
Oracle
� Applications

Developer’s Guide
RELEASE 11i

VOLUME 1

April 2001

Oracle Applications Developer’s Guide, RELEASE 11i VOLUME 1

The part number for this volume is A83705–03.
To reorder this book, please use the set part number, A75545–03.
Copyright � 1995, 2001 Oracle Corporation. All rights reserved.
Contributing Authors: Anne Carlson, Emily Nordhagen, Lisa Nordhagen, Dana Spradley,
Martin Taylor, Peter Wallack, Millie Wang, Sara Woodhull
Contributors: Ram Bhoopalam, Eric Bing, Steven Carter, Cliff Godwin, Mark Fisher, Michael
Konopik, Michael Mast, Tom Morrow, Robert Nix, Gursat Olgun, Susan Stratton, Leslie
Studdard, Venkata Vengala, Maxine Zasowski

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual property law. Reverse
engineering of the Programs is prohibited. No part of this document may be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Oracle Corporation.

Program Documentation is licensed for use solely to support the deployment of the Programs and not for
any other purpose.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on behalf
of the U.S. Government, the following notice is applicable:

RESTRICTED RIGHTS LEGEND

Programs delivered subject to the DOD FAR Supplement are ’commercial computer software’ and use,
duplication and disclosure of the Programs including documentation, shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are ’restricted computer software’ and use, duplication and disclosure
of the Programs shall be subject to the restrictions in FAR 52.227–19, Commercial Computer Software –
Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be licensee’s responsibility to take all appropriate fail–safe, back up,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark and Oracle7, Oracle8, Oracle Application Object Library, Oracle Applica-
tions, Oracle Alert, Oracle Financials, Oracle Workflow, SQL*Forms, SQL*Plus, SQL*Report, Oracle Data
Browser, Oracle Forms, Oracle General Ledger, Oracle Human Resources, Oracle Manufacturing, Oracle
Reports, PL/SQL, Pro*C and SmartClient are trademarks or registered trademarks of Oracle Corporation.

All other company or product names are mentioned for identification purposes only, and may be trademarks
of their respective owners.

 iContents

Contents

Volume 1VOLUME 1 i.

Preface i.
Audience for This Guide ii.
Other Information Sources ii.
Do Not Use Database Tools to Modify Oracle
Applications Data vi.
Typographic Conventions vii.
About Oracle ix.
Your Feedback ix.

Chapter 1 Overview of Coding Standards 1 – 1.
Overview of Coding Standards 1 – 2.

Importance of these Standards 1 – 2.
Coding Principles 1 – 2.
Coding With Handlers 1 – 3.
Libraries 1 – 4.
Performance 1 – 5.
Coding for Web Compatibility 1 – 6.

The Standard Development Environment 1 – 7.
Oracle Application Object Library for Release 11i 1 – 9.
Setting Object Characteristics 1 – 9.
Shared Objects 1 – 10.
Standard Libraries 1 – 11.

 ii Oracle Applications Developer’s Guide

Property Classes 1 – 13.
Visual Attributes 1 – 14.

Overview of Building an Application 1 – 15.
Overall Design Issues to Consider 1 – 15.
Overview of Application Development Steps 1 – 16.
Overview of Form Development Steps 1 – 17.

Chapter 2 Setting Up Your Application Framework 2 – 1.
Overview of Setting Up Your Application Framework 2 – 2.

Definitions 2 – 2.
Set Up Your Application Directory Structures 2 – 3.
Register Your Application 2 – 3.
Modify Your Environment Files 2 – 4.
Set Up and Register Your Oracle Schema 2 – 4.
Create Database Objects and Integrate with APPS Schema 2 – 5.
Add Your Application to a Data Group 2 – 5.
Set Up Concurrent Managers 2 – 5.

Applications Window 2 – 6.
Prerequisites 2 – 7.
Applications Block 2 – 7.

Chapter 3 Building Your Database Objects 3 – 1.
Overview of Building Your Database Objects 3 – 2.

Using Cost–Based Optimization 3 – 2.
Tracking Data Changes with Record History (WHO) 3 – 2.
Oracle8i Declarative Constraints 3 – 5.
LONG, LONG RAW and RAW Datatypes 3 – 7.
Columns Using a Reserved Word 3 – 7.
Views 3 – 7.
Sequences 3 – 10.

Table Registration API 3 – 11.

Chapter 4 Using PL/SQL in Oracle Applications 4 – 1.
Overview of Using PL/SQL in Applications 4 – 2.

Definitions 4 – 3.
General PL/SQL Coding Standards 4 – 3.
Database Server Side versus Client Side 4 – 6.
Formatting PL/SQL Code 4 – 7.
Exception Handling 4 – 9.

 iiiContents

SQL Coding Guidelines 4 – 11.
Triggers in Forms 4 – 11.
Resources 4 – 12.

Replacements for Oracle Forms Built–ins 4 – 14.
Coding Item, Event and Table Handlers 4 – 17.

Coding Item Handlers 4 – 17.
Coding Event Handlers 4 – 19.
Coding Table Handlers 4 – 20.
Example Client–Side Table Handler 4 – 21.
Example Server–Side Table Handler 4 – 24.

Chapter 5 Setting the Properties of Container Objects 5 – 1.
Modules 5 – 2.
Windows 5 – 3.

Non–Modal Windows 5 – 3.
Modal Windows 5 – 5.

Canvases 5 – 8.
Content Canvases 5 – 8.
Stacked Canvases 5 – 8.

Blocks 5 – 10.
Context Blocks 5 – 11.
Dialog Blocks 5 – 11.
 Data Blocks With No Base Table 5 – 13.
Single–Record Data Blocks 5 – 13.
Multi–Record Blocks 5 – 14.
Combination Blocks 5 – 16.
Master–Detail Relations 5 – 16.
Dynamic WHERE Clauses 5 – 17.

Regions 5 – 19.
Tabbed Regions 5 – 19.
Alternative Regions (Obsolete for Release 11i) 5 – 19.
Overflow Regions 5 – 19.

Chapter 6 Setting the Properties of Widget Objects 6 – 1.
Text Items 6 – 2.

Date Fields 6 – 3.
Display Items 6 – 4.
Poplists 6 – 6.
Option Groups 6 – 8.

 iv Oracle Applications Developer’s Guide

Check Boxes 6 – 9.
Buttons 6 – 10.
Lists of Values (LOVs) 6 – 12.

LOV Behaviors 6 – 14.
LOVs in ENTER–QUERY Mode 6 – 15.

Alerts 6 – 17.
Editors 6 – 18.
Flexfields 6 – 19.
Setting Item Properties 6 – 20.

Using APP_ITEM_PROPERTY.SET_PROPERTY 6 – 20.
Item Properties with Unique Oracle Applications Behavior 6 – 21
Impact of Item–level and Item–instance–level Settings 6 – 25.
Setting Properties at Design Time 6 – 26.
Setting Visual Attributes Programatically 6 – 26.

Chapter 7 Controlling Window, Block and Region Behavior 7 – 1.
Controlling Window Behavior 7 – 2.

Positioning Windows Upon Opening 7 – 2.
Closing Windows 7 – 3.
Setting Window Titles Dynamically 7 – 5.

Controlling Block Behavior 7 – 6.
Coding Master–Detail Relations 7 – 6.
Implementing a Combination Block 7 – 8.

Coding Tabbed Regions 7 – 12.
Definitions 7 – 12.
Tabbed Region Behavior 7 – 13.
Three Degrees of Coding Difficulty 7 – 14.
Implementing Tabbed Regions 7 – 15.
Tab Handler Logic 7 – 18.
WHEN–TAB–PAGE–CHANGED Logic 7 – 18.
WHEN–NEW–ITEM–INSTANCE Logic 7 – 22.
Handling Dynamic Tabs 7 – 23.
Other Code You May Need 7 – 25.

Coding Alternative Region Behavior 7 – 27.
Alternative Regions 7 – 27.
Example: Coding an Alternative Region 7 – 27.

Controlling Records in a Window 7 – 31.
Duplicating Records 7 – 31.
Renumbering All Records in a Window 7 – 32.

Passing Instructions to a Form 7 – 34.

 vContents

Chapter 8 Enabling Query Behavior 8 – 1.
Overview of Query Find 8 – 2.

Raising Query Find on Form Startup 8 – 2.
Implementing Row–LOV 8 – 3.

Implementing Find Windows 8 – 4.

Chapter 9 Coding Item Behavior 9 – 1.
Item Relations 9 – 2.

Dependent Items 9 – 3.
Conditionally Dependent Item 9 – 5.
Multiple Dependent Items 9 – 6.
Two Master Items and One Dependent Item 9 – 7.
Cascading Dependence 9 – 8.
Mutually Exclusive Items 9 – 10.
Mutually Inclusive Items 9 – 12.
Mutually Inclusive Items with Dependent Items 9 – 13.
Conditionally Mandatory Items 9 – 15.

Defaults 9 – 18.
Integrity Checking 9 – 19.

Uniqueness Check 9 – 19.
Referential Integrity Check 9 – 20.

The Calendar 9 – 23.
Advanced Calendar Options 9 – 24.
Calendar Examples 9 – 26.

CALENDAR: Calendar Package 9 – 28.
CALENDAR.SHOW 9 – 28.
CALENDAR.SETUP 9 – 28.
CALENDAR.EVENT 9 – 28.

Chapter 10 Controlling the Toolbar and the Default Menu 10 – 1.
Pulldown Menus and the Toolbar 10 – 2.

Menu and Toolbar Entries 10 – 2.
Save and Proceed 10 – 8.
Synchronizing 10 – 8.
Application–Specific Entries: Special Menus 10 – 8.
Customizing Right–Mouse Menus (Popup Menus) 10 – 10.

APP_POPUP: Right–Mouse Menu Control 10 – 13.
APP_POPUP.INSTANTIATE 10 – 13.

APP_SPECIAL: Menu and Toolbar Control 10 – 15.
APP_SPECIAL.INSTANTIATE 10 – 15.

 vi Oracle Applications Developer’s Guide

APP_SPECIAL.ENABLE 10 – 17.
APP_SPECIAL.GET_CHECKBOX 10 – 18.
APP_SPECIAL.SET_CHECKBOX 10 – 19.

Chapter 11 Menus and Function Security 11 – 1.
Overview of Menus and Function Security 11 – 2.

Using Form Functions 11 – 6.
Function Security Standards 11 – 9.

General Function and Menu Standards 11 – 9.
Form Function Standards 11 – 10.
Subfunction Standards 11 – 11.

 viiContents

FND_MESSAGE.ERASE 12 – 12.
FND_MESSAGE.ERROR 12 – 12.
FND_MESSAGE.GET 12 – 13.
FND_MESSAGE.HINT 12 – 14.
FND_MESSAGE.QUESTION 12 – 14.
FND_MESSAGE.RETRIEVE 12 – 17.
FND_MESSAGE.SET_NAME 12 – 17.
FND_MESSAGE.SET_STRING 12 – 19.
FND_MESSAGE.SET_TOKEN 12 – 19.
FND_MESSAGE.SHOW 12 – 22.
FND_MESSAGE.WARN 12 – 22.

Application Message Standards 12 – 24.
Definitions 12 – 24.
Message Naming Standards 12 – 26.
Message Numbering Standards 12 – 27.
Message Type Standards 12 – 29.
Message Description Standards 12 – 31.

Message Content Standards 12 – 33.
Message Token Standards 12 – 33.
A Few General Guidelines for Writing Good Messages 12 – 36. . . .
When the User Needs to Get Help 12 – 37.
Complex Messages 12 – 39.
Specific Types of Message Content 12 – 40.
Message Writing Style 12 – 42.
Special Purpose Messages 12 – 52.

Messages Window 12 – 55.
Prerequisites 12 – 56.
Messages Block 12 – 56.

Chapter 13 User Profiles 13 – 1.
Overview of User Profiles 13 – 2.

Definitions 13 – 2.
Defining New User Profile Options 13 – 3.
Setting User Profile Option Values 13 – 4.
Setting Your Personal User Profile 13 – 4.

Implementing User Profiles 13 – 5.
Predefined User Profile Options 13 – 5.

FND_PROFILE: User Profile APIs 13 – 9.
FND_PROFILE.PUT 13 – 9.
FND_PROFILE.GET 13 – 10.
FND_PROFILE.VALUE 13 – 11.

 viii Oracle Applications Developer’s Guide

User Profile C Functions 13 – 12.
afpoget 13 – 12.
afpoput 13 – 12.

Profiles Window 13 – 14.
Prerequisites 13 – 14.
Profiles Block 13 – 15.

Chapter 14 Flexfields 14 – 1.
Overview of Flexfields 14 – 2.

Definitions 14 – 5.
Building a Flexfield into Your Application 14 – 8.
Flexfields and Application Upgrades 14 – 10.

Implementing Key Flexfields 14 – 11.
Defining Key Flexfield Database Columns 14 – 15.
Registering Your Key Flexfield Table 14 – 18.
Registering Your Key Flexfield 14 – 18.
Add Your Flexfield to Your Forms 14 – 19.

Implementing Descriptive Flexfields 14 – 20.
Planning for Reference Fields 14 – 20.
Defining Descriptive Flexfield Database Columns 14 – 21.
Adding a Descriptive Flexfield to a Table with Existing
Data 14 – 22.
Protected Descriptive Flexfields 14 – 23.
Registering Your Descriptive Flexfield Table 14 – 24.
Registering Your Descriptive Flexfield 14 – 24.
Add Your Flexfield to Your Forms 14 – 24.

Adding Flexfields to Your Forms 14 – 25.
Create Your Hidden Fields 14 – 25.
Create Your Displayed Fields 14 – 27.
Create Your Flexfield Definition 14 – 27.
Invoke Your Flexfield Definition from Several Event
Triggers 14 – 28.

Flexfield Definition Procedures 14 – 30.
Key Flexfield Definition Syntax 14 – 30.
Range (Type) Flexfield Definition Syntax 14 – 33.
Descriptive Flexfield Definition Syntax 14 – 35.
Flexfield Definition Arguments 14 – 36.
Flexfield Definition Examples 14 – 55.
Updating Flexfield Definitions 14 – 59.
Update Key Flexfield Definition Syntax 14 – 60.
Update Range (Type) Flexfield Definition Syntax 14 – 62.

 ixContents

Update Descriptive Flexfield Definition Syntax 14 – 64.
Updating Flexfield Definition Example 14 – 65.
Using Key Flexfields in Find Windows 14 – 65.
Using Range Flexfields in Query Find Windows 14 – 67.

Troubleshooting Flexfields 14 – 69.
Register Key Flexfields 14 – 71.

Register Key Flexfields Block 14 – 72.
Qualifiers Window 14 – 74.
Columns Window 14 – 76.

Register Descriptive Flexfields 14 – 78.
Register Descriptive Flexfields Block 14 – 78.
Reference Fields Window 14 – 81.
Columns Window 14 – 83.

Index

 x Oracle Applications Developer’s Guide

Volume 2VOLUME 1 14– 1.

Chapter 15 Overview of Concurrent Processing 15 – 1.
Overview of Concurrent Processing 15 – 2.

Basic Application Development Needs 15 – 2.
Major Features 15 – 2.
Definitions 15 – 4.

Overview of Designing Concurrent Programs 15 – 8.
Submitting Concurrent Programs on the Client 15 – 15.
Using Concurrent Processing 15 – 16.
Automated Recovery for Concurrent Processing 15 – 17.

Overview of Implementing Concurrent Processing 15 – 21.
Choosing Your Implementation 15 – 21.

Chapter 16 Defining Concurrent Programs 16 – 1.
Defining Concurrent Programs 16 – 2.
Concurrent Program Executable Window 16 – 6.

Concurrent Program Executable Block 16 – 6.
Stage Function Parameters Window 16 – 9.

Concurrent Programs Window 16 – 11.
Concurrent Programs Block 16 – 12.
Copy to Window 16 – 18.
Session Control Window 16 – 18.
Incompatible Programs Window 16 – 20.

Concurrent Program Libraries Window 16 – 27.
Prerequisites 16 – 28.
Concurrent Program Libraries Block 16 – 28.
Concurrent Programs Block 16 – 29.
Rebuild Library 16 – 29.

Chapter 17 Coding Oracle Tools Concurrent Programs 17 – 1.
Oracle Tool Concurrent Programs 17 – 2.

SQL*PLUS Programs 17 – 2.
PL/SQL Stored Procedures 17 – 3.
SQL*Loader 17 – 4.
Accepting Input Parameters For Oracle Tool Programs 17 – 5. . . .
Naming Your Oracle Tool Concurrent Program 17 – 5.

 xiContents

Chapter 18 Coding Oracle Reports Concurrent Programs 18 – 1.
Oracle Reports 18 – 2.

Concurrent Processing with Oracle Reports 18 – 2.
Oracle Reports Parameters 18 – 4.
Accessing User Exits and Profile Options 18 – 5.

User Exits Used in Oracle Reports 18 – 8.
FND SRWINIT / FND SRWEXIT 18 – 8.
FND FLEXIDVAL / FND FLEXSQL 18 – 8.

Using Dynamic Currency in Oracle Reports 18 – 9.
FND FORMAT_CURRENCY User Exit 18 – 10.

Example Report Using FND FORMAT_CURRENCY 18 – 15.
Sample Report Output 18 – 15.
Procedure 18 – 17.

Oracle Reports Troubleshooting 18 – 20.
Frequently Asked Questions 18 – 22.

Chapter 19 Coding C or Pro*C Concurrent Programs 19 – 1.
Coding C and Pro*C Concurrent Programs 19 – 2.

Pro*C Concurrent Programs 19 – 2.
Header Files Used With Concurrent Programs 19 – 9.

Concurrent Processing Pro*C Utility Routines 19 – 10.
afpend() 19 – 10.
fdpfrs() 19 – 11.
fdpscp() 19 – 13.
fdpscr() 19 – 14.
fdpwrt() 19 – 16.

Chapter 20 Coding Concurrent Programs using Java Stored Procedures 20 – 1. .
Coding Concurrent Programs Using Java Stored Procedures 20 – 2. . .

How to Write a Concurrent Program using a Java Stored
Procedure 20 – 2.
Example 20 – 2.

Chapter 21 PL/SQL APIs for Concurrent Processing 21 – 1.
FND_CONC_GLOBAL Package 21 – 2.

FND_CONC_GLOBAL.REQUEST_DATA 21 – 2.
FND_CONC_GLOBAL.SET_REQ_GLOBALS 21 – 2.
Example 21 – 2.

FND_CONCURRENT Package 21 – 5.

 xii Oracle Applications Developer’s Guide

FND_CONCURRENT.AF_COMMIT 21 – 5.
FND_CONCURRENT.AF_ROLLBACK 21 – 5.
FND_CONCURRENT.GET_REQUEST_STATUS (Client
or Server) 21 – 5.
FND_CONCURRENT.WAIT_FOR_REQUEST (Client
or Server) 21 – 8.
FND_CONCURRENT.SET_COMPLETION_STATUS
(Server) 21 – 9.

FND_FILE: PL/SQL File I/O 21 – 11.
FND_FILE.PUT 21 – 11.
FND_FILE.PUT_LINE 21 – 11.
FND_FILE.NEW_LINE 21 – 12.
FND_FILE.PUT_NAMES 21 – 13.
FND_FILE.CLOSE 21 – 13.
Error Handling 21 – 14.

FND_PROGRAM: Concurrent Program Loaders 21 – 15.
FND_PROGRAM.MESSAGE 21 – 15.
FND_PROGRAM.EXECUTABLE 21 – 15.
FND_PROGRAM.DELETE_EXECUTABLE 21 – 16.
FND_PROGRAM.REGISTER 21 – 17.
FND_PROGRAM.DELETE_PROGRAM 21 – 19.
FND_PROGRAM.PARAMETER 21 – 20.
FND_PROGRAM.DELETE_PARAMETER 21 – 21.
FND_PROGRAM.INCOMPATIBILITY 21 – 22.
FND_PROGRAM.DELETE_INCOMPATIBILITY 21 – 22.
FND_PROGRAM.REQUEST_GROUP 21 – 23.
FND_PROGRAM.DELETE_GROUP 21 – 23.
FND_PROGRAM.ADD_TO_GROUP 21 – 24.
FND_PROGRAM.REMOVE_FROM_GROUP 21 – 24.
FND_PROGRAM.PROGRAM_EXISTS 21 – 25.
FND_PROGRAM.PARAMETER_EXISTS 21 – 25.
FND_PROGRAM.INCOMPATIBILITY_EXISTS 21 – 26.
FND_PROGRAM.EXECUTABLE_EXISTS 21 – 26.
FND_PROGRAM.REQUEST_GROUP_EXISTS 21 – 27.
FND_PROGRAM.PROGRAM_IN_GROUP 21 – 27.
FND_PROGRAM.ENABLE_PROGRAM 21 – 27.

FND_REQUEST Package 21 – 29.
FND_REQUEST.SET_OPTIONS (Client or Server) 21 – 29.
FND_REQUEST.SET_REPEAT_OPTIONS (Client or Server)
21 – 30
FND_REQUEST.SET_PRINT_OPTIONS (Client or Server) 21 – 31.
FND_REQUEST.SUBMIT_REQUEST (Client or Server) 21 – 32. . . .

 xiiiContents

FND_REQUEST.SET_MODE (Server) 21 – 33.
Example Request Submissions 21 – 34.

FND_REQUEST_INFO and Multiple Language Support (MLS) 21 – 38
FND_REQUEST_INFO.GET_PARAM_NUMBER 21 – 38.
FND_REQUEST_INFO.GET_PARAM_INFO 21 – 39.
FND_REQUEST_INFO.GET_PROGRAM 21 – 39.
FND_REQUEST_INFO.GET_PARAMETER 21 – 39.
Example MLS Function 21 – 40.

FND_SET: Request Set Loaders 21 – 42.
FND_SET.MESSAGE 21 – 42.
FND_SET.CREATE_SET 21 – 42.
FND_SET.DELETE_SET 21 – 43.
FND_SET.ADD_PROGRAM 21 – 44.
FND_SET.REMOVE_PROGRAM 21 – 45.
FND_SET.PROGRAM_PARAMETER 21 – 45.
FND_SET.DELETE_PROGRAM_PARAMETER 21 – 46.
FND_SET.ADD_STAGE 21 – 47.
FND_SET.REMOVE_STAGE 21 – 48.
FND_SET.LINK_STAGES 21 – 49.
FND_SET.INCOMPATIBILITY 21 – 49.
FND_SET.DELETE_INCOMPATIBILITY 21 – 51.
FND_SET.ADD_SET_TO_GROUP 21 – 52.
FND_SET.REMOVE_SET_FROM_GROUP 21 – 52.

FND_SUBMIT: Request Set Submission 21 – 53.
FND_SUBMIT.SET_MODE 21 – 53.
FND_SUBMIT.SET_REL_CLASS_OPTIONS 21 – 53.
FND_SUBMIT.SET_REPEAT_OPTIONS 21 – 54.
FND_SUBMIT_SET.REQUEST_SET 21 – 55.
FND_SUBMIT.SET_PRINT_OPTIONS 21 – 55.
FND_SUBMIT.ADD_PRINTER 21 – 56.
FND_SUBMIT.ADD_NOTIFICATION 21 – 56.
FND_SUBMIT.SET_NLS_OPTIONS 21 – 57.
FND_SUBMIT.SUBMIT_PROGRAM 21 – 57.
FND_SUBMIT.SUBMIT_SET 21 – 58.
Examples of Request Set Submission 21 – 58.

