows the combinations of TRANSACTION_TYPE and AUTO_
TRANSACT_CODE values you can choose in the RCV_TRANSACTIONS_
INTERFACE table to create an ASN or ASBN shipment header and shipment line(s),
a receiving transaction, or a receiving and delivery transaction.

RECEIPT_SOURCE_CODE
This column indicates the source of the shipment. It accepts a value of ’VENDOR’
only. The Receiving Open Interface can derive the value here if one is provided in
the RCV_HEADERS_INTERFACE table.

VENDOR_NAME, VENDOR_NUM, or VENDOR_ID
At least one of these columns is required if they are not already provided in the
RCV_HEADERS_INTERFACE table.

AUTO_TRANSACT_CODE

TRANSACTION_TYPE NULL RECEIVE DELIVER

 SHIP Shipment header
and shipment
line(s) created

Receiving
transaction
created

Receiving and
delivery
transaction
created

 RECEIVE Receiving
transaction
created

Receiving
transaction
created

Receiving and
delivery
transaction
created
 Oracle Purchasing Open Interfaces 8-95

Receiving Open Interface
SOURCE_DOCUMENT_CODE
This column indicates the document type for the shipment. It accepts a value of
’PO’ only.

DOCUMENT_NUM or PO_HEADER_ID
The column DOCUMENT_NUM indicates the purchase order document number
against which to receive. The value in this column must be a valid purchasing
document in Purchasing. If you provide a value in either the DOCUMENT_NUM
or PO_HEADER_ID column, the other can be derived.

HEADER_INTERFACE_ID
Purchasing provides a unique identifier for the corresponding header. The value in
this column must match the HEADER_INTERFACE_ID in the RCV_HEADERS_
INTERFACE table. If you’re importing data through e-Commerce Gateway, a value
is provided automatically.

VALIDATION_FLAG
This column tells the Receiving Open Interface whether to validate the row before
processing it. It accepts values of ’Y’ or ’N’. The Receiving Open Interface enters a
default value of ’Y’.

Conditionally Required Data for RCV_TRANSACTIONS_INTERFACE
Additionally, you may have to enter values for the following conditionally required
columns in the RCV_TRANSACTIONS_INTERFACE table:

ITEM_CATEGORY or CATEGORY_ID, or DOCUMENT_LINE_NUM or PO_LINE_ID
If you receive a shipment for an item that is not defined in Inventory (a one-time
item), you must provide an ITEM_CATEGORY or CATEGORY_ID, or the
DOCUMENT_LINE_NUM that the supplier is shipping against. This way, the
Receiving Open Interface can match the line and allocate the quantity shipped. If
you don’t provide a value for ITEM_CATEGORY or CATEGORY_ID for a one-time
item, you must provide a value for DOCUMENT_LINE_NUM or PO_LINE_ID.

ITEM_REVISION
You must provide a value if the item is under revision control and you have
distributions with a destination type of Inventory. The value must be valid (defined
in Purchasing) for the item you’re receiving and the organization that you are
8-96 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
receiving in. If no value is provided and one is required, the Receiving Open
Interface defaults the latest implemented revision.

EMPLOYEE_ID
A value in this column is required if the TRANSACTION_TYPE is ’DELIVER’. The
value can be derived if an EMPLOYEE_NUM is provided in the RCV_HEADERS_
INTERFACE table.

SHIP_TO_LOCATION_CODE or SHIP_TO_LOCATION_ID
If a SHIP_TO_LOCATION_CODE or SHIP_TO_LOCATION_ID, or SHIP_TO_
ORGANIZATION_CODE or SHIP_TO_ORGANIZATION_ID is provided at the
header level, in the RCV_HEADERS_INTERFACE table, the Receiving Open
Interface can derive the SHIP_TO_LOCATION_CODE or SHIP_TO_LOCATION_ID
at the line level, in the RCV_TRANSACTIONS_INTERFACE table.

A value is always required in the SHIP_TO_LOCATION_CODE or SHIP_TO_
LOCATION_ID column for shipment (ASN or ASBN) transactions.

If the supplier does not provide ship-to organization information, then you need to
tie your ship-to locations to a single Inventory organization in the Locations
window. This way, the Receiving Open Interface can derive an organization based
on the ship-to location.

TO_ORGANIZATION_CODE or TO_ORGANIZATION_ID
You must provide a value for at least one of these columns. (The Receiving Open
Interface can derive the other.) However, if you provide a SHIP_TO_LOCATION_
CODE or SHIP_TO_LOCATION_ID, and that location is tied to an Inventory
organization in the Locations window, then the Receiving Open Interface can derive
the TO_ORGANIZATION_CODE and TO_ORGANIZATION_ID.

The TO_ORGANIZATION_CODE indicates the destination ship-to organization
code. You can have different ship-to organizations specified for different lines, if no
SHIP_TO_ORGANIZATION_CODE is provided in the RCV_HEADERS_
INTERFACE table.

DESTINATION_TYPE_CODE
You must provide a value for this column if the AUTO_TRANSACT_CODE is
’DELIVER.’ If you do not provide a value, the Receiving Open Interface uses the
Destination Type on the purchase order shipment.
 Oracle Purchasing Open Interfaces 8-97

Receiving Open Interface
EXPECTED_RECEIPT_DATE
A value in this column is required if none is provided in the RCV_HEADERS_
INTERFACE table. The date must fall within the receipt date tolerance for the
shipments with which the receipt is being matched.

DELIVER_TO_PERSON_ID or DELIVER_TO_PERSON_NAME, SUBINVENTORY,
and LOCATOR or LOCATOR_ID
Values are required in these columns if the AUTO_TRANSACT_CODE is
’DELIVER’ and if the Receiving Open Interface can’t find the values in the purchase
order itself. Additionally, LOCATOR or LOCATOR_ID is required if a Locator
Control option is selected for the delivery transaction at the item level (in the Master
Items or Organization Items windows), subinventory level (in the Subinventories
window in Inventory), or organization level (in the Organization window).

DELIVER_TO_LOCATION_CODE or DELIVER_TO_LOCATION_ID
A value is required in one of these columns if the AUTO_TRANSACT_CODE is
’DELIVER.’ If you do not provide a value, the Receiving Open Interface uses the
Deliver-to location on the purchase order shipment.

Derived Data
In general, the Receiving Open Interface derives or defaults derived columns using
logic similar to that used by the Receipts, Receiving Transactions, or Manage
Shipments windows. Purchasing never overrides information that you provide in
derived columns.

In general, when a column exists in both the RCV_HEADERS_INTERFACE and
RCV_TRANSACTIONS_INTERFACE tables, if you provide a value for the column
in the RCV_HEADERS_INTERFACE table, the Receiving Open Interface can derive
a value for the same column in the RCV_TRANSACTIONS_INTERFACE table. The
LOCATION_CODE in the headers table and SHIP_TO_LOCATION_CODE in the
transactions table are examples of this. In general, the Receiving Open Interface
tries first to derive values in the RCV_TRANSACTIONS_INTERFACE table based
on values in the RCV_HEADERS_INTERFACE table; then, if no corresponding
values are there, it tries to derive them from the purchase order.

Some examples of derivation are, in the RCV_HEADERS_INTERFACE table, the
RECEIPT_NUM is derived if the AUTO_TRANSACT_CODE is ’DELIVER’ or
’RECEIVE’ and, in the RCV_TRANSACTIONS_INTERFACE table, the
DESTINATION_TYPE_CODE is derived if the TRANSACTION_TYPE is
’DELIVER’.
8-98 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
Optional Data
Optional columns in the interface tables use the same rules as their corresponding
fields in the Receipts, Receiving Transactions, and Manage Shipments windows in
Purchasing. For example:

■ RELEASE_NUM must be a valid release number for the purchasing document
number provided and, if a release number is not provided, the Receiving Open
Interface allocates the quantity across all open shipments for all releases.

■ DOCUMENT_SHIPMENT_LINE_NUM must be a valid number for the line
you are receiving against if the line number (DOCUMENT_LINE_NUM) is
provided. If a DOCUMENT_SHIPMENT_LINE_NUM is not provided, the
Receiving Open Interface allocates the shipment quantity against the shipments
in a first-in, first-out order based on the PROMISED_DATE or the NEED_BY_
DATE in the Purchasing tables.

■ SUBSTITUTE_ITEM_NUM - The value in this column must be defined in
Purchasing as a related item for an item on the provided DOCUMENT_NUM.
The original item must allow substitute receipts and the supplier must be
enabled to send substitute items. The substitute item also must be enabled as a
Purchasing item.

■ REASON_NAME indicates the transaction reason, as defined in the Transaction
Reasons window in Inventory.

Some other example information about optional data is, in the RCV_HEADERS_
INTERFACE table, the EXPECTED_RECEIPT_DATE must be later than or equal to
the SHIPPED_DATE, if a SHIPPED_DATE is given. Also, if Oracle Supplier
Scheduling is installed and set up, and the value in the column VENDOR_CUM_
SHIPPED_QUANTITY does not match what you have received, then your supplier
is notified through an Application Advice (if you’re receiving ASNs through
e-Commerce Gateway).

Validation
The Receiving Open Interface does not perform any validations for columns that are
indicated as ”Reserved for Future Use” on the previous pages.

Standard Validation
Oracle Purchasing validates all required columns in the interface tables. For specific
information on the data implied by these columns, see your Oracle Purchasing
Technical Reference Manual, Release 11i for details.
 Oracle Purchasing Open Interfaces 8-99

Receiving Open Interface
Other Validation
If a row in the interface tables fails validation for any reason, the program sets the
PROCESSING_STATUS_CODE to ’ERROR’ and enters details about errors on that
row into the PO_INTERFACE_ERRORS table.

In general, the same validations are performed in the Receiving Open Interface
tables as are performed in the Receipts, Receiving Transactions, and Manage
Shipments windows.

Debugging
Debugging enables you to do a test run of the Receiving Open Interface, see and fix
the errors, and run the program again.

To debug the receiving transaction pre-processor:
1. Set the profile option PO: Enable Sql Trace for Receiving Processor to Yes.

Setting this profile option to Yes provides more detailed error information in the
View Log screen of the Submit Request window when you run the Receiving
Transaction Processor in step 3. (’Yes’ also places in the database a trace file,
which can be used by Oracle Support Services if needed.)

2. Load your receiving data into the Receiving Open Interface tables using
e-Commerce Gateway or other means.

3. Navigate to the Submit Request window by choosing Reports > Run and
submit the Receiving Transaction Processor.

4. When the Receiving Transaction Processor completes, choose the View Log
button to see what errors occurred, if any.

Because the profile option in step 1 was set to Yes, the View Log screen shows
the pre-processor’s actions as it processed the data, from start to finish. If an
error occurs during this process, you see not just the error, but where in the
process the error occurred.

5. Check that derived and defaulted data was derived and defaulted correctly.

You can use SQL*Plus to do this if you’re on a test environment, or use the
Transaction Statuses window and the Help > Diagnostics > Examine menu to
check the values.

For example, if you provided a DOCUMENT_NUM in the RCV_
TRANSACTIONS_INTERFACE table but no PO_HEADER_ID, the Receiving
Open Interface should derive the correct PO_HEADER_ID for you. Derived and
8-100 Oracle Manufacturing APIs and Open Interfaces Manual

Receiving Open Interface
defaulted data is shown in the Receiving Open Interface table descriptions on
the previous pages.

6. Run the Receiving Interface Errors Report if you want to see a list only of the
errors that occurred.

The View Log screen displays errors in the context in which they occurred. The
Receiving Interface Errors Report shows you just the errors.

7. Make the necessary fixes for the errors or incorrectly defaulted data, if any.

8. Repeat steps 2 through 7 until you have successfully processed the data with no
errors.

See Also
Receiving Transaction Processor, Oracle Purchasing User’s Guide

Resolving Failed Receiving Open Interface Rows

Error Messages
Oracle Purchasing may display specific error messages during interface processing.
For more details on these messages, please see the Oracle Applications Messages
Manual, in HTML format on the documentation CD-ROM for Release 11i.

Viewing Failed Transactions
For each row in the RCV_HEADERS_INTERFACE and RCV_TRANSACTIONS_
INTERFACE tables that fails validation, the Receiving Open Interface creates one or
more rows with error information in the PO_INTERFACE_ERRORS table.

You can report on all rows that failed validation by using the Receiving Interface
Errors report and, for ASBNs, the Purchasing Interface Errors Report. For every
transaction in the interface table that fails validation, these reports list all the
columns that failed validation along with the reason for the failure.

You can identify failed transactions in the interface tables by selecting rows with a
PROCESS_FLAG of ’ERROR’ or ’PRINT’. For any previously processed set of rows
identified by the HEADER_INTERFACE_ID and INTERFACE_TRANSACTION_ID,
only rows that failed validation remain in the interface table, as all the successfully
imported rows are deleted from the RCV_TRANSACTIONS_INTERFACE table.
(Successfully imported rows in the RCV_HEADERS_INTERFACE table are not
deleted.)
 Oracle Purchasing Open Interfaces 8-101

Receiving Open Interface
See Also
Receiving Interface Errors Report, Oracle Purchasing User’s Guide

Purchasing Interface Errors Report, Oracle Purchasing User’s Guide
8-102 Oracle Manufacturing APIs and Open Interfaces Manual

Oracle Quality Open In
9

Oracle Quality Open Interfaces

This chapter contains information about the following Oracle Quality open
interfaces:

■ Collection Import Interface on page 9-2

■ Collection Plan Views on page 9-17
terfaces 9-1

Collection Import Interface
Collection Import Interface
You can use the Collection Import Interface to add new quality results data or to
update existing quality results data in the Quality data repository. For example, you
can load data from sources such as test equipment and gauges into the Collection
Import Interface Table, then import them into the Quality data repository. Since
Collection Import works as a background process, the flow of your work is not
interrupted.

Functional Overview
The Collection Import process consists of the following three major steps:

Loading the Collection Import Interface Table
Before you can import quality results data, you must load it into the Collection
Import Interface Table. The programming languages and tools that you use to load
this data are highly dependent on your data source.

Launching the Collection Import Manager
After you load data into the Collection Import Interface table, you launch the
Collection Import Manager. The Collection Import Manager is a background
process that searches the interface for new rows. If any are found, it launches one or
more Import Workers, which validate the data. It then inserts valid records, or
updates existing records in the Quality results data repository (QA_RESULTS), and
invokes any actions associated with these records.

The Collection Import Interface Table can contain multiple rows. Each row specifies
either that a new record is to be added or an existing record is to be updated in the
Quality data repository. When the Collection Import Manager completes a
transaction, it either updates records in the Quality data repository, or inserts all
records specified as ”Insert“ into it. The Collection Import Manager can only
perform one type of transaction (updating or inserting records) each time that it
completes a transaction, although it can perform that transaction on multiple
records (rows).

You specify the type of transaction to be performed in the Transaction Type field,
which appears when you launch the Collection Import Manager. This field can take
one of two values: ”Insert Transaction“ or ”Update Transaction.“
9-2 Oracle Manufacturing APIs and Open Interfaces Manual

Collection Import Interface
.

Rows that fail validation are marked and remain in the Collection Import Interface
Table. Error messages explaining why records failed validation or processing are
inserted into the Errors table.

Updating Collection Import
The final step in the Collection Import process is viewing, updating, and
resubmitting failed rows. You use the ”Update Collection Import” form to
optionally delete any records that you do not want to resubmit.

See Also
Collection Import Interface Table on page 9-3

Example: Collection Import SQL Script on page 9-11

Collection Import Manager on page 9-15

Updating Collection Import, Oracle Quality User’s Guide

Collection Import Interface Table
The Collection Import Interface Table (QA_RESULTS_INTERFACE) is similar in
structure to the Quality results database table (QA_RESULTS), however, it contains
a number of additional columns.

The following table describes the columns in the Collection Import Interface table.

ATTENTION: The Collection Import Manager executes all types
of actions, except the “Display a message to the operator” action,
which must be processed online. Records that are associated
with the “Reject the input” action are not imported into the
Quality results data repository.