Chapter 22 Standard Request Submission 22 – 1.
Overview of Standard Request Submission 22 – 2.

Basic Application Development Needs 22 – 2.
Major Features 22 – 3.
Definitions 22 – 5.

 xiv Oracle Applications Developer’s Guide

Controlling Access to Your Reports and Programs 22 – 6.
Implementing Standard Request Submission 22 – 8.

Developing Reports for Standard Request Submission 22 – 8. . . .
Defining Parameter Validation 22 – 9.
Defining Your Report or Other Program 22 – 11.
Cross–application Reporting 22 – 12.

Chapter 23 Request Sets 23 – 1.
Overview of Request Sets 23 – 2.

Sets, Stages, and Requests 23 – 2.
Stage Functions 23 – 6.
Request Set Completion Status 23 – 7.

Chapter 24 The TEMPLATE Form 24–1.
Overview of the TEMPLATE Form 24–2.
Libraries in the TEMPLATE Form 24–3.
Special Triggers in the TEMPLATE form 24–6.

Triggers That Often Require Some Modification 24–7.
Triggers That Cannot Be Modified 24–11.

Chapter 25 Attachments 25 – 1.
Overview of Attachments 25 – 2.

Definitions 25 – 2.
How Attachments Work 25 – 4.
Attachments for Forms or Form Functions 25 – 6.

Planning and Defining the Attachments Feature 25 – 7.
Planning to Add the Attachments Feature to Your
Application 25 – 7.
Setting Up the Attachments Feature for Your Form 25 – 10.

Document Entities Window 25 – 11.
Document Entities Block 25 – 11.

Document Categories Window 25 – 13.
Document Categories Block 25 – 13.
Category Assignments Window 25 – 14.

Attachment Functions Window 25 – 16.
Attachment Functions Block 25 – 16.
Categories Window 25 – 17.
Block Declaration Window 25 – 18.
Entity Declaration Window 25 – 20.

 xvContents

Chapter 26 Handling Dates 26 – 1.
Year 2000 Compliance in Oracle Applications 26 – 2.

RR Date Support 26 – 3.
Paths to Compliance 26 – 4.
Dates in Oracle Applications 26 – 4.

Date Coding Standards 26 – 9.
Using Dates While Developing Application Forms 26 – 9.
Using Dates With Compliant Versions of OAS 26 – 13.

Conversion To Date Compliance 26 – 15.
Verify Compliance 26 – 15.
Character Mode and External Programs Code Review 26 – 16.
Date–Enhanced Forms Code Review 26 – 17.
Non–Date–Enhanced Forms Code Review 26 – 17.
Testing 26 – 18.

Troubleshooting 26 – 20.
Use the DATECHECK Script to Identify Issues 26 – 20.
Problems Observed During Testing 26 – 21.
Date Checklist 26 – 21.

Chapter 27 Customization Standards 27 – 1.
Overview of Customizing Oracle Applications 27 – 2.

Basic Business Needs 27 – 2.
Definitions 27 – 3.
Determining Your Needs 27 – 5.

Customization By Extension 27 – 6.
Defining Your Custom Application 27 – 7.
Adding a Form 27 – 8.
Adding a Report or Concurrent Program 27 – 9.
Adding a New Report Submission Form 27 – 10.
Adding Online Help 27 – 10.
Adding Menus 27 – 10.
Adding Responsibilities 27 – 11.
Adding Message Dictionary Messages 27 – 11.

Customization By Modification 27 – 12.
Modifying an Existing Form 27 – 14.
Modifying an Existing Report 27 – 16.
Modifying an Existing C Program 27 – 18.
Modifying an Existing PL/SQL Stored Procedure 27 – 18.
Modifying Existing Online Help 27 – 19.
Modifying Existing Message Dictionary Messages 27 – 19.

 xvi Oracle Applications Developer’s Guide

Modifying Existing Menus and Responsibilities 27 – 19.
Oracle Applications Database Customization 27 – 21.
Oracle Applications Upgrades and Patches 27 – 24.
Building Online Help for Custom Applications 27 – 26.

How the Help System Works 27 – 26.
Prepare Your Forms 27 – 27.
Create HTML Help Files 27 – 27.
Create a Help Navigation Tree 27 – 28.
Upgrades and Patches 27 – 28.

Integrating Custom Objects and Schemas 27 – 29.
Upgrading Custom Forms to Release 11i 27 – 31.

Converting Your Form to Oracle Forms 6i 27 – 31.
Upgrading Your Forms to Release 11i Standards 27 – 32.
Performing Required Manual Changes on Your Forms 27 – 32. . . .
Performing Optional Manual Changes on Your Forms 27 – 33.

The Upgrade Utility and Standards Compliance Checker:
flint60 27 – 36.

Preparing to Run flint60 27 – 37.
Running the flint60 Utility 27 – 38.
Reviewing flint60 Log File Output 27 – 39.

Changes to Internal Menu Names from Release 11 to
Release 11i 27 – 42.

Chapter 28 Using the CUSTOM Library 28 – 1.
Customizing Oracle Applications with the CUSTOM Library 28 – 2. .

Writing Code for the CUSTOM Library 28 – 2.
Events Passed to the CUSTOM Library 28 – 5.
When to Use the CUSTOM Library 28 – 6.
Coding Zoom 28 – 6.
Coding Generic Form Events 28 – 10.
Coding Product–Specific Events 28 – 12.
Adding Custom Entries to the Special Menu 28 – 12.
Support and Upgrading 28 – 15.

Product–Specific Events in Oracle Application Object Library 28 – 17. .
WHEN–LOGON–CHANGED Event 28 – 17.
WHEN–RESPONSIBILITY–CHANGED Event 28 – 17.

CUSTOM Package 28 – 19.
CUSTOM.ZOOM_AVAILABLE 28 – 19.
CUSTOM.STYLE 28 – 19.
CUSTOM.EVENT 28 – 20.

Example of Implementing Zoom Using the CUSTOM Library 28 – 23. .

 xviiContents

Modify the Form 28 – 23.
Modify the CUSTOM Library 28 – 24.

Chapter 29 APPCORE Routine APIs 29 – 1.
APP_COMBO: Combination Block API 29 – 3.

APP_COMBO.KEY_PREV_ITEM 29 – 3.
APP_DATE and FND_DATE: Date Conversion APIs 29 – 4.

List of Date Terms 29 – 4.
APP_DATE.CANONICAL_TO_DATE and
FND_DATE.CANONICAL_TO_DATE 29 – 5.
APP_DATE.DISPLAYDATE_TO_DATE and
FND_DATE.DISPLAYDATE_TO_DATE 29 – 6.
APP_DATE.DISPLAYDT_TO_DATE and
FND_DATE.DISPLAYDT_TO_DATE 29 – 7.
APP_DATE.DATE_TO_CANONICAL and
FND_DATE.DATE_TO_CANONICAL 29 – 7.
APP_DATE.DATE_TO_DISPLAYDATE and
FND_DATE.DATE_TO_DISPLAYDATE 29 – 8.
APP_DATE.DATE_TO_DISPLAYDT and
FND_DATE.DATE_TO_DISPLAYDT 29 – 8.
APP_DATE.DATE_TO_FIELD 29 – 9.
APP_DATE.FIELD_TO_DATE 29 – 10.
APP_DATE.VALIDATE_CHARDATE 29 – 11.
APP_DATE.VALIDATE_CHARDT 29 – 12.
FND_DATE.STRING_TO_DATE 29 – 12.
FND_DATE.STRING_TO_CANONICAL 29 – 13.

APP_EXCEPTION: Exception Processing APIs 29 – 15.
APP_EXCEPTION.RAISE_EXCEPTION 29 – 15.
APP_EXCEPTION.RETRIEVE 29 – 15.
APP_EXCEPTION.GET_TYPE 29 – 15.
APP_EXCEPTION.GET_CODE 29 – 16.
APP_EXCEPTION.GET_TEXT 29 – 16.
APP_EXCEPTION.RECORD_LOCK_EXCEPTION 29 – 16.
APP_EXCEPTION.RECORD_LOCK_ERROR 29 – 16.
APP_EXCEPTION.DISABLED 29 – 17.

APP_FIELD: Item Relationship Utilities 29 – 18.
APP_FIELD.CLEAR_FIELDS 29 – 18.
APP_FIELD.CLEAR_DEPENDENT_FIELDS 29 – 18.
APP_FIELD.SET_DEPENDENT_FIELD 29 – 19.
APP_FIELD.SET_EXCLUSIVE_FIELD 29 – 20.
APP_FIELD.SET_INCLUSIVE_FIELD 29 – 21.
APP_FIELD.SET_REQUIRED_FIELD 29 – 22.

 xviii Oracle Applications Developer’s Guide

APP_FIND: Query–Find Utilities 29 – 23.
APP_FIND.NEW 29 – 23.
APP_FIND.CLEAR 29 – 23.
APP_FIND.CLEAR_DETAIL 29 – 23.
APP_FIND.FIND 29 – 24.
APP_FIND.QUERY_RANGE 29 – 24.
APP_FIND.QUERY_FIND 29 – 24.

APP_ITEM: Individual Item Utilities 29 – 26.
APP_ITEM.COPY_DATE 29 – 26.
APP_ITEM.IS_VALID 29 – 26.
APP_ITEM.SIZE_WIDGET 29 – 27.

APP_ITEM_PROPERTY: Property Utilities 29 – 28.
APP_ITEM_PROPERTY.GET_PROPERTY 29 – 28.
APP_ITEM_PROPERTY.SET_PROPERTY 29 – 28.
APP_ITEM_PROPERTY.SET_VISUAL_ATTRIBUTE 29 – 29.

APP_NAVIGATE: Open a Form Function 29 – 30.
APP_NAVIGATE.EXECUTE 29 – 30.

APP_RECORD: Record Utilities 29 – 33.
APP_RECORD.TOUCH_RECORD 29 – 33.
APP_RECORD.HIGHLIGHT 29 – 33.
APP_RECORD.FOR_ALL_RECORDS 29 – 34.
APP_RECORD.DELETE_ROW 29 – 34.
APP_RECORD.VALIDATE_RANGE 29 – 35.

APP_REGION: Region Utilities 29 – 37.
APP_REGION.ALT_REGION 29 – 37.

APP_STANDARD Package 29 – 38.
APP_STANDARD.APP_VALIDATE 29 – 38.
APP_STANDARD.EVENT 29 – 38.
APP_STANDARD.SYNCHRONIZE 29 – 39.
APP_STANDARD.PLATFORM 29 – 39.

APP_WINDOW: Window Utilities 29 – 40.
APP_WINDOW.CLOSE_FIRST_WINDOW 29 – 40.
APP_WINDOW.PROGRESS 29 – 40.
APP_WINDOW.SET_COORDINATION 29 – 40.
APP_WINDOW.SET_WINDOW_POSITION 29 – 41.
APP_WINDOW.SET_TITLE 29 – 42.

Chapter 30 FNDSQF Routine APIs 30 – 1.
FND_CURRENCY: Dynamic Currency APIs 30 – 2.

FND_CURRENCY.GET_FORMAT_MASK (Client or
Server) 30 – 2.

 xixContents

Currency Examples 30 – 3.
FND_DATE: Date Conversion APIs 30 – 4.
FND_GLOBAL: WHO Column Maintenance and Database
Initialization 30 – 5.

FND_GLOBAL.USER_ID (Server) 30 – 5.
FND_GLOBAL.APPS_INITIALIZE (Server) 30 – 5.
FND_GLOBAL.LOGIN_ID (Server) 30 – 7.
FND_GLOBAL.CONC_LOGIN_ID (Server) 30 – 7.
FND_GLOBAL.PROG_APPL_ID (Server) 30 – 7.
FND_GLOBAL.CONC_PROGRAM_ID (Server) 30 – 8.
FND_GLOBAL.CONC_REQUEST_ID (Server) 30 – 8.

FND_ORG: Organization APIs 30 – 9.
FND_ORG.CHANGE_LOCAL_ORG 30 – 9.
FND_ORG.CHANGE_GLOBAL_ORG 30 – 9.
FND_ORG.CHOOSE_ORG 30 – 9.

FND_STANDARD: Standard APIs 30 – 10.
FND_STANDARD.FORM_INFO 30 – 10.
FND_STANDARD.SET_WHO 30 – 10.
FND_STANDARD.SYSTEM_DATE 30 – 11.
FND_STANDARD.USER 30 – 11.

FND_UTILITIES: Utility Routines 30 – 12.
FND_UTILITIES.OPEN_URL 30 – 12.
FND_UTILITIES.PARAM_EXISTS 30 – 12.

Chapter 31 Naming Standards 31 – 1.
Naming Standards and Definitions 31 – 2.

Database Objects 31 – 2.
Form Objects 31 – 5.
File Standards 31 – 9.
PL/SQL Packages, Procedures and Source Files 31 – 10.
Reserved Words 31 – 11.

Glossary

Index

 xx Oracle Applications Developer’s Guide

T

 iPreface

Preface

his manual contains the coding standards followed by the Oracle
Applications development staff. It describes the code needed to
implement the Oracle Applications user interface described in the
Oracle Applications User Interface Standards for Forms–Based Products. It
also provides information necessary to help you integrate your Oracle
Forms Developer 6i forms with Oracle Applications. This preface
includes the following topics:

• Audience for this Guide

• Other Information Sources

• Do Not Use Database Tools to Modify Oracle Applications Data

• Typographic Conventions

• Your Feedback

 ii Oracle Applications Developer’s Guide

Audience for This Guide

This guide is written for the application developer and assumes
assumes you have a working knowledge of the following:

• Oracle Forms Developer 6i

If you have never used Oracle Forms Developer, we suggest you
attend one or more of the relevant training classes available
through Oracle University.

• PL/SQL 8 and Oracle8i

If you have never used Oracle8i or PL/SQL, we suggest you
attend one or more of the relevant training classes available
through Oracle University.

• The Oracle Applications graphical user interface.

To learn more about the Oracle Applications graphical user
interface, read the Oracle Applications User Guide.

See Other Information Sources for more information about Oracle
Applications product information.

Other Information Sources

You can choose from many sources of information, including online
documentation, training, and support services, to increase your
knowledge and understanding of Oracle Application Object Library.

If this guide refers you to other Oracle Applications documentation,
use only the Release 11i versions of those guides unless we specify
otherwise.

Online Documentation

Most Oracle Applications documentation is available online (HTML
and/or PDF). The technical reference guides are available in paper
format only. Note that the HTML documentation is translated into
over twenty languages.

The HTML version of this guide is optimized for onscreen reading, and
you can use it to follow hypertext links for easy access to other HTML
guides in the library. When you have an HTML window open, you can
use the features on the left side of the window to navigate freely
throughout all Oracle Applications documentation.

 iiiPreface

• You can use the Search feature to search by words or phrases.

• You can use the expandable menu to search for topics in the
menu structure we provide. The Library option on the menu
expands to show all Oracle Applications HTML documentation.

You can view HTML help in the following ways:

• From an application window, use the help icon or the help menu
to open a new Web browser and display help about that window.

• Use the documentation CD.

• Use a URL provided by your system administrator.

Your HTML help may contain information that was not available when
this guide was printed.

Related User Guides

You can read Oracle Applications products user guides online by
choosing Library from the expandable menu on your HTML help
window, by reading from the Oracle Applications Document Library
CD included in your media pack, or by using a Web browser with a
URL that your system administrator provides.

If you require printed guides, you can purchase them from the Oracle
store at http://oraclestore.oracle.com.

User Guides Related to All Products

Oracle Applications User Guide

This guide explains how to navigate the system, enter data, and query
information, and introduces other basic features of the GUI available
with this release of Oracle Application Object Library (and any other
Oracle Applications product).

You can also access this user guide online by choosing “Getting Started
and Using Oracle Applications” from the Oracle Applications help
system.

Oracle Alert User Guide

Use this guide to define periodic and event alerts that monitor the
status of your Oracle Applications data.

 iv Oracle Applications Developer’s Guide

Oracle Applications Implementation Wizard User Guide

If you are implementing more than one Oracle product, you can use the
Oracle Applications Implementation Wizard to coordinate your setup
activities. This guide describes how to use the wizard.

Oracle Applications User Interface Standards

This guide, Oracle Applications User Interface Standards for Forms–Based
Products, contains the user interface (UI) standards followed by the
Oracle Applications development staff. It describes the UI for the
Oracle Applications products and how to apply this UI to the design of
an application built by using Oracle Forms.

Oracle Applications Flexfields Guide

This guide provides flexfields planning, setup, and reference
information for the Oracle Applications implementation team, as well
as for users responsible for the ongoing maintenance of Oracle
Applications product data. This guide also provides information on
creating custom reports on flexfields data.

Installation and System Administration Guides

Oracle Applications Concepts

This guide provides an introduction to the concepts, features,
technology stack, architecture, and terminology for Oracle Applications
Release 11i. It provides a useful first book to read before an installation
of Oracle Applications. This guide also introduces the concepts behind,
and major issues, for Applications–wide features such as Business
Intelligence (BIS), languages and character sets, and self–service
applications.

Installing Oracle Applications

This guide provides instructions for managing the installation of Oracle
Applications products. In Release 11i, much of the installation process
is handled using Oracle One–Hour Install, which minimizes the time it
takes to install Oracle Applications and the Oracle 8i Server technology
stack by automating many of the required steps. This guide contains
instructions for using Oracle One–Hour Install and lists the tasks you
need to perform to finish your installation. You should use this guide
in conjunction with individual product user guides and
implementation guides.

 vPreface

Upgrading Oracle Applications

Refer to this guide if you are upgrading your Oracle Applications
Release 10.7 or Release 11.0 products to Release 11i. This guide
describes the upgrade process in general and lists database upgrade
and product–specific upgrade tasks. You must be at either Release 10.7
(NCA, SmartClient, or character mode) or Release 11.0 to upgrade to
Release 11i. You cannot upgrade to Release 11i directly from releases
prior to 10.7.

Using the AD Utilities

Use this guide to help you run the various AD utilities, such as
AutoInstall, AutoPatch, AD Administration, AD Controller, Relink,
and others. It contains how–to steps, screenshots, and other
information that you need to run the AD utilities.

Oracle Applications Product Update Notes

Use this guide as a reference if you are responsible for upgrading an
installation of Oracle Applications. It provides a history of the changes
to individual Oracle Applications products between Release 11.0 and
Release 11i. It includes new features and enhancements and changes
made to database objects, profile options, and seed data for this
interval.

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle
Applications System Administrator. It contains information on how to
define security, customize menus and online help, and manage
processing.

Oracle Applications Technical Reference Guides

These reference guides contain database diagrams and a detailed
description of database tables, forms, reports, and programs for Oracle
Applications products. This information helps you convert data from
your existing applications, integrate Oracle Applications products with
non–Oracle applications, and write custom reports for Oracle
Applications products.

You can order a technical reference guide for any product you have
licensed. Technical reference guides are available in paper format only.

 vi Oracle Applications Developer’s Guide

Oracle Workflow Guide

This guide explains how to define new workflow business processes as
well as customize existing Oracle Applications–embedded workflow
processes. You also use this guide to complete the setup steps
necessary for any Oracle Applications product that includes
workflow–enabled processes.

Training and Support

Training

We offer a complete set of training courses to help you and your staff
master Oracle Applications. We can help you develop a training plan
that provides thorough training for both your project team and your
end users. We will work with you to organize courses appropriate to
your job or area of responsibility.

Training professionals can show you how to plan your training
throughout the implementation process so that the right amount of
information is delivered to key people when they need it the most. You
can attend courses at any one of our many Educational Centers, or you
can arrange for our trainers to teach at your facility. We also offer Net
classes, where training is delivered over the Internet, and many
multimedia–based courses on CD. In addition, we can tailor standard
courses or develop custom courses to meet your needs.

Support

From on–site support to central support, our team of experienced
professionals provides the help and information you need to keep
Oracle Applications products working for you. This team includes
your Technical Representative, Account Manager, and Oracle’s large
staff of consultants and support specialists with expertise in your
business area, managing an Oracle server, and your hardware and
software environment.

Do Not Use Database Tools to Modify Oracle Applications Data

We STRONGLY RECOMMEND that you never use SQL*Plus, Oracle
Data Browser, database triggers, or any other tool to modify Oracle
Applications tables, unless we tell you to do so in our guides.

Syntax:
Example:

 viiPreface

Oracle provides powerful tools you can use to create, store, change,
retrieve, and maintain information in an Oracle database. But if you
use Oracle tools such as SQL*Plus to modify Oracle Applications data,
you risk destroying the integrity of your data and you lose the ability to
audit changes to your data.

Because Oracle Applications tables are interrelated, any change you
make using an Oracle Applications form can update many tables at
once. But when you modify Oracle Applications data using anything
other than Oracle Applications forms, you might change a row in one
table without making corresponding changes in related tables. If your
tables get out of synchronization with each other, you risk retrieving
erroneous information and you risk unpredictable results throughout
Oracle Applications.

When you use Oracle Applications forms to modify your data, Oracle
Applications automatically checks that your changes are valid. Oracle
Applications also keeps track of who changes information. But, if you
enter information into database tables using database tools, you may
store invalid information. You also lose the ability to track who has
changed your information because SQL*Plus and other database tools
do not keep a record of changes.

Typographic Conventions

This manual uses the following typographic conventions to distinguish
important elements from the body of the manual.

Function Keys

Forms function keys are represented by the key name enclosed in
square brackets: [Next Item].

For key mappings for your particular keyboard type, refer to the
following sources:

• Online help Show Keys screen (for most keyboards, [Ctrl–K] or
Help–>Keyboard Help from within Oracle Applications)

Command and Example Syntax

Commands and examples appear in a monotype font, as follows:

SET_CANVAS_PROPERTY(canvas_name, property, value);
/*

Syntax:

 viii Oracle Applications Developer’s Guide

** Built–in: SET_CANVAS_PROPERTY

** Example: Change the ”background color” by setting the

** canvas color dynamically at runtime to the name

** of a visual attribute you created.

*/

BEGIN

Set_Canvas_Property(’my_main_cnv’,VISUAL_ATTRIBUTE,’blue_text’);

END;

Command and example syntax adhere to the following conventions:

Explanation

Used for code fragments and examples.

Indicates user–supplied items such as variables,
exceptions, and actual parameters.

Indicates a default parameter. If you indicate no
parameter in a parameter set, Forms applies the
default parameter.

An ellipsis shows that statements or clauses were
left out. The ellipsis can appear horizontally as
shown, or in vertical format.

A slash and asterisk begin a C–style comment.

An asterisk and slash end a C–style comment.

Two consecutive hyphens begin an ANSI–style
comment, which extends to the end of the line.

Indentation helps show structure within code
examples, but is not required.

Case Sensitivity

Although neither PL/SQL nor Forms commands are case sensitive
(that is, you can enter text in upper or lower case without restriction),
in the documentation both upper and lower case are used for ease in
reading.