Attention: Do not confuse this step with running the Collection
Import Manager in the “Update Transaction” mode.
Oracle Quality Open Interfaces 9-3

Collection Import Interface

Table 9–1 Collection Import Interface

[Collection Import Interface Table]

Column Name Data Type Required

Derived
(Leave
Null)

Derived
or User
Optional Optional

 Plan
Specific

CHARACTER1 through CHARACTER100 Varchar(150) x

COLLECTION_ID Number(38) x

COMP_GEN_LOC_CTRL_CODE Number x1

COMP_ITEM Varchar2(2000) x

COMP_ITEM_ID Number x x

COMP_LOCATION_CONTROL_CODE Number x1

COMP_LOCATOR Varchar2(2000) x

COMP_LOCATOR_ID Number x x

COMP_LOT_NUMBER Varchar2(30) x

COMP_RESTRICT_LOCATORS_CODE Number x1

COMP_RESTRICT_SUBINV_CODE Number x1

COMP_REVISION Varchar2(3) x

COMP_REVISION_QTY_CONTROL_CODE Number x1

COMP_SERIAL_NUMBER Varchar2(30) x

COMP_SUB_LOCATOR_TYPE Number x1

COMP_SUBINVENTORY Varchar2(10) x

COMP_UOM Varchar2(3) x

CREATED_BY Number x1

CREATION_DATE Date x1

CUSTOMER_ID Number x x

CUSTOMER_NAME Varchar2(50) x

DEPARTMENT Varchar2(10) x

DEPARTMENT_ID Number x x

FROM_OP_SEQ_NUM Number x

GEN_LOC_CTRL_CODE Number x1 x

GROUP_ID Number x1
9-4 Oracle Manufacturing APIs and Open Interfaces Manual

Collection Import Interface
INSERT_TYPE Number x

ITEM Varchar2(2000) x

ITEM_ID Number x x

JOB_NAME Varchar2(240) x

LAST_UPDATE_DATE Date x

LAST_UPDATE_LOGIN Number x1

LAST_UPDATED_BY Number x1

LINE_ID Number x x

LOCATION_CONTROL_CODE Number x1 x

LOCATOR Varchar2(2000) x

LOCATOR_ID Number x x

LOT_NUMBER Varchar2(30) x

MARKER Number x1

MATCHING ELEMENTS Varchar2(1000) x

ORGANIZATION_CODE Varchar2(3) x

ORGANIZATION_ID Number x

PLAN_ID Number x

PLAN_NAME Varchar2(30) x

PO_AGENT_ID Number x

PO_HEADER_ID Number x x

PO_LINE_NUM Number x

PO_NUMBER Varchar2(20) x

PO_RELEASE_ID Number x x

PO_RELEASE_NUM Number x x

PO_SHIPMENT_NUM Number x

PO_TYPE_LOOKUP Varchar2(25) x x

Table 9–1 Collection Import Interface

[Collection Import Interface Table]

Column Name Data Type Required

Derived
(Leave
Null)

Derived
or User
Optional Optional

 Plan
Specific
Oracle Quality Open Interfaces 9-5

Collection Import Interface
PROCESS_STATUS Number x

PRODUCTION_LINE Varchar2(10) x

PROGRAM_APPLICATION_ID Number x1

PROGRAM_ID Number x1

PROGRAM_UPDATE_DATE Date x1

PROJECT_ID Number x x

PROJECT_NUMBER Varchar2(25) x x

QA_CREATED_BY Number x

QA_CREATED_BY_NAME Varchar2(100) x

QA_LAST_UPDATED_BY Number x

QA_LAST_UPDATED_BY_NAME Varchar2(100) x

QUANTITY Number x

RECEIPT_NUM Varchar2(30) x

REQUEST_ID Number x1

RESOURCE_CODE Varchar2(10) x

RESOURCE_ID Number x x

RESTRICT_LOCATORS_CODE Number x1 x

RESTRICT_SUBINV_CODE Number x1 x

REVISION Varchar2(3) x

REVISION_QTY_CONTROL_CODE Number x1 x

RMA_HEADER_ID Number x x

RMA_NUMBER Number x

SALES_ORDER Number x

SERIAL_NUMBER Varchar2(30) x

SO_HEADER_ID Number x x

SOURCE_CODE Varchar2(30) x

Table 9–1 Collection Import Interface

[Collection Import Interface Table]

Column Name Data Type Required

Derived
(Leave
Null)

Derived
or User
Optional Optional

 Plan
Specific
9-6 Oracle Manufacturing APIs and Open Interfaces Manual

Collection Import Interface
Derived Data
The Collection Import Manager derives data for some columns in the Collection
Import Interface Table using foreign key relationships within Oracle Manufacturing.
You can, however, insert user-defined data into some derived columns.

Control Columns
Control columns store information specific to the import process. These columns
include:

SOURCE_LINE_ID Number x

SPEC_ID Number x

SPEC_NAME Varchar2(30) x

STATUS Varchar2(25) x x

SUB_LOCATOR_TYPE Number x1 x

SUBINVENTORY Varchar2(10) x

TASK_ID Number x x

TASK_NUMBER Varchar2(25) x x

TO_DEPARTMENT Number x

TO_DEPARTMENT_ID Varchar2(10) x x

TO_OP_SEQ_NUM Number x

TRANSACTION_DATE Date x

TRANSACTION_INTERFACE_ID Number x

UOM Varchar2(3) x

VALIDATE_FLAG Number x

VENDOR_ID Number x x

VENDOR_NAME Varchar2(80) x

WIP_ENTITY_ID Number x x

1 These columns must be left null in all circumstances.

Table 9–1 Collection Import Interface

[Collection Import Interface Table]

Column Name Data Type Required

Derived
(Leave
Null)

Derived
or User
Optional Optional

 Plan
Specific
Oracle Quality Open Interfaces 9-7

Collection Import Interface
TRANSACTION_INTERFACE_ID: Each row added to the Collection Import
Interface Table receives a unique Transaction Interface ID.

 PROCESS_STATUS: The Process Status identifies the state of the transaction and
has four possible values:

■ 1 Pending

■ 2 Running

■ 3 Error

■ 4 Completed

When loading records into the Collection Import Interface Table, you must assign
them an initial process status of 1 (Pending). During validation, the Collection
Import Manager updates the status to 2 (Running). Rows that fail validation are
assigned a status of 3 (Error). Successfully validated rows are assigned a status of 4
(Completed) and are immediately deleted from the interface table.

VALIDATE_FLAG: The Validate Flag determines whether the Collection Import
Manager validates records in the Collection Import Interface table before importing
them into the Quality results database table. The Validate Flag is present in the QA_
RESULTS_INTERFACE table; however, it is not present in the import view. There
are two values for this field:

■ 1 Yes

■ 2 No

Normally this flag is assigned a value of 1. When set to 1, or left blank, records are
validated. When set to 2, records are not validated.

ATTENTION: You should leave this field empty.

ATTENTION: You can prevent status 4 (Completed) rows from
being deleted from the Collection Import Interface table by
setting the Oracle Master Scheduling/MRP and Supply Chain
Planning MRP:Debug Mode profile option to Yes (see the Oracle
Master Scheduling/MRP and Oracle Supply Chain Planning User’s
Guide for more information).
9-8 Oracle Manufacturing APIs and Open Interfaces Manual

Collection Import Interface
INSERT_TYPE: This field determines whether the Collection Import Manager will
insert new records or update existing records in the Quality data repository. There
are two values for this field:

■ 1 Insert

■ 2 Update

The default for the field is 1 Insert. When set to 1, or left blank, Collection Import
inserts new records into the Quality data repository. When set to 2, it updates
existing records in the repository.

MATCHING_ELEMENTS: This is a comma-separated list of column names.
Collection Import uses these column names as search keys when it updates existing
records in the Quality data repository. If an existing record has the same data in the
columns listed by Matching Elements, the record is updated so that it is identical to
the corresponding row in the Collection Import Interface table. If any of the
record’s columns in the table is set to NULL, they will not be updated in the Quality
data repository. Also, an import row in the table can match one and only one record
in the repository; if the row in question has no match or has more than one match,
Collection Import will reject it.

SPEC_NAME: This field determines what specification will be used to validate the
record. The value in this field should be set to the name of a specification. If no
specification is required, you should set this field to NULL. If the field is null, the
Oracle Quality Open Interfaces 9-9

Collection Import Interface
You have the option to insert data into these derived Who columns. If you do so, the
Collection Import Manager validates but does not override your data.

Self Service Columns
The Collection Import Interface imports data entered by suppliers through Oracle
Supplier Management Portal’s Outside Processing Workbench and Quality Plans
for Shipments web pages. If any records fail validation during the import process, a
workflow notifies the Buyer. The following column is used to derive the name of the
Buyer who will receive the workflow notification:

■ PO_AGENT_ID

Optional Data
All columns that contain user-defined, reference information, and predefined
collection elements are optional.

Name Columns
For every column in the Quality results database table (QA_RESULTS) that stores a
foreign-key ID, like CUSTOMER_ID, the Collection Import Interface table contains
two columns; one for the ID and one for the name. For example, customer data is
associated with the CUSTOMER_ID and CUSTOMER_NAME columns in the
interface table. You should always enter data into the name fields. The ID fields are
used by the Collection Import Worker during processing, and any values entered in
these fields are ignored. There is, however, one exception. If you have set the
VALIDATE_FLAG field to No (see below), you must enter the underlying IDs, since
they are transferred directly into the results table without undergoing validation.

Source Columns
SOURCE_CODE, SOURCE_LINE_ID. These optional columns identify the sources
of your Quality data. For example, if you are importing data that has been
downloaded into an ASCII file as well as data from a data collection device, you can
use a different source code to indicate the origin of each data record. To record
more detailed information about the source, you can also fill in the source line ID.
Keeping track of sources is often useful in tracking down validation problems.

NOTE: When you load data into the interface table, you must
enter the default values for the collection plan manually.
9-10 Oracle Manufacturing APIs and Open Interfaces Manual

Collection Import Interface
Collection Import Results Database Views
Collection Import Results Database Views are created and updated when you create
and update collection plans. Collection Import Results Database Views facilitate the
insertion of data into the Collection Import Interface table. Instead of inserting data
directly into the import table, insert data into views of the table.

The Collection Import Results Database View remaps the generic CHARACTERx
columns to columns with meaningful names. If define the collection elements
Defect Code and Inspector ID for a collection plan, the names of these collection
elements are mapped to the CHARACTERx columns. The import view eliminates
import table columns that represent collection elements not added to a collection
plan. If you create a collection plan, but do not add the PO Number and PO Line
Number collection elements, the corresponding PO_NUMBER and PO_LINE_NUM
columns are not included in the import view.

See Also
Collection Import Manager on page 9-15

Creating Collection Plans, Oracle Quality User’s Guide

Collection Plan and Import Results Database Views, Oracle Quality User’s Guide

Example: Collection Import SQL Script
Oracle Quality uses the naming convention for collection import results database
views: Q_<collection-plan-name>_IV. Consider the collection plan IMPORT’s
collection elements:

■ Defects

■ Department

■ From Ops Seq Number

■ Item

■ Job Number

■ Lot Number

■ Off Location

■ Operator

■ Revision

■ Thickness
Oracle Quality Open Interfaces 9-11

Collection Import Interface
■ To Ops Seq Number
9-12 Oracle Manufacturing APIs and Open Interfaces Manual

Collection Import Interface
When you create this collection plan, Oracle Quality automatically creates a
collection import results database view called Q_IMPORT_IV. This is a view to the
Collection Import Interface table QA_RESULTS_INTERFACE. This view contains
the following columns:

SQL> DESCRIBE Q_IMPORT_IV; Data Type

COLLECTION_ID Number

DEFECTS Varchar(150)

DEPARTMENT Varchar2(10)

FROM_OP_SEQ_NUM Number

INSERT_TYPE Number

ITEM Varchar2 (2000)

JOB_NAME Varchar2(240)

LOT_NUMBER Varchar2(30)

MATCHING_ELEMENTS Varchar2(1000)

OFF_LOCATION Varchar(150)

OPERATOR Varchar(150)

ORGANIZATION_CODE Varchar2(3)

PLAN_NAME Varchar2(30)

PROCESS_STATUS Number

QA_CREATED_BY_NAME Varchar2(100)

QA_LAST_UPDATED_BY_NAME Varchar2(100)

REVISION Varchar2(3)

SOURCE_CODE Varchar2(30)

SOURCE_LINE_ID Number

SPEC_NAME Varchar2(30)

THICKNESS Varchar(150)

TO_OP_SEQ_NUM Number

TRANSACTION_INTERFACE_ID Number
Oracle Quality Open Interfaces 9-13

Collection Import Interface
The following PL/SQL code demonstrates how you can insert collection import
results directly into this view:

SQL> INSERT INTO Q_IMPORT_IV (
PROCESS_STATUS,
ORGANIZATION_CODE,
PLAN_NAME,
ITEM,
REVISION,
LOT_NUMBER,
JOB_NAME,
FROM_OP_SEQ_NUM,
TO_OP_SEQ_NUM,
DEPARTMENT,
OPERATOR,
DEFECTS,
THICKNESS,
OFF_LOCATION
)
VALUES (
1,
’MAS’,
’IMPORT’,
’ITEM8’,
’0’,
’A’,
’DJ1’,
10,
20,
’D1’,
’jus’,
’br’,
’40’,
’0’
);

The following PL/SQL code demonstrates how you can insert rows into the QA_
RESULTS_INTERFACE table to update information in the Quality data repository.
(Note that, in this example, the search keys ’ITEM = ITEM8’, ’REVISION = ’0’, and
’LOT_NUMBER = ’A’ are used to search for a matching record in the Quality data
repository; then, this example modifies that matching record’s DEFECTS column to
equal ’bent’ and THICKNESS to equal ’45’. Because other columns are left to
9-14 Oracle Manufacturing APIs and Open Interfaces Manual

Collection Import Interface
NULL, this update transaction leaves the record’s corresponding fields unchanged
in the repository.):

SQL>INSERT INTO Q_IMPORT_IV (
PROCESS_STATUS,
INSERT_TYPE,
MATCHING_ELEMENTS,
ORGANIZATION_CODE,
PLAN_NAME,
ITEM,
REVISION,
LOT_NUMBER,
DEFECTS,
THICKNESS,
)
VALUES (
1,
2,
’ITEM, REVISION, LOT_NUMBER’,
’MAS’
’IMPORT’,
’ITEM8’,
’0’
’A’,
’bent’,
’45’
);

Collection Import Manager
The Collection Import Manager is a background concurrent process that checks the
Collection Import Interface table for new records (rows). If there are new rows, it
launches one or more Collection Import Worker processes. Worker processes carry
out the three main phases of the import process:

■ Validation

■ Transfer

■ Error handling

You can specify the maximum number of rows that you would like each worker
process to handle when you launch the Collection Import Manager.
Oracle Quality Open Interfaces 9-15

Collection Import Interface
The Collection Import Manager can handle an unlimited number of rows, even
though you set a maximum for each worker process. If additional rows are needed,
the Collection Import Manager automatically launches new workers to handle more
rows. For example, if you specify that you would like each worker process to
handle a maximum of ten rows, but you submit 53 new records, the Collection
Import Manager automatically launches six concurrent workers, the first five
handle ten rows each, and the sixth handles the last three rows.

Validation
During the validation phase, each row in the Collection Import Interface is
examined to verify that the data is valid and that required data is not missing. For
example, rows are evaluated for context element dependencies, and rows that
contain, for instance, serial numbers but not items, fail validation. See:
Dependencies Between Context Elements and Actions, Oracle Quality User’s Guide.

Successfully validated records are transferred to the Quality results database table
(QA_RESULTS).

Transfer
During the transfer phase, Collection Import Workers insert successfully validated
rows into the Quality results database table and delete them from the interface
table.

Error Handling
Rows that fail validation remain in the Collection Import Interface table, and
records detailing the errors are inserted into the Errors table (QA_INTERFACE_
ERRORS).

Records can fail validation for several reasons:

■ A mandatory collection element is left null

■ A value cannot be converted to the correct data type (e.g. a value of ’abc’ for
pH, when pH is a number data type)

■ A value is not in the set of lookup values defined for a collection element (e.g. a
value of 40 for defect code, when defect code only has the values 10, 20, and 30
as lookups

■ A value is not in the set of values contained in a foreign table (e.g. the value
given for supplier ID is not found in the suppliers table)

■ A value causes a ”Reject the Input” action to be fired
9-16 Oracle Manufacturing APIs and Open Interfaces Manual

Collection Plan Views
■ A value falls outside the reasonable limit range for the given specification (see:
SPEC_NAME, on page 9-9).

■ A value in a dependent field is not in the subset of values defined for the master
value (e.g. revision is ’C’ when the master item only has ’A’ and ’B’ as possible
revisions)

■ A value is given for a collection element that is disabled on the collection plan

See Also
Collection Import Interface Table on page 9-3

Importing Quality Results Data, Oracle Quality User’s Guide

Updating Collection Import, Oracle Quality User’s Guide

Collection Plan Views
Collection Plan Views are created and updated when you create and update
collection plans. Collection plan views allow you to query and inspect data for a
particular collection plan in the Quality data repository.

The Collection Plan View remaps the generic CHARACTERx columns to columns
with meaningful names. For example, if you have defined the collection elements
Defect Code and Inspector ID for a collection plan, the names of these collection
elements are automatically mapped to the CHARACTERx columns. The plan view
also eliminates table columns that represent collection elements that have not been
added to a collection plan. For example, if you create a collection plan, but do not
add to it the PO Number and PO Line Number collection elements, the
corresponding PO_NUMBER and PO_LINE_NUM columns are not included in the
plan view.