In syntax examples, built–in names are usually shown in all caps;
user–defined values are usually shown in lower case.

SET_CANVAS_PROPERTY(canvas_name, property, value);

Convention

plain monotype

italic monotype

underlined
monotype

...

/*

*/

––

indentation

Example Syntax:

With Values:

Example Syntax:

With Values:

 ixPreface

Syntax Examples

This example illustrates first how the syntax is presented in this
manual, followed by an example of how you actually enter a built–in
procedure into your triggers.

SET_FORM_PROPERTY(formmodule_name, property, value);

Set_Form_Property(’my_form’, savepoint_mode, PROPERTY_ON);

SET_TIMER(timer_name, milliseconds, iterate);

Set_Timer(’my_timer’, 12000, REPEAT);

About Oracle

Oracle Corporation develops and markets an integrated line of
software products for database management, applications
development, decision support and office automation, as well as Oracle
Applications. Oracle Applications provides the E–business Suite, a
fully integrated suite of more than 70 software modules for financial
management, Internet procurement, business intelligence, supply chain
management, manufacturing, project systems, human resources and
sales and service management.

Oracle products are available for mainframes, minicomputers, personal
computers, network computers, and personal digital assistants,
enabling organizations to integrate different computers, different
operating systems, different networks, and even different database
management systems, into a single, unified computing and information
resource.

Oracle is the world’s leading supplier of software for information
management, and the world’s second largest software company. Oracle
offers its database, tools, and application products, along with related
consulting, education and support services, in over 145 countries
around the world.

Your Feedback

Thank you for using Oracle Application Object Library and this guide.

We value your comments and feedback. This guide contains a
Reader’s Comment Form you can use to explain what you like or
dislike about Oracle Application Object Library or this guide. Mail

 x Oracle Applications Developer’s Guide

your comments to the following address or call us directly at (650)
506–7000.

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Or, send electronic mail to appsdoc@us.oracle.com.

C H A P T E R

1
T

1 – 1Overview of Coding Standards

Overview of Coding
Standards

his chapter describes the general principles on which the Oracle
Applications Coding Standards are based, and introduces basic coding
standards that apply to all forms.

The following topics are covered:

• Importance of these Standards

• Coding Principles

• Coding with Handlers

• Performance

• The Standard Development Environment

• Shared Objects

• Libraries

• Property Classes

• Visual Attributes

• Overview of Building an Application

• Overall Design Issues to Consider

• Overview of Application Development Steps

• Overview of Form Development Steps

1 – 2 Oracle Applications Developer’s Guide

Overview of Coding Standards

Importance of these Standards

The coding standards described in this manual, together with the user
interface standards described in the Oracle Applications User Interface
Standards for Forms–Based Products, are used by Oracle Corporation
developers to build Oracle Applications. If you want to build custom
application code that integrates with and has the same look and feel as
Oracle Applications, you must follow these standards. If you do not
follow these standards exactly as they are presented, you may not
achieve an acceptable result.

This manual makes no attempt to analyze the consequences of
deviating from the standards in particular cases. The libraries and
procedures that are packaged with Oracle Applications all assume
adherence to these standards. In fact, since the behavior of Oracle
Forms, the Oracle Applications standard libraries, and the standards
are so tightly linked, a deviation from standards that appears to be
minor may in fact have far–reaching and unpredictable results.
Therefore, we recommend that when you develop custom application
code, you follow the standards exactly as they are described in this
manual and in the Oracle Applications User Interface Standards for
Forms–Based Products.

Coding Principles

Oracle Applications coding standards are guided by the following
principles:

• Code must be readable to be maintained

• Tools such as Oracle Forms and PL/SQL are used whenever
possible (avoid complex user exits using other coding languages)

• Fast performance over the World Wide Web (the web) is critical

• Platform–specific code should be avoided except where
absolutely necessary

• Reusable objects should be employed wherever possible

1 – 3Overview of Coding Standards

Coding With Handlers

Oracle Applications uses groups of packaged procedures, called
handlers, to organize PL/SQL code in forms so that it is easier to
develop, maintain, and debug.

In Oracle Forms, code is placed in triggers, which execute the code
when that trigger event occurs. Implementing complex logic may
require scattering its code across multiple triggers. Because code in
triggers is not located in one place, it cannot be written or reviewed
comprehensively, making development, maintenance, and debugging
more difficult. To determine what code and events affect a particular
item, a developer must scan many triggers throughout the form. Code
that affects multiple items can be extremely difficult to trace.

To centralize the code so it is easier to develop, maintain, and debug,
place the code in packaged procedures and call those procedures from
the triggers. Pass the name of the trigger as an argument for the
procedure to process. This scheme allows the code for a single
business rule to be associated with multiple trigger points, but to reside
in a single location.

There are different kinds of procedures for the different kinds of code
you write: item handlers, event handlers, table handlers, and business
rules. Code resides in these procedures; do not put any code in the
triggers other than calls to the procedures.

Handlers may reside in program units in the form itself, in form
libraries, or in stored packages in the database as appropriate.

Item Handlers

An item handler is a PL/SQL procedure that encapsulates all of the
code that acts upon an item. Most of the validation, defaulting, and
behavior logic for an item is typically in an item handler.

Coding Item Handlers (See page 4 – 17)

Event Handlers

An event handler is a PL/SQL procedure that encapsulates all of the
code that acts upon an event. Usually event handlers exist to satisfy
requirements of either Oracle Forms or the Oracle Applications User
Interface Standards for Forms–Based Products, as opposed to particular
business requirements for a product.

Coding Event Handlers (See page 4 – 19)

1 – 4 Oracle Applications Developer’s Guide

Table Handlers

A table handler encapsulates all of the code that manages interactions
between a block and its base table. When an updatable block is based
on a view, you must supply procedures to manage the insert, update,
lock and delete. Referential integrity checks often require additional
procedures. Table handlers may reside on either the forms server or
the database, depending on their size and the amount of interaction
with the database, but they typically reside in the database.

 Coding Table Handlers (See page 4 – 20)
 Server side versus Client side (See page 4 – 6)

Business Rules

A business rule describes complex data behavior. For example, one
business rule is: ”A discount cannot be greater than 10% if the current
credit rating of the buyer is less than ’Good’.” Another business rule is:
”A Need–By Date is required if a requisition is made for an inventory
item.”

A business rule procedure encapsulates all of the code to implement
one business rule when the business rule is complex or affects more
than one item or event. The business rule procedure is then called by
the item or event handlers that are involved in the business rule. If the
business rule is simple and affects only one item or event, implement
the business rule directly in the item or event handler.

Libraries

Libraries contain reusable client–side code. They support these form
coding standards by allowing the same code to be used by all forms to
enforce specific validation, navigation and cosmetic behaviors and
appearances.

Libraries allow code to be written once and used by multiple forms.
Additionally, because the executables attach at runtime, they facilitate
development and maintenance without being invasive to a form.

Every form requires several standard triggers and procedures to link
the form with a library. Many of these triggers and procedures have a
default behavior that a developer overrides for specific items or blocks.

 Special Triggers in the TEMPLATE form (See page 24–6)

1 – 5Overview of Coding Standards

Application–Specific Libraries

Each application is strongly encouraged to create its own libraries.
Typically, each application creates a central library that governs
behaviors of objects found throughout many of its forms. Additional
libraries should be created for each major transaction form to facilitate
the following:

• Multiple developers can work on a single module, with some
developers coding the actual form and others coding the
supporting libraries.

• Shipment and installation of patches to code is vastly simplified
if the correction is isolated in a library. Libraries do not require
any porting or translation.

All libraries should reside in the $AU_TOP/resource directory (or its
equivalent).

Attaching Libraries

Sometimes library attachments can be lost on platforms that have
case–sensitive filenames. By Oracle Applications standards, library
names must be in all uppercase letters (except for the file extension).
However, for forms developed using Microsoft Windows, the library
filename may be attached using mixed case letters, making the
attachment invalid on case–sensitive platforms such as Unix. If you
attach a library to a form in the Oracle Forms Developer on Microsoft
Windows, you should avoid using the Browse mechanism to locate the
file. Instead, type in just the filename, in uppercase only, with no file
extension (for example, CUSTOM). Oracle Forms will then preserve
the attachment exactly as you typed it. Note that your attachment
should never include a directory path; your FORMS60_PATH should
include the directory that holds all your libraries.

Performance

Performance is a critical issue in any application. Applications must
avoid overloading the network that connects desktop client, server, and
database server computers, since often it is network performance that
most influences users’ perceptions of application performance.

Oracle Applications are designed to minimize network traffic on all
tiers. For example, they try to limit network round trips to one per
user–distinguishable event by employing the following coding
standards:

1 – 6 Oracle Applications Developer’s Guide

• Use database stored procedures when extensive SQL is required

• Code all non–SQL logic on the client side where possible

• Cache data on the client side where practical

• Base blocks on views that denormalize foreign key information
where practical

Views (See page 3 – 7)
Server Side versus Client Side (See page 4 – 6)

Coding for Web Compatibility

Following Oracle Applications standards carefully will help ensure that
your forms can be deployed on the Web.

You should avoid using the following features in your forms, as they
are not applicable in this architecture:

• ActiveX, VBX, OCX, OLE, DDE (Microsoft Windows–specific
features that would not be available for a browser running on a
Macintosh, for example, and cannot be displayed to users from
within the browser)

• Timers other than one–millisecond timers (one–millisecond
timers are treated as timers that fire immediately)

• WHEN–MOUSE–MOVE, WHEN–MOUSE–ENTER/LEAVE and
WHEN–WINDOW–ACTIVATED/DEACTIVATED triggers

• Open File dialog box

– It would open a file on the applications server, rather than
on the client machine (where the browser is) as a user might
expect

• Combo boxes

– Our standards do not use combo boxes anyhow

• Text_IO and HOST built–in routines

– These would take place on the applications server, rather
than on the client machine (where the browser is) as a user
might expect

1 – 7Overview of Coding Standards

The Standard Development Environment

These coding standards assume that you are developing code in the
appropriate Oracle Applications development environment, which
includes compatible versions of several products. You can ensure that
you have all the correct versions of the Oracle Applications and other
Oracle products by installing all products from one set of Oracle
Applications Release 11i CDs.

• Oracle Forms Developer 6i

• Oracle Reports Developer 6i

• Oracle Application Object Library Release 11i

• Oracle8i

• JInitiator

While you can develop forms using the standard Oracle Forms
Developer, you cannot run your Oracle Applications–based forms from
the Oracle Forms Developer. Running such forms requires additional
Oracle Application Object Library user exits referred to by the libraries,
as well as settings and runtime code that can only be seen when
running forms through a browser with JInitiator. Both the libraries and
the user exits also assume a full installation of the Oracle Application
Object Library database schema, as they reference tables, views, and
packages contained therein.

Mandatory Settings for Running Oracle Applications

The html file used to launch Oracle Applications must include several
specific settings for Oracle Applications to function properly. The
following table contains the required parameters and their required
values:

Name Value

colorScheme blue

lookAndFeel oracle

separateFrame true

darkLook true

readOnlyBackground automatic

Table 1 – 1 (Page 1 of 2)

1 – 8 Oracle Applications Developer’s Guide

ValueName

dontTruncateTabs true

background no

Table 1 – 1 (Page 2 of 2)

Additionally, the file OracleApplications.dat must contain the
following lines:

app.ui.requiredFieldVABGColor=255,242,203

app.ui.lovButtons=true

app.ui.requiredFieldVA=true

There are several variables that must be set correctly, either as Unix
environment variables or NT Registry settings, before starting up your
Forms Server for running Oracle Applications. These variables include
NLS_DATE_FORMAT. NLS_DATE_FORMAT must be set to
DD–MON–RR.

Additional Information: Installing Oracle Applications

Mandatory Settings for Form Generation

At form generation time, make sure you designate the character set
designed for your language in the NLS_LANG variable in your
Windows NT registry or environment file (for Unix). You must ensure
that the character set you specify is the character set being used for
your Oracle Applications installation.

You must also set the value of your FORMS60_PATH environment
variable in your environment file (or platform equivalent such as
Windows NT registry) to include any directory that contains forms,
files, or libraries you use to develop and generate your forms.
Specifically, you must include a path to the <$AU_TOP>/forms/US
directory to be able to find all referenced forms, and a path to the
<$AU_TOP>/resource directory to be able to find the Oracle
Applications library files you need (where <$AU_TOP> is the
appropriate directory path, not the variable).

Recommended Setting for Form Development

Oracle Forms Developer allows referenced objects to be overridden in
the local form. Oracle Forms Developer also does not normally
provide any indication that an object is referenced unless you set a
special environment variable (Registry setting for NT). Set the

1 – 9Overview of Coding Standards

environment variable (Registry setting) ORACLE_APPLICATIONS to
TRUE before starting Oracle Forms Developer. This setting allows you
to see the reference markers (little flags with an ”R” in them) on
referenced objects so you can avoid changing referenced objects
unintentionally. Any object referenced from the APPSTAND form must
never be changed.

Warning: Oracle Forms Developer allows referenced objects
to be overridden in the local form. Any object referenced from
the APPSTAND form must never be changed.

Oracle Application Object Library for Release 11i

Oracle Application Object Library (AOL) for Release 11i includes
(partial list):

• Starting forms

– Template form with standard triggers (TEMPLATE)

– Form containing standard property classes for your runtime
platform (APPSTAND)

• PL/SQL libraries

– Routines for Flexfields, Function security, User Profiles,
Message Dictionary (FNDSQF)

– Standard user interface routines (APPCORE, APPCORE2)

– Routines for Calendar widget (APPDAYPK)

• Development standards

– Oracle Applications User Interface Standards for Forms–Based
Products

– Oracle Applications Developer’s Guide (this manual)

Setting Object Characteristics

The characteristics of most form objects, including modules, windows,
canvases, blocks, regions, and items may be set in the following ways:

• Inherited through property classes, which cause certain
properties to be identical in all forms (such as canvas visual
attributes)

1 – 10 Oracle Applications Developer’s Guide

• At the discretion of the developer during form design (such as
window sizes)

• At runtime, by calling standard library routines (such as window
positions)

Shared Objects

These standards rely extensively on the object referencing capabilities
of Oracle Forms. These capabilities allow objects to be reused across
multiple forms, with changes to the master instance automatically
inherited by forms that share the object. Additionally, these shared
objects provide flexibility for cross–platform support, allowing Oracle
Applications to adhere to the look and feel conventions of the platform
they run on.

APPSTAND Form

The APPSTAND form contains the master copy of the shared objects.
It contains the following:

• Object group STANDARD_PC_AND_VA, which contains the
Visual Attributes and Property Classes required to implement
much of the user interface described in the Oracle Applications
User Interface Standards for Forms–Based Products. A property
class exists for almost every item and situation needed for
development.

Property Classes (See page 1 – 13)
Setting the Properties of Container Objects: page 5 – 1
Setting the Properties of Widget Objects: page 6 – 1

• Object group STANDARD_TOOLBAR, which contains the
windows, canvasses, blocks, and items of the Applications
Toolbar. This group also contains other items which are required
in all forms but are not necessarily part of the Toolbar.

Pulldown Menus and the Toolbar (See page 10 – 2)

• Object group STANDARD_CALENDAR, which contains the
windows, canvasses, blocks, and items of the Applications
Calendar.

 The Calendar (See page 9 – 23)

1 – 11Overview of Coding Standards

• Object group QUERY_FIND, which contains a window, canvas,
block, and items used as a starting point for coding a Find
Window. This object group is copied into each form, rather than
referenced, so that it can be modified.

Query Find Windows (See page 8 – 2)

Warning: Additional objects in the APPSTAND form are for
internal use by Oracle Applications only, and their use is not
supported. Specifically, the object group STANDARD_
FOLDER is not supported.

Warning: Oracle Forms Developer allows referenced objects
to be overridden in the local form. Any object referenced from
the APPSTAND form must never be changed.

TEMPLATE Form

The TEMPLATE form is the required starting point for all development
of new forms. It includes references to many APPSTAND objects,
several attached libraries, required triggers, and other objects.

Start developing each new form by copying this file, located in
$AU_TOP/forms/US (or your language and platform equivalent), to a
local directory and renaming it as appropriate. Be sure to rename the
filename, the internal module name, and the name listed in the call to
FND_STANDARD.FORM_INFO found in the form–level PRE–FORM
trigger.

 Overview of the TEMPLATE Form (See page 24–2)

FNDMENU

The Oracle Applications default menu (with menu entries common to
all forms, such as File, Edit, View, Help, and so on) is contained in the
$AU_TOP/resource/US directory (or its equivalent) as the file
FNDMENU. You should never modify this file, nor should you create
your own menu for your forms.

Standard Libraries

Application Object Library contains several libraries that support the
Oracle Applications User Interface Standards for Forms–Based Products:

1 – 12 Oracle Applications Developer’s Guide

• FNDSQF contains packages and procedures for Message
Dictionary, flexfields, profiles, and concurrent processing. It also
has various other utilities for navigation, multicurrency, WHO,
etc.

• APPCORE and APPCORE2 contain the packages and procedures
that are required of all forms to support the menu, Toolbar, and
other required standard behaviors. APPCORE2 is a
near–duplicate of APPCORE intended for use with the CUSTOM
library.

Oracle Applications APIs (See page 29 – 1)

• APPDAYPK contains the packages that control the Applications
Calendar.

The Calendar (See page 9 – 23)

• APPFLDR contains all of the packages that enable folder blocks.

Warning: Oracle Applications does not support use of the
APPFLDR library for custom development.

• VERT, GLOBE, PSAC, PQH_GEN, GHR, JA, JE, and JL exist to
support globalization and vertical markets. These libraries are
for Oracle Applications use only and may not be attached to
custom forms. However, they appear to be attached to most
forms based on the TEMPLATE form because they are attached
to the APPCORE library or other standard libraries.

• CUSTOM contains stub calls that may be modified to provide
custom code for Oracle Applications forms without modifying
the Oracle Applications forms directly.

Customizing Oracle Applications with the CUSTOM
Library (See page 28 – 2)

The TEMPLATE form includes attachments to the FNDSQF, APPCORE
and APPDAYPK libraries. Other standard Oracle Applications libraries
are attached to those libraries and may appear to be attached to the
TEMPLATE form.

 Libraries in the TEMPLATE Form (See page 24–3)

Any code you write within a form that is based on the TEMPLATE
form may call any (public) procedure that exists in these libraries. If
you code your own library, you will need to attach the necessary
libraries to it.

1 – 13Overview of Coding Standards

Property Classes

Property classes are sets of attributes that can be applied to almost any
Oracle Forms object. The TEMPLATE form automatically contains
property classes, via references to APPSTAND, that enforce standard
cosmetic appearances and behaviors for all widgets and containers as
described in the Oracle Applications User Interface Standards for
Forms–Based Products.

Property Classes
Oracle Applications User Interface Standards for Forms–Based
Products

Rules for attaching the property classes to specific objects are discussed
in Chapters 5 and 6.

Setting the Properties of Container Objects (See page 5 – 1)
Setting the Properties of Widget Objects (See page 6 – 1)

Do not override any attribute set by a property class unless this manual
explicitly states that it is acceptable, or there is a compelling reason to
do so. Overriding an inherited attribute is very rarely required.

Application–specific Property Classes, Object Groups and Objects

Each application should take advantage of the referencing capabilities
of Oracle Forms to help implement standards for their particular
application in the same manner as APPSTAND.

For example, the General Ledger application might have specified
standard widths and behaviors for ”Total” fields throughout the
application. A GL_TOTAL Property Class, referenced into each form,
could set properties such as width, format mask, etc. A General
Ledger developer, after referencing in this set of property classes, can
then simply apply the GL_TOTAL property class to each item in the
form that is a Total field and it inherits its standard appearance and
behavior automatically. Entire items or blocks can also be reused.

Further, property classes can be based on other property classes, so the
GL_TOTAL class could be based on the standard TEXT_ITEM_
DISPLAY_ONLY class in APPSTAND. Such subclassing allows the
application–specific object to inherit changes made within APPSTAND
automatically.

Most Oracle Applications products also have a ”standard” form
(typically called [Application short name]STAND, such as GLSTAND
or BOMSTAND) in the same directory if you install the development

1 – 14 Oracle Applications Developer’s Guide

versions of those products. These files are used for storing
application–specific object groups, property classes, and other objects
that are referenced into Oracle Applications forms.

Visual Attributes

All of the visual attributes described in the Oracle Applications User
Interface Standards for Forms–Based Products are automatically included
in the TEMPLATE form via references to APPSTAND. Each visual
attribute is associated with a property class or is applied at runtime by
APPCORE routines.

For detailed information about the specific color palettes and effects of
the visual attributes, see the Oracle Applications User Interface Standards
for Forms–Based Products.

1 – 15Overview of Coding Standards

Overview of Building an Application

An application that integrates with Oracle Applications consists of
many pieces, including but not limited to forms, concurrent programs
and reports, database tables and objects, messages, menus,
responsibilities, flexfield definitions, online help, and so on.

Building an application also requires that you consider many overall
design issues, such as what platforms and languages your application
will run on, what other applications you will integrate with,
maintenance issues, and so on.

Overall Design Issues to Consider

When designing your application, you should keep in mind that many
Oracle Applications features affect various facets of your application
including database objects, forms, concurrent programs, and so on, and
including these features should be considered from the beginning of
your application design process. These features include but are not
limited to:

• Flexfields

• User profiles

• Multiple organizations

• Oracle Workflow integration

• Multiple platform support

• National language support

• Flexible date formats

• Multiple currency support

• Year 2000 support

• CUSTOM library support

• Object naming standards

1 – 16 Oracle Applications Developer’s Guide

Overview of Application Development Steps

This is the general process of creating an application that integrates
with Oracle Applications.

1. Register your application. See: Applications Window: page 2 – 6.

2. Set up your application directory structures. See: Overview of
Setting Up Your Application Framework: page 2 – 2.

3. Modify the appropriate environment files. See: Oracle Applications
Concepts manual.

4. Register your custom Oracle schema. See: Oracle Applications
System Administrator’s Guide.

5. Include your custom application and Oracle schema in data
groups. See: Oracle Applications System Administrator’s Guide.

6. Create your application tables and views. See: Tables: page 3 – 2.
See: Views: page 3 – 7.

7. Integrate your tables and views with the Oracle Applications APPS
schema. See: Integrating Custom Objects and Schemas: page
27 – 29.

8. Register your flexfields tables. See: Table Registration API: page
3 – 11.

9. Build your application libraries and forms. See: Overview of Form
Development Steps: page 1 – 17.

10. Build your application functions and menus. See: Overview of
Menus and Function Security: page 11 – 2.

11. Build your application responsibilities. See: Oracle Applications
System Administrator’s Guide.

12. Build concurrent programs and reports. See: Overview of
Concurrent Processing: page 15 – 2.

13. Customize Oracle Applications forms if necessary using the
CUSTOM library. See: Customizing Oracle Applications with the
CUSTOM Library: page 28 – 2.

1 – 17Overview of Coding Standards

Overview of Form Development Steps

This is the general process of building a form that integrates with
Oracle Applications.

1. Copy the form TEMPLATE and rename it. See: Overview of the
TEMPLATE Form: page 24–2.

2. Attach any necessary libraries to your copy of TEMPLATE.
TEMPLATE comes with several libraries already attached. See:
Overview of the TEMPLATE Form: page 24–2.

3. Create your form blocks, items, LOVs, and other objects and apply
appropriate property classes. See: Setting Properties of Container
Objects: page 5 – 1. See: Setting Properties of Widget Objects: page
6 – 1.

4. Create your window layout in adherence with the Oracle
Applications User Interface Standards for Forms–Based Products.

5. Add table handler logic. See: Coding Table Handlers: page 4 – 20.

6. Code logic for window and alternative region control. See:
Controlling Window Behavior: page 7 – 2.

7. Add Find windows and/or Row–LOVs and enable Query Find.
See: Overview of Query Find: page 8 – 2.

8. Code logic for item relations such as dependent fields. See: Item
Relations: page 9 – 2.

9. Code any messages to use Message Dictionary. See: Overview of
Message Dictionary: page 12 – 2.

10. Add flexfields logic if necessary. See: Overview of Flexfields: page
14 – 2.

11. Add choices to the Special menu and add logic to modify the
default menu and toolbar behavior if necessary. See: Pulldown
Menus and the Toolbar: page 10 – 2.

12. Code any other appropriate logic.

13. Test your form by itself.

14. Register your form with Oracle Application Object Library. See:
Forms Window: page 11 – 21.

15. Create a form function for your form and register any subfunctions.
See: Overview of Menus and Function Security: page 11 – 2.

16. Add your form function to a menu, or create a custom menu. See:
Overview of Menus and Function Security: page 11 – 2.

1 – 18 Oracle Applications Developer’s Guide

17. Assign your menu to a responsibility and assign your responsibility
to a user. See: Oracle Applications System Administrator’s Guide.

18. Test your form from within Oracle Applications (especially if it
uses features such as user profiles or function security).

C H A P T E R

2
T

2 – 1Setting Up Your Application Framework

Setting Up Your
Application Framework

his chapter describes what you need to do to set up your
application framework, including creating directory structures,
registering your application, registering your Oracle schema, and so on.

The following topics are covered:

• Application Directory Structures

• Registering Your Application

• Registering Your Oracle Schema

• Setting Up Your Application and Integrating It with Oracle
Applications

• Applications window

2 – 2 Oracle Applications Developer’s Guide

Overview of Setting Up Your Application Framework

Oracle Applications and custom applications that integrate with Oracle
Applications rely on having their components arranged in a predictable
structure. This includes particular directory structures where you
place reports, forms, programs and other objects, as well as
environment variables and application names that allow Oracle
Application Object Library to find your application components.

Definitions

Application

An application, such as Oracle General Ledger or Oracle Inventory, is a
functional grouping of forms, programs, menus, libraries, reports, and
other objects. Custom applications group together site–specific
components such as custom menus, forms, or concurrent programs.

Application Short Name

The application short name is an abbreviated form of your application
name used to identify your application in directory and file names and
in application code such as PL/SQL routines.

Oracle Schema

Database username used by applications to access the database. Also
known as Oracle ID (includes password) or Oracle user.

Environment Variable

An operating system variable that describes an aspect of the
environment in which your application runs. For example, you can
define an environment variable to specify a directory path.

• $APPL_TOP: An environment variable that denotes the
installation directory for Oracle Application Object Library and
your other Oracle applications. $APPL_TOP is usually one
directory level above each of the product directories (which are
often referred to as $PROD_TOP or $PRODUCT_TOP or
$<prod>_TOP)

2 – 3Setting Up Your Application Framework

Note that environment variables may be documented with or without
the $ sign. For Windows NT environments, most environment
variables correspond to Registry settings (without the $ sign), although
some variables may be located in .cmd files instead of in the Registry.

Application Basepath

An environment variable that denotes the directory path to your
application–level subdirectories. You include your application
basepath in your application environment files and register it with
Oracle Application Object Library when you register your application
name. Corresponds to the $PRODUCT_TOP directory.

Set Up Your Application Directory Structures

When you develop your application components, you must place them
in the appropriate directories on the appropriate machines so that
Oracle Application Object Library can find them. For example, reports
written using Oracle Reports are typically placed in a subdirectory
called reports on the concurrent processing server machine, while
forms belong in separate subdirectories, depending on their territory
and language (such as US for American English, D for German, and so
on), on the forms server machine.

The directory structure you use for your application depends on the
computer and operating system platform you are using, as well as the
configuration of Oracle Applications at your site. For example, you
may be using a configuration that includes a Unix database server a
separate Unix concurrent processing server, a Microsoft Windows NT
forms server, and Web browsers on PCs, or you may be using a
configuration that has the database and forms server on the same Unix
machine with Web browsers on PCs. These configurations would have
different directory setups. See your Oracle Applications Concepts manual
for directory setup information for your particular platforms and
configuration. For a description of the contents and purpose of each of
the subdirectories, see your Oracle Applications Concepts manual.

Register Your Application

You must register your application name, application short name,
application basepath, and application description with Oracle
Application Object Library. Oracle Application Object Library uses this

2 – 4 Oracle Applications Developer’s Guide

information to identify application objeb1 10ch as respionibilities nandr

2 – 5Setting Up Your Application Framework

Create Database Objects and Integrate with APPS Schema

To integrate your application tables with Oracle Applications, you must
create the appropriate grants and synonyms in the APPS schema. See
Integrating Custom Objects and Schemas: page 27 – 29 for information
about integrating with the APPS schema.

Add Your Application to a Data Group

Oracle Applications products are installed as part of the Standard data
group. If you are building a custom application, you should use the
Data Groups window to make a copy of the Standard data group and
add your application–Oracle ID pair to your new data group. Note
that if you have integrated your application tables with the APPS
schema, then you would specify APPS as the Oracle ID in the
application–Oracle ID pair (instead of the name of your custom
schema). See your Oracle Applications System Administrator’s Guide.

Set Up Concurrent Managers

If your site does not already have a concurrent manager setup
appropriate to support your custom application, you may need to have
your system administrator set up additional concurrent managers. See
your Oracle Applications System Administrator’s Guide.

2 – 6 Oracle Applications Developer’s Guide

Applications Window

When you define a custom application, you supply several pieces of
information to Oracle Applications. You must register your application
name, application short name, application basepath, and application
description with Oracle Application Object Library. Oracle Application
Object Library uses this information to identify application objects such
as responsibilities and forms as belonging to your application. This
identification with your custom application allows Oracle Applications
to preserve your application objects and customizations during
upgrades. The application basepath tells Oracle Application Object
Library where to find the files associated with your custom application.

You can use your custom application to name your custom menus,
concurrent programs, custom responsibilities, and many other custom
components. For some objects, the application part of the name only
ensures uniqueness across Oracle Applications. For other components,
the application you choose has an effect on the functionality of your
custom object.

�

2 – 7Setting Up Your Application Framework

Prerequisites

❑ Define an environment variable that translates to your application’s
basepath (see Oracle Applications Concepts for your operating
system).

❑ Set up a directory structure for your application (see Oracle
Applications Concepts for your operating system)

❑ If your application resides in a database other than the database
where Oracle Alert resides, you must create a database link.

Applications Block

When you register a custom application, you provide the information
Oracle uses to identify it whenever you reference it. Although you can
change the name of an application, doing so may cause a change in the
application code where you hardcode your application name. For
example, if you pass program arguments through the menu that have
application name hardcoded, you will also have to update them.

Attention: You should not change the name of any application
that you did not develop, as you cannot be sure of the
consequences. You should never change the name of any
Oracle Applications application, because these applications
may contain hardcoded references to the application name.

Application

This user–friendly name appears in lists seen by application users.

Short Name

Oracle Applications use the application short name when identifying
forms, menus, concurrent programs and other application components.
The short name is stored in hidden fields while the name displays for
users.

Your short name should not include spaces. You use an application
short name when you request a concurrent process from a form, and
when you invoke a subroutine from a menu.

Suggestion: Although your short name can be up to 50
characters, we recommend that you use only four or five
characters for ease in maintaining your application and in
calling routines that use your short name. To reduce the risk

2 – 8 Oracle Applications Developer’s Guide

that your custom application short name could conflict with a
future Oracle Applications short name, we recommend that
your custom application short name begins with ”XX”.

Basepath

Enter the name of an environment variable that represents the top
directory of your application’s directory tree. Oracle Applications
search specific directories beneath the basepath for your application’s
executable files and scripts when defining actions that reside in
external files.

In general, your application’s basepath should be unique so that
separate applications do not write to the same directories.

However, you may define custom applications that will be used only
for naming your custom responsibilities, menus and other components.
In this case, you can use the basepath of the Oracle application that
uses the same forms as your application. For example, if you are
defining a Custom_GL application, you could use the GL_TOP
basepath for your custom application.

See: Development Environment (Oracle Applications Concepts)

C H A P T E R

3
T

3 – 1Building Your Database Objects

Building Your Database
Objects

his chapter provides you with information you need to build
tables, views, and sequences.

The following topics are covered:

• Tracking Data Changes with WHO

• Oracle8 Declarative Constraints

• LONG, LONG RAW, and RAW Datatypes

• Views

• Sequences

• Table Registration API

3 – 2 Oracle Applications Developer’s Guide

Overview of Building Your Database Objects

This section describes specifications for how to define your tables and
the required columns to add. It also covers special data types such as
LONG and LONG RAW, and declarative constraints.

Using Cost–Based Optimization

In Release 11i, Oracle Applications now uses Oracle 8i Cost–Based
Optimization (CBO) instead of Rule–Based Optimization (RBO) used in
previous versions. All new code should be written to take advantage
of Cost–Based Optimization. Where your custom application code was
tuned to take advantage of Rule–Based Optimization, you may need to
retune that code for Cost–Based Optimization.

Additional Information: Oracle 8i Tuning

Tracking Data Changes with Record History (WHO)

The Record History (WHO) feature reports information about who
created or updated rows in Oracle Applications tables. Oracle
Applications upgrade technology relies on Record History (WHO)
information to detect and preserve customizations.

If you add special WHO columns to your tables and WHO logic to
your forms and stored procedures, your users can track changes made
to their data. By looking at WHO columns, users can differentiate
between changes made by forms and changes made by concurrent
programs.

You represent each of the WHO columns as hidden fields in each block
of your form (corresponding to the WHO columns in each underlying
table). Call FND_STANDARD.SET_WHO in PRE–UPDATE and
PRE–INSERT to populate these fields.

Adding Record History Columns

The following table lists the standard columns used for Record History
(WHO), the column attributes and descriptions, and the sources for the
values of those columns. Set the CREATED_BY and
CREATION_DATE columns only when you insert a row (using
FND_STANDARD.SET_WHO for a form).

3 – 3Building Your Database Objects

Column Name Type Null?
Foreign
Key? Description Value

CREATED_BY NUMBER(15) NOT
NULL

FND_
USER

Keeps track of
which user
created each
row

TO_NUMBER
(FND_
PROFILE.
VALUE
(’USER_ID’))

CREATION_
DATE

DATE NOT
NULL

Stores the date
on which each
row was
created

SYSDATE

LAST_
UPDATED_BY

NUMBER(15) NOT
NULL

FND_
USER

Keeps track of
who last up-
dated each row

TO_NUMBER
(FND_
PROFILE.
VALUE
(’USER_ID’))

LAST_UPDATE_
DATE

DATE NOT
NULL

Stores the date
on which each
row was last
updated

SYSDATE

LAST_UPDATE_
LOGIN

NUMBER(15) FND_
LOGINS

Provides
access to
information
about the oper-
ating system
login of the
user who last
updated each
row

TO_NUMBER
(FND_
PROFILE.
VALUE
(’LOGIN_
ID’))

Table 3 – 1 (Page 1 of 1)

Any table that may be updated by a concurrent program also needs
additional columns. The following table lists the concurrent processing
columns used for Record History, the column attributes and
descriptions, and the sources for the values of those columns.

3 – 4 Oracle Applications Developer’s Guide

Concurrent Program WHO Columns

Column Name Type Null?
Foreign Key to
Table? Description

REQUEST_ID NUMBER(15) FND_
CONCURRENT_
REQUESTS

Keeps track of the
concurrent request
during which this
row was created or
updated

PROGRAM_
APPLICATION_
ID

NUMBER(15) FND_
CONCURRENT_
PROGRAMS

With PROGRAM_ID,
keeps track of which
concurrent program
created or updated
each row

PROGRAM_ID NUMBER(15) FND_
CONCURRENT_
PROGRAMS

With PROGRAM_
APPLICATION_ID,
keeps track of which
concurrent program
created or updated
each row

PROGRAM_
UPDATE_DATE

DATE PROGRAM_
UPDATE_
DATE

Stores the date on
which the concurrent
program created or
updated the row

Table 3 – 2 (Page 1 of 1)

Use Event Handlers to Code Record History in Your Forms

Some operations that must be done at commit time do not seem
designed for a table handler. For example, event handlers are preferred
to table handlers for setting Record History information for a record, or
determining a sequential number. The logic for these operations may
be stored in a PRE_INSERT and/or PRE_UPDATE event handler,
which is called from PRE–INSERT and PRE–UPDATE block–level
triggers during inserts or updates.

FND_STANDARD: Standard APIs (See page 30 – 10)

3 – 5Building Your Database Objects

Property Classes For WHO Fields

Apply the CREATION_OR_LAST_UPDATE_DATE property class to
the form fields CREATION_DATE and LAST_UPDATE_DATE. This
property classes sets the correct attributes for these fields, including the
data type and width.

Record History Column Misuse

Never use Record History columns to qualify rows for processing.
Never depend on these columns containing correct information.

In general, you should not attempt to resolve Record History columns
to HR_EMPLOYEES; if you must attempt such joins, they must be
outer joins.

Tables Without Record History Information

For blocks that are based on a table, but do not have Record History
information, disable the menu entry HELP–>ABOUT_THIS_RECORD
(all other cases are handled by the default menu control).

Code a block–level WHEN–NEW–BLOCK–INSTANCE trigger (style
”Override”) with these lines:

 app_standard.event(’WHEN–NEW–BLOCK–INSTANCE’);

 app_special.enable(’ABOUT’, PROPERTY_OFF);

APP_SPECIAL: Menu and Toolbar Control (See page
10 – 15)

Oracle8i Declarative Constraints

This section discusses the declarative constraints Oracle8 permits on
tables, and when to use each feature with your Oracle Applications
tables.

For the most part, any constraint that is associated with a table should
be duplicated in a form so that the user receives immediate feedback if
the constraint is violated.

Warning: You should not create additional constraints on
Oracle Applications tables at your site, as you may adversely
affect Oracle Applications upgrades. If you do create
additional constraints, you may need to disable them before
upgrading Oracle Applications.

3 – 6 Oracle Applications Developer’s Guide

NOT NULL

Use wherever appropriate. Declare the corresponding fields within
Oracle Forms as ”Required” = True.

DEFAULT

In general, do not use this feature due to potential locking problems
with Oracle Forms. You may be able to use this feature with tables that
are not used by forms (for example, those used by batch programs), or
tables that contain columns that are not maintained by forms. For
example, defaulting column values can make batch programs simpler.
Possible default values are SYSDATE, USER, UID, USERENV(), or any
constant value.

UNIQUE

Use wherever appropriate. A unique key may contain NULLs, but the
key is still required to be unique. The one exception is that you may
have any number of rows with NULLS in all of the key columns.

In addition, to implement a uniqueness check in a form, create a
PL/SQL stored procedure which takes ROWID and the table unique
key(s) as its arguments and raises an exception if the key is not unique.
Only fields that the user can enter should have a uniqueness check
within the form; system–generated unique values should be derived
from sequences which are guaranteed to be unique.

Uniqueness Check (See page 9 – 19)

CHECK

Use this feature to check if a column value is valid only in simple cases
when the list of valid values is static and short (i.e., ’Y’ or ’N’).

CHECK provides largely duplicate functionality to database triggers
but without the flexibility to call PL/SQL procedures. By using
triggers which call PL/SQL procedures instead, you can share
constraints with forms and coordinate validation to avoid redundancy.

CHECK does provide the assurance that all rows in the table will pass
the constraint successfully, whereas database triggers only validate
rows that are inserted/updated/deleted while the trigger is enabled.

This is not usually a concern, since Oracle Applications database
triggers should rarely be disabled. Some triggers (such as Alert events)
are disabled before an upgrade and re–enabled at the end of the
upgrade.

3 – 7Building Your Database Objects

We strongly advise against the use of database triggers.

PRIMARY KEY

Define a Primary Key for all tables.

Cascade Delete and Foreign Key Constraint

Do not use the Declarative Cascade Delete or the Foreign Key
Constraint when defining tables. Cascade Delete does not work across
distributed databases, so you should program cascade delete logic
everywhere it is needed.

To implement a referential integrity check, create a PL/SQL stored
procedure which takes the table unique key(s) as its argument(s) and
raises an exception if deleting the row would cause a referential
integrity error.

Integrity Checking (See page 9 – 19)

LONG, LONG RAW and RAW Datatypes

Avoid creating tables with the LONG, LONG RAW, or RAW datatypes.
Within Oracle Forms, you cannot search using wildcards on any
column of these types. Use VARCHAR2(2000) columns instead.

Columns Using a Reserved Word

If a table contains a column named with a PL/SQL or an Oracle Forms
reserved word, you must create a view over that table that aliases the
offending column to a different name. Since this view does not join to
other tables, you can still INSERT, UPDATE, and DELETE through it.

Views

In general, complex blocks are based on views while simple setup
blocks are based on tables. The advantages to using views include:

• Network traffic is minimized because all foreign keys are
denormalized on the server

3 – 8 Oracle Applications Developer’s Guide

• You do not need to code any POST–QUERY logic to populate
non–database fields

• You do not need to code PRE–QUERY logic to implement
query–by–example for non–database fields

You should also base your Lists of Values (LOVs) on views. This
allows you to centralize and share LOV definitions. An LOV view is
usually simpler than a block view, since it includes fewer denormalized
columns, and contains only valid rows of data.

Example LOV (See page 6 – 14)

Define Views To Improve Performance

Whenever performance is an issue and your table has foreign keys, you
should define a view to improve performance. Views allow a single
SQL statement to process the foreign keys, reducing parses by the
server, and reducing network traffic.

Define Views to Promote Modularity

Any object available in the database promotes modularity and reuse
because all client or server side code can access it. Views are extremely
desirable because:

• They speed development, as developers can build on logic they
already encapsulated

• They modularize code, often meaning that a correction or
enhancement can be made in a single location

• They reduce network traffic

• They are often useful for reporting or other activities

• They can be easily and centrally patched at a customer site

When Not to Create A View

Avoid creating views that are used by only one SQL statement.
Creating a view that is only used by a single procedure increases
maintenance load because both the code containing the SQL statement
and the view must be maintained.

ROW_ID Is the First Column

The first column your view should select is the ROWID
pseudo–column for the root table, and the view should alias it to

3 – 9Building Your Database Objects

ROW_ID. Your view should then include all of the columns in the root
table, including the WHO columns, and denormalized foreign key
information.

Suggestion: You only need to include the ROWID column if
an Oracle Forms block is based on this view. The Oracle Forms
field corresponding to the ROW_ID pseudo–column should
use the ROW_ID property class.

Change Block Key Mode

In Oracle Forms, you need to change the block Key Mode property to
Non–Updatable to turn off Oracle Forms default ROWID references for
blocks based on views. Specify the primary keys for your view by
setting the item level property Primary Key to True.

For example, a view based on the EMP table has the columns ROW_ID,
EMPNO, ENAME, DEPTNO, and DNAME. Set the Key Mode
property of block EMP_V to Non–Updatable, and set the Primary Key
property of EMPNO to True.

If your block is based on a table, the block Key Mode should be
Unique.

Code Triggers for Inserting, Updating, Deleting and Locking

When basing a block on a view, you must code ON–INSERT,
ON–UPDATE, ON–DELETE, and ON–LOCK triggers to insert, update,
delete, and lock the root table instead of the view.

Coding Table Handlers (See page 4 – 20)

Single Table Views

Single table views do not require triggers for inserting, updating,
deleting and locking. Set the block Key Mode to Unique. Single table
views do not require a ROW_ID column.

Special Characters

Do not use the CHR() function (used to define a character by its ASCII
number) on the server side. This causes problems with server–side
platforms that use EBCDIC, such as MVS. You should not need to
embed tabs or returns in view definitions.

3 – 10 Oracle Applications Developer’s Guide

Sequences

This section discusses standards for creating and using sequences.

Create Single Use Sequences

Use each sequence to supply unique ID values for one column of one
table.

Do Not Limit the Range of Your Sequences

Do not create sequences that wrap using the CYCLE option or that
have a specified MAXVALUE. The total range of sequences is so great
that the upper limits realistically are never encountered.

In general, do not design sequences that wrap or have limited ranges.

Use Number Datatypes to Store Sequence Values

Use a NUMBER datatype to store sequence values within PL/SQL.

If you need to handle a sequence generate a sequence value in your C
code, do not assume that a sequence–generated value will fit inside a C
long variable. The maximum value for an ascending sequence is 10^27,
whereas the maximum value for a C signed long integer is 10^9. If
10^9 is not a reasonable limit for your sequence, you may use a double
instead of a long integer. Remember that by using a double for your
sequence, you may lose some precision on fractional values. If you do
not need to do arithmetic, and simply need to fetch your sequence
either to print it or store it back, consider retrieving your sequence in a
character string.

Do Not Use the FND_UNIQUE_IDENTIFIER_CONTROL Table

Do not rely on the FND_UNIQUE_IDENTIFIER_CONTROL table to
supply sequential values. Use a sequence or the sequential numbering
package instead. The FND_UNIQUE_IDENTIFIER_CONTROL table is
obsolete and should not have any rows for objects in your product.

Additionally, do not create application–specific versions of the FND
table to replace the FND_UNIQUE_IDENTIFIER_CONTROL table.

3 – 11Building Your Database Objects

Table Registration API

You register your custom application tables using a PL/SQL routine in
the AD_DD package.

Flexfields and Oracle Alert are the only features or products that
depend on this information. Therefore you only need to register those
tables (and all of their columns) that will be used with flexfields or
Oracle Alert. You can also use the AD_DD API to delete the
registrations of tables and columns from Oracle Application Object
Library tables should you later modify your tables.

If you alter the table later, then you may need to include revised or new
calls to the table registration routines. To alter a registration you
should first delete the registration, then reregister the table or column.
You should delete the column registration first, then the table
registration.

You should include calls to the table registration routines in a PL/SQL
script. Though you create your tables in your own application schema,
you should run the AD_DD procedures against the APPS schema. You
must commit your changes for them to take effect.

The AD_DD API does not check for the existence of the registered table
or column in the database schema, but only updates the required AOL
tables. You must ensure that the tables and columns registered actually
exist and have the same format as that defined using the AD_DD API.
You need not register views.