Example
Oracle Quality uses the following naming convention for collection plan views:
Q_<collection-plan-name>_V. For example, consider the following collection plan
called WIP DEMO with the following collection elements:

■ Defects

■ Department

■ From Ops Seq Number

■ Item
Oracle Quality Open Interfaces 9-17

Collection Plan Views
■ Job Number

■ Lot Number

■ Off Location

■ Operator

■ Revision

■ Thickness

■ To Ops Seq Number
9-18 Oracle Manufacturing APIs and Open Interfaces Manual

Collection Plan Views
When you create this collection plan, Oracle Quality automatically creates a
collection plan view called Q_WIP_DEMO_V. This is a view to the Collection
Results table QA_RESULTS. This view contains the following columns:

SQL> DESCRIBE Q_WIP_DEMO_V; Data Type

COLLECTION_ID Number

CREATED_BY Varchar2 (100)

CREATED_BY_ID Number

CREATION_DATE Date

DEFECTS Varchar (150)

DEPARTMENT Varchar2 (10)

FROM_OP_SEQ_NUM Number

ITEM Varchar2 (2000)

JOB_NAME Varchar2 (240)

LAST_UPDATE_DATE Date

LAST_UPDATE_LOGIN Number

LAST_UPDATED_BY Varchar2 (100)

LAST_UPDATED_BY_ID Number

LOT_NUMBER Varchar2 (30)

OCCURRENCE Number

OFF_LOCATION Varchar (150)

OPERATOR Varchar (150)

ORGANIZATION_ID Number

ORGANIZATION_NAME Varchar2 (60)

PLAN_ID Number

PLAN_NAME Varchar2 (30)

REVISION Varchar2 (3)

ROW_ID Undefined

THICKNESS Varchar (150)

TO_OP_SEQ_NUM Number
Oracle Quality Open Interfaces 9-19

Collection Plan Views
9-20 Oracle Manufacturing APIs and Open Interfaces Manual

Oracle Work in Process Open In
10

Oracle Work in Process Open Interfaces

This chapter contains information about the following Oracle Work in Process open
interfaces:

■ Open Move Transaction Interface on page 10-2

■ Open Resource Transaction Interface on page 10-17

■ Work Order Interface on page 10-25
terfaces 10-1

Open Move Transaction Interface
Open Move Transaction Interface
You can load Move transaction information into the Open Move Transaction
Interface from a variety of sources, including external data collection devices such
as bar code readers, automated test equipment, cell controllers, and other
manufacturing execution systems. You then use the interface to load these
transactions into Oracle Work in Process. All transactions are validated and invalid
transactions are marked, so that you can correct and resubmit them.

The Open Move Transaction Interface enables you to perform many of the functions
possible from the Move Transactions window. For example, you can:

■ Move assemblies between operations and intraoperation steps

■ Scrap assemblies

■ Move assemblies from an operation and complete them into inventory with a
single transaction

■ Over-complete a quantity greater than the job or schedule quantity if
over-completions are enabled

■ Return assemblies from inventory and move to an operation with a single
transaction

The following information describes how you can use the Move Transaction
Interface to integrate other applications with Oracle Work in Process.

Functional Overview
The following data flow diagram shows the key tables and programs that comprise
the Move Transaction Interface:

ATTENTION: You cannot add ad hoc operations through this
interface even if the WIP Allow Creation of New Operations
parameter is set.
10-2 Oracle Manufacturing APIs and Open Interfaces Manual

Open Move Transaction Interface
Figure 10–1 Move Transaction Interface
Oracle Work in Process Open Interfaces 10-3

Open Move Transaction Interface
You must write the load program that inserts a single row for each Move transaction
into the WIP_MOVE_TXN_INTERFACE table. You must also insert records into the
CST_COMP_SNAP_ INTERFACE table, if you insert Move transactions that also
complete or return job assemblies, and if the referenced organization uses average
costing. The system uses this information to calculate Completion cost. The Move
Transaction Manager (WICTMS) then groups these transaction rows and launches a
Move Transaction Worker to process each group.

The Move Transaction Worker calls the WIP Transaction Validation Engine program,
which validates the row, derives or defaults any additional columns, and inserts
errors into the WIP_TXN_INTERFACE_ERRORS table.

Next, the Move Transaction Processor performs the actual Move transaction. It
writes it to history, allocates it to the correct Repetitive schedule (for Repetitive
manufacturing only), initiates related resource and overhead transactions and
requisitions for outside resources (for outside processing only), updates operation
balances, initiates Completion transactions (for combination Move and
Completion/Return transactions), and deletes successfully processed transaction
rows from the WIP_MOVE_TXN_INTERFACE table. The Backflush Setup program
then determines and initiates related operation pull backflushes.

If any transactions failed processing due to validation or other errors, you use the
Pending Move Transactions window (WIPTSUPD) to review pending Move
transactions and to update or delete failed transactions.

Completion Cost Detail Relationships
If the Move transaction also completes or returns job assemblies in an average
costing organization, you need to link the Completion cost detail rows to their
parent rows. You accomplish this by populating the WIP_MOVE_TXN_
INTERFACE.TRANSACTION_ID with a unique value to be used as the primary
key that links the child Completion cost rows. You must also populate the foreign
key CST_COMP_SNAP_INTERFACE.TRANSACTION_INTERFACE_ID with the
same value for all child Completion cost rows.

Setting Up the Move Transaction Interface
You must perform all the Oracle Bills of Material and Oracle Work in Process setup
activities required for Move transactions. In addition, you must launch the Move
Transaction Manager to process Move and combination Move and
Completion/Return transactions that you import from external sources. See: Setting
Up Shop Floor Control, Oracle Work in Process User’s Guide
10-4 Oracle Manufacturing APIs and Open Interfaces Manual

Open Move Transaction Interface
Launching the Move Transaction Manager
You launch the Move Transaction Manager in the Interface Managers window in
Oracle Inventory. When you launch the Move Transaction Manager, you can specify
the resubmit interval and number of transactions processed by each worker during
each interval. After polling the WIP_MOVE_TXN_INTERFACE table for eligible
rows, the Move Transaction Manager creates the necessary number of Move
Transaction Workers to process the load.

The use of multiple transaction workers enables parallel processing of transactions
that can be especially helpful when importing a large batch of transactions through
the Move Transaction Interface. For more information, see: Transaction Managers,
Oracle Inventory User’s Guide

Inserting Records into the WIP_MOVE_TXN_INTERFACE Table
You must insert your Move, Move Complete and Move Return transactions into the
WIP_MOVE_TXN_INTERFACE table. The system validates each transaction row,
derives any additional data as necessary, then processes each transaction.

WIP_MOVE_TXN_INTERFACE Table Description
The following describes the WIP_MOVE_TXN_INTERFACE table:

Legend

Note: in the following table, the numbers under the Required, Derived if Null, and
Optional columns indicate that the referenced column is used for the following:

Type
Number Transaction Type Description

1 Move transaction

2 Move Completion (defined by TRANSACTION_TYPE = 2 and valid FM_
OPERATION_SEQ_NUM)

3 Move Return (defined by TRANSACTION_TYPE = 2 and valid T0_
OPERATION_SEQ_NUM)
Oracle Work in Process Open Interfaces 10-5

Open Move Transaction Interface
Table 10–1 Move Transaction Interface

WIP_MOVE_TXN_INTERFACE

Column Name Type Required Derived Optional
Derived if

Null

ACCT_PERIOD_ID Number 1,2,3

ATTRIBUTE1 - ATTRIBUTE15 Varchar2(150) 1,2,3

ATTRIBUTE_CATEGORY Varchar2(30) 1,2,3

CREATED_BY Number 1,2,3

CREATED_BY_NAME VarChar2(100) 1,2,3

CREATION_DATE Date 1,2,3

ENTITY_TYPE Number 1,2,3

FM_DEPARTMENT_CODE VarChar2(10) 1,2

FM_DEPARTMENT_ID Number 1,2

FM_INTRAOPERATION_STEP_TYPE Number 1,2

FM_OPERATION_CODE VarChar2(4) 1,2

FM_OPERATION_SEQ_NUM Number 1,2

GROUP_ID Number 1,2,3

LAST_UPDATE_DATE Date 1,2,3

LAST_UPDATE_LOGIN Number 1,2,3

LAST_UPDATED_BY Number 1,2,3

LAST_UPDATED_BY_NAME VarChar2(100) 1,2,3

LINE_CODE VarChar2(10) 1,2,3

LINE_ID Number 1,2,3

ORGANIZATION_CODE VarChar2(3) 1,2,3

ORGANIZATION_ID Number 1,2,3

OVERCOMPLETION_PRIMARY_QTY Number 1,2,3

OVERCOMPLETION_TRANSACTION_ID Number 1,2,3

OVERCOMPLETION_TRANSACTION_
QTY

Number 1,2,3

PRIMARY_ITEM_ID Number 1,2,3
10-6 Oracle Manufacturing APIs and Open Interfaces Manual

Open Move Transaction Interface
PRIMARY_QUANTITY Number 1,2,3

PRIMARY_UOM VarChar2(3) 1,2,3

PROCESS_PHASE Number 1,2,3

PROCESS_STATUS Number 1,2,3

PROGRAM_APPLICATION_ID Number 1,2,3

PROGRAM_ID Number 1,2,3

PROGRAM_UPDATE_DATE Date 1,2,3

QA_COLLECTION_ID Number 1,2,3

REASON_ID Number 1,2,3

REASON_NAME VarChar2(30) 1,2,3

REFERENCE VarChar2(240) 1,2,3

REPETITIVE_SCHEDULE_ID Number 1,2,3

REQUEST_ID Number 1,2,3

SCRAP_ACCOUNT_ID Number 1,2,3

SOURCE_CODE Varchar2(30) 1,2,3

SOURCE_LINE_ID Number 1,2,3

TO_DEPARTMENT_CODE VarChar2(10) 1,3

TO_DEPARTMENT_ID Number 1,3

TO_INTRAOPERATION_STEP_TYPE Number 1,3

TO_OPERATION_CODE VarChar2(4) 1,3

TO_OPERATION_SEQ_NUM Number 1,3

TRANSACTION_DATE Date 1,2,3

TRANSACTION_ID Number 1,2,3

TRANSACTION_QUANTITY Number 1,2,3

TRANSACTION_TYPE Number 1,2,3

Table 10–1 Move Transaction Interface

WIP_MOVE_TXN_INTERFACE

Column Name Type Required Derived Optional
Derived if

Null
Oracle Work in Process Open Interfaces 10-7

Open Move Transaction Interface
You must include data in each of the required columns. Overall, very few columns
are required because the system derives or defaults many column values and/or
allows these column values to be optional.

Columns are derived using foreign key relationships within Oracle Manufacturing.
The following derived columns are control columns that the Move Transaction
Worker uses to provide closed loop transaction processing control and relational
integrity throughout the interface process:

Control Columns
■ ATTRIBUTE1 through ATTRIBUTE15 (Optional): the descriptive flexfield

attributes in the columns ATTRIBUTE1 through ATTRIBUTE15 map to
ATTRIBUTE1 through ATTRIBUTE15 in WIP_MOVE_TRANSACTIONS.

■ FM_INTRAOPERATION_STEP_TYPE (Required): this column is only required
when performing Move and Move Completion transactions. It must be an
enabled intraoperation step.

■ FM_OPERATION_SEQUENCE (Required): in Move transactions, this column
represents the operation from which you are moving the assemblies.

In Move and Completion transactions, this column represents the operation from
which you are moving the assemblies before they are completed into inventory.

In Move and Return transactions, you may leave this column and the FM_
INTRAOPERATION_STEP_TYPE column blank. If you do not wish to leave
these columns blank when performing a Move and Return transaction,
however, you must set the values of this column and the FM_
INTRAOPERATION_STEP_TYPE column to their derived values: FM_
OPERATION_SEQ_NUM must be set to the last operation sequence on the
routing, and FM_INTRAOPERATION_STEP_TYPE must be set to To Move.

TRANSACTION_UOM VarChar2(3) 1,2,3

WIP_ENTITY_ID Number 1,2,3

WIP_ENTITY_NAME VarChar2(240) 1,2,3

Table 10–1 Move Transaction Interface

WIP_MOVE_TXN_INTERFACE

Column Name Type Required Derived Optional
Derived if

Null
10-8 Oracle Manufacturing APIs and Open Interfaces Manual

Open Move Transaction Interface
■ LINE_CODE (Derived): this column is only required for Repetitive
manufacturing transactions. If the WIP_ENTITY specified is a Repetitive
assembly, the column is derived.

■ ORGANIZATION_CODE (Derived): this column is used to derive the
Organization ID. The Organization ID identifies the organization to which the
transaction belongs.

■ OVERCOMPLETION_PRIMARY_QTY (Derived): the OVERCOMPLETION_
PRIMARY_QUANTITY is derived from the OVERCOMPLETION_
TRANSACTION _QTY and OVERCOMPLETION_TRANSACTION_UOM.

■ OVERCOMPLETION_TRANSACTION_QTY (Conditionally Required): if you
intend to move and eventually complete more assemblies than exist at a routing
operation, the OVERCOMPLETION_TRANSACTION_QTY is required. It
cannot be derived.

■ PRIMARY_QUANTITY (Derived): this column is the transaction quantity in the
assembly’s primary unit of measure, calculated using TRANSACTION_
QUANTITY and TRANSACTION_UOM.

■ PROCESS_PHASE (Required): the column PROCESS_PHASE describes the
current processing phase of the transaction. The Move Transaction Worker
processes each transaction row through the following three phases:

1 Move Validation

2 Move Processing

3 Operation Backflush Setup

You should always load 1 (Move Validation)

■ PROCESS_STATUS (Required): this column control describes the transaction
state of the row and controls whether rows in the interface table are processed.
You should insert a row that you intend to be processed with a value of 1 (Yes).

1 Pending

2 Running

3 Error

You should always load 1 (Pending)

■ SCRAP_ACCOUNT_ID (Optional): if the TO_INTRAOPERATION_STEP_TYPE
is scrap and a scrap account is required, you must insert a SCRAP_ACCOUNT_
ID.
Oracle Work in Process Open Interfaces 10-9

Open Move Transaction Interface
■ SOURCE_CODE and SOURCE_LINE_ID (Optional): the SOURCE_CODE and
SOURCE_LINE_ID columns can be used to identify the source of your Move
transactions. For example, if you collect Move transaction information from a
bar code reader and a radio frequency device, you could use a different source
code to identify each collection method.

■ TO_INTRAOPERATION_STEP_TYPE (Required): if you leave TO_
INTRAOPERATION_STEP_TYPE blank, it is derived the same way as the TO_
OPERATION_SEQ_NUM column. If you are moving and returning assemblies,
you cannot specify the To Move intraoperation step of the last operation. If you
specify the Scrap intraoperation step, you must insert a SCRAP_ACCOUNT_ID
if the WIP Require Scrap Account parameter is set.

■ TO_OPERATION_SEQ_NUM (Required): in Move transactions, this column
represents the operation step into which you are moving the assemblies. If you
are moving assemblies and leave this column and the TO_INTRAOPERATION_
STEP_TYPE columns blank, both columns are derived. The TO_OPERATION_
SEQ_NUM is set to the next count point operation and the TO_
INTRAOPERATION_STEP_TYPE is set to Queue.

In Move and Return transactions, this column represents the operation that the
assemblies are being returned to from inventory. If you are moving and
returning assemblies and leave this column and the TO_INTRAOPERATION_
STEP_TYPE columns blank, both columns are also derived; however, the TO_
OPERATION_SEQ_NUM is set to the last count point operation. If the last
count point operation is the last operation sequence, the TO_OPERATION_
SEQ_NUM column is set to the value of the operation prior to the last count
point operation. Regardless, if there is no count point operation, and the TO_
OPERATION_SEQ_NUM is blank, the transaction will fail validation.

In Move and Completion transactions, you may leave this column and the TO_
INTRAOPERATION_STEP_TYPE column blank. If you do not wish to leave
them blank when performing a move and completion transaction, however,
you must set the values of this column and the TO_INTRAOPERATION_STEP_
TYPE column to their derived values: TO_OPERATION_SEQ_NUM must be set
to the last operation sequence on the routing, and TO_INTRAOPERATION_
STEP_TYPE must be set to To Move.

■ TRANSACTION_QUANTITY (Required): enter the transaction quantity in the
same unit of measure used in the transaction. The quantity should be positive
for receipts into inventory, and negative both for issues out of inventory and for
transfers. Enter a quantity of zero for Average Cost Update transactions.
10-10 Oracle Manufacturing APIs and Open Interfaces Manual

Open Move Transaction Interface
■ TRANSACTION_TYPE (Optional): This column indicates the type of Move
transaction. The options are:

1 Move

2 Move Completion

3 Move Return

If you leave this column blank (NULL) the transaction is processed like a Move
transaction. When TRANSACTION_TYPE is 2, the Move transaction processor
moves the assemblies to the last operation in the routing and completes the
units into the Completion subinventory/locator. When TRANSACTION_TYPE
is 3, the Move transaction processor returns the units from the Completion
subinventory/locator, and moves the assemblies to the last operation.