Procedures in the AD_DD Package

procedure register_table (p_appl_short_name in varchar2,

 p_tab_name in varchar2,

 p_tab_type in varchar2,

 p_next_extent in number default 512,

 p_pct_free in number default 10,

 p_pct_used in number default 70);

procedure register_column (p_appl_short_name in varchar2,

 p_tab_name in varchar2,

 p_col_name in varchar2,

 p_col_seq in number,

 p_col_type in varchar2,

 p_col_width in number,

 p_nullable in varchar2,

 p_translate in varchar2,

3 – 12 Oracle Applications Developer’s Guide

 p_precision in number default null,

 p_scale in number default null);

procedure delete_table (p_appl_short_name in varchar2,

 p_tab_name in varchar2);

procedure delete_column (p_appl_short_name in varchar2,

 p_tab_name in varchar2,

 p_col_name in varchar2);

The application short name of the application that
owns the table (usually your custom application).

The name of the table (in uppercase letters).

Use ’T’ if it is a transaction table (almost all
application tables), or ’S’ for a ”seed data” table
(used only by Oracle Applications products).

The percentage of space in each of the table’s
blocks reserved for future updates to the table
(1–99). The sum of p_pct_free and p_pct_used
must be less than 100.

Minimum percentage of used space in each data
block of the table (1–99). The sum of p_pct_free
and p_pct_used must be less than 100.

The name of the column (in uppercase letters).

The sequence number of the column in the table
(the order in which the column appears in the table
definition).

The column type (’NUMBER’, ’VARCHAR2’,
’DATE’, etc.).

The column size (a number). Use 9 for DATE
columns, 38 for NUMBER columns (unless it has a
specific width).

Use ’N’ if the column is mandatory or ’Y’ if the
column allows null values.

Use ’Y’ if the column values will be translated for
an Oracle Applications product release (used only
by Oracle Applications products) or ’N’ if the
values are not translated (most application
columns).

p_appl_short_
name

p_tab_name

p_tab_type

p_pct_free

p_pct_used

p_col_name

p_col_seq

p_col_type

p_col_width

p_nullable

p_translate

3 – 13Building Your Database Objects

The next extent size, in kilobytes. Do not include
the ’K’.

The total number of digits in a number.

The number of digits to the right of the decimal
point in a number.

Example of Using the AD_DD Package

Here is an example of using the AD_DD package to register a flexfield
table and its columns:

EXECUTE ad_dd.register_table(’FND’, ’CUST_FLEX_TEST’, ’T’,

8, 10, 90);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’APPLICATION_ID’, 1, ’NUMBER’, 38, ’N’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’ID_FLEX_CODE’, 2, ’VARCHAR2’, 30, ’N’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’LAST_UPDATE_DATE’, 3, ’DATE’, 9, ’N’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’LAST_UPDATED_BY’, 4, ’NUMBER’, 38, ’N’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’UNIQUE_ID_COLUMN’, 5, ’NUMBER’, 38, ’N’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’UNIQUE_ID_COLUMN2’, 6, ’NUMBER’, 38, ’N’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’SET_DEFINING_COLUMN’, 7, ’NUMBER’, 38, ’N’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’SUMMARY_FLAG’, 8, ’VARCHAR2’, 1, ’N’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’ENABLED_FLAG’, 9, ’VARCHAR2’, 1, ’N’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’START_DATE_ACTIVE’, 10, ’DATE’, 9, ’N’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’END_DATE_ACTIVE’, 11, ’DATE’, 9, ’N’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’SEGMENT1’, 12, ’VARCHAR2’, 60, ’Y’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’SEGMENT2’, 13, ’VARCHAR2’, 60, ’Y’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’SEGMENT3’, 14, ’VARCHAR2’, 60, ’Y’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

p_next_extent

p_precision

p_scale

3 – 14 Oracle Applications Developer’s Guide

’SEGMENT4’, 15, ’VARCHAR2’, 60, ’Y’, ’N’);

EXECUTE ad_dd.register_column(’FND’, ’CUST_FLEX_TEST’,

’SEGMENT5’, 16, ’VARCHAR2’, 60, ’Y’, ’N’);

C H A P T E R

4
T

4 – 1Using PL/SQL in Oracle Applications

Using PL/SQL in
Oracle Applications

his chapter provides you with information you need to build a
PL/SQL procedure to use with Oracle Applications. It explains the
standards you should follow to develop a PL/SQL procedure, where to
locate your code, and how to handle exceptions.

The following topics are covered:

• Overview of Building a PL/SQL Procedure

• PL/SQL Procedure Coding Standards

• Replacements for Oracle Forms Built-ins

• Resources

• Triggers

4 – 2 Oracle Applications Developer’s Guide

Overview of Using PL/SQL in Applications

You can use PL/SQL procedures as part of an application that you
build around Oracle Applications. By following the coding standards,
you can create a PL/SQL procedure that integrates seamlessly with
your application and with Oracle Applications.

You use PL/SQL to:

• Develop procedural extensions to your forms and reports
quickly and easily

• Modularize your application code to speed development and
improve maintainability

• Optimize your application code to reduce network traffic and
improve overall performance

You can use PL/SQL, Oracle’s procedural language extension to SQL,
to develop procedural extensions to custom forms and reports you
create with Oracle tools.

For example, to develop a form that follows Oracle Applications
standards, you organize your form code into PL/SQL business rule
procedures, item handlers, event handlers, and table handlers. You put
very little PL/SQL code directly into form triggers because those
triggers do not represent a logical model; they are simply event points
that Oracle Forms provides for invoking procedural code. If you put
most of your code in packaged PL/SQL procedures, and then call those
procedures from your triggers, you will have modular form code that
is easy to develop and maintain.

You may write any PL/SQL procedure that helps you modularize your
form code. For example, an item handler, event handler, or business
rule procedure may actually consist of several smaller procedures. Be
sure to group these smaller procedures into logical packages so their
purpose is clear. (There is no special name for these smaller
procedures. They are simply PL/SQL procedures.)

You can also use PL/SQL to develop concurrent programs or stored
procedures that are called from concurrent programs. Generally, any
concurrent program you would have developed as an immediate
concurrent program in past releases of Oracle Applications could be
developed as a PL/SQL concurrent program. Or, you may develop the
main body of your concurrent program in C, but encapsulate any SQL
statements issued by your concurrent program in PL/SQL stored
procedures.

PL/SQL Stored Procedures (See page 17 – 3)

4 – 3Using PL/SQL in Oracle Applications

Definitions

Server–side

Server–side is a term used to describe PL/SQL procedures that are
stored in an Oracle database (on the database server). Procedures and
functions stored in the database are also referred to as stored
procedures and functions, and may also be referred to as being
database server–side procedures.

Client–side

Client–side is a term used to describe PL/SQL procedures that run in
programs that are clients of the Oracle database, such as Oracle Forms,
Oracle Reports, and libraries.

The term ”client–side” in this manual usually refers to the forms server
(where the forms reside). ”Client–side” in this manual does not
typically refer to the ”desktop client”, which is usually a PC or other
desktop machine running a Web browser.

General PL/SQL Coding Standards

Always Use Packages

PL/SQL procedures should always be defined within packages. Create
a package for each block of a form, or other logical grouping of code.

Package Sizes

A client–side (Oracle Forms) PL/SQL program unit’s source code and
compiled code together must be less than 64K. (A program unit is a
package specification or body or stand–alone procedure.) This implies
that the source code for a program unit cannot exceed 10K.

If a package exceeds the 10K limit, you can reduce the size of the
package by putting private variables and procedures in one or more
”private packages.” By standard, only the original package should
access variables and procedures in a private package. If an individual
procedure exceeds the size limit, you should separate the code into two
or more procedures.

When an Oracle Forms PL/SQL procedure exceeds the 64K limit,
Oracle Forms raises an error at generate time.

4 – 4 Oracle Applications Developer’s Guide

Server–side packages and procedures do not have a size limit, but
when Oracle Forms refers to a server–side package or procedure, it
creates a local stub, which does have a size limit. The size of a package
stub depends on the number of procedures in the package and the
number and types of arguments each procedure has. Keep the number
of procedures in a package less than 25 to avoid exceeding the 10K
limit.

Adding New Procedures to Existing Packages

When you add new procedures or functions to existing packages
(either stored in the database or in Oracle Forms libraries), you should
usually add them to the end of the package (and package specification).
If you add new procedures to the middle of the package specification
and package, you must regenerate every form that references the
package, or those forms may get ORA–4062 errors.

Using Field Names in Client–Side PL/SQL Packages

Always specify field names completely by including the block name
(that is, BLOCK.FIELD_NAME instead of just FIELD_NAME). If you
specify just the field name, Oracle Forms must scan through the entire
list of fields for each block in the form to locate your field and check if
its name is ambiguous, potentially degrading your form perfomance. If
you include the block name, Oracle Forms searches only the fields in
that block and stops when it finds a match. Moreover, if you ever add
more blocks, your existing code continues to work since you specified
your field names unambiguously.

Field Names in Procedure Parameters

Pass field names to procedures and use COPY to update field values
instead of using IN OUT or OUT parameters. This method prevents a
field from being marked as changed whether or not you actually
modify it in your procedure. Any parameter declared as OUT is
always written to when the procedure exits normally.

For example, declare a procedure as test(my_var VARCHAR2 IN)
and call it as test(’block.field’) instead of declaring the
procedure as test(my_var VARCHAR2 IN OUT) and calling it as
test(:block.field).

Explicitly associate the parameter name and value with => when the
parameter list is long to improve readability and ensure that you are
not ”off” by a parameter.

4 – 5Using PL/SQL in Oracle Applications

Using DEFAULT

Use DEFAULT instead of ”:=” when declaring default values for your
parameters. DEFAULT is more precise because you are defaulting the
values; the calling procedure can override the values.

Conversely, use ”:=” instead of DEFAULT when declaring values for
your constant variables. Using ”:=” is more precise because you are
assigning the values, not defaulting them; the values cannot be
overridden.

Use Object IDs

Any code that changes multiple properties of an object using the
SET_<OBJECT>_PROPERTY built–in (or the Oracle Application Object
Library equivalent) should use object IDs. First use the appropriate
FIND_<OBJECT> built–in to get the ID, then pass the ID to the
SET_<OBJECT>_PROPERTY built–in.

You should also consider storing the ID in a package global so that you
retrieve it only once while the form is running.

Handling NULL Value Equivalence

Use caution when handling NULL values in PL/SQL. For example, if
a := NULL and b := NULL, the expression (a = b) evaluates to
FALSE. In any ”=” expression where one of the terms is NULL, the
whole expression will resolve to FALSE.

For this reason, to check if a value is equal to NULL, you must use the
operator ”is” instead. If you’re comparing two values where either of
the values could be equal to NULL, you should write the expression
like this: ((a = b) or ((a is null) and (b is null))

Global Variables

Oracle Forms Developer and PL/SQL support different types of global
variables:

• Oracle Forms Global: a variable in the ”global” pseudo–block of
a form

• PL/SQL Package Global: a global defined in the specification of
a package

• Oracle Forms Parameter: a variable created within the Oracle
Forms Designer as a Parameter

4 – 6 Oracle Applications Developer’s Guide

See the Oracle Forms Reference Manual for a complete description of
these variable types. The following table lists the characteristics of each
type of variable, and enables you to select the type most appropriate
for your code.

Behavior

Oracle
Forms
Global

PL/SQL
Package
Global

Oracle
Forms
Parameter

Can be created at Design time Y Y

Can be created at runtime Y

Accessible across all forms Y

Accessible from attached libraries Y (1) Y

Support specific datatypes (2) Y Y

Have declarative defaults Y

Can be referenced indirectly Y Y

Can be specified on command line Y

Must be erased to recover memory Y

Can be used in any Oracle Forms code Y Y

Table 4 – 1 (Page 1 of 1)

(1) A package variable defined in a form is not visible to any attached
library; a variable defined in an attached library is visible to the form.
(An Oracle Forms Global is visible to an attached library)

(2) Always CHAR(255).

Database Server Side versus Client Side

Performance is a critical aspect of any application. Because network
round trips are very costly in a typical client–server environment,
minimizing the number of round trips is key to ensuring good
performance.

You should decide whether your PL/SQL procedures reside on the
server or on the client based on whichever results in the fewest number
of network round trips. Here are some guidelines:

• Procedures that call Oracle Forms built–ins (more generally,
client built–ins) must reside on the client.

4 – 8 Oracle Applications Developer’s Guide

• Use ”– –” to start comments so that you can easily comment out
large portions of code during debugging with ”/* ... */”.

• Indent comments to align with the code being commented.

• When commenting out code, start the comment delimiter in the
leftmost column. When the code is clearly no longer needed,
remove it entirely.

• Use uppercase and lowercase to improve the readability of your
code (PL/SQL is case–insensitive). As a guideline, use
uppercase for reserved words and lowercase for everything else.

• Avoid deeply nested IF–THEN–ELSE condition control. Use
IF–THEN–ELSIF instead.

Example of Bad Style

IF ... THEN ... ELSE

 IF ... THEN ... ELSE

 IF ... THEN ... ELSE

 END IF

 END IF

END IF;

Example of Good Style

IF ... THEN ...

ELSIF ... THEN ...

ELSIF ... THEN ...

ELSIF ... THEN ...

ELSE ...

END IF;

• Only create nested PL/SQL blocks (BEGIN/END pairs) within a
procedure when there is specific exception handling you need to
trap.

�

4 – 9Using PL/SQL in Oracle Applications

Exception Handling

Errors in Oracle Forms PL/SQL

If a failure occurs in Oracle Forms PL/SQL and you want to stop
further processing, use FND_MESSAGE to display an error message,
then RAISE FORM_TRIGGER_FAILURE to stop processing:

IF (error_condition) THEN

 fnd_message.set_name(appl_short_name,

 message_name);

 fnd_message.error;

 RAISE FORM_TRIGGER_FAILURE;

END IF;

Note that RAISE FORM_TRIGGER_FAILURE causes processing to stop
quietly. Since there is no error notification, you must display any
messages yourself using FND_MESSAGE before raising the exception.

Message Dictionary APIs for PL/SQL Procedures (See
page 12 – 11)

Errors in Stored Procedures

If a failure occurs in a stored procedure and you want to stop further
processing, use the package procedures FND_MESSAGE.SET_NAME
to set a message, and APP_EXCEPTION.RAISE_EXCEPTION to stop
processing:

IF (error_condition) THEN

 fnd_message.set_name(appl_short_name,

 message_name);

 APP_EXCEPTION.RAISE_EXCEPTION;

END IF;

The calling procedure in the form does not need to do anything to
handle this stored procedure error. The code in the ON–ERROR trigger
of the form automatically detects the stored procedure error and
retrieves and displays the message.

Attention: For performance reasons, server side packages
should return a return_code for all expected returns, such as

4 – 10 Oracle Applications Developer’s Guide

no_rows. Only unexpected exceptions should be processed
with an exception handler.

Message Dictionary APIs for PL/SQL Procedures (See
page 12 – 11)
Special Triggers in the TEMPLATE form (See page 24–6)
 APP_EXCEPTION: Exception Processing APIs (See page
29 – 15)

Testing FORM_SUCCESS, FORM_FAILURE and FORM_FATAL

When testing FORM_SUCCESS, FORM_FAILURE, or FORM_FATAL
be aware that their values may be changed by a built–in in another
trigger that is fired as a result of your built–in. For example, consider
the following code:

GO_ITEM(’emp.empno’);

IF FORM_FAILURE THEN

 RAISE FORM_TRIGGER_FAILURE;

END IF;

The GO_ITEM causes other triggers to fire, such as
WHEN–NEW–ITEM–INSTANCE. Although the GO_ITEM may fail,
the last trigger to fire may succeed, meaning that FORM_FAILURE is
false. The following example avoids this problem.

GO_ITEM(’EMP.EMPNO’);

IF :SYSTEM.CURSOR_ITEM != ’EMP.EMPNO’ THEN

 –– No need to show an error, because Oracle Forms

 –– must have already reported an error due to

 –– some other condition that caused the GO_ITEM

 –– to fail.

 RAISE FORM_TRIGGER_FAILURE;

END IF;

See the Oracle Forms Reference Manual for other techniques
to trap the failure of each built–in.

Avoid RAISE_APPLICATION_ERROR

Do not use RAISE_APPLICATION_ERROR. It conflicts with the
scheme used to process server side exceptions.

Message Dictionary APIs for PL/SQL Procedures (See
page 12 – 11)

4 – 11Using PL/SQL in Oracle Applications

SQL Coding Guidelines

Follow these guidelines for all SQL that you code:

• Use ”select from DUAL” instead of ”select from SYS.DUAL”.
Do not use SYSTEM.DUAL.

• All SELECT statements should use an explicit cursor. Implicit
SELECT statements actually cause 2 fetches to execute: one to get
the data, and one to check for the TOO_MANY_ROWS
exception. You can avoid this by FETCHing just a single record
from an explicit cursor.

• If you want to SELECT into a procedure parameter, declare the
parameter as IN OUT, whether or not you reference the
parameter value, unless the parameter is a field.

• A single–row SELECT that returns no rows raises the exception
NO_DATA_FOUND. An INSERT, UPDATE, or DELETE that
affects no rows does not raise an exception. You need to
explicitly check the value of SQL%NOTFOUND if no rows is an
error.

• To handle NO_DATA_FOUND exceptions, write an exception
handler. Do not code COUNT statements to detect the existence
of rows unless that is your only concern.

• When checking the value of a field or PL/SQL variable against a
literal, do the check in PL/SQL code, not in a WHERE clause.
You may be able to avoid doing the SQL altogether.

• Do not check for errors due to database integrity problems. For
example, if a correct database would have a table SYS.DUAL
with exactly one row in it, you do not need to check if
SYS.DUAL has zero or more than one row or if SYS.DUAL
exists.

Triggers in Forms

Follow these general rules for triggers in your forms.

Execution Style

The ’Execution Style’ for all block or field level triggers should either be
Override or Before. In general, use style Before, since usually the
form–level version of the trigger should also fire. The exception is if
you have a flexfield call in the form–level POST–QUERY trigger, but

4 – 12 Oracle Applications Developer’s Guide

you reset the query status of the block in the block level POST–QUERY.
In that case, the block–level POST–QUERY should use Execution Style
After.

Special Triggers in the TEMPLATE form (See page 24–6)

KEY– Trigger Properties

Set the ”Show Keys” property to True for all KEY– triggers you code,
except those that you are disabling (which should have ”Show Keys”
set to False). Always set the ”Show Keys Description” property to
NULL.

WHEN–CREATE–RECORD in Dynamic Query–Only Mode

The WHEN–CREATE–RECORD trigger fires even when the block does
not allow inserts. You may need to check if the block allows insert if
you have logic in this trigger and your block may dynamically have
insert–allowed ”FALSE”:

IF GET_ITEM_PROPERTY(’<BLOCK>’, INSERT_ALLOWED) = FALSE THEN

null;

ELSE

<your logic here>;

END IF;

Resources

On the PC there is a limit to the number of real widgets available
simultaneously (text items and display items are not real Windows
widgets, as Oracle Forms creates these items). Every check box, list
item, and object group in your form consumes these resources.

If a real widget is on a hidden canvas, the resources it consumes are
freed. You can free resources by explicitly hiding a canvas that does
not appear on the screen. Also, any canvas set with a display property
of FALSE in the Oracle Forms Designer does not consume resources for
itself or its widgets until the canvas is visited or the canvas is
programmatically displayed.

Remember that Oracle Forms navigates to the first enterable item at
startup time, which creates the canvas and all its widgets for the First
Navigation Block.

4 – 13Using PL/SQL in Oracle Applications

Checking Resource Availability

To check the availability of MS Windows resources before performing
some action, use the following utility:

if get_application_property(USER_INTERFACE) =

 ’MSWINDOWS’ then

 if (FND_UTILITIES.RESOURCES_LOW) then

 FND_MESSAGE.SET_NAME(’FND’, ’RESOURCES_LOW’);

 if (FND_MESSAGE.QUESTION(’Do Not Open’, ’Open’,

 ’’, 1) =1) then

 raise FORM_TRIGGER_FAILURE;

 end if;

 end if;

end if;

4 – 14 Oracle Applications Developer’s Guide

Replacements for Oracle Forms Built–ins

These standards require that certain built–ins be avoided entirely, or
”wrapper” routines be called in their place. For many built–ins, there
are multiple methods of invocation. You can call the built–in directly,
giving you the standard forms behavior. For some built–ins, there are
standard Oracle Applications behaviors, which you invoke by calling
APP_STANDARD.EVENT.

Many of these built–ins have a key and a KEY– trigger associated with
them. If there is any additional logic which has been added to the
KEY– trigger that you want to take advantage of, you can invoke the
trigger by using the DO_KEY built–in. This is the same result you
would get if the user pressed the associated key.

You should routinely use the DO_KEY built–in. The only reason to
bypass the KEY– trigger is if you need to avoid the additional code that
would fire.

Do Not Use CALL_FORM

Do not use this Oracle Forms built–in:

This built–in is incompatible with OPEN_FORM,
which is used by Oracle Applications routines.

You should use FND_FUNCTION.EXECUTE
instead of either CALL_FORM or OPEN_FORM
whenever you need to open a form
programatically. Using
FND_FUNCTION.EXECUTE allows you to open
forms without bypassing Oracle Applications
security, and takes care of finding the correct
directory path for the form.

Function Security APIs for PL/SQL Procedures (See page
11 – 15)

Oracle Forms Built–In With APPCORE Replacements

These Oracle Forms built–ins have equivalent APPCORE routines that
provide additional functionality:

The Oracle Applications forms have special exit
processing. Do not call EXIT_FORM directly;
always call do_key(’EXIT_FORM’).

CALL_FORM

EXIT_FORM

4 – 15Using PL/SQL in Oracle Applications

To exit the entire Oracle Applications suite, first
call:

copy(’Y’,’GLOBAL.APPCORE_EXIT_FLAG’);

 Then call:

do_key(’exit_form’);

Replace with APP_ITEM_PROPERTY.SET_
PROPERTY and APP_ITEM_PROPERTY.SET_
VISUAL_ATTRIBUTE. These APPCORE routines
set the properties in the Oracle Applications
standard way and change the propagation
behavior. Some properties use the native Oracle
Forms SET_ITEM_PROPERTY. For a complete list
of properties that APP_ITEM_PROPERTY.SET_
PROPERTY covers, see the documentation for that
routine.

APP_ITEM_PROPERTY: Individual Property Utilities (See
page 29 – 28)

Use APP_ITEM_PROPERTY.GET_PROPERTY
when getting Oracle Applications specific
properties. Use the Oracle Forms built–in when
setting or getting other properties.

Use FND_FUNCTION.EXECUTE. This routine is
necessary for function security.

Both OPEN_FORM and FND_
FUNCTION.EXECUTE cause the POST–RECORD
and POST–BLOCK triggers to fire.

Use do_key(’clear_form’). This routine raises
the exception FORM_TRIGGER_FAILURE if there
is an invalid record.

You may use this built–in without ”do_key” to
avoid the additional functionality that comes from
going through the trigger.

Use do_key(’commit_form’). This routine
raises the exception FORM_TRIGGER_FAILURE if
there is an invalid record.

You may use this built–in without ”do_key” to
avoid the additional functionality that comes from
going through the trigger.