■ TRANSACTION_UOM (Required): you can enter the TRANSACTION_
QUANTITY in any unit of measure that has conversion rates defined for the
item’s primary unit of measure. Use this column to specify the transacted unit
of measure, even if it is the same as the primary unit of measure.

■ WIP_ENTITY_NAME (Required): this column represents the job name or
line/assembly association used to derive the WIP Entity ID.

Required Columns
■ For normal Move transactions, set TRANSACTION_TYPE to 1 or NULL. If you

leave TO_OPERATION_SEQ_NUM and TO_INTRAOPERATION_STEP_TYPE
blank, the data are defaulted. The TO_OPERATION_SEQ_NUM is defaulted to
the next count point operation in the routing, and the TO_INTRAOPERATION_
STEP_TYPE is defaulted to “Queue.” If there is no count point operation and
the TO_OPERATION_SEQ_NUM is blank, then the transaction fails validation.

■ For combination Move and Completion transactions, set TRANSACTION_TYPE to
2. When TRANSACTION_TYPE is 2, the Move transaction processor moves the
assemblies to the last operation in the routing and completes the units into the
Completion subinventory/locator.

■ For combination Move and Return transactions, set TRANSACTION_TYPE to 3.
When TRANSACTION_TYPE is 3, the Move transaction processor returns the
assemblies from the Completion subinventory/locator.

■ The column LINE_CODE is required for Repetitive manufacturing transactions
only.
Oracle Work in Process Open Interfaces 10-11

Open Move Transaction Interface
■ The column PROCESS_PHASE describes the current processing phase of the
transaction. The Move Transaction Worker processes each transaction row
through the following three phases. You should always load 1 (Move
Validation). The options are:

1 Move Validation

2 Move Processing

3 Operation Backflush Setup

■ The column PROCESS_STATUS contains the state of the transaction. You
should always load 1 (Pending):

1 Pending

2 Running

3 Error

Derived Data
The WIP Transaction Validation Engine program derives columns using foreign key
relationships within Oracle Manufacturing. The following derived columns are
control columns that the Move Transaction Worker uses to provide closed loop
transaction processing control and relational integrity throughout the interface
process:
■ CREATED_BY

■ GROUP_ID

■ LAST_UPDATE_LOGIN

■ LAST_UPDATED_BY

■ PROGRAM_APPLICATION_ID

■ PROGRAM_ID

■ PROGRAM_UPDATE_DATE

■ REQUEST_ID

■ TRANSACTION_ID

You can insert data into certain derived columns. The WIP Transaction Validation
Engine will validate your data, but not override it. You can insert data into the
following derived columns:
■ LINE_ID

■ ORGANIZATION_ID
10-12 Oracle Manufacturing APIs and Open Interfaces Manual

Open Move Transaction Interface
■ REASON_ID

■ WIP_ENTITY_ID

Optional Columns
■ The columns SOURCE_CODE and SOURCE_LINE_ID can be used to identify

the source of Move transactions. For example, if you collect Move transaction
information from a bar code reader and a radio frequency device, you could use
a different source code to identify each collection method.

■ The descriptive flexfield attributes in the columns ATTRIBUTE1 through
ATTRIBUTE15 map to ATTRIBUTE1 through ATTRIBUTE15 in WIP_MOVE_
TRANSACTIONS.

CST_COMP_SNAP_INTERFACE Table
The following table describes the CST_COMP_SNAP_ INTERFACE Interface:
Oracle Work in Process Open Interfaces 10-13

Open Move Transaction Interface
■ NEW_OPERATION_FLAG: indicates whether or not the operation was added
to the job after it was released.

■ OPERATION_SEQ_NUMBER: you can use this column to enter operation
sequence information. The operation sequence number is stored in the WIP_
OPERATIONS table. The value that you enter here must agree with the value in
the WIP_OPERATIONS table for this job.

■ PRIMARY_QUANTITY: you can use this column to indicate the number of
assemblies being completed or returned during a Move transaction.

■ QUANTITY_COMPLETED: indicates the number of assemblies completed at or
returned to the specified operation.

■ WIP_ENTITY_ID: the WIP_ENTITY_ID is the job number.

Table 10–2 Completion Cost Calculation Interface

Column Name Type Required Derived Optional

CREATED_BY Number x

CREATION_DATE Date x

LAST_UPDATE_DATE Date x

LAST_UPDATE_LOGIN Number x

LAST_UPDATED_BY Number x

NEW_OPERATION_FLAG Number x

OPERATION_SEQ_NUMBER Number x

PRIMARY_QUANTITY Number x

PRIOR_COMPLETION_QUANTITY Number x

PRIOR_SCRAP_QUANTITY Number x

PROGRAM_APPLICATION_ID Number x

PROGRAM_ID Number x

PROGRAM_UPDATE_DATE Date x

QUANTITY_COMPLETED Number x

REQUEST_ID Number x

TRANSACTION_INTERFACE_ ID Number x

WIP_ENTITY_ID Number x
10-14 Oracle Manufacturing APIs and Open Interfaces Manual

Open Move Transaction Interface
Validating Move Transactions
The Move Transaction Manager program groups the Move transaction rows in the
WIP_MOVE_TXN_INTERFACE and launches Move Transaction Workers to process
each group. The Move Transaction Worker program calls the WIP Transaction
Validation Engine program to validate and derive data for each of the required
columns. If data are entered in certain derived and optional columns, the WIP
Transaction Validation Engine program also validates these columns.

Before information is copied into CST_COMP_SNAP_TEMP, the information in the
CST_COMP_SNAP_INTERFACE table is validated. The TRANSACTION_
INTERFACE_ID is validated against the TRANSACTION_INTERFACE_ID in the
Move Transaction Interface. The WIP_ENTITY_ID must exist in WIP_
OPERATIONS, and the OPERATION_SEQ_NUM must match the OPERATION_
SEQ_NUM in WIP_OPERATIONS for the specified WIP_ENTITY_ID (job).

The system considers the dependencies among the columns in the interface table
and only processes columns once they are dependent upon pass validation or are
successfully derived. For example, the Move validator only validates WIP_
ENTITY_NAME after ORGANIZATION_ID has been derived. In turn,
ORGANIZATION_ID is only derived after ORGANIZATION_CODE has been
successfully validated.

The system creates rows in the WIP_TXN_INTERFACE_ERRORS table for each
failed validation. Each row in the WIP_TXN_INTERFACE_ERRORS table contains
the TRANSACTION_ID of the failed Move transaction, the name of the column that
failed validation, and a brief error message stating the cause of the validation
failure. Because of the dependencies between columns, the Move validator does not
try to validate a column when a column it is dependent upon fails validation. So
WIP_ENTITY_NAME is not validated if ORGANIZATION_CODE is invalid.

Columns that are independent of each other, however, can be validated regardless
of the status of other columns. For example, WIP_ENTITY_NAME is validated even
if REASON_NAME is invalid because WIP_ENTITY_NAME is not dependent on
REASON_NAME. Thus, the system can create multiple error records for each Move
transaction. You can then resolve multiple problems at the same time, thereby
increasing the speed and efficiency of your error resolution process.
Oracle Work in Process Open Interfaces 10-15

Open Move Transaction Interface
Resolving Failed Rows

Viewing Failed Rows
You view both pending and failed Move transaction rows in the WIP_MOVE_TXN_
INTERFACE table, using the Pending Move Transactions window. You also can
view errors associated with failed transactions by navigating to the Pending Move
Transaction Errors window. See: Processing Pending Move Transactions, Oracle
Work in Process User’s Guide.

Fixing Failed Rows
You update failed Move transaction rows in the WIP_MOVE_TXN_INTERFACE
table using the Pending Move Transactions window. Once you have made the
necessary changes, you place a check mark in the Resubmit check box and save
your work. The transaction row is then eligible to be picked up by the Move
Transaction Manager for revalidation and processing. You also can have the system
check the Resubmit check box for all queried rows, by selecting "Select All for
Resubmit" from the window’s Tools Menu. When you save your work, all of these
rows become eligible for revalidation and processing. You also can use the Pending
Move Transactions window to delete problem rows from the WIP_MOVE_TXN_
INTERFACE table. Deleting problem rows ensures that you do not have duplicate
data when you reload the corrected data from the source application.

You can re-query transactions that fail an initial validation, then resubmit them after
correcting the cause of the failure. For example, if the Move transaction failed
because the job status was Unreleased, you can use the Discrete Jobs window to
release the job then resubmit the pending Move transaction.

The Move processor creates resource cost transactions that are processed in the
background by the Cost Manager. You can also update or resubmit these
transactions using the Pending Move Transactions window. See: Processing Pending
Move Transactions, Oracle Work in Process User’s Guide
10-16 Oracle Manufacturing APIs and Open Interfaces Manual

Open Resource Transaction Interface
Open Resource Transaction Interface
You can use external data collection devices such as bar code readers, payroll
systems, and time card entry forms to collect resource and overhead transaction
data, then load the data into the Open Resource Transaction Interface for Oracle
Work in Process to process. The interface validates the data and marks any that are
invalid so that you can correct and resubmit them.

You can use this interface to perform many of the same functions that you can
perform from the Resource Transactions window. For example, you can:

■ Charge labor resources

■ Charge overhead resources

■ Charge outside processing resources

■ Add ad hoc resources

The following information describes how you can use the Resource Transaction
Interface to integrate other applications with Oracle Work in Process.

Functional Overview
You must write the load program that inserts a single row for each resource
transaction into the WIP_COST_TXN_INTERFACE table. The Cost Manager
(CMCCTM) then groups these transaction rows and launches a Cost Worker to
process each group.

The Cost Worker calls the WIP Transaction Validation Engine program which
validates the row, derives or defaults any additional columns, and inserts errors into
the WIP_TXN_INTERFACE_ERRORS table. The Cost Worker then performs the
actual resource transaction, writing the transaction to history. It allocates Repetitive
resource transactions to the correct Repetitive schedules, updates operation resource
balances, and deletes the successfully processed transaction row from the WIP_
COST_TXN_INTERFACE table.

ATTENTION: Non-person resources cannot be charged at an
actual usage rate or amount through the Resource
Transactions window. This feature is unique to the Resource
Transaction Interface.
Oracle Work in Process Open Interfaces 10-17

Open Resource Transaction Interface
You then use the Pending Resource Transactions window to review any pending
transactions and to update or delete transactions that failed processing due to
validation or other errors.

Setting Up the Resource Transaction Interface
You must perform all of the Oracle Bills of Materials, Costing, and Work in Process
setup activities required for resource and overhead transactions. In addition, you
must launch the Cost Manager to process resource transactions that you import
from external sources. See: Setting Up Resource Management, Oracle Work in Process
User’s Guide

Launching the Cost Manager
You launch the Cost Manager in Oracle Inventory’s Interface Managers window.
When you launch the Cost Manager, you specify the resubmit interval and the
number of transactions processed by each worker during each interval. After
polling the WIP_COST_TXN_INTERFACE table for eligible rows, the Cost Manager
creates the necessary number of Cost Workers to process the load. The use of
multiple transaction workers enables parallel transaction processing, which is
especially helpful when processing a large batch of transactions imported through
the Resource Transaction Interface. See: Transaction Managers, Oracle Inventory
User’s Guide.

Inserting Records into the WIP_COST_TXN_INTERFACE Table
You must insert your resource transactions into the WIP_COST_TXN_INTERFACE
table. The system validates each transaction row, derives any additional data as
necessary, then processes each transaction.

WIP_COST_TXN_INTERFACE Table Description
The following table describes the WIP_COST_TXN_INTERFACE:

Table 10–3 WIP Cost Transaction Interface

[WIP_COST_TXN_INTERFACE]

Column Name Type Required Derived Optional

ACCT_PERIOD_ID Number x

ACTIVITY_ID Number x x

ACTIVITY_NAME VarChar2(10) x
10-18 Oracle Manufacturing APIs and Open Interfaces Manual

Open Resource Transaction Interface
ACTUAL_RESOURCE_RATE Number x

ATTRIBUTE1 - ATTRIBUTE15 Varchar2(150) x

ATTRIBUTE_CATEGORY Varchar2(30) x

AUTOCHARGE_TYPE Number x

BASIS_TYPE Number x

CREATED_BY Number x

CREATED_BY_NAME VarChar2(100) x

CREATION_DATE Date x

CURRENCY_ACTUAL_
RESOURCE_RATE

Number x

CURRENCY_CODE VarChar2(15) x

CURRENCY_CONVERSION_
DATE

Date x x

CURRENCY_CONVERSION_RATE Number x

CURRENCY_CONVERSION_TYPE VarChar2(10) x

DEPARTMENT_CODE VarChar2(10) x

DEPARTMENT_ID Number x

DISTRIBUTION_ACCOUNT_ID Number x

EMPLOYEE_ID Number x x

EMPLOYEE_NUM VarChar2(30) x

ENTITY_TYPE Number x

GROUP_ID Number x

LAST_UPDATE_DATE Date x

LAST_UPDATE_LOGIN Number x

LAST_UPDATED_BY Number x

LAST_UPDATED_BY_NAME VarChar2(100) x

LINE_ID Number x

Table 10–3 WIP Cost Transaction Interface

[WIP_COST_TXN_INTERFACE]

Column Name Type Required Derived Optional
Oracle Work in Process Open Interfaces 10-19

Open Resource Transaction Interface
LINE_CODE VarChar2(10) x

MOVE_TRANSACTION_ID Number x

OPERATION_SEQ_NUM Number x

ORGANIZATION_CODE VarChar2(3) x

ORGANIZATION_ID Number x

PO_HEADER_ID Number x

PO_LINE_ID Number x

PRIMARY_ITEM_ID Number x

PRIMARY_QUANTITY Number x

PRIMARY_UOM VarChar2(3) x

PRIMARY_UOM_CLASS VarChar2(10) x

PROCESS_PHASE Number x

PROCESS_STATUS Number x

PROGRAM_APPLICATION_ID Number x

PROGRAM_ID Number x

PROGRAM_UPDATE_DATE Date x

RCV_TRANSACTION_ID Number x

REASON_ID Number x x

REASON_NAME VarChar2(30) x

RECEIVING_ACCOUNT_ID Number x

REFERENCE VarChar2(240) x

REPETITIVE_SCHEDULE_ID Number x

REQUEST_ID Number x

RESOURCE_CODE VarChar2(10) x x

RESOURCE_ID Number x

RESOURCE_SEQ_NUM Number x

Table 10–3 WIP Cost Transaction Interface

[WIP_COST_TXN_INTERFACE]

Column Name Type Required Derived Optional
10-20 Oracle Manufacturing APIs and Open Interfaces Manual

Open Resource Transaction Interface

You must include data in each of the required columns. Overall, very few columns
are required because the system derives or defaults many column values and/or
allows these column values to be optional.

Required Columns
■ The column LINE_CODE is required for Repetitive manufacturing transactions

only.

■ The column PROCESS_PHASE describes the current processing phase of the
transaction. The Cost Worker processes each transaction row through the
following two phases (you should always load 1 Resource Validation).

RESOURCE_TYPE Number x

SOURCE_CODE Varchar2(30) x

SOURCE_LINE_ID Number x

STANDARD_RATE_FLAG Number x

TRANSACTION_DATE Date x

TRANSACTION_ID Number x

TRANSACTION_QUANTITY Number x

TRANSACTION_TYPE Number x

TRANSACTION_UOM VarChar2(3) x

USAGE_RATE_OR_AMOUNT Number x

WIP_ENTITY_ID Number x x

WIP_ENTITY_NAME VarChar2(240) x

ATTENTION: You cannot load resource and overhead cost
transactions for Flow schedules.

NOTE: Do not put a value in the COMPLETION_TXN_ID column.

Table 10–3 WIP Cost Transaction Interface

[WIP_COST_TXN_INTERFACE]

Column Name Type Required Derived Optional
Oracle Work in Process Open Interfaces 10-21

Open Resource Transaction Interface
1 Resource Validation

2 Resource Processing

■ The column PROCESS_STATUS contains the state of the transaction. You
should always load 1 (Pending):

1 Pending

2 Running

3 Error

■ The column RESOURCE_ID column must be left NULL.

■ You set TRANSACTION_TYPE to:

1 for normal resource transactions

2 for overhead transactions

3 for outside processing transactions

Derived Data
The WIP Transaction Validation Engine program uses foreign key relationships
within Oracle Manufacturing to obtain the values for the Derived columns in the
above table.

The following Derived columns are control columns that the Cost Worker uses to
provide closed loop transaction processing control and relational integrity
throughout the interface process:

■ CREATED_BY

■ GROUP_ID

■ LAST_UPDATE_LOGIN

■ LAST_UPDATED_BY

■ PROGRAM_APPLICATION_ID

■ PROGRAM_ID

■ PROGRAM_UPDATE_DATE

■ REQUEST_ID

■ TRANSACTION_ID
10-22 Oracle Manufacturing APIs and Open Interfaces Manual

Open Resource Transaction Interface
You have the option to insert data into certain derived columns. The WIP
Transaction Validation Engine validates the data, but does not override them. You
can insert data into the following derived columns:

■ ACTIVITY_ID

■ EMPLOYEE_ID

■ LINE_ID

■ REASON_ID

■ WIP_ENTITY_ID

Optional Columns
■ The descriptive flexfield attributes in the columns ATTRIBUTE1 through

ATTRIBUTE15 map to ATTRIBUTE1 through ATTRIBUTE15 in WIP_
TRANSACTIONS

■ You can use the columns SOURCE_CODE and SOURCE_LINE_ID to identify
the source of your resource and overhead transactions. For example, if you
collect resource data from a bar code reader and a labor data entry form, you
can use a different source code to identify each collection method.

Costing Option
You can charge non-person resources (resources for which an EMPLOYEE_
NUMBER is not specified) at their actual rate by specifying the rate in the USAGE_
RATE_OR_AMOUNT column. If you do not specify an actual usage rate or amount,
the resource rate or amount is derived from the WIP_OPERATION_RESOURCES
table.

Similarly, you can charge person-type resources at an actual usage rate or amount. If
you do not specify a value in the USAGE_RATE_OR_AMOUNT column and the
STANDARD_RATE_FLAG is set to Yes (1), the resource rate or amount is derived
from the WIP_OPERATION_RESOURCES table. If no usage rate or amount is
specified for person type resources, and the STANDARD_RATE_FLAG is set to No
(2), the system uses the employee’s hourly labor rate from the WIP_EMPLOYEE_
LABOR_RATES table to derive the usage rate or amount. If an invalid employee ID
is specific, the record is not processed.

Outside Processing Currency Option
For outside processing resource transactions (PO Move and PO Receipt charge type
resources), you can specify both the currency and the resource to which your
Oracle Work in Process Open Interfaces 10-23

Open Resource Transaction Interface
transaction is charged. You specify the currency of the outside processing resource
transaction in the CURRENCY_CODE column. If this currency code is different
from the base currency of the organization that you are transacting the resource in,
then you must specify the currency conversion rate between the transaction
currency and your organization’s base currency. You can also specify the resource
rate for the transaction in the CURRENCY_ACTUAL_RESOURCE_RATE column.
This rate should be in the same currency entered in the CURRENCY_CODE
column. If you enter a value for the CURRENCY_ACTUAL_RESOURCE_RATE, the
resource is charged using this value rather than the standard rate of the resource.

Validating Resource Transactions
The Cost Manager program groups your resource transaction rows in WIP_COST_
TXN_INTERFACE and launches Cost Workers to process each group. The Cost
Worker program calls the WIP Transaction Validation Engine program to validate
and derive data for each of the derived columns. If data have been entered in
certain derived and optional columns, the WIP Transaction Validation Engine
program also validates these columns.

The system considers the dependencies among the columns in the interface table
and only processes columns once they are dependent upon pass validation or are
successfully derived. For example, the resource validator only validates WIP_
ENTITY_NAME after ORGANIZATION_ID has been validated against
ORGANIZATION_CODE.

The system creates rows in the WIP_TXN_INTERFACE_ERRORS table for each
failed validation. Each row in the WIP_TXN_INTERFACE_ERRORS table contains
the TRANSACTION_ID of the failed resource transaction, the name of the column
that failed validation, and a brief error message stating the cause of the validation
failure. Because of the dependencies between columns, the resource validator does
not try to validate a column if the column that it depends on fails validation. Thus,
WIP_ENTITY_NAME is not validated if ORGANIZATION_CODE is invalid.

Columns that are independent of each other can be validated regardless of the
status of the other columns. For example, WIP_ENTITY_NAME is validated even if
REASON_NAME is invalid because WIP_ENTITY_NAME is not dependent on
REASON_NAME. Thus, the system can create multiple error records for each
resource or overhead transaction. You can then resolve multiple problems at the
same time, thereby increasing the speed and efficiency of your error resolution
process.
10-24 Oracle Manufacturing APIs and Open Interfaces Manual

Work Order Interface
Resolving Failed Rows

Viewing Failed Rows
You can view both pending and failed resource and overhead transaction rows in
the WIP_COST_TXN_INTERFACE table using the Pending Resource Transactions
window. You also can view the errors associated with failed transactions by
navigating to the Pending Resource Transaction Errors window.

Fixing Failed Rows
You use the Pending Resource Transactions window to update failed resource and
overhead transaction rows in the WIP_COST_TXN_INTERFACE table. After you
make any necessary changes, you enter a check mark in the Resubmit check box
and save your work. The transaction row is then eligible to be picked up by the Cost
Manager for revalidation and processing. If you choose Select All for Resubmit from
the Tools Menu, the system checks the Resubmit check box for all queried rows.
When you save your work, all of these rows become eligible for revalidation and
processing.

You also use the Pending Resource Transactions window to delete problem rows
from the WIP_COST_TXN_INTERFACE table. Deleting these rows ensures that you
do not have duplicate data when you reload the corrected data from the source
application.

You can query again transactions that fail initial validation, then resubmit them
after you correct the cause of the failure. For example, if the resource transaction
fails because the status of the job is Unreleased, you can use the Discrete Jobs
window to release the job, then resubmit the pending resource transaction. See:
Processing Pending Resource Transactions, Oracle Work in Process User’s Guide.

Work Order Interface
The Work Order Interface enables you to import Discrete job and Repetitive
schedule header information, and Discrete job operations, material, resource, and
scheduling information from any source, using a single process.

You can import:

■ planned orders for new Discrete jobs,

■ Discrete job operations, components, resources, resource usage, and scheduling
details,
Oracle Work in Process Open Interfaces 10-25

Work Order Interface
■ update and reschedule recommendations for existing Discrete jobs, and

■ suggested Repetitive schedules.

Work in Process then uses this information to automatically create new Discrete jobs
and pending Repetitive Schedules, or to update existing Discrete jobs.

The Work Order Interface consists of two tables: the WIP_JOB_SCHEDULE_
INTERFACE table (Open Job and Schedule Interface table), and the WIP_JOB_DTLS_
INTERFACE table (WIP Job Details Interface table). You load header information into
the WIP_JOB_SCHEDULE_INTERFACE table, and operations, components,
resources, and scheduling information into the WIP_JOB_DTLS_INTERFACE table.

Major features of the Work Order Interface are:
■ Record insertion from any source: you can insert records into the Work

Order Interface from any source including bar code readers, automated test
equipment, cell controllers, and other manufacturing execution systems,
planning systems, order entry systems, finite scheduling packages, production
line sequencing programs, spreadsheets, and even custom entry forms. If, for
example, your plant directly feeds to your customer’s plant, you can take
demands directly from your customer rather than waiting for the next MRP
run, thus reducing response time and eliminating unnecessary overhead.

■ Automatic Discrete job creation from Oracle Advanced Planning and
Scheduling: if you have installed Oracle Advanced Planning and Scheduling
(APS), you can use its High Level Scheduling Engine to schedule Work in
Process job resources for planned work orders, then import the work orders into
Work in Process to create new Discrete jobs or Repetitive schedules, or to
update existing Discrete jobs. APS passes the job, its bill of material, routing,
components, resources, and resource usage, start and end times to the
appropriate Work Order Interface table.

■ Explosion option for bills of material and routings: you can turn on or off
the bill of material (BOM) and the routing explosion feature when you load
Discrete jobs or Repetitive schedules. If you turn the option on, the system uses
the standard system-generated BOM and routing; if you turn the option off, you
must provide a custom BOM and routing and enter them manually.

NOTE: The WIP_SCHEDULING_INTERFACE table is now
merged with the WIP_JOB_DTLS_INTERFACE table and thus no
longer exists.
10-26 Oracle Manufacturing APIs and Open Interfaces Manual

Work Order Interface
■ Job schedule at creation time: you can schedule a Discrete job or Repetitive
schedule at the time that you create it. If you choose not to schedule it at that
time, then the schedule dates are imported from the Job Details Interface table.

■ Single process import of sets of material or resource requirements: you
can change specific sets of operations, components, and resources in a single
process.

■ Import of operation, material, resource, and resource usage details: you
can add or change operations, components, operation resources, and update
(replaces existing resource usage with the resource usage in the table) operation
resource usage on Discrete jobs, as indicated on the following table:

Table 10–4 Features of the Work Order Interface

See Also
Overview of Reports and Programs, Oracle Applications User’s Guide

NEW DISCRETE JOB EXISTING DISCRETE JOB

Add Header Currently supported Not applicable

Add Operations New Feature New Feature

Change Operations New Feature New Feature

Delete Operations Not supported Not supported

Add Components New Feature Currently supported

Change Components New Feature Currently supported

Delete Components Not supported if explosion flag is No Currently supported

Add Operation Resources New Feature Currently supported

Change Operation
Resources

New Feature Currently supported

Delete Operation Resources Not supported if explosion flag is No Currently supported

Update* Operation
Resource Usage

New Feature New Feature

*Replaces existing operation resource usage with the resource usage entered in the interface table
Oracle Work in Process Open Interfaces 10-27

Work Order Interface
Functional Overview
Figure 10-2 depicts the types of inputs that the Work Order Interface supports as
well as their corresponding Work in Process Discrete job or Repetitive schedule
output.

Figure 10–2 Work Order Interface Input and Output

You insert records from third party sources into the Work Order Interface tables by:

■ Writing a PL/SQL program or SQL script that maps your source files to the
columns in the Work Order Interface tables

■ Using a third party program that can map your source files to the interface
tables

■ Using Oracle Advanced Planning and Scheduling’s High Level Scheduling
Engine to schedule planned and unreleased work orders and import them into
Work in Process.

■ Using Oracle Master Scheduling/MRP’s Planner Workbench to automatically
import planned work orders into Work in Process (see: Overview of the Planner
Workbench, Implementing Planning Recommendations, and Netting Supply
and Demand, Oracle Master Scheduling/MRP User’s Guide, R11i).
10-28 Oracle Manufacturing APIs and Open Interfaces Manual

Work Order Interface
When you insert records into the Work Order Interface, you load header
information into the WIP_JOB_SCHEDULE_INTERFACE table, and operations,
components, resources, resource usage, and scheduling information into the WIP_
JOB_DTLS_INTERFACE table. You then use the Import Jobs and Schedules window
to launch the WIP Mass Load (WICMLX) concurrent program, which validates
records in the Work Order Interface table and imports them into Work in Process.

The records are processed in batches identified by a group identifier (GROUP_ID)
that you assign them when you launch the WIP Mass Load program. The imported
records are then automatically implemented as new or updated Discrete jobs, or
pending Repetitive schedules. Jobs are automatically scheduled, unless you set the
flag for the scheduling method (SCHEDULING_METHOD) to "manual" or the flag
that determines whether the bill of material and routing are exploded (ALLOW_
EXPLOSION) to "No" before importing the records.

The WIP Mass Load program does all of the following:

■ Validates the data in the interface tables

■ Derives values for additional columns

■ Creates new Discrete jobs, updates existing jobs, and creates pending Repetitive
schedules

■ Optionally launches the Job and Schedule Interface Report (WIPMLINT), which
lists both successfully processed and failed records.

■ Deletes successfully processed records from the interface table

See Also
Work Order Interface Report, Oracle Work in Process User’s Guide

Importing Jobs and Schedules, Oracle Work in Process User’s Guide

Processing Pending Jobs and Schedules, Oracle Work in Process User’s Guide

Setting Up the Work Order Interface
The Work Order Interface requires no additional setup steps beyond those already
required to set up Discrete and Repetitive manufacturing. All processing is initiated
through the Import Jobs and Schedules window. The concurrent Import Jobs and
Schedules Request that you submit through this window is managed by the
Standard Manager, which thus must be set up and running.
Oracle Work in Process Open Interfaces 10-29

Work Order Interface
See Also
Discrete Manufacturing Parameter, Oracle Work in Process User’s Guide

Repetitive Manufacturing Parameters, Oracle Work in Process User’s Guide

Inserting Records Into the Work Order Interface
In order to insert records (rows) from your source system into the Work Order
Interface tables, you must write a PL/SQL program, a SQL script, or use a third
party program. The following sections provide you with the information that you
need to map your source files to the columns in the Work Order Interface tables:

Creating New Work Orders
When you insert records into the Work Order Interface to create new or update
existing Discrete jobs, you have the option to insert header information only, detail
information only, or both header and detail information. You also can insert header
information to create pending Repetitive schedules.

You insert header information into the WIP_JOB_SCHEDULE_INTERFACE table,
and operation, material, resource, and scheduling information into the WIP_JOB_
DTLS_INTERFACE table. Once you load the job header, the WIP Mass Load
program loads detail records from the WIP_JOB_DTLS_INTERFACE table that
match the header record.

You can create a new work order with or without exploding the bill of material
(BOM) and routing. If you choose NOT to explode the BOM and routing, you must
manually enter the job’s components, operations, resources, and scheduling
information in the WIP_JOB_DTLS_INTERFACE table. (Note: if you want to change
the scheduled start or completion date without the explosion feature, then you must
provide both the FIRST_UNIT_START_DATE and the LAST_UNIT_
COMPLETION_DATE.) If you choose to explode the BOM and routing, Work in
Process uses the standard system BOM and routing.

Inserting header information: When you insert header information into the WIP_JOB_
SCHEDULE_INTERFACE table, you set the appropriate LOAD_TYPE to either 1 for
standard Discrete jobs, 2 for Repetitive schedules, or 4 for non-standard Discrete
jobs.

Inserting job or schedule details: When you insert operation, component, resource,
and scheduling details into the WIP_JOB_DTLS_INTERFACE table, you set the
LOAD_TYPE to either 1 (load/update resources), 2 (load/update components), 3
(load/update operations), or 4 (load resource usage).
10-30 Oracle Manufacturing APIs and Open Interfaces Manual

Work Order Interface
Updating Existing Work Orders
You can insert header information only, detail information only, or both header and
detail information into the Work Order Interface tables, as follows:

■ Updating header information only: To update work orders, you load the data
into the WIP_JOB_SCHEDULE_INTERFACE table, and set the LOAD_TYPE of
the table to 3 (update Discrete job). The work order is identified by its name if it
is a Discrete job, and by its assembly or start date if it is a Repetitive schedule.

■ Updating detail information only: To update detail records, you load the data
into the WIP_JOB_DTLS_INTERFACE table. The PARENT_HEADER_ID must
be null, and you must provide the WIP_ENTITY_ID and ORGANIZATION_ID.
You can add or change operations, and add, change, or delete components and
operation resources on Discrete jobs. Deleting a resource also deletes all of its
resource usage information. You also can update Discrete job resource usage
sets, which deletes the existing resource usage and replaces it with the resource
usage in the table.

■ Updating both header and detail information: load the data into both the
WIP_JOB_SCHEDULE INTERFACE and WIP_JOB_DTLS_INTERFACE tables.

The following sections describe the columns in each of the two Work Order
Interface tables:

WIP_JOB_SCHEDULE_INTERFACE Table
The following table lists the columns in the WIP_JOB_SCHEDULE_ INTERFACE
table and provides their load/update type and validation information:

Table 10–5 Work Order Interface: WIP_JOB_SCHEDULE_INTERFACETable

Legend

Note: The numbers under the Required, Optional/Derived if Null, Optional, and
Derived or Ignored columns indicate that the column is used to do the following:

Number Load/Update Type Description

1 Create Standard Discrete Job

2 Create Pending Repetitive Schedule

3 Update Standard or Non-Standard Discrete Job

4 Create Non-Standard Discrete Job
Oracle Work in Process Open Interfaces 10-31

Work Order Interface
Work Order Interface: WIP_JOB_SCHEDULE_INTERFACE Table

Column Type Required

Optional/
Derived if
Null Optional

Derived
or
Ignored Additional Information

ALLOW_
EXPLOSION

Varchar2
(1)

1,3,4 If set to "N," must provide
requirements manually; any
values other than "N" or "n" are
assumed to be "Y."

ALTERNATE_BOM_
DESIGNATOR

Varchar2
(10)

1,4 2,3 Copied to WIP_DISCRETE_JOBS
on creation. Ignored for Repetitive
schedules and during reschedule.
Used by scheduler and exploder.
If Alternate Routing not defined
for this assembly or reference, or if
routing type or assembly type is 1,
issues an error. Issues a warning if
NOT NULL (required).