SET_ITEM_
PROPERTY

GET_ITEM_
PROPERTY

OPEN_FORM

CLEAR_FORM

COMMIT

4 – 16 Oracle Applications Developer’s Guide

Use do_key(’edit_field’). This routine
raises the calendar when the current item is a date.

You may use this built–in without ”do_key” to
avoid the additional functionality that comes from
going through the trigger.

Use APP_STANDARD.APP_VALIDATE instead.
This routine navigates to any item that causes
navigation failure.

You may use this built–in without ”do_key” to
avoid the additional functionality that comes from
going through the trigger.

Warning: APP_STANDARD.APP_VALIDATE requires that
you follow the button coding standards.

APP_STANDARD Package (See page 29 – 38)
Buttons (See page 6 – 10)

EDIT_FIELD/
EDIT_
TEXTITEM

VALIDATE

4 – 17Using PL/SQL in Oracle Applications

Coding Item, Event and Table Handlers

Developers call handlers from triggers to execute all the code necessary
to validate an item or to ensure the correct behavior in a particular
situation.

Handlers serve to centralize the code so it is easier to read and work
with. A typical form has a package for each block, and a package for
the form itself. Place code in procedures within these packages and call
the procedures (handlers) from the associated triggers. When a
handler involves multiple blocks or responds to form–level triggers,
place it in the form package.

There are different kinds of procedures for the different kinds of code,
such as item handlers, event handlers, and table handlers. Most code
resides in these procedures, and other than calls to them, you should
keep code in the triggers to a minimum.

Coding Item Handlers

Item handlers are procedures that contain all the logic used for
validating a particular item. An item handler package contains all the
procedures for validating the items in a block or form.

The packages are usually named after their block or form, while the
procedures are named after their particular item. For example, the
block EMP includes the items EMPNO, ENAME, and JOB. The
corresponding package EMP contains procedures named EMPNO,
ENAME, and JOB, making it easy to locate the code associated with a
particular item.

An item handler always takes one parameter named EVENT, type
VARCHAR2, which is usually the name of the trigger calling the item
handler.

Common EVENT Arguments for Item Handlers

The common event points and associated logic are:

Reset item attributes for the new record. Typically
used for APPCORE routines that enable and
disable dependent fields. You can use
WHEN–NEW–RECORD–INSTANCE for some
cases where you need to use restricted Oracle
Forms built–in routines or perform navigation or
commits.

PRE–RECORD

4 – 18 Oracle Applications Developer’s Guide

Initialize the item.

Validate the item and set dynamic item attributes.

The INIT Event

INIT is short for ”Initialize” and is a directive to the item handler to
initialize the item. INIT tells the item handler to examine current
conditions in the form and reset its item’s default value and dynamic
attributes as necessary. This event is passed by other handlers and is
expected by many APPCORE routines.

The most common case is when an item depends on another item.
Whenever the master item changes – in WHEN–VALIDATE–ITEM in
the master’s item handler – the dependent’s item handler is called with
the INIT event.

When a condition for a master item changes, you typically must
cascade the event INIT down to other dependent items.

The VALIDATE Event

This pseudo–event is used with many APPCORE routines where the
item should be validated. Use this event instead of
WHEN–VALIDATE–ITEM, WHEN–CHECKBOX–
CHANGED, WHEN–LIST–CHANGED, or WHEN–RADIO–
CHANGED (any of which could also be used). You can write your
own item handler routines to expect either the VALIDATE event or the
trigger names.

Item Handler Format

A typical item handler looks like this:

procedure ITEM_NAME(event VARCHAR2) IS

 IF (event = ’WHEN–VALIDATE–ITEM’) THEN

 –– validate the item

 ELSIF (event = ’INIT’) THEN

 –– initialize this dependent item

 ELSIF (event in (’PRE–RECORD’, ’POST–QUERY’)) THEN

 –– etc.

 ELSE fnd_message.debug(’Invalid event passed to item_name: ’ ||

EVENT);

 END IF;

END ITEM_NAME;

Suggestion: Remember that writing an item handler is not the
whole process; you also must code a trigger for each event that

INIT

VALIDATE

4 – 19Using PL/SQL in Oracle Applications

the procedure handles and call the item handler. If what you
coded is not happening, the first thing to check is whether you
coded the trigger to call your new item handler.

Coding Event Handlers

Event handlers encapsulate logic that pertains to multiple items where
it is easier to centralize the code around an event rather than around
individual item behavior. You, the developer, determine when an event
handler is easier to read than a set of item handlers.

Very complex cross–item behaviors belong in the event handler, while
very simple single item behaviors belong in the item handlers. You can
call item handlers from event handlers.

For example, you may code an event handler to populate many items
on POST–QUERY. Rather than writing item handlers for each of the
items, you could encapsulate all of the logic in a single event handler.

Since an event handler handles only one event, it does not need an
EVENT parameter. In fact, it should not take any parameters.

Event handlers are named after the triggers, replacing dashes with
underscores (for example, the PRE–QUERY event handler is
PRE_QUERY).

Common Event Handlers

Populates items with values needed to retrieve the
appropriate records.

Populates non–base table items.

Populates default values (when using the default
value property is insufficient)

Validates complex inter–item relationships

PRE_QUERY

POST_QUERY

WHEN_CREATE
_RECORD

WHEN_
VALIDATE_
RECORD

4 – 20 Oracle Applications Developer’s Guide

Coding Table Handlers

A table handler is a server–side or client–side package that provides an
API to a table. Table handlers are used to insert, update, delete, or lock
a record, or to check if a record in another table references a record in
this table.

Since most of the forms in Oracle Applications are based on views,
these table handlers are necessary to handle interactions with the tables
underneath the views.

Warning: Change the block Key Mode from the default value
”Unique Key” to ”Non–Updatable Key” when the block is
based on a multi–table view. Specify your primary key items
by setting ”Primary Key” to True in the items’ property sheets.

Table handlers contain some or all of the following procedures:

Check for duplicate values on unique columns.

Check for referential integrity

Insert a row in the table

Update a row in the table

Delete a row from the table

Lock a row in the table

INSERT_ROW, UPDATE_ROW, DELETE_ROW, and LOCK_ROW are
commonly used to replace default Oracle Forms transaction processing
in the ON–INSERT, ON–UPDATE, ON–DELETE, and ON–LOCK
triggers.

In the INSERT_ROW table handler procedure, if a primary key column
is allowed to be NULL, remember to add ”OR (primary_key IS NULL
AND X_col IS NULL)” to the SELECT ROWID statement’s WHERE
clause.

In the LOCK_ROW table handler procedure, if a column is not allowed
to be NULL, remove the ”OR (RECINFO.col IS NULL AND X_col IS
NULL)” condition from the IF statement.

Also, since Oracle Forms strips trailing spaces from queried field
values, normal row locking strips trailing spaces from the database
values before comparison. Since the example LOCK_ROW stored

CHECK_
UNIQUE

CHECK_
REFERENCES

INSERT_ROW

UPDATE_ROW

DELETE_ROW

LOCK_ROW

4 – 21Using PL/SQL in Oracle Applications

procedure does not strip trailing spaces, comparison for this (rare) case
always fails. You may use RTRIM to strip trailing spaces if necessary.

Example Client–Side Table Handler (See page 4 – 21)
Example Server–Side Table Handler (See page 4 – 24)

Acting on a Second Table

To perform an action on another table, call that table’s appropriate
handler procedure rather than performing the action directly.

For example, to perform a cascade DELETE, call the detail table’s
DELETE_ROWS table handler (which accepts the master primary key
as a parameter) instead of performing the DELETE directly in the
master table’s DELETE_ROW table handler.

Example Client–Side Table Handler

The following is an example of a client–side table handler that provides
INSERT_ROW, UPDATE_ROW, DELETE_ROW, and LOCK_ROW
procedures for the EMP table. You code the client–side table handler
directly into your form.

Package spec you would code for your EMP block

PACKAGE EMP IS

 PROCEDURE Insert_Row;

 PROCEDURE Lock_Row;

 PROCEDURE Update_Row;

 PROCEDURE Delete_Row;

END EMP;

Package body you would code for your EMP block

PACKAGE BODY EMP IS

 PROCEDURE Insert_Row IS

 CURSOR C IS SELECT rowid FROM EMP

 WHERE empno = :EMP.Empno;

 BEGIN

 INSERT INTO EMP(

 empno,

 ename,

 job,

4 – 22 Oracle Applications Developer’s Guide

 mgr,

 hiredate,

 sal,

 comm,

 deptno

) VALUES (

 :EMP.Empno,

 :EMP.Ename,

 :EMP.Job,

 :EMP.Mgr,

 :EMP.Hiredate,

 :EMP.Sal,

 :EMP.Comm,

 :EMP.Deptno

);

 OPEN C;

 FETCH C INTO :EMP.Row_Id;

 if (C%NOTFOUND) then

 CLOSE C;

 Raise NO_DATA_FOUND;

 end if;

 CLOSE C;

 END Insert_Row;

 PROCEDURE Lock_Row IS

 Counter NUMBER;

 CURSOR C IS

 SELECT empno,

 ename,

 job,

 mgr,

 hiredate,

 sal,

 comm,

 deptno

 FROM EMP

 WHERE rowid = :EMP.Row_Id

 FOR UPDATE of Empno NOWAIT;

 Recinfo C%ROWTYPE;

 BEGIN

 Counter := 0;

 LOOP

 BEGIN

 Counter := Counter + 1;

4 – 23Using PL/SQL in Oracle Applications

 OPEN C;

 FETCH C INTO Recinfo;

 if (C%NOTFOUND) then

 CLOSE C;

 FND_MESSAGE.Set_Name(’FND’,

 ’FORM_RECORD_DELETED’);

 FND_MESSAGE.Error;

 Raise FORM_TRIGGER_FAILURE;

 end if;

 CLOSE C;

 if (

 (Recinfo.empno = :EMP.Empno)

 AND ((Recinfo.ename = :EMP.Ename)

 OR ((Recinfo.ename IS NULL)

 AND (:EMP.Ename IS NULL)))

 AND ((Recinfo.job = :EMP.Job)

 OR ((Recinfo.job IS NULL)

 AND (:EMP.Job IS NULL)))

 AND ((Recinfo.mgr = :EMP.Mgr)

 OR ((Recinfo.mgr IS NULL)

 AND (:EMP.Mgr IS NULL)))

 AND ((Recinfo.hiredate = :EMP.Hiredate)

 OR ((Recinfo.hiredate IS NULL)

 AND (:EMP.Hiredate IS NULL)))

 AND ((Recinfo.sal = :EMP.Sal)

 OR ((Recinfo.sal IS NULL)

 AND (:EMP.Sal IS NULL)))

 AND ((Recinfo.comm = :EMP.Comm)

 OR ((Recinfo.comm IS NULL)

 AND (:EMP.Comm IS NULL)))

 AND (Recinfo.deptno = :EMP.Deptno)

) then

 return;

 else

 FND_MESSAGE.Set_Name(’FND’,

 ’FORM_RECORD_CHANGED’);

 FND_MESSAGE.Error;

 Raise FORM_TRIGGER_FAILURE;

 end if;

 EXCEPTION

 When APP_EXCEPTIONS.RECORD_LOCK_EXCEPTION then

 IF (C% ISOPEN) THEN

 close C;

 END IF;

4 – 24 Oracle Applications Developer’s Guide

 APP_EXCEPTION.Record_Lock_Error(Counter);

 END;

 end LOOP;

 END Lock_Row;

 PROCEDURE Update_Row IS

 BEGIN

 UPDATE EMP

 SET

 empno = :EMP.Empno,

 ename = :EMP.Ename,

 job = :EMP.Job,

 mgr = :EMP.Mgr,

 hiredate = :EMP.Hiredate,

 sal = :EMP.Sal,

 comm = :EMP.Comm,

 deptno = :EMP.Deptno

 WHERE rowid = :EMP.Row_Id;

 if (SQL%NOTFOUND) then

 Raise NO_DATA_FOUND;

 end if;

 END Update_Row;

 PROCEDURE Delete_Row IS

 BEGIN

 DELETE FROM EMP

 WHERE rowid = :EMP.Row_Id;

 if (SQL%NOTFOUND) then

 Raise NO_DATA_FOUND;

 end if;

 END Delete_Row;

END EMP;

Example Server–Side Table Handler

The following is an example of a server–side table handler that
provides INSERT_ROW, UPDATE_ROW, DELETE_ROW, and
LOCK_ROW procedures for the EMP table. Your handler consists of a
package in your form and a server–side package in the database. The
package in your form calls the server–side package and passes all of the
field values as arguments.

4 – 25Using PL/SQL in Oracle Applications

Package spec you would code in your form for your EMP block

PACKAGE EMP IS

 PROCEDURE Insert_Row;

 PROCEDURE Update_Row;

 PROCEDURE Lock_Row;

 PROCEDURE Delete_Row;

END EMP;

Package body you would code in your form for your EMP block

PACKAGE BODY EMP IS

PROCEDURE Insert_Row IS

BEGIN

 EMP_PKG.Insert_Row(

 X_Rowid => :EMP.Row_Id,

 X_Empno => :EMP.Empno,

 X_Ename => :EMP.Ename,

 X_Job => :EMP.Job,

 X_Mgr => :EMP.Mgr,

 X_Hiredate => :EMP.Hiredate,

 X_Sal => :EMP.Sal,

 X_Comm => :EMP.Comm,

 X_Deptno => :EMP.Deptno);

END Insert_Row;

PROCEDURE Update_Row IS

BEGIN

 EMP_PKG.Update_Row(

 X_Rowid => :EMP.Row_Id,

 X_Empno => :EMP.Empno,

 X_Ename => :EMP.Ename,

 X_Job => :EMP.Job,

 X_Mgr => :EMP.Mgr,

 X_Hiredate => :EMP.Hiredate,

 X_Sal => :EMP.Sal,

 X_Comm => :EMP.Comm,

 X_Deptno => :EMP.Deptno);

END Update_Row;

PROCEDURE Delete_Row IS

BEGIN

 EMP_PKG.Delete_Row(:EMP.Row_Id);

4 – 26 Oracle Applications Developer’s Guide

END Delete_Row;

PROCEDURE Lock_Row IS

 Counter Number;

BEGIN

 Counter := 0;

 LOOP

 BEGIN

 Counter := Counter + 1;

 EMP_PKG.Lock_Row(

 X_Rowid => :EMP.Row_Id,

 X_Empno => :EMP.Empno,

 X_Ename => :EMP.Ename,

 X_Job => :EMP.Job,

 X_Mgr => :EMP.Mgr,

 X_Hiredate => :EMP.Hiredate,

 X_Sal => :EMP.Sal,

 X_Comm => :EMP.Comm,

 X_Deptno => :EMP.Deptno);

 return;

 EXCEPTION

 When APP_EXCEPTIONS.RECORD_LOCK_EXCEPTION then

 APP_EXCEPTION.Record_Lock_Error(Counter);

 END;

 end LOOP;

END Lock_Row;

END EMP;

Package spec for the server–side table handler (SQL script)

SET VERIFY OFF

DEFINE PACKAGE_NAME=”EMP_PKG”

WHENEVER SQLERROR EXIT FAILURE ROLLBACK;

CREATE or REPLACE PACKAGE &PACKAGE_NAME as

/* Put any header information (such as $Header$) here.

It must be written within the package definition so that the

 header information will be available in the package itself.

 This makes it easier to identify package versions during

 upgrades. */

 PROCEDURE Insert_Row(X_Rowid IN OUT VARCHAR2,

 X_Empno NUMBER,

 X_Ename VARCHAR2,

4 – 27Using PL/SQL in Oracle Applications

 X_Job VARCHAR2,

 X_Mgr NUMBER,

 X_Hiredate DATE,

 X_Sal NUMBER,

 X_Comm NUMBER,

 X_Deptno NUMBER

);

 PROCEDURE Lock_Row(X_Rowid VARCHAR2,

 X_Empno NUMBER,

 X_Ename VARCHAR2,

 X_Job VARCHAR2,

 X_Mgr NUMBER,

 X_Hiredate DATE,

 X_Sal NUMBER,

 X_Comm NUMBER,

 X_Deptno NUMBER

);

 PROCEDURE Update_Row(X_Rowid VARCHAR2,

 X_Empno NUMBER,

 X_Ename VARCHAR2,

 X_Job VARCHAR2,

 X_Mgr NUMBER,

 X_Hiredate DATE,

 X_Sal NUMBER,

 X_Comm NUMBER,

 X_Deptno NUMBER

);

 PROCEDURE Delete_Row(X_Rowid VARCHAR2);

END &PACKAGE_NAME;

/

show errors package &PACKAGE_NAME

SELECT to_date(’SQLERROR’) FROM user_errors

WHERE name = ’&PACKAGE_NAME’

AND type = ’PACKAGE’

/

commit;

exit;

4 – 28 Oracle Applications Developer’s Guide

Package body for the server–side table handler (SQL script)

SET VERIFY OFF

DEFINE PACKAGE_NAME=”EMP_PKG”

WHENEVER SQLERROR EXIT FAILURE ROLLBACK;

CREATE or REPLACE PACKAGE BODY &PACKAGE_NAME as

/* Put any header information (such as $Header$) here.

 It must be written within the package definition so the

 header information is available in the package itself.

 This makes it easier to identify package versions during

 upgrades. */

 PROCEDURE Insert_Row(X_Rowid IN OUT VARCHAR2,

 X_Empno NUMBER,

 X_Ename VARCHAR2,

 X_Job VARCHAR2,

 X_Mgr NUMBER,

 X_Hiredate DATE,

 X_Sal NUMBER,

 X_Comm NUMBER,

 X_Deptno NUMBER

) IS

 CURSOR C IS SELECT rowid FROM emp

 WHERE empno = X_Empno;

 BEGIN

 INSERT INTO emp(

 empno,

 ename,

 job,

 mgr,

 hiredate,

 sal,

 comm,

 deptno

) VALUES (

 X_Empno,

 X_Ename,

 X_Job,

 X_Mgr,

 X_Hiredate,

 X_Sal,

 X_Comm,

4 – 29Using PL/SQL in Oracle Applications

 X_Deptno

);

 OPEN C;

 FETCH C INTO X_Rowid;

 if (C%NOTFOUND) then

 CLOSE C;

 Raise NO_DATA_FOUND;

 end if;

 CLOSE C;

 END Insert_Row;

 PROCEDURE Lock_Row(X_Rowid VARCHAR2,

 X_Empno NUMBER,

 X_Ename VARCHAR2,

 X_Job VARCHAR2,

 X_Mgr NUMBER,

 X_Hiredate DATE,

 X_Sal NUMBER,

 X_Comm NUMBER,

 X_Deptno NUMBER

) IS

 CURSOR C IS

 SELECT *

 FROM emp

 WHERE rowid = X_Rowid

 FOR UPDATE of Empno NOWAIT;

 Recinfo C%ROWTYPE;

 BEGIN

 OPEN C;

 FETCH C INTO Recinfo;

 if (C%NOTFOUND) then

 CLOSE C;

 FND_MESSAGE.Set_Name(’FND’, ’FORM_RECORD_DELETED’);

 APP_EXCEPTION.Raise_Exception;

 end if;

 CLOSE C;

 if (

 (Recinfo.empno = X_Empno)

 AND ((Recinfo.ename = X_Ename)

 OR ((Recinfo.ename IS NULL)

 AND (X_Ename IS NULL)))

 AND ((Recinfo.job = X_Job)

 OR ((Recinfo.job IS NULL)

 AND (X_Job IS NULL)))

4 – 30 Oracle Applications Developer’s Guide

 AND ((Recinfo.mgr = X_Mgr)

 OR ((Recinfo.mgr IS NULL)

 AND (X_Mgr IS NULL)))

 AND ((Recinfo.hiredate = X_Hiredate)

 OR ((Recinfo.hiredate IS NULL)

 AND (X_Hiredate IS NULL)))

 AND ((Recinfo.sal = X_Sal)

 OR ((Recinfo.sal IS NULL)

 AND (X_Sal IS NULL)))

 AND ((Recinfo.comm = X_Comm)

 OR ((Recinfo.comm IS NULL)

 AND (X_Comm IS NULL)))

 AND (Recinfo.deptno = X_Deptno)

) then

 return;

 else

 FND_MESSAGE.Set_Name(’FND’, ’FORM_RECORD_CHANGED’);

 APP_EXCEPTION.Raise_Exception;

 end if;

 END Lock_Row;

 PROCEDURE Update_Row(X_Rowid VARCHAR2,

 X_Empno NUMBER,

 X_Ename VARCHAR2,

 X_Job VARCHAR2,

 X_Mgr NUMBER,

 X_Hiredate DATE,

 X_Sal NUMBER,

 X_Comm NUMBER,

 X_Deptno NUMBER

) IS

 BEGIN

 UPDATE emp

 SET

 empno = X_Empno,

 ename = X_Ename,

 job = X_Job,

 mgr = X_Mgr,

 hiredate = X_Hiredate,

 sal = X_Sal,

 comm = X_Comm,

 deptno = X_Deptno

 WHERE rowid = X_Rowid;

 if (SQL%NOTFOUND) then

4 – 31Using PL/SQL in Oracle Applications

 Raise NO_DATA_FOUND;

 end if;

 END Update_Row;

 PROCEDURE Delete_Row(X_Rowid VARCHAR2) IS

 BEGIN

 DELETE FROM emp

 WHERE rowid = X_Rowid;

 if (SQL%NOTFOUND) then

 Raise NO_DATA_FOUND;

 end if;

 END Delete_Row;

END &PACKAGE_NAME;

/

show errors package body &PACKAGE_NAME

SELECT to_date(’SQLERROR’) FROM user_errors

WHERE name = ’&PACKAGE_NAME’

AND type = ’PACKAGE BODY’

/

commit;

exit;

4 – 32 Oracle Applications Developer’s Guide

C H A P T E R

5
T

5 – 1Setting the Properties of Container Objects

Setting the Properties of
Container Objects

his section describes the standard properties and behaviors for
Modules, Windows, Canvases, Blocks, and Regions.

The following container objects are discussed in this chapter:

• Modules

• Windows, including standards for modal and non–modal
windows

• Canvases, including standards for content and stacked canvases

• Blocks

• Regions

5 – 2 Oracle Applications Developer’s Guide

Modules

Module properties establish an overall framework for the look and feel
of each form.

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

Modules
Oracle Applications User Interface Standards for Forms–Based
Products

Property Class

The TEMPLATE form automatically applies the MODULE property
class to the module. The settings of this class vary on each GUI
platform.

Warning: Do not change any values set by the MODULE
property class.

Module Names

Make sure that in each of your forms, the Module Name matches the
file name. For example, if a form is called POXPOMPO.fmb, make sure
the Module Name (visible in Oracle Forms Developer) is POXPOMPO.

This is especially important if you reference objects from your form.
Zoom also relies on the Module Name being correct.

First Navigation Data Block

Set this property to the name of the first block that users visit when a
form is run. Do not set to a WORLD or CONTROL block.

This property also controls where the cursor goes after a
CLEAR_FORM, as well as the default ”Action–>Save and Proceed”
behavior.