ALTERNATE_
ROUTING_
DESIGNATOR

Varchar2
(10)

1,4 2,3 See ALTERNATE_BOM_
DESIGNATOR.

ATTRIBUTE1 -
ATTRIBUTE15

Varchar2
(150)

1,2,3,4 Copied to WIP_DISCRETE_JOBS
and WIP_REPETITIVE_
SCHEDULES on creation.
Updates any NOT NULL
segments from interface table.

ATTRIBUTE_
CATEGORY

Varchar2
(30)

1,2,3,4 Descriptive flexfield structure
defining column. See
ATTRIBUTE1 - ATTRIBUTE15.

BOM_REFERENCE_
ID

Number 4 1,2,3 If LOAD_TYPE = 1, values
ignored and warning issued. Must
exist in MTL_SYSTEM_ITEMS for
your organization, and must have
MTL_SYSTEM_ITEMS flags set
correctly for WIP.

BOM_REVISION Number 1,2,4 3 If NULL, derived from
REVISION_DATE. If NOT NULL,
revision must be valid for
Assembly or Reference. If both
REVISION and REVISION_DATE
entered, must match. Ignored on
reschedule; issues warning.
10-32 Oracle Manufacturing APIs and Open Interfaces Manual

Work Order Interface
BOM_REVISION_
DATE

Date 1,2,4 3 Dates must correspond to valid
revisions if entered. If NULL and
REVISION NULL, defaulted to
greater: start_date, or SYSDATE. If
NULL and REVISION NOT
NULL, defaults to high revision
date for REVISION. If both
REVISION and REVISION_DATE
entered, must match. Ignored on
reschedule; issues warning.

BUILD_SEQUENCE Number 1,3,4 2 Schedule group ID and build
sequence combination must be
unique across all jobs. Cannot
have build sequence unless have
schedule group ID. Ignored for
Repetitive. If NOT NULL, issues
warning. Defers errors on records
that fail validation.

CLASS_CODE Varchar2
(10)

4 1 2,3 If NULL on standard job creation,
uses default class from WIP
parameters. Ignored on
reschedule and derived for
Repetitive schedules. If NOT
NULL, issues warning. Defers
errors on records that fail
validation.

COMPLETION_
LOCATOR_ID

Number 1,4 2,3 Default completion locator for
Discrete job.

COMPLETION_
LOCATOR_
SEGMENTS

Varchar2
(10)

1,4 2,3

COMPLETION_
SUBINVENTORY

Varchar2
(10)

1,4 2,3 Default Completion Subinventory
for the Discrete job.

CREATED_BY Number 1,2,3,4 Standard Who column. See
Required Columns.

CREATED_BY_
NAME

Varchar2
(100)

1,2,3,4 Standard Who column. See
Required Columns.

CREATION_DATE Date 1,2,3,4 Has a NOT NULL restriction; not
loaded into the table; default is
SYSDATE.

Work Order Interface: WIP_JOB_SCHEDULE_INTERFACE Table

Column Type Required

Optional/
Derived if
Null Optional

Derived
or
Ignored Additional Information
Oracle Work in Process Open Interfaces 10-33

Work Order Interface
DAILY_
PRODUCTION_RATE

Number 2 1,3,4 Ignored for Discrete jobs; warning
given if NOT NULL.

DEMAND_CLASS Varchar2
(30)

1,2,4 3 Copied to WIP_DISCRETE_JOBS
and WIP_REPETITIVE_
SCHEDULES on creation. Ignored
on job reschedule.

DESCRIPTION Varchar2
(240)

1,2,4 3 Copied to WIP_DISCRETE_JOBS,
WIP_REPETITIVE_SCHEDULES,
and WIP_ENTITIES on creation. If
NULL, defaulted to generic
description including date mass
loaded. Derived for Repetitive
schedules. Warning given if NOT
NULL.

DUE_DATE Date 1,3,4 Date job to be completed (could be
different from the scheduled
completion date); also date used
when rescheduling jobs. Default is
scheduled completion date.
Copied to WIP_DISCRETE_JOBS
on creation and update. Ignored
by Repetitive schedules.

FIRM_PLANNED_
FLAG

Number 1,2,4 3 Copied to WIP_DISCRETE_JOBS
or WIP_REPETITIVE_
SCHEDULES on creation. If
column NULL, value defaulted.
Value must be 1, 2 (Y or N); error
occurs if value is 1 and creating
nonstandard job. Must be NOT
NULL on reschedule. Errors on
records that fail validation are
deferred.

FIRST_UNIT_
COMPLETION_
DATE

Date 1,2,4 3 See FIRST_UNIT_START_DATE.

Work Order Interface: WIP_JOB_SCHEDULE_INTERFACE Table

Column Type Required

Optional/
Derived if
Null Optional

Derived
or
Ignored Additional Information
10-34 Oracle Manufacturing APIs and Open Interfaces Manual

Work Order Interface
FIRST_UNIT_START_
DATE

Date 1,2,4 3 If SCHEDULING _METHOD is
manual, first unit start date
(FUSD) must be less than or equal
to last unit completion date
(LUCD). If SCHEDULING_
METHOD is routing-based, then
you must enter FUSD or LUCD.
Dates entered must exist in BOM_
CALENDAR_DATES.

GROUP_ID Number 1,2,3,4 Identifies a batch of records for
processing; when loading detail
records, this column cannot be
NULL (see Control Columns).

HEADER_ID Number 1,2,3,4 Identifies individual jobs in a
given group and ties a header
record to a set of detail records.
Cannot be NULL when loading
detail records. Ignored by
Repetitive schedules.

INTERFACE_ID Number 1,2,3,4 Number generated by Work in
Process to uniquely identify each
record in the table; also links
interface records with error
records. Must be NULL (values
are entered when record picked
up by WIP Mass Load program).

JOB_NAME Varchar2
(240)

1,4 2,3 Copied to WIP_DISCRETE_JOBS
on creation. If NULL on job
creation, defaulted using prefix
and sequence. Either ID or Name
must be entered on reschedule; if
both, must match. Job Name must
be unique within organization.
Ignored by Repetitive schedules.

KANBAN_CARD_ID Number 1,2,3,4 Only used if Oracle Inventory
inserts replenishment kanban
signals into the table; otherwise
ignored, thus do not include.

Work Order Interface: WIP_JOB_SCHEDULE_INTERFACE Table

Column Type Required

Optional/
Derived if
Null Optional

Derived
or
Ignored Additional Information
Oracle Work in Process Open Interfaces 10-35

Work Order Interface
LAST_UNIT_
COMPLETION_
DATE

Date 1,2,4 3 If SCHEDULING _METHOD is
manual, first unit start date
(FUSD) must be less than or equal
to last unit completion date
(LUCD). If SCHEDULING_
METHOD is routing-based, then
you must enter FUSD or LUCD.
Dates entered must exist in BOM_
CALENDAR_DATES.

LAST_UNIT_START_
DATE

Date 1,2,4 3 See LAST_UNIT_COMPLETION_
DATE.

LAST_UPDATE_
DATE

Date 1,2,3,4 Has a NOT NULL restriction; is
not loaded into interface table;
SYSDATE is used.

LAST_UPDATE_
LOGIN

Number 1,2,3,4 Standard Who column. Load the
value for this column in WIP_
DISCRETE_JOBS.

LAST_UPDATED_BY Number 1,2,3,4 Standard Who column. See
Required Columns.

LAST_UPDATED_
BY_NAME

Varchar2
(100)

1,2,3,4 Standard Who column. See
Required Columns.

LINE_CODE Varchar2
(10)

2 1,3,4 If both LINE_ID and LINE_CODE
entered, name is ignored and
warning given. If only name
entered, ID is derived from WIP_
LINES. ID must exist and be
active in WIP_LINES in correct
organization. If entered or derived
ID is NULL, error occurs. Defers
errors on records that fail
validation.

LINE_ID Number 2 1,3,4 See LINE_CODE.

Work Order Interface: WIP_JOB_SCHEDULE_INTERFACE Table

Column Type Required

Optional/
Derived if
Null Optional

Derived
or
Ignored Additional Information
10-36 Oracle Manufacturing APIs and Open Interfaces Manual

Work Order Interface
LOAD_TYPE Number 1,2,3,4 Indicates whether current
interface record is planned order,
job update recommendation, or
suggested Repetitive schedule.
Must assign one of these values or
error occurs.

1 Create standard Discrete job

2 Create Pending Repetitive
schedule

3 Update standard or
non-standard Discrete job

4 Create non-standard Discrete
Job

See Control Columns for more
information.

LOT_NUMBER Varchar2
(30)

1,4 3 2 If assembly under lot control,
copied to WIP_DISCRETE_JOBS
on creation. If NULL on job
creation and parameter = Based
on Job, defaults from job name; if
parameter = Inventory, defaults
from Inventory. Interface value
ignored for Repetitive schedules
during reschedule and when
assembly not under lot control.

NET_QUANTITY Number 1,3,4 2 Copied to WIP_DISCRETE_JOBS
on creation or reschedule.
Rounded to six places. Must be
greater than or equal to zero; must
be less than or equal to START_
QUANTITY. Must be zero for
nonstandard jobs without an
assembly. If NULL on job
reschedule, assumes quantity
unchanged. Ignored for Repetitive
schedules; warning given if NOT
NULL. Defers errors on records
that fail validation.

Work Order Interface: WIP_JOB_SCHEDULE_INTERFACE Table

Column Type Required

Optional/
Derived if
Null Optional

Derived
or
Ignored Additional Information
Oracle Work in Process Open Interfaces 10-37

Work Order Interface
ORGANIZATION_
CODE

See Required Columns. When
rescheduling Discrete jobs,
ORGANIZATION_CODE,
ORGANIZATION_ID, and WIP_
ENTITY_ID, WIP_ENTITY_
NAME must match record in
WIP_DISCRETE_JOBS table or
error message issued.

ORGANIZATION_ID Identifier for the organization. See
ORGANIZATION_CODE and
Required Columns.

OVERCOMPLETION
_TOLERANCE_TYPE

Number 1,2,3,4

OVERCOMPLETION
TOLERANCE
VALUE

Number 1,2,3,4

PRIMARY_ITEM_ID Number 1, 2 4 3 Required for standard jobs and
repetitive schedules. Ignored on
reschedule (warning issued).
BUILD_IN_WIP_FLAG must be Y,
PICK_COMPONENTS _FLAG
and ENG_ITEM_FLAG must be
N.

PRIORITY Number 1,3,4 Processing order of the work
order being imported; cannot be
less than zero. Copied to WIP_
DISCRETE_JOBS on creation and
update. Ignored by Repetitive
schedules.

PROCESS_PHASE Number 1,2,3,4 See Control Columns.

PROCESS_STATUS Number 1,2,3,4 See Control Columns.

PROCESS_TYPE This column has a NOT NULL
restriction. Must be set to running,
error, or completed, otherwise
error will occur (pending not
used).

Work Order Interface: WIP_JOB_SCHEDULE_INTERFACE Table

Column Type Required

Optional/
Derived if
Null Optional

Derived
or
Ignored Additional Information
10-38 Oracle Manufacturing APIs and Open Interfaces Manual

Work Order Interface
PROCESSING_
WORK_DAYS

Number 2 1,3,4 Ignored for Discrete jobs; warning
given if NOT NULL.

PROGRAM_
APPLICATION_ID

Number 1,2,3,4 Extended Who column. See
Derived or Ignored Columns.

PROGRAM_ID Number 1,2,3,4 Extended Who column. See
Derived or Ignored Columns.

PROGRAM_
UPDATE_DATE

Date 1,2,3,4 Extended Who column.

PROJECT_ID Number 3 1, 4 2 Project reference for the Discrete
job.

PROJECT_NUMBER Varchar2
(25)

3 1, 4 2 Project reference for the Discrete
job.

REQUEST_ID Number 1,2,3,4 Extended Who column.See
Derived or Ignored Columns.

REPETITIVE_
SCHEDULE_ID

Number 1,2,3,4 Identifier for a Repetitive
schedule. Must be unique across
all organizations. Use sequence to
generate if NULL. Warning issued
if NOT NULL. Ignored for
Discrete jobs.

ROUTING_
REFERENCE_ID

Number 4 1,2,3 If LOAD_TYPE = 1, values
ignored and warning issued. Must
exist in MTL_SYSTEM_ITEMS for
your organization, and must have
MTL_SYSTEM_ITEMS flag set
correctly for WIP.

ROUTING_
REVISION

Number 1,2,4 3 Derived from REVISION_DATE if
NULL. If NOT NULL, revision
must be valid for Assembly or
Reference. If both REVISION and
REVISION_DATE entered, must
match. Ignored on reschedule;
warning issued.

Work Order Interface: WIP_JOB_SCHEDULE_INTERFACE Table

Column Type Required

Optional/
Derived if
Null Optional

Derived
or
Ignored Additional Information
Oracle Work in Process Open Interfaces 10-39

Work Order Interface
ROUTING_
REVISION_DATE

Date 1,2,4 3 Dates must correspond to valid
revisions if entered. If NULL and
REVISION NULL, defaulted to
greater: start_date, or SYSDATE. If
NULL and REVISION NOT
NULL, default to high revision
date for REVISION. If both
REVISION and REVISION_DATE
entered, must match. Ignored on
reschedule; warning issued.

SCHEDULE_
GROUP_ID

Number 1,3,4 2 If both SCHEDULE_GROUP_
NAME and SCHEDULE_
GROUP_ID are entered, name
ignored and warning issued. If
only name entered, ID derived
from WIP_SCHEDULE_GROUPS.
If entered or derived ID is NULL,
error occurs. ID must exist and be
active in WIP_SCHEDULE_
GROUPS in correct organization.
Ignored for Repetitive schedules.
If NOT NULL, warning issued.
Defers errors on records that fail
validation.

SCHEDULE_
GROUP_NAME

Varchar2
(240)

1,3,4 2 See SCHEDULE_GROUP_ID.

SCHEDULING_
METHOD

Number 1,3,4 2 Valid values are: Routing-Based,
Item Lead Time, Manual. If NULL,
default is Routing-Based; if
Repetitive, must be
Routing-Based; if Routing-Based,
all operation and resource dates
set to start date.

SOURCE_CODE Varchar2
(30)

1,2,3,4 Values copied into WIP_
DISCRETE_JOBS during Discrete
mass load. If NOT NULL, enter
the value for this column when
rescheduling Discrete jobs and
Repetitive schedules.

SOURCE_LINE_ID Number 1,2,3,4 See SOURCE_CODE.

Work Order Interface: WIP_JOB_SCHEDULE_INTERFACE Table

Column Type Required

Optional/
Derived if
Null Optional

Derived
or
Ignored Additional Information
10-40 Oracle Manufacturing APIs and Open Interfaces Manual

Work Order Interface
START_QUANTITY Number 1,3,4 2 Copied to WIP_DISCRETE_JOBS
on creation or reschedule;
rounded to six places. Error issued
if NULL on job creation. Must be
greater than zero when creating
standard Discrete jobs or greater
than or equal to zero when
creating nonstandard jobs. If
NULL when rescheduling,
assumes quantity unchanged.
Ignored for Repetitive schedules.
Warns if NOT NULL. Defers
errors on records that fail
validation.

STATUS_TYPE Number 1,4 3 2 Must be one of the following:

1 Unreleased

2 Released

6 On Hold

TASK_ID Number 3 1, 4 2 See Optional/Derived if Null
Columns.

TASK_NUMBER Varchar2
(25)

3 1, 4 2 See Optional/Derived if Null
Columns.

Work Order Interface: WIP_JOB_SCHEDULE_INTERFACE Table

Column Type Required

Optional/
Derived if
Null Optional

Derived
or
Ignored Additional Information
Oracle Work in Process Open Interfaces 10-41

Work Order Interface
■ ALLOW_EXPLOSION: determines whether the system uses the standard bill of
material (BOM) and routing or a custom BOM and routing that you supply. If
this flag is set to “N” or "n," you must manually provide a custom BOM and
routing; otherwise the system uses the standard BOM and routing.

■ GROUP_ID: identifies the batch of detail records loaded. It is used to group
records (rows) in the interface table for processing. Since Work in Process only
processes records with a GROUP_ID, you must assign the records a GROUP_ID
when you launch the WIP Mass Load program. You use the WIP_JOB_
SCHEDULE_INTERFACE_S sequence to generate a new, unique GROUP_ID
for each batch of rows that you insert into the WIP_JOB_SCHEDULE_
INTERFACE table. Work in Process does NOT process records that have a
NULL GROUP_ID. If GROUP_ID is NULL, the record stays in the interface
table as a reference.

■ HEADER_ID: identifies individual jobs in a given group, and ties a header
record to a set of detail records.