5 – 3Setting the Properties of Container Objects

Windows

From the APPSTAND form, windows automatically inherit the proper
look and feel of the GUI platform on which they are running, such as
characteristics of the frame, title bar fonts, and window manager
buttons. This section describes features common to all Oracle
Applications windows, as well as behaviors for modal and non–modal
windows.

ROOT_WINDOW

The ROOT_WINDOW is a special Oracle Forms window that behaves
differently from other windows. Do not use the ROOT_WINDOW,
because it interferes with the proper functioning of the toolbar and
other standard Oracle Applications objects.

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

Windows
Oracle Applications User Interface Standards for Forms–Based
Products

Non–Modal Windows

A non–modal window (a ”regular window”) allows the user to interact
with any other window, as well as the toolbar and the menu.
Non–modal windows are used for the display of most application
entities.

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

Non–Modal Windows
Oracle Applications User Interface Standards for Forms–Based
Products

Property Class

Apply the WINDOW property class to all non–modal windows.

Primary Canvas

Always enter the name of the content canvas associated with the
window.

5 – 4 Oracle Applications Developer’s Guide

Positioning (X, Y)

Non–modal windows can be positioned in a variety of styles. Code all
the logic that positions windows in the APP_CUSTOM.OPEN_
WINDOW procedure, and any event that would cause a window to
open must call that procedure (for example, pressing a Drill–down
Record Indicator, pressing the Open button of a combination block, or
pressing a button that leads to a child entity in a different window).

The first window(s) of a form that appears when the form is invoked
must also be programmatically positioned.

Positioning Windows Upon Opening (See page 7 – 2)

Title

The Oracle Applications User Interface Standards for Forms–Based Products
describes how to title your non–modal windows, including rules for
showing ceTc
t, i forcatio.–Non–

5 – 5Setting the Properties of Container Objects

behaviors. You code the closing behavior in the
APP_CUSTOM.CLOSE_WINDOW procedure.

 Closing Windows (See page 7 – 3)

Window Opening

If you have logic that must occur when a window opens, place the logic
in APP_CUSTOM.OPEN_WINDOW. You must add logic to control
block coordination and to position windows.

Master–Detail Relations (See page 7 – 6)

Suggestion: You do not need to explicitly show a window. A
GO_BLOCK to a block within a window opens the window
automatically.

Disabling Specific Menu Entries

If for certain windows you want to disable some menu entries, use the
APP_SPECIAL routines to do so. Enable and disable SAVE to control
the ”File–>Save” and ”File–>Save and Enter Next” menu entries. Save
is automatically disabled when you call APP_FORM.QUERY_ONLY
MODE.

APP_SPECIAL: Menu and Toolbar Control
(See page 10 – 15)

Modal Windows

Modal windows force users to work within a single window, and then
to either accept or cancel the changes they have made. Modal
windows have the menu associated with them, but the user cannot
have access to it. There are a few legacy screens that allow limited
access to the toolbar and menu (modal windows with menu), but no
new instances should be designed or coded.

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

Modal Windows
Oracle Applications User Interface Standards for Forms–Based
Products

5 – 6 Oracle Applications Developer’s Guide

Property Class

Use the WINDOW_DIALOG property class to create a modal window.
The WINDOW_DIALOG_WITH_MENU property class exists for
backwards compatibility only, and should not be used for any new
windows.

Primary Canvas

Always enter the name of the content canvas associated with the
window.

Position

Modal windows are always opened centered on the screen. They are
re–centered each time they are opened.

Include the following call in the code that opens your modal window:

app_window.set_window_position(’<window_name>’,’CENTER’);

Positioning Windows Upon Opening (See page 7 – 2)

Closing

Modal windows can be closed with the native GUI window close
mechanism. You can also explicitly close the window in your code,
typically with the following buttons:

Closes the window. In some cases, it may perform

Example

5 – 7Setting the Properties of Container Objects

Trigger: WHEN–BUTTON–PRESSED on item CANCEL:
go_block(’LINES’);

hide_window(’APPROVE_LINES’);

Processing KEY– Triggers

See Dialog Blocks for information on trapping specific KEY– triggers
within a modal window.

Dialog Blocks (See page 5 – 11)

5 – 8 Oracle Applications Developer’s Guide

Canvases

This section describes the settings for content and stacked canvases.

For more information about the use and behavior of canvases, see the
Oracle Applications User Interface Standards for Forms–Based Products.

Canvases
Oracle Applications User Interface Standards for Forms–Based
Products

Window

Always enter the name of the window the canvas is shown in.

Content Canvases

Property Class

You should apply the CANVAS property class to all content canvases.

Size (Width, Height)

You should size the content canvas the same as the window it is shown
in.

Stacked Canvases

One or more stacked canvases may be rendered in front of the content
canvas of a particular window. If needed, a stacked canvas may fully
occupy a window.

See ”Alternative Regions” for a full description of stacked canvas
behavior with regions.

 Alternative Regions (See page 7 – 27)

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

Stacked Canvases
Oracle Applications User Interface Standards for Forms–Based
Products

5 – 9Setting the Properties of Container Objects

Property Class

Stacked canvases should use the CANVAS_STACKED property class to
enforce the correct behavior.

Display Characteristics

Stacked canvases should adhere to these display characteristics:

• Only the one stacked canvas that is to be shown when its
window is first opened should be set to Visible.

• Stacked canvases always have Raise on Entry set to Yes.

• Canvases stacked on top of each other (as in alternative regions)
should all be the same size.

The content canvas should be blank in the area that would be covered
by the stacked canvases.

Sequence

When multiple stacked canvases occupy the same window, and may
overlap, the sequence must be set so that the proper canvases, or
portions of canvases, are displayed.

Whenever possible you should explicitly hide a stacked canvas that is
not visible to a user. This reduces the resources that the widgets on it
may consume.

5 – 10 Oracle Applications Developer’s Guide

Blocks

This section discusses the general settings for all blocks, as well as how
to set up blocks for the following situations:

• Context Blocks

• Dialog Blocks

• Blocks With No Base Table

• Multi–Record Blocks

• Single–Record Blocks

• Combination Blocks

• Master–Detail Relations

• Dynamic WHERE Clauses

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

Blocks
Oracle Applications User Interface Standards for Forms–Based
Products

Property Class

Use the BLOCK property class for all non–modal blocks; use
BLOCK_DIALOG for blocks displayed within modal windows.

Never override the Visual Attribute Group property of this class; it
varies on each platform.

Key–Mode

If the block is based on a table or a single–table view, set Key–Mode to
Unique. If the block is based on a join view, set Update Allowed to No.
Ensure that at least one item in the block is marked as a primary key
(set Primary Key at the item level to Yes for each item that makes up
the primary key of the data block).

Views (See page 3 – 7)

Delete Allowed

To prevent deletes in a block, set the Delete Allowed property for the
block to No (do not code a DELREC trigger to prevent deletes).

5 – 11Setting the Properties of Container Objects

Next and Previous Navigation Data Block

Set these properties for every navigable block. These settings affect
next block and previous block navigation sequence and should not be
set to CONTROL or WORLD blocks.

For the first block, set the Previous Navigation Data Block to be itself.
For the last block, set the Next Navigation Data Block to be itself.

If the Next Navigation Data Block changes dynamically at runtime, you
must still set the property to something logical. You decide the most
logical flow of your next and previous blocks.

Context Blocks

Context blocks are shown in detail windows to provide context, and
replicate fields that are shown in master windows. To create a context
block, make display items that are part of the same block as the master
and synchronize the context field with the master field.

Dialog Blocks

Dialog blocks are the blocks presented in modal windows. They
require the user to interact with them before proceeding to other
windows of the application.

Modal Windows (See page 5 – 5)

Processing KEY– Triggers

Most standard Oracle Forms functions, such as Save, Next Block, and
Clear All, do not apply in a dialog block. Although the Oracle
Applications menu and toolbar may not be accessible, Oracle Forms
functions can still be invoked from the keyboard unless you disable
them. You should disable all KEY– triggers for the block by coding a
KEY–OTHERS trigger that calls APP_EXCEPTION.DISABLED, which
will cause a beep when the user attempts a disabled function. You then
specifically enable some functions for the block by coding the
additional KEY– triggers as listed in the following table:

5 – 12 Oracle Applications Developer’s Guide

KEY– Trigger Code

KEY–OTHERS app_exception.disabled; (1)

KEY–NEXT–ITEM next_item;

KEY–PREVIOUS–ITEM previous_item;

KEY–CLRREC clear_record

KEY–EDIT app_standard.event(’KEY–EDIT’);

KEY–LISTVAL app_standard.event(’KEY–LISTVAL’);

KEY–ENTER enter;

KEY–HELP app_standard.event(’KEY–HELP’);

KEY–PRINT print;

Table 5 – 1 (Page 1 of 1)

(1) This disables every KEY– function in the block that does not have a
specific KEY– trigger coded for it.

If the dialog block allows multiple records, then additional KEY–
triggers should also be enabled as listed in the following table:

KEY– Trigger Code

KEY–CREREC create_record;

KEY–NXTREC next_record;

KEY–PREVREC previous_record;

KEY–UP up;

KEY–DOWN down;

Table 5 – 2 (Page 1 of 1)

Other functions may be enabled if appropriate for the specific dialog
block.

In cases where most functions are enabled, just disable those that do
not apply by calling APP_EXCEPTION.DISABLED in the KEY–

5 – 13Setting the Properties of Container Objects

Navigation

Navigation to items outside a dialog block must be prevented while the
modal window is open. [Tab] must be restricted to fields within that
window. The following guidelines prevent the user from navigating
out of a dialog block:

• The Navigation Style of the block is usually Same Record. It
should never be Change Data Block.

• The Next and Previous Navigation Data Blocks should be the
same as the data block itself.

• Set Next and Previous Navigation Item properties as necessary
to keep the user inside the dialog block.

 Data Blocks With No Base Table

You may need to implement blocks that have no base table or view.
Use transactional triggers (ON–INSERT, ON–LOCK, etc.) if such a
block must process commits.

Do not base the block on a dummy table such as FND_DUAL.

For example, the ”Move Inventory Items” form submits a concurrent
request to process the data entered on the screen. Code an
ON–INSERT trigger to call the concurrent process submission routine.

 Concurrent Processing (See page 15 – 2)

Single–Record Data Blocks

Single–record blocks allow the user to see as many items of an entity as
possible, at the tradeoff of only seeing one record at a time.

Navigation Styles

If the block has no detail blocks, or it has detail blocks but they are in
different windows, the Navigation Style should be Same Record;
otherwise it is Change Data Block.

5 – 14 Oracle Applications Developer’s Guide

Data Blocks With Only One Record Available

For data blocks with only one record of data, you may want to disable
the first record, last record, previous record, and next record options on
the Go menu.

To do this, code a block–level WHEN–NEW–RECORD–INSTANCE
trigger (Execution Hierarchy: Override) with these lines:

 app_standard.event(’WHEN–NEW–RECORD–INSTANCE’);

 app_special.enable(’SINGLE’, PROPERTY_OFF);

To prevent the user from using a key to perform functions incompatible
with one record blocks, code block–level KEY–DOWN, KEY–CREREC,
and KEY–NXTREC triggers (Execution Hierarchy: Override)
containing:

 app_exception.disabled;

 APP_SPECIAL: Menu and Toolbar Control (See page
10 – 15)

Multi–Record Blocks

Multi–record blocks allow the user to see as many records of an entity
as possible, usually at the tradeoff of seeing fewer attributes of each
record simultaneously.

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

Multi–Record Blocks
Oracle Applications User Interface Standards for Forms–Based
Products

You must provide either a current record indicator or a drill–down
indicator for each multi–record block, depending on whether the block
supports drill–down.

Navigation Style

Set the Navigation Style to Change Record for all multi–record blocks.

Current Record Indicator

If the block does not have any detail blocks (and therefore does not
support drilldown), create a current record indicator for the block as

5 – 15Setting the Properties of Container Objects

follows: Create a text item in the multi–record block. Give the text
item the name ”CURRENT_RECORD_INDICATOR” and apply the
property class ”CURRENT_RECORD_INDICATOR”.

Single–clicking on the indicator moves the cursor to the first navigable
field of the appropriate record. Do this by creating an item–level
WHEN–NEW–ITEM–INSTANCE trigger (Execution Hierarchy:
Override) on the record indicator item, and issue a GO_ITEM to the
first field of the block. For example:

 GO_ITEM(’lines.order_line_num’);

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

Current Record Indicator
Oracle Applications User Interface Standards for Forms–Based
Products

Drill–down Indicator

If the multi–record block supports drill–down to one or more detail
blocks, create a drill–down indicator as follows: Create a text item in
the multi–record block. Name it
”DRILLDOWN_RECORD_INDICATOR”, and apply the property class
”DRILLDOWN_RECORD_INDICATOR”.

Add an item–level WHEN–NEW–ITEM–INSTANCE trigger (Execution
Hierarchy: Override) to the drill–down indicator item. Call the same
logic as the button that corresponds to the drill–down block. For
Combination blocks, this should move to the Detail window. In other
blocks, if there are one or more child blocks, drill–down moves you to
one of them.

 Combination Blocks (See page 7 – 8)

You should account for situations where movement to the drill–down
block is currently not allowed and the corresponding button is
disabled. Check for this condition in the WHEN–NEW–ITEM–
INSTANCE trigger before doing the drill–down. If the drill–down is
not enabled, issue a call to APP_EXCEPTION.DISABLED and navigate
to the first item in the current block.

�

5 – 16 Oracle Applications Developer’s Guide

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

Current Record Indicator
Oracle Applications User Interface Standards for Forms–Based
Products

Combination Blocks

Combination blocks are hybrid formats, where fields are presented in
both multi–record (Summary) and single–record (Detail) formats. The
Summary and Detail formats are each presented in their own window,
but all of the fields of both formats are part of a single block.

Attention: Do not confuse the Detail of Summary–Detail with
the Detail of Master–Detail.

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

Combination Blocks
Oracle Applications User Interface Standards for Forms–Based
Products

 Implementing a Combination Block (See page 7 – 8)

Master–Detail Relations

For more information on the look and feel of master–detail relations,
see the Oracle Applications User Interface Standards for Forms–Based
Products.

Master–Detail Characteristics
Oracle Applications User Interface Standards for Forms–Based
Products

Coding Master–Detail Relations (See page 7 – 6)

Prevent Masterless Operations

A user cannot enter or query detail records except in the context of a
master record. Always set the Coordination property to Prevent
Masterless Operation.

5 – 17Setting the Properties of Container Objects

Prevent Deletion of Detail Records

Because your form should be built using underlying views instead of
actual tables, you should not allow the normal Oracle Forms deletion of
detail records. Instead, set the Master Deletes property of the relation
to Isolated. Then, delete your detail records as part of your
Delete_Row procedure in the table handler for the master table.

Other Behaviors

• When a detail block is in a different window than its master, but
the detail window is modal, the detail block should only query
upon navigation to the block. Set Coordination to Deferred and
AutoQuery for the relation. Do not code any logic for this
relation in the OPEN_WINDOW or CLOSE_WINDOW
procedure.

• The first master block of a form does not autoquery unless

– only a very small number of records will be returned

– the query will be fast

– most likely the user will operate on one or more of the
queried records

To autoquery the first block of a form, code the following:

Trigger: WHEN–NEW–FORM–INSTANCE
do_key(’execute_query’);

• Do not code anything specific to windows being iconified, even
though iconifying a window that contains a master block may
make it difficult to operate with a detail block.

• Do not use Master–Detail cascade delete because it is an
inefficient operation on the client side. It also generates triggers
with hardcoded messages.

Dynamic WHERE Clauses

You may modify the default WHERE clause of a block at runtime for
these cases:

• Any query run within the block must adhere to the new criteria

• Complex sub–selects of other SQL are required to query rows
requested by a user.

5 – 18 Oracle Applications Developer’s Guide

All other cases should just populate values in the PRE–QUERY trigger.

5 – 19Setting the Properties of Container Objects

Regions

Regions are groups of fields. Most regions are purely cosmetic, where a
frame (box) surrounds a group of related fields or a frame (line)
appears above a group of related fields. In these cases, there is no code
impact other than making sure that once the cursor is in a region, the
block tabbing order goes through all the items in one region before
proceeding to other regions or fields in the block.

Tabbed Regions

Some regions, called tabbed regions, appear only at selected times and
are displayed on tab canvases.

Coding Tabbed Regions (See page 7 – 12)

Alternative Regions (Obsolete for Release 11i)

Some regions, called alternative regions, appear only at selected times
and are displayed on stacked canvases. For Oracle Applications
Release 11i, alternative regions are replaced by tabbed regions.
Alternative regions still work, and they are still documented for
backwards compatibility, but you should implement tabbed regions for
all new code.

Coding Alternative Region Behavior (See page 7 – 27)

For more information about the look and feel of regions, see the Oracle
Applications User Interface Standards for Forms–Based Products.

Regions
Oracle Applications User Interface Standards for Forms–Based
Products

Overflow Regions

Overflow regions show additional fields of a multi–record block in a
single–record format immediately below the multi–record fields.

Simply create these fields within the block of interest, and set the
Number of Items Displayed property to 1.

5 – 20 Oracle Applications Developer’s Guide

C H A P T E R

6
T

6 – 1Setting the Properties of Widget Objects

Setting the Properties of
Widget Objects

his section describes the standard properties for the various form
widgets that a user interacts with. It also describes the coding
techniques for implementing these widgets.

The following topics are covered:

• Text Items

• Display Items

• Poplists

• Option Groups

• Check boxes

• Buttons

• Lists of Values (LOV)

• Alerts

• Editors

• Flexfields

• Setting Item Properties

6 – 2 Oracle Applications Developer’s Guide

Text Items

For more information about the general look and feel of widgets, see
the Oracle Applications User Interface Standards for Forms–Based Products.

General Properties
Oracle Applications User Interface Standards for Forms–Based
Products

The following information applies to all text items.

Property Classes

In general, most text items use the TEXT_ITEM property class.

Use the TEXT_ITEM_DISPLAY_ONLY property class on fields that do
not allow a user to type, but must support scrolling and or querying.
Some date fields use this property class. In cases where the user must
tab to display–only fields located on a part of the canvas that is not
immediately visible, you may override the Keyboard Navigable
property inherited from the property class.

Use the TEXT_ITEM_MULTILINE property class on all multiline text
items.

Use TEXT_ITEM_DATE for date fields unless the item is display only.

Apply the CREATION_OR_LAST_UPDATE property class to the items
containing the WHO date information, CREATION_DATE and
LAST_UPDATE_DATE.

Query Length for Text Items

Set the maximum query length to 255 to allow for complex query
criteria.

WHEN–VALIDATE–ITEM

This trigger fires when the field value changes. Also, a Required field
is not enforced until record–level validation. Therefore you may need
to write logic that specifically accounts for a NULL value.

Justification

To support bidirectional languages such as Arabic, do not use Left or
Right justification (numeric text items can use Right justification). Use
Start and End instead. You may use Center where appropriate.

6 – 3Setting the Properties of Widget Objects

Generally the property class sets the correct justification, unless you
need to specify Right or Center.

Date Fields

Date fields that the user enters should use the Calendar.

The Calendar (See page 9 – 23)

Data Type

For date fields, use the DATE data type unless the user needs to enter
time. Use the DATETIME data type to require the user to enter time.

To default a form field to the current date without the time, use
$$DBDATE$$. To default a form field to the current date and time, use
$DBDATETIME$$.

Date Field Maximum Length

Create date fields as 11 characters without time, or 20 characters with
time.

You do not need to specify a format mask in the item. Oracle Forms
defaults the format correctly for each language from the environment
variable NLS_DATE_FORMAT.

Oracle Applications currently requires an NLS_DATE_FORMAT
setting of DD–MON–RR. Forms date fields that are 11 or 20 characters
long will display a four–character year (DD–MON–YYYY)
automatically.

Date Field Validation

In general, validate your date fields at the record level rather than at
the item level.

Record level validation allows the user to correct errors more easily,
especially in a From Date/To Date situation. After entering an
incorrect date (last year instead of next year), the user should not need
to change first the To Date before correcting the From Date.

6 – 4 Oracle Applications Developer’s Guide

Display Items

Display items do not allow any user interaction – they merely display
data and never accept cursor focus.

Use a display item for the following situations:

• Null–canvas fields

• Context fields

• Fields that act as titles or prompts

If a field must accept cursor focus, either to allow scrolling or querying,
it must be a text item, not a display item.

Text Items (See page 6 – 2)

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

Display Items
Oracle Applications User Interface Standards for Forms–Based
Products

Property Class

If an item is used to hold a dynamic title, use DYNAMIC_TITLE; if an
item holds a prompt, use DYNAMIC_PROMPT. Both of these property
classes provide a ”canvas” colored background (gray). Otherwise, you
should apply the DISPLAY_ITEM property class to your display items
(provides a white background with no bevel).

Justification

To support bidirectional languages such as Arabic, do not use Left or
Right justification. Use Start instead of Left, and generally use End in
place of Right. Use Right only with numeric fields. You may use
Center where appropriate.

Generally, applying the correct property class sets justification correctly.

Width

Always make sure that the width (length) of the display item is large
enough to accommodate translated values without truncating them.
Items using either DYNAMIC_TITLE or DYNAMIC_PROMPT inherit
a maximum length of 80 (which you should not change). Typically, the

6 – 5Setting the Properties of Widget Objects

largest value you could accommodate in English would be about 60
characters (which, if expanded about 30 percent, fills an
80–character–wide field).

6 – 6 Oracle Applications Developer’s Guide

Poplists

Poplists are used for two distinct purposes in Oracle Applications: to
hold data in a small list of possible values, and to set the displayed
region for a set of alternative regions (for backwards compatibility
only).

For information about the look and feel of poplists, see the Oracle
Applications User Interface Standards for Forms–Based Products.

Poplists
Oracle Applications User Interface Standards for Forms–Based
Products

Property Class

Poplists holding data use the LIST property class. Poplists that serve as
control elements for alternative regions use the
LIST_REGION_CONTROL property class (for backwards compatibility
only).

 Coding Alternative Region Behavior (See page 7 – 27)

Limits

The maximum width of a list element is 30 characters. Your longest
value in English for a 30–character–wide poplist should be no longer
than 23 characters to account for expansion of values for some
languages.

Dynamic List Elements

You may need to populate a list at runtime. If so, be aware of the
following issues:

• Never use a list item if you expect more than fifteen elements

• Do not change a list on a per–record basis

• Make sure each populated list has a value that matches the
default value. You can dynamically change the default by
specifying it as a reference to another field, as opposed to a
hardcoded value.

Setting the Value

Always set a poplist based on its value, not its label. The value never
gets translated, but the label may. When you set the Default Value

6 – 7Setting the Properties of Widget Objects

property, Oracle Forms will actually accept the label value (for
example, Good), but you should always use the hidden value (for
example, G) instead.

6 – 8 Oracle Applications Developer’s Guide

Option Groups

For information about the look and feel of option groups, see the Oracle
Applications User Interface Standards for Forms–Based Products.

Option Groups
Oracle Applications User Interface Standards for Forms–Based
Products

Property Classes

Apply the RADIO_GROUP property class to the option group.

Apply the RADIO_BUTTON property class to each button of an option
group.