■ INTERFACE_ID: identifies each work order that is loaded

■ LOAD_TYPE: determines whether the current interface record is a planned
order, update recommendation, or suggested Repetitive schedule. It also
controls whether interface table columns are Required, Optional,
Optional/Derived if Null, or Derived or Ignored, and has a NOT NULL
restriction. You must assign one of the following possible values or an error
occurs:

■ 1 Create Standard Discrete Job

■ 2 Create Pending Repetitive Schedule

■ 3 Update Standard or Non-Standard Discrete Job

■ 4 Create Non-Standard Discrete Job

■ PROCESS_PHASE: together with PROCESS_STATUS, the PROCESS_PHASE
column indicates the current status of each record. Possible PROCESS_PHASE
values include:

■ 2 Validation

■ 3 Explosion

■ 4 Completion

■ 5 Creation
Oracle Work in Process Open Interfaces 10-43

Work Order Interface
■ PROCESS_STATUS: together with PROCESS_PHASE, the PROCESS_STATUS
column indicates the current status of each record. Possible PROCESS_STATUS
values include:

■ 1 Pending

■ 2 Running

■ 3 Error

■ 4 Complete

■ 5 Warning

Records should be inserted into the WIP_JOB_SCHEDULE_INTERFACE table
with a PROCESS_PHASE = 2 (Validation) and a PROCESS_STATUS = 1
(Pending). These values indicate that the record is ready to be processed by the
WIP Mass Load program. If the program fails at any stage when processing a
record, the PROCESS_STATUS of that record is set to 3 (Error). Records that
load successfully have their PROCESS_STATUS set to 4 (Complete). If a record
fails to load because, for example, the WIP Mass Load program is abnormally
terminated, the PROCESS_STATUS of the record is set to 5 (Warning). To
resubmit these records, you set the PROCESS_STATUS of status 5 (Warning)
records to 1 (Pending), and set the PROCESS_PHASE to 2 (Validation), then
resubmit them.

Required Columns
You must specify values for columns in this category. If you do not enter a required
value, the WIP Mass Load program does not process the record and inserts an error
record in the WIP_INTERFACE_ERRORS table. If you specify values for both the
name and the ID, the value for the ID is used and the value for the name is ignored
during validation. If the entered or derived ID is NULL, you receive an error. Errors
on records that fail validation are deferred.

■ CREATED _BY, CREATED_BY_NAME, and LAST_UPDATED_BY, LAST_
UPDATED_BY_NAME:
10-44 Oracle Manufacturing APIs and Open Interfaces Manual

Work Order Interface
Both Work in Process and Oracle Inventory parameters must be defined for the
organization. When rescheduling Discrete jobs, the ORGANIZATION_CODE,
ORGANIZATION_ID, WIP_ENTITY_ID, and WIP_ENTITY_NAME must
match the record in the WIP_DISCRETE_JOBS table or you will receive an error
message.

Optional/Derived if Null Columns
You have the option to specify values for columns that the WIP Mass Load program
will use. If you leave Optional/Derived if Null columns blank (NULL), the program
uses an internal default value instead. For example, for records with a LOAD_TYPE
of 1 (Create Discrete Jobs), the STATUS_TYPE field is Optional/Derived if Null. If
you specify a value, that value is used when the job is created. If you do not specify
a value, the value defaults to 1 (Unreleased). In general, default values are derived
in the same way that they are derived when you manually enter Discrete jobs and
Repetitive schedules in the Discrete Jobs and Repetitive Schedules windows. (See:
Defining Discrete Jobs Manually and Defining Repetitive Schedules Manually,
Oracle Work in Process User’s Guide.)

For some optional columns (SCHEDULE_GROUP_ID, SCHEDULE_GROUP_
NAME, PROJECT_ID, PROJECT_NUMBER, and TASK_ID, TASK_NUMBER), you
can use either the name or the underlying ID. If you specify values for both the
name and the ID, the value for the ID is used and the value for the name is ignored.

■ PROJECT_ID, PROJECT_NUMBER and TASK_ID, TASK_NUMBER: these
columns are interdependent. When loading records that update existing jobs
(Load/Update Type #3), the following rules are applied.

Task = Null and
Project = Null

If the job has a project and task reference, the values in these fields
are not overwritten, and thus remain unchanged

Project < > Null
and Task = Null
Oracle Work in Process Open Interfaces 10-45

Work Order Interface
in the interface table both when creating and rescheduling Discrete jobs and
Repetitive schedules.

WIP_JOB_DTLS_INTERFACE Table
When you load operations and detailed component, resource, and scheduling
information for Discrete jobs from your source files into Work in Process, it loads
the data in batches, based on their GROUP_ID. The table’s PARENT_HEADER_ID
column connects the work order details back to the header information in the Open
Job and Schedule Interface. You must set the LOAD_TYPE to one of the following:

■ 1 for loading a resource

■ 2 for loading a component

■ 3 for loading an operation

■ 4 for loading multiple resource usage

You can add or change Discrete job operations, components, and resources. You also
can delete operation resources and components on existing Discrete jobs, however,
you can only delete them on new Discrete jobs if the ALLOW_EXPLOSION flag is
set to Yes (indicates that you are using the standard system BOM and routing). If
you delete operation resources, you need to provide the value for OPERATION_
SEQ_NUM, RESOURCE_SEQ_NUM, and WIP_ENTITY_ID. If you delete
components, you must provide the COMPONENT_SEQ_ID and the WIP_ENTITY_
ID (you must provide the OPERATION_SEQ_ID only if you attach the component
to an operation).

The following table lists the columns in the WIP_JOB_DTLS_INTERFACE table, and
indicates whether they are Required (Reqd), Optional (Opt), or Null when you add
or change operations, components, and resources for existing Discrete jobs, or when
you schedule new Discrete jobs and pending Repetitive schedules. When adding
operations, components, or resources, use Substitution Type 2; when changing
them, use Substitution Type 3. Do not provide columns marked Null.

Work Order Interface: WIP_JOB_ DTLS_INTERFACE Table

Column Name Type
Operation
Add Chg

Component
Add Chg

Resource
Add Chg Schedule Additional Information

ACTIVITY_ID Number Null Null Null Null Opt Opt Null Identifier for the activity

APPLIED_
RESOURCE_UNITS

Number Null Null Null Null Opt Opt Null Number of resource
units charged.
Oracle Work in Process Open Interfaces 10-47

Work Order Interface
APPLIED_
RESOURCE_VALUE

Number Null Null Null Null Opt Opt Null Value of the resource
units charged.

ASSIGNED_UNITS Number Null Null Null Null Reqd Opt Null Number of resource
units assigned to do
work.

ATTRIBUTE1
through
ATTRIBUTE15

VarChar2
(150)

Opt Opt Opt Opt Opt Opt Null Descriptive flexfield
segments

ATTRIBUTE_
CATEGORY

VarChar2
(30)

Opt Opt Opt Opt Opt Opt Null Descriptive flexfield
structure defining
column.

AUTOCHARGE_
TYPE

Number Null Null Null Null Reqd Opt Null Method of charging the
resource.

BACKFLUSH_FLAG VarChar
2 (1)

Reqd Opt Null Null Null Null Null Required for loading
operations; optional
when updating.

BASIS_TYPE Number Null Null Null Null Reqd Opt Null Basis for scheduling and
charging the resource.

COMPLETION_
DATE

Date Null Null Null Null Reqd Opt Null Resource’s scheduled
finished production
date. Required for
loading and updating
resource usage. If
USAGE_BLOCK is
specified, then
completion date
pertains to it. To change
scheduled completion
date without explosion,
must also provide first
unit start date and last
unit completion date.

COMPONENT_SEQ_
ID

Number Null Reqd Reqd Null Null Null Null Identifier for the bill of
materials component
sequence.

Work Order Interface: WIP_JOB_ DTLS_INTERFACE Table

Column Name Type
Operation
Add Chg

Component
Add Chg

Resource
Add Chg Schedule Additional Information
10-48 Oracle Manufacturing APIs and Open Interfaces Manual

Work Order Interface
COUNT_POINT_
TYPE

Number Reqd Opt Null Null Null Null Null Required for loading
operations; optional
when updating.

CREATED_BY Number Standard Who column.

CREATION_DATE Date Standard Who column.

DATE_REQUIRED Date Null Null Reqd Opt Null Null Null

DEPARTMENT_ID Number Reqd Opt Opt Opt Null Null Null Department identifier.

DESCRIPTION VarChar2
(240)

Opt Opt Opt Opt Opt Opt Opt

FIRST_UNIT_
COMPLETION_
DATE

Date Reqd Opt Null Null Null Null Null Required for loading
operations; optional
when updating.

FIRST_UNIT_
START_DATE

Date Reqd Opt Null Null Null Null Null Required for loading
operations; optional for
updating. To change
schedule start or
completion date
without explosion, must
also provide first unit
start date and last unit
completion date.

GROUP_ID Number Reqd Reqd Reqd Reqd Reqd Reqd Reqd If details pertain to
header record loaded at
same time, value must
be same as GROUP_ID
in WIP_JOB_
SCHEDULE_
INTERFACE table.

INTERFACE_ID Number Null Null Null Null Null Null Null Number generated by
Work in Process to
uniquely identify each
record in the table.
Links interface records
with error records. Must
be NULL (values are
entered when record
picked up by WIP Mass
Load program).

Work Order Interface: WIP_JOB_ DTLS_INTERFACE Table

Column Name Type
Operation
Add Chg

Component
Add Chg

Resource
Add Chg Schedule Additional Information
Oracle Work in Process Open Interfaces 10-49

Work Order Interface
INVENTORY_ITEM_
ID_NEW

Number Null Null Reqd Opt Null Null Null

INVENTORY_ITEM_
ID_OLD

Number Null Null Null Reqd Null Null Null

ITEM_SEGMENTS VarChar
(2000)

Opt Opt Opt Opt Opt Opt Opt

LAST_UNIT_
COMPLETION_
DATE

Date Reqd Opt Null Null Null Null Null Required for loading
operations; optional for
updating. To change
schedule start or
completion date
without explosion, must
also provide first unit
start date and last unit
completion date.

LAST_UNIT_START_
DATE

Date Reqd Opt Null Null Null Null Null Required for loading
operations; optional
when updating.

LAST_UPDATE_
DATE

Date Reqd Standard Who column.

LAST_UPDATE_
LOGIN

Number Reqd Standard Who column.

LAST_UPDATED_BY Number Reqd Standard Who column.

LOAD_TYPE Number 3 3 2 2 1 1 4 Cannot be NULL.

1 for loading a resource

2 for loading a
component

3 for loading an
operation

4 for loading multiple
resource usage

MINIMUM_
TRANSFER_
QUANTITY

Number Reqd Opt Null Null Null Null Null Required for loading
operations optional
when updating.

Work Order Interface: WIP_JOB_ DTLS_INTERFACE Table

Column Name Type
Operation
Add Chg

Component
Add Chg

Resource
Add Chg Schedule Additional Information
10-50 Oracle Manufacturing APIs and Open Interfaces Manual

Work Order Interface
MPS_DATE_
REQUIRED

Date Null Null Opt Opt Null Null Null Date used by MPS relief
process.

MPS_REQUIRED_
QUANTITY

Number Null Null Opt Opt Null Null Null Quantity used by MPS
relief process.

MRP_NET_FLAG Number Null Null Reqd Opt Null Null Null Determines whether or
not MRP should
consider the component
requirement in its
netting process.

OPERATION_SEQ_
NUM

Number Reqd Reqd Reqd Reqd Reqd Reqd Reqd Number of operation
sequence within a
routing.

ORGANIZATION_ID Number Null Null Null Null Null Null Null Identifier for the
organization.

PARENT_HEADER_
ID

Number Reqd Reqd Reqd Reqd Reqd Reqd Reqd Contains HEADER_ID
of work order record
(GROUP_ID, HEADER_
ID columns from WIP_
JOB_SCHEDULE_
INTERFACE table
identify header record
uniquely). Must be
NULL if only detail
records are loaded or
updated. Must provide
WIP_ENTITY_ID and
ORGANIZATION_
ID.

PROCESS_PHASE Number Reqd Reqd Reqd Reqd Reqd Reqd Reqd See Control Columns.

PROCESS_STATUS Number Reqd Reqd Reqd Reqd Reqd Reqd Reqd See Control Columns.

PROGRAM_
APPLICATION_ID

Number Extended Who column.

PROGRAM_ID Number Extended Who column.

PROGRAM_
UPDATE_DATE

Date Extended Who column.

QUANTITY_ISSUED Number Null Null Reqd Opt Null Null Null Part quantity issued.

Work Order Interface: WIP_JOB_ DTLS_INTERFACE Table

Column Name Type
Operation
Add Chg

Component
Add Chg

Resource
Add Chg Schedule Additional Information
Oracle Work in Process Open Interfaces 10-51

Work Order Interface
QUANTITY_PER_
ASSEMBLY

Number Null Null Reqd Opt Null Null Null Part usage quantity.

REQUEST_ID Number Extended Who column.

REQUIRED_
QUANTITY

Number Null Null Reqd Opt Null Null Null Part quantity required.

RESOURCE_ID_
NEW

Number Null Null Null Null Reqd Opt Null

RESOURCE_ID_OLD Number Null Null Null Null Null Reqd Null

RESOURCE_SEQ_
NUM

Number Null Null Null Null Reqd Reqd Reqd Number of the resource
sequence.

SCHEDULED_FLAG Number Null Null Null Null Reqd Opt Null Method of scheduling
the resource.

STANDARD_RATE_
FLAG

Number Null Null Null Null Reqd Opt Null Determines whether or
not resource is charged
at standard rate.

STANDARD_
OPERATION_ID

Number Opt Opt Null Null Null Null Null Optional.

START_DATE Date Null Null Null Null Reqd Opt Null Required for loading
and updating resource
usage. If USAGE_
BLOCK is specified,
then start date pertains
to it. To change
schedule start date
without explosion, must
also provide first unit
start date and last unit
completion date.

SUBSTITUTION_
TYPE

Number Must be one of these:

1 Delete

2 Add

3 Change

Any other values will
cause an error.

Work Order Interface: WIP_JOB_ DTLS_INTERFACE Table

Column Name Type
Operation
Add Chg

Component
Add Chg

Resource
Add Chg Schedule Additional Information
10-52 Oracle Manufacturing APIs and Open Interfaces Manual

Work Order Interface
Control Columns
■ GROUP_ID: used to group (batch) rows in the interface table. Only records with

a GROUP_ID are processed by LOAD_WIP.

■ PROCESS_PHASE: must be 2 (validation) for Work in Process to pick up the
record and process it. (Records loaded into the table by LOAD_INTERFACE are
assigned a process phase of 1. Only records with a process phase of 2 are picked
up by LOAD_WIP. Therefore, either your third party scheduling program or
your custom program must change the process phase to a 2.)

■ PROCESS_STATUS: must be 1 (pending) for Work in Process to pick up the
record and process it. It will be updated to 2 (running) when the record is being
processed, and to 6 (complete) when the record is loaded to Work in Process
successfully, or 3 (error) if it fails.

■ SUBSTITUTION_TYPE: must be either 1 (delete) or 2 (add) or 3 (change). It will
error out for all other values.

SUPPLY_LOCATOR_
ID

Number Null Null Opt Opt Null Null Null Locator used to supply
component to WIP.

SUPPLY_
SUBINVENTORY

VarChar2
(10)

Null Null Opt Opt Null Null Null Subinventory used to
supply component to
WIP

USAGE_BLOCK Null Null Null Null Null Null Reqd Required for loading
and updating resource
usage.

USAGE_RATE_OR_
AMOUNT

Number Null Null Null Null Reqd Opt Null Rate per assembly or
amount per Discrete job
or Repetitive schedule.

UOM_CODE VarChar2
(3)

Null Null Null Null Reqd Opt Null Code for the unit of
measure.

WIP_ENTITY_ID Number Null Null Null Null Null Null Null Value generated when
job loaded, thus must be
NULL in this table.

WIP_SUPPLY_TYPE Number Null Null Reqd Opt Null Null Null Method of material
consumption within
WIP.

Work Order Interface: WIP_JOB_ DTLS_INTERFACE Table

Column Name Type
Operation
Add Chg

Component
Add Chg

Resource
Add Chg Schedule Additional Information
Oracle Work in Process Open Interfaces 10-53

Work Order Interface
Validating Work Order Interface Records
The WIP Mass Load program validates all required and optional data. If the
required or optional data that you enter are invalid, or if required data are missing,
the program updates the PROCESS_STATUS for the record to 3 (Error), and an error
message tied to the row's interface ID is inserted into the WIP_INTERFACE_
ERRORS table. Unsuccessfully processed rows that have a PROCESS_STATUS of 3
(Error) can be viewed, updated, deleted, or resubmitted using the Pending Jobs and
Schedules window.

Data in the WIP_JOB_DTLS_INTERFACE table that must be added, deleted, or
changed are first validated against WIPconstraints. If any records in the WIP_JOB_
DTLS_INTERFACE table fail, all records for that Discrete job fail. All records for a
failed Discrete job are checked to ensure that there is a specific error message for
each failed row. Other SQL fatal errors are passed to the calling program.

Viewing Failed Rows
You can view information on both pending and failed rows in the Pending Jobs and
Schedules window and view errors associated with the failed rows by navigating to
the Pending Job and Schedule Errors window.

You also can obtain information on failed rows by printing the Work Order Interface
Report. If you print the Work Order Interface Report as part of the import process,
both successfully and unsuccessfully processed rows are listed. Successfully
processed rows are deleted from the WIP_JOB_SCHEDULE_INTERFACE table after
the Work Order Interface Status Report is submitted for printing.

Resolving Failed Rows
Use the Pending Jobs and Schedules window to update failed rows in the WIP_
JOB_SCHEDULE_INTERFACE table. After you make the changes, enter a check
mark in the Resubmit check box and save your work. If you Select All for Resubmit
from the Tools Menu, the system checks the Resubmit check box for all queried rows.
After saving, all of these rows become eligible for revalidation and processing.

You use the Pending Jobs and Schedules window to delete problem rows from the
WIP_JOB_SCHEDULE_INTERFACE table. Deleting these rows ensures you do not
have duplicate data when you reload the corrected data from the source.

See Also
Oracle Work in Process Technical Reference Manual:

Processing Pending Jobs and Schedules, Oracle Work in Process User’s Guide
10-54 Oracle Manufacturing APIs and Open Interfaces Manual

Index

C
Collection Import Interface

collection import results database views, 9-11
derived data, 9-7
functional overview, 9-2
optional data, 9-10
QA_RESULTS_INTERFACE table, 9-3
SQL script example, 9-11

Collection Import Manager, 9-15
Collection plan views, 9-17

SQL script example, 9-17
Customer Item Cross-Reference Interface

functional overview, 6-58
interface runtime options, 6-59
MTL_CI_XREFS_INTERFACE table, 6-68
workflow, 6-59

Customer Item Interface
containers, 6-66
defining customer items, 6-63
functional overview, 6-58
interface runtime options, 6-59
MTL_CI_INTERFACE table, 6-60
workflow, 6-59

Cycle Count Entries Interface, 6-73
MTL_CC_INTERFACE_ERRORS table, 6-76
MTL_CI_INTERFACE table, 6-73

Cycle Count Interface
interface runtime options, 6-73
table administration and audit trail, 6-77

F
Forecast Entries API

functional overview, 7-14
inserting, 7-14
setting up, 7-14
T_FORECAST_INTERFACE table, 7-14
using the API, 7-19
validation, 7-18

Forecast Interface
functional overview, 7-2
inserting, 7-2
MRP_FORECAST_INTERFACE table, 7-2
resolving failed rows, 7-7
setting up, 7-2
validation, 7-5

I
Interface Tables

MRP_SCHEDULE_INTERFACE, 7-8
T_FORECAST_DESIGNATOR table, 7-16
T_FORECAST_INTERFACE PL/SQL, 7-14

Interface tables
CST_COMP_SNAP_INTERFACE, 6-25, 10-13
MRP_FORECAST_INTERFACE, 7-2
MTL_CC_ENTRIES_INTERFACE, 6-73
MTL_CC_INTERFACE_ERRORS, 6-76
MTL_CI_INTERFACE, 6-60
MTL_CI_XREFS_INTERFACE, 6-68
MTL_ITEM_REVISIONS_INTERFACE, 6-51
MTL_REPLENISH_HEADERS_INT, 6-30
MTL_SERIAL_NUMBERS_INTERFACE, 6-23
MTL_SYSTEM_ITEMS_INTERFACE, 4-4, 4-7,

6-41
MTL_TRANSACTION_LOTS_

INTERFACE, 6-22
Index-1

MTL_TRANSACTIONS_INTERFACE, 6-8
PO_HEADERS_INTERFACE, 8-48
PO_LINES_INTERFACE, 8-54
PO_REQUISITIONS_INTERFACE, 8-5
PO_RESCHEDULE_INTERFACE, 8-26
QA_RESULTS_INTERFACE, 9-3
RCV_HEADERS_INTERFACE, 8-76
RCV_TRANSACTIONS_INTERFACE, 8-81
WIP_COST_TXN_INTERFACE, 10-18
WIP_JOB_SCHEDULE_INTERFACE, 10-31
WIP_MOVE_TXN_INTERFACE, 10-5

Item Interface
functional overview, 4-2, 6-38
MTL_ITEM_REVISIONS_INTERFACE

table, 6-51
MTL_SYSTEM_ITEMS_INTERFACE table, 4-4,

4-7, 6-41
multi-thread capability, 6-56
resolving failed rows, 6-54
runtime options, 4-4, 6-40
setting up, 4-3, 6-39
validation, 4-9, 6-50

J
Job and Schedule Interface

functional overview, 10-28
inserting records, 10-30
setting up, 10-29
validating, 10-54
WIP_JOB_SCHEDULE_INTERFACE

table, 10-31

M
Master Schedule Interface

functional overview, 7-8
inserting, 7-8
MRP_SCHEDULE_INTERFACE table, 7-8
resolving failed rows, 7-12
setting up, 7-8
validation, 7-11

Move Transaction Interface
functional overview, 10-2
inserting, 10-5

launching the move transaction manager, 10-5
resolving failed rows, 10-16
setting up, 10-4
validating, 10-15

O
Open Demand Interface, 6-28
Open Forecast Entries API, 7-14
Open Forecast Interface, 7-2
Open Item Interface, 4-2, 6-38
Open Master Schedule Interface, 7-8
Open Move Transaction Interface, 10-2
Open move transaction interface

WIP_MOVE_TRANSACTION_INTERFACE
table, 10-5

Open Replenishment Interface, 6-28
Open Requisitions Interface See Requisitions

Interface, 8-2
Open Resource Transaction Interface, 10-17
Open Transaction Interface, 6-2

P
Purchasing Documents Open Interface

defaulted data, 8-63
derived data, 8-62
fixing failed transactions, 8-69
functional overview, 8-28
PO_HEADERS_INTERFACE table, 8-48
PO_LINES_INTERFACE table, 8-54
resolving failed rows, 8-64
setting up, 8-40
validation, 8-63

R
Receiving Open Interface

derived data, 8-98
functional overview, 8-71
optional data, 8-99
RCV_HEADERS_INTERFACE table, 8-76
RCV_TRANSACTIONS_INTERFACE, 8-81
required data for RCV_HEADERS_

INTERFACE, 8-89, 8-90
Index-2

required data for RCV_TRANSACTIONS_
INTERFACE, 8-92

resolving failed rows, 8-101
setting up, 8-75
validation, 8-99

Replenishment Interface
fixing failed transactions, 6-37
functional overview, 6-28
MTL_REPLENISH_HEADERS_INT table, 6-30
setting up, 6-29
validation, 6-35
viewing failed transactions, 6-36

ReqImport
rescheduling requisitions, 8-25

Requisition Interface
PO_RESCHEDULE_INTERFACE table, 8-26

Requisitions Interface
derived data, 8-21
functional overview, 8-2
optional data, 8-23
PO_REQUISITONS_INTERFACE table, 8-5
setting up, 8-5
validation, 8-24

Resource Transaction Interface
functional overview, 10-17
inserting, 10-18
launching the cost manager, 10-18
resolving failed rows, 10-25, 10-54
setting up, 10-18
validating, 10-24
WIP_COST_TXN_INTERFACE table, 10-18

S
Setting up

the Purchasing Documents Open Interface, 8-40
Sourcing, 8-36
Substitution type

add, 6-21
change, 6-21
delete, 6-21
lot/serial specification, 6-21

T
Table and View Definitions

MSC_ST_OPERATION_RESOURCE_
SEQS, 2-106

Transaction Interface
CST_COMP_SNAP_INTERFACE table, 6-25,

10-13
functional overview, 6-2
MTL_SERIAL_NUMBERS_INTERFACE

table, 6-23
MTL_TRANSACTION_LOTS_INTERFACE

table, 6-22
MTL_TRANSACTIONS_INTERFACE table, 6-8
resolving failed rows, 6-26
setting up, 6-6
validation, 6-26

W
Work Order Interface, 10-25
Index-3

Index-4

	Oracle© Manufacturing APIs and Open Interfaces Manual, Release 11i
	Send Us Your Comments
	Preface
	About This Manual
	Audience for This Manual
	Do Not Use Database Tools to Modify Oracle Applications Data
	Other Information Sources

	1 Integrating Your Systems
	Overview of Oracle Manufacturing APIs and Open Interfaces
	Basic Business Needs
	Oracle Manufacturing Interfaces
	Inbound Open Interface Model
	Components of an Open Interface

	2 Oracle ASCP and Oracle Global ATP Server Open Interfaces
	ODS Load API Features
	Functional Overview
	Setting Up the ODS Load API
	Parameter Descriptions

	3 Bills of Material Business Object Interface
	Overview
	Bills of Material Entity Diagram
	Business Object APIs
	Business object interface Design
	Detailed Business object interface Design
	Overall Import Description
	Columns Exposed to User

	Import Mechanics
	Launching the Import
	Package Interaction
	Import Error Handling and Messaging
	Bill of Material Export API
	Launching the Export
	Export Error Handling and Messaging

	4 Oracle Cost Management Open Interfaces
	Periodic Cost Open Interface
	Functional Overview

	Setting Up the Interface
	Create Indexes for Performance

	Periodic Cost Open Interface Runtime Options
	Inserting into the Periodic Cost Interface Tables
	Periodic Costs Interface Table Description
	Periodic Cost Detail Interface Table Description
	Required Data
	Derived Data

	Validation
	Importing Additional Periodic Cost Details

	Reviewing Failed Rows
	Log File Messages

	5 Engineering Change Order Business Object Interface
	Features
	ECO Business Object

	Business Object APIs
	Process Flow

	Entity Process Flows
	ECO Headers
	ECO Revisions
	Revised Items
	Revised Components
	Reference Designators
	Substitute Components
	New API Packages
	Launching the Import
	Package Interaction
	Sample Launch Package
	Import Error Handling and Messaging
	Error Handling Concepts
	API Messaging
	Error Handler

	6 Oracle Inventory Open Interfaces and APIs
	Open Transaction Interface
	Functional Overview
	Setting Up the Transaction Interface
	Inserting into the Transaction Interface Tables
	MTL_TRANSACTION_LOTS_INTERFACE
	MTL_SERIAL_NUMBERS_INTERFACE
	CST_COMP_SNAP_INTERFACE
	Validation
	Resolving Failed Transaction Interface Rows

	Open Replenishment Interface
	Functional Overview
	Setting Up the Replenishment Interface
	Inserting into the Replenishment Interface Tables
	Replenishment Headers Interface Tables
	Validation
	Viewing Failed Transactions
	Fixing Failed Transactions

	Open Item Interface
	Functional Overview
	Setting Up the Item Interface
	Item Interface Runtime Options
	All Organizations
	Validate Items
	Process Items
	Delete Processed Rows
	Process Set
	Inserting into the Item Interface Table
	Validation
	Importing Additional Item Details
	Resolving Failed Interface Rows
	Multi-Thread Capability (Parallel Runs of the Item Interface)

	Customer Item and Customer Item Cross-Reference Open Interfaces
	Functional Overview - Customer Item Interface
	Functional Overview - Customer Item Cross-Reference Interface
	Workflow - Customer Item Interface and Customer Item Cross-Reference Interface
	Interface Runtime Options
	Customer Item Interface Table
	Customer Item Interface - Defining a Unique Customer Item
	Customer Item Interface - Other fields
	Customer Item Cross-Reference Interface Table

	Cycle Count Entries Interface
	Interface Runtime Options
	Cycle Count Entries Interface Table
	Cycle Count Interface Errors Table
	Table Administration and Audit Trail

	Cycle Count Application Program Interface
	Setting Up the Cycle Count API
	Validation of Cycle Count API

	Kanban Application Program Interface
	Setting Up the Kanban API
	Validation of Kanban API

	Lot Application Program Interface
	Setting Up the Lot API
	Validation of Lot API

	Material Reservation Application Program Interface
	Functional Overview
	Setting Up the Material Reservation API
	Validation of Material Reservation API

	Reservations Manager Application Program Interface
	Setting Up the Reservations Manager API
	Validation of Reservations Manager API

	Sales Order Application Program Interface
	Functional Overview
	Setting Up the Sales Order API
	Validation of Sales Order API

	Move Order Application Program Interface
	Functional Overview
	Setting Up the Move Order API
	Validation of Move Order API

	Pick Release Application Program Interface
	Setting Up the Pick Release API
	Validation of Pick Release API

	Pick Confirm Application Program Interface
	Functional Overview
	Setting Up the Pick Confirm API
	Validation of Pick Confirm API

	7 Oracle Master Scheduling/MRP and Oracle Supply Chain Planning Open Interfaces and APIs
	Open Forecast Interface
	Functional Overview
	Setting Up the Open Forecast Interface
	Inserting into the Open Forecast Interface Table
	Validation

	Resolving Failed Open Forecast Interface Rows
	Open Master Schedule Interface
	Functional Overview
	Setting Up the Open Master Schedule Interface
	Inserting into the Open Master Schedule Interface Table
	Validation
	Resolving Failed Open Master Schedule Interface Rows

	Open Forecast Entries Application Program Interface
	Functional Overview
	Setting Up the Open Forecast Entries API
	Inserting into the Open Forecast Entries API Tables
	Open Forecast Interface Designator Table Description
	Validation
	Using the Open Forecast Entries API

	Sourcing Rule Application Program Interface
	Sourcing Rule/Bill of Distribution API Features
	Functional Overview
	Setting Up the Sourcing Rule/Bill of Distribution API
	Validation of Sourcing Rule /Bill of Distribution API
	Sourcing Rule Assignment API Features
	Functional Overview
	Setting Up the Sourcing Rule Assignment API
	Validation of Sourcing Rule Assignment API

	8 Oracle Purchasing Open Interfaces
	Requisitions Open Interface
	Functional Overview
	Setting Up the Requisitions Interface
	Inserting into the Requisitions Interface Tables
	Validation
	Resolving Failed Requisitions Interface Rows
	Rescheduling Requisitions

	Purchasing Documents Open Interface
	Functional Overview
	Record and Error Processing
	Original, Replace, and Update Submissions
	Sourcing
	Price Breaks
	Adding or Deleting Lines in an Update Submission
	Revision Numbering and Archiving
	Setting Up the Purchasing Documents Open Interface
	Monitoring Price Increases

	Purchasing Documents Open Interface Table Descriptions
	Purchasing Documents Headers Table Description
	Purchasing Documents Lines Table Description

	Derivation
	Defaulting
	Validation
	Resolving Failed Purchasing Interface Rows
	Receiving Open Interface
	Functional Overview
	EDI Transaction Types
	Validation and Overview
	Quantity Updates
	Cascading Transaction Quantities
	Setting Up the Receiving Open Interface
	Inserting into the Receiving Open Interface Table
	Receiving Headers Interface Table Description
	Receiving Transactions Interface Table Description
	Required Data for RCV_HEADERS_INTERFACE
	Conditionally Required Data for RCV_HEADERS_INTERFACE
	Required Data for RCV_TRANSACTIONS_INTERFACE
	Conditionally Required Data for RCV_TRANSACTIONS_INTERFACE
	Derived Data
	Optional Data
	Validation
	Standard Validation
	Other Validation
	Debugging
	Resolving Failed Receiving Open Interface Rows

	9 Oracle Quality Open Interfaces
	Collection Import Interface
	Functional Overview
	Collection Import Interface Table
	Derived Data
	Optional Data
	Collection Import Results Database Views
	Example: Collection Import SQL Script
	Collection Import Manager

	Collection Plan Views
	Example

	10 Oracle Work in Process Open Interfaces
	Open Move Transaction Interface
	Functional Overview
	Setting Up the Move Transaction Interface
	Launching the Move Transaction Manager
	Inserting Records into the WIP_MOVE_TXN_INTERFACE Table
	Validating Move Transactions
	Resolving Failed Rows

	Open Resource Transaction Interface
	Functional Overview
	Setting Up the Resource Transaction Interface
	Launching the Cost Manager
	Inserting Records into the WIP_COST_TXN_INTERFACE Table
	Validating Resource Transactions
	Resolving Failed Rows

	Work Order Interface
	Functional Overview
	Setting Up the Work Order Interface
	Inserting Records Into the Work Order Interface
	WIP_JOB_SCHEDULE_INTERFACE Table
	WIP_JOB_DTLS_INTERFACE Table
	Validating Work Order Interface Records
	Resolving Failed Rows

	Index