Access Keys

An option group that serves to place the form in a mode (as opposed to
holding data) should have Access Keys specified for each of the
buttons.

6 – 9Setting the Properties of Widget Objects

Check Boxes

For information about the look and feel of check boxes, see the Oracle
Applications User Interface Standards for Forms–Based Products.

Check Boxes
Oracle Applications User Interface Standards for Forms–Based
Products

Master–Detail Relations (Blocks) (See page 7 – 6)

Property Class

Apply the CHECKBOX property class to each normal check box (used
for data entry). Apply the CHECKBOX_COORDINATION property
class to each coordination check box.

 Coding Window Behavior (See page 7 – 2)

6 – 10 Oracle Applications Developer’s Guide

Buttons

Buttons can either be textual or iconic; that is, they display either words
or a picture.

Buttons should be items in the block they act upon or appear to be part
of (not in a control block). For example, create an ”Accept” button as a
non–database object in the block on which it performs the accept. If
you navigate to a LINES block from a HEADER block using a ”Lines”
button, make the button part of the HEADER block.

For information about the look and feel of buttons, see the Oracle
Applications User Interface Standards for Forms–Based Products.

Buttons
Oracle Applications User Interface Standards for Forms–Based
Products

Property Class

Textual buttons use the BUTTON property class. Iconic buttons use the
BUTTON_ICONIC property class and typically appear only in the
toolbar or in folder forms.

Warning: Never override the height specified by the BUTTON
property class.

Keyboard Navigable and Mouse Navigate Properties

Single record block buttons are Keyboard Navigable Yes. Multi–record
block buttons are Keyboard Navigable No. The exception is Clear
buttons, which should always use Keyboard Navigable No. This is to
prevent users from accidentally clearing records when they expect to
fire the default button.

All buttons are Mouse Navigate No.

Iconic Buttons and Keyboard Only Operation

Iconic buttons cannot be operated from the keyboard. If your form is
intended to used for heads–down data entry (keyboard only), this
implies the functionality they add must either be non–essential or have
a a secondary invocation method, such as the menu.

6 – 11Setting the Properties of Widget Objects

Enter–Query Mode

Most buttons do not apply in Enter–Query mode. Users cannot leave
the current record while in this mode. You do not need to explicitly
disable a button while in Enter–Query mode; instead set the trigger
property ”Fire in Enter–Query mode” for the WHEN–BUTTON–
PRESSED trigger to No.

Call APP_STANDARD.APP_VALIDATE

Buttons should call APP_STANDARD.APP_VALIDATE and pass a
scope before performing their action. This ensures that your records
are valid before performing an action, and that the button acts on the
expected block.

6 – 12 Oracle Applications Developer’s Guide

Lists of Values (LOVs)

Use Lists of Values to provide validation on a text item when you
expect to have more than fifteen values.

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

List of Values (LOV)
Oracle Applications User Interface Standards for Forms–Based
Products

Property Class

Apply the LOV property class to all LOVs.

Suggestion: You may override the List Type and Automatic
Refresh properties as needed.

Base LOVs on Views

You should base your LOVs on views. This denormalizes any foreign
key references and provides the same performance advantages as
basing your blocks on views.

An LOV view is usually simpler than a form view, since it does not
include all denormalized columns. The LOV view does need to join to
foreign key tables to get meanings associated with list and radio group
values, whereas in a form view the meanings are hardcoded into the
boilerplate text or the widget.

Views (See page 3 – 7)

When Not To Use a View

If the view is very simple or, conversely, overly–complicated because
the bind variables are not in the SELECT list, then you may code the
entire SQL needed by the LOV directly into the form.

Rules

• The title of an LOV is the name of the object in the LOV, and is
plural.

• The prompt of the first column is related to, or matches
identically, the prompt of the item that invoked it.

6 – 13Setting the Properties of Widget Objects

• The width of each column should be wide enough to show most
values (just like the width of fields on a canvas). Make the LOV
wide enough to show all included columns, up to a maximum of
7.8”.

• Always specify the default value by the value, not the label. This
ensures that the default is translated correctly.

• Use your judgement when deciding which columns to bring over
for the LOV. Sometimes you only need to bring over a primary
key and its display name, if the rest of the data would take too
long to fetch. After the row is selected, use the
WHEN–VALIDATE–ITEM trigger to bring over any other
necessary columns. VARCHAR(2000) columns should not be
part of an LOV.

Show Only Valid Values

A LOV should show only those rows that currently can be selected,
unless the LOV is in a Find Window (Find Window LOV’s show all
rows that have ever been valid).

EXCEPTION: Validation can be performed after–the–fact if any of the
following apply:

• The validation clause cannot be written in SQL.

• The validation clause is too costly to evaluate in SQL.

• The reason for exclusion from the list is obscure to the user.

In such cases, after the value is selected, show an error message
indicating exactly why the value could not be selected.

Row–LOV

For more information on how to code Row–LOVs in response to
”View–>Find,” see:

 Query Find Windows (See page 8 – 2)

Assigning Values in POST–QUERY

If your item has a List of Values, the Validate from List property is set
to Yes, and you assign a value to the field in the POST–QUERY trigger,
the item is marked as changed because the LOV fires. To avoid this
complication, set the RECORD_STATUS back to QUERY at the end of
the POST–QUERY trigger.

6 – 14 Oracle Applications Developer’s Guide

LOV Behaviors

You may alter the properties on your LOV to create the following
behavior:

Automatic Refresh

If the values displayed by the LOV are static during a session and the
number of rows is not excessive, turn Automatic Refresh off (No) to
cache the LOV values for the session. Caching the values avoids
database hits and network round trips for subsequent invocations of
the LOV, and eliminating unnecessary round trips is a key factor in
producing a product that can run on a wide area network. However,
the caching consumes memory that is not recovered until the form is
closed.

Filter Before Display

If an LOV may show more than one hundred rows, then the user must
be prompted to reduce the list of valid values first (Filter Before
Display:Yes).

Never have Filter Before Display set to Yes, and Automatic Refresh set
to No, on an LOV. This combination would cause only the reduced set
of rows to be cached if the user enters something in the reduction
criteria window. With Automatic Refresh off, there is no way of
returning to the full set of rows. Typically it is not wise to cache an
LOV that returns more than 100 rows.

Example LOV

The EMP table contains the following columns: EMPNO, ENAME, JOB,
MGR, HIREDATE, SAL, COMM AND DEPTNO. DEPTNO is a
foreign key to the table DEPT, which contains the columns DEPTNO,
DNAME, and LOC.

A form view of the EMP table would contain all columns in EMP,
denormalize EMP.DEPTNO, and include the column DEPT.DNAME,
as well. It might also include DEPT.LOCATION and other DEPT
columns, and contain records for all past and present employees:

CREATE VIEW EMP_V AS

SELECT EMP.EMPNO, EMP.ENAME, EMP.JOB, EMP.MGR,

EMP.HIREDATE, EMP.SAL, EMP.COMM,

EMP.DEPTNO, DEPT.DNAME, DEPT.LOCATION

Example

6 – 15Setting the Properties of Widget Objects

FROM EMP, DEPT

WHERE DEPT.DEPTNO = EMP.DEPTNO;

By contrast, an LOV view of EMP would only include columns
EMP.EMPNO and EMP.ENAME. DEPT information would be
included only if necessary to help select an employee.

Decoding Y/N Values

For Y/N values, decode ”Y” to ”*” and ”N” to null to avoid a join to
FND_LOOKUPS.

A table T has columns ID, NAME, and ENABLED_FLAG.
ENABLED_FLAG contains Y/N values. Create your view as follows:

 CREATE VIEW T_V AS
 SELECT ID, NAME,

 DECODE(ENABLED_FLAG, ’Y’, ’*’, NULL)

 FROM T;

Dependent Fields

An LOV on a dependent field should use the value in the master field
to reduce the list.

For example, if NAME is dependent on TYPE, the entry LOV for
NAME’s WHERE clause would include the condition:

WHERE TYPE = :MY_BLOCK.TYPE

LOVs in ENTER–QUERY Mode

LOVs in ENTER–QUERY mode should be used sparingly, as Query
Find is the preferred method for a user to locate records.

Query Find Windows (See page 8 – 2)

You should only code them where they dramatically improve the
usability of ENTER–QUERY mode, and you expect this mode to be
used regularly despite Query Find.

An LOV in ENTER–QUERY mode should display all values that the
user can query, not just currently valid values.

EXAMPLE: An LOV for vendors in a purchase order form in
enter–query mode shows all vendors that could ever be placed

�

6 – 16 Oracle Applications Developer’s Guide

on a PO, not just the set of vendors that currently are allowed to
be placed on a PO.

Do not reuse the entry LOV in ENTER_QUERY mode unless it
provides the correct set of data for both modes.

Attention: WHEN–VALIDATE–ITEM does not fire in
ENTER–QUERY mode. Therefore, you cannot depend on the
WHEN–VALIDATE–ITEM trigger to clear hidden fields when
selecting from an ENTER–QUERY LOV.

Implementation

To enable LOVs in ENTER–QUERY mode on an item, create an
item–level KEY–LISTVAL trigger as follows:

Trigger: KEY–LISTVAL
IF (:SYSTEM.MODE != ’ENTER–QUERY’) THEN LIST_VALUES;

ELSE SHOW_LOV(’query lov’);

END IF;

Return into the LOV Item Only

When implementing LOVs in ENTER–QUERY mode, do not return
values into any field other than the field from which the LOV is
invoked. If the LOV selects into a hidden field, there is no way to clear
the hidden field. Clearing or typing over the displayed field will not
clear the hidden field. Users must select another value from the LOV
or cancel their query and start over.

6 – 17Setting the Properties of Widget Objects

Alerts

Oracle Applications does not use the native Oracle Forms alert object.
The Oracle Application Object Library Message Dictionary feature is
used instead, as it provides full translation capabilities and handles text
larger than 80 characters.

Message Dictionary APIs for PL/SQL Procedures (See page
12 – 11)

6 – 18 Oracle Applications Developer’s Guide

Editors

Do not write special code for the editor. Rely on native Oracle Forms
behavior.

6 – 19Setting the Properties of Widget Objects

Flexfields

For more information on visual standards for descriptive flexfields, see
the Oracle Applications User Interface Standards for Forms–Based Products.

Descriptive Flexfields
Oracle Applications User Interface Standards for Forms–Based
Products

For more information on visual standards for key flexfields, see the
Oracle Applications User Interface Standards.

Key Flexfields
Oracle Applications User Interface Standards for Forms–Based
Products

For information on building flexfields into your tables, see the Oracle
Application Object Library Reference Manual, Release 10.

There is a PL/SQL API for building flexfields into your forms.

Flexfield APIs (See page 14 – 25)

Usage

All entities should provide a descriptive flexfield to allow
customization.

Avoid using the same descriptive flexfield definition in more than one
form. Because a customer can reference any field in their flexfield
definition, they may reference a field that exists in one form but not the
others.

Key flexfields should use the ”ENABLE_LIST_LAMP” LOV, with the
Use Validate from List property set to No. Descriptive flexfields do not
use an LOV.

6 – 20 Oracle Applications Developer’s Guide

Setting Item Properties

This section describes item properties Oracle Applications uses to
control how the user interacts with items when they are in specific
states. Oracle Applications provides a cover routine to the Oracle
Forms built–in routine SET_ITEM_PROPERTY. This cover routine,
APP_ITEM_PROPERTY.SET_PROPERTY, modifies or augments the
native Oracle Forms behaviors for specific properties.

Using APP_ITEM_PROPERTY.SET_PROPERTY helps your forms
adhere to the Oracle Applications user interface standards and helps
simplify coding. Using this routine also helps to protect your form
from future changes in the native Oracle Forms SET_ITEM_PROPERTY
built–in routine.

Using APP_ITEM_PROPERTY.SET_PROPERTY

The APP_ITEM_PROPERTY.SET_PROPERTY cover routine modifies
the following properties:

• ALTERABLE

• ALTERABLE_PLUS

• ENTERABLE

• DISPLAYED

• ENABLED

• REQUIRED

All other properties are processed with the native Oracle Forms
functionality. Oracle Corporation recommends that you call this cover
routine even for properties that do not currently have special behaviors
in case they change in the future.

Note that calling APP_ITEM_PROPERTY.SET_PROPERTY and
specifying a property that is not valid for the indicated item will give
the same error as the native Forms built–in routine
SET_ITEM_PROPERTY, except where certain conditions are masked as
noted below.

6 – 21Setting the Properties of Widget Objects

Item Properties with Unique Oracle Applications Behavior

ALTERABLE

The ALTERABLE property is intended to allow or disallow changes to
a specific instance (one row) of an item regardless of whether the
record is a new or queried record. The item remains keyboard
navigable even if changes are not allowed.

The following code:

app_item_property.set_property(itemid, ALTERABLE,

 PROPERTY_ON);

is equivalent to:

set_item_instance_property(itemid, CURRENT_RECORD,

 INSERT_ALLOWED, PROPERTY_ON);

set_item_instance_property(itemid, CURRENT_RECORD,

 UPDATEABLE, PROPERTY_ON);

set_item_property(itemid, INSERT_ALLOWED, PROPERTY_ON);

set_item_property(itemid, UPDATEABLE, PROPERTY_ON);

If the item is currently hidden, no action is taken.

Item and item–instance values are both set to make sure the effect of
both of them produces the desired result.

The following code:

app_item_property.set_property(itemid, ALTERABLE,

 PROPERTY_OFF);

is equivalent to:

set_item_instance_property(itemid, CURRENT_RECORD,

 INSERT_ALLOWED, PROPERTY_OFF);

set_item_instance_property(itemid, CURRENT_RECORD,

 UPDATEABLE, PROPERTY_OFF);

If the item is currently hidden, no action is taken.

ALTERABLE_PLUS

The ALTERABLE_PLUS property is intended to allow or disallow
changes to all instances of an item (all rows of the block). Setting the
property to PROPERTY_OFF prevents the user from making a change
to that item on any row, regardless of whether each record is a new or
queried record. The item remains keyboard navigable even if changes
are not allowed.

6 – 22 Oracle Applications Developer’s Guide

The following code:

app_item_property.set_property(itemid, ALTERABLE_PLUS,

 PROPERTY_ON);

is equivalent to:

set_item_property(itemid, INSERT_ALLOWED, PROPERTY_ON);

set_item_property(itemid, UPDATEABLE, PROPERTY_ON);

If the item is currently hidden, no action is taken.

The following code:

app_item_property.set_property(itemid, ALTERABLE_PLUS,

 PROPERTY_OFF);

is equivalent to:

set_item_property(itemid, INSERT_ALLOWED, PROPERTY_OFF);

set_item_property(itemid, UPDATEABLE, PROPERTY_OFF);

If the item is currently hidden, no action is taken.

ENTERABLE

The ENTERABLE property is designed to simulate disabling a
particular instance of an item (one row). It extends the ALTERABLE
property by also controlling the NAVIGABLE property; however, there
is no way to prevent the user from clicking into the item.

The following code:

app_item_property.set_property(itemid, ENTERABLE,

 PROPERTY_ON);

is equivalent to:

set_item_instance_property(itemid, CURRENT_RECORD,

 INSERT_ALLOWED, PROPERTY_ON);

set_item_instance_property(itemid, CURRENT_RECORD,

 UPDATEABLE, PROPERTY_ON);

set_item_instance_property(itemid, CURRENT_RECORD,

 NAVIGABLE, PROPERTY_ON);

set_item_property(itemid, INSERT_ALLOWED, PROPERTY_ON);

set_item_property(itemid, UPDATEABLE, PROPERTY_ON);

set_item_property(itemid, NAVIGABLE, PROPERTY_ON);

If the item is currently hidden, no action is taken.

Item and item–instance values are both set to make sure the effect of
both of them produces the desired result.

6 – 23Setting the Properties of Widget Objects

The following code:

app_item_property.set_property(itemid, ENTERABLE,

 PROPERTY_OFF);

is equivalent to:

set_item_instance_property(itemid, CURRENT_RECORD,

 INSERT_ALLOWED, PROPERTY_OFF);

set_item_instance_property(itemid, CURRENT_RECORD,

 UPDATEABLE, PROPERTY_OFF);

set_item_instance_property(itemid, CURRENT_RECORD,

 NAVIGABLE, PROPERTY_Off);

If the item is currently hidden, no action is taken.

DISPLAYED

The DISPLAYED property handles displaying and hiding items as well
as resetting certain properties that Oracle Forms automatically sets
when an item is hidden.

The following code:

app_item_property.set_property(itemid, DISPLAYED,

 PROPERTY_ON);

is equivalent to:

set_item_property(itemid, DISPLAYED, PROPERTY_ON);

If the item is not a display item then also set:

set_item_property(itemid, ENABLED, PROPERTY_ON);

set_item_property(itemid, NAVIGABLE, PROPERTY_ON);

If the item is neither a display item nor a button then also set:

set_item_property(itemid, QUERYABLE, PROPERTY_ON);

set_item_property(itemid, INSERT_ALLOWED, PROPERTY_ON);

set_item_property(itemid, UPDATEABLE, PROPERTY_ON);

The following code:

app_item_property.set_property(itemid, DISPLAYED,

 PROPERTY_OFF);

is equivalent to:

set_item_property(itemid, DISPLAYED, PROPERTY_OFF);

6 – 24 Oracle Applications Developer’s Guide

ENABLED

The ENABLED property is primarily intended to disable an item that
will never apply during the entire session of the form. It differs from
the native Oracle Forms behavior in that when items are re–enabled
certain properties that Oracle Forms set automatically are reset.

The following code:

app_item_property.set_property(itemid, ENABLED,

 PROPERTY_ON);

is equivalent to (for a text item or a list item):

set_item_property(itemid, INSERT_ALLOWED, PROPERTY_ON);

set_item_property(itemid, UPDATEABLE, PROPERTY_ON);

set_item_property(itemid, NAVIGABLE, PROPERTY_ON);

If the item is a button, then the
APP_ITEM_PROPERTY.SET_PROPERTY call is equivalent to:

set_item_property(itemid, ENABLED, PROPERTY_ON);

If the item is not a text item, list, or button, then the
APP_ITEM_PROPERTY.SET_PROPERTY call is equivalent to:

set_item_property(itemid, ENABLED, PROPERTY_ON);

set_item_property(itemid, INSERT_ALLOWED, PROPERTY_ON);

set_item_property(itemid, UPDATEABLE, PROPERTY_ON);

If the item is a display item or is currently hidden, then no action is
taken.

The following code:

app_item_property.set_property(itemid, ENABLED,

 PROPERTY_ON);

is equivalent to (for a text item or list item):

set_item_property(itemid, INSERT_ALLOWED, PROPERTY_OFF);

set_item_property(itemid, UPDATEABLE, PROPERTY_OFF);

set_item_property(itemid, NAVIGABLE, PROPERTY_OFF);

If the item is neither a text item nor a list then:

set_item_property(itemid, ENABLED, PROPERTY_OFF);

If the item is a display item or is currently hidden, then no action is
taken.

6 – 25Setting the Properties of Widget Objects

REQUIRED

The REQUIRED property sets whether an item is required or not, while
adjusting for whether the field is currently hidden. The REQUIRED
property is an item–level property (affects all rows of the block). If the
REQUIRED property must change on a per–record basis, you must
reset the property as the cursor moves between the rows (typically in
the WHEN–NEW–RECORD–INSTANCE trigger). Alternatively, you
may prefer to call the native Oracle Forms built–in routine
SET_ITEM_INSTANCE_PROPERTY to set the REQUIRED property on
a row–by–row basis. Oracle Applications does not currently provide a
cover routine for SET_ITEM_INSTANCE_PROPERTY.

The following code:

app_item_property.set_property(itemid, REQUIRED,

 PROPERTY_ON);

is equivalent to:

set_item_property(itemid, REQUIRED, PROPERTY_ON);

If the item is currently hidden, no action is taken.

The following code:

app_item_property.set_property(itemid, REQUIRED,

 PROPERTY_OFF);

is equivalent to:

set_item_property(itemid, REQUIRED, PROPERTY_OFF);

Impact of Item–level and Item–instance–level Settings

Oracle Forms supports setting properties such as INSERT_ALLOWED,
UPDATEABLE and NAVIGABLE at both the item level (all records)
and item–instance level (just a particular row). A precedence is applied
between these two levels to determine the net effect to the user. Thus,
if a setting is OFF at the item–level, but ON at the item–instance level,
the net effect is that it is OFF. For this reason, exercise caution when
setting properties that involve multiple levels. For example, mixing
ALTERABLE and ENABLED calls on the same widget may not
produce the desired effect.

6 – 26 Oracle Applications Developer’s Guide

Setting Properties at Design Time

While working in the Form Builder be aware that setting the Enabled
property to No on a text item or list item does not automatically exhibit
the same behaviors as the runtime equivalent set through
APP_ITEM_PROPERTY.SET_PROPERTY. Instead, you must set the
Insert Allowed, Update Allowed, and Keyboard Navigable properties
of the item to No, and keep the Enabled property set to Yes.

Behaviors such as ALTERABLE and ENTERABLE can only be achieved
at runtime because they rely on item–instance properties that can only
be set programatically.

Setting Visual Attributes Programatically

Unlike most Oracle Applications visual attributes that are applied as
part of a property class or are applied automatically by APPCORE
routines, the following visual attributes must be applied
programatically by the developer.

DATA_DRILLDOWN

The DATA_DRILLDOWN visual attribute makes the contents of a text
item appear in green with an underline. Applied programatically, this
visual attribute can be used to simulate a hypertext link for
”drilldown” purposes. It only changes the appearance of the text; it
does not perform any linking logic.

DATA_SPECIAL

DATA_SPECIAL applies the color red on white to a field that needs
special emphasis because it contains a value that violates a business
rule or requires the user’s close attention. For example, negative values
in financial forms should be red on white. This visual attribute is
ordinarily only applied at runtime.

Warning: Any use of color coding should augment an
indicator that functions in a monochrome environment.

DATA_REQUIRED

Oracle Applications do not use the DATA_REQUIRED visual attribute.

C H A P T E R

7

T

7 – 1Controlling Window, Block and Region Behavior

Controlling Window,
Block and Region
Behavior

his section describes coding standard behaviors for windows and
alternative regions.

The following topics are covered:

• Controlling Window Behavior

• Controlling Data Block Behavior

• Coding Master–Detail Relations

• Implementing a Combination Block

• Coding Tabbed Regions

• Coding Alternative Region Behavior

• Controlling Records in a Window

• Duplicating Records

• Renumbering All Records in a Window

• Passing Instructions to a Form

Example

Step 1

Step 2

7 – 2 Oracle Applications Developer’s Guide

Controlling Window Behavior

Controlling window behavior includes coding logic that positions
windows upon opening, controlling which windows close under
various conditions, providing context–sensitive titles for detail
windows, and so on. If you have master–detail relationships between
blocks in separate windows, you must also code logic for that situation.

Coding Master–Detail Relations (See page 7 – 6)

Positioning Windows Upon Opening

The Purchase Order header window contains a button labeled ”Lines”
that leads to the LINES block in a different window.

Add or modify the following triggers:

Trigger: PRE–FORM
app_window.set_window_position(’HEADER’,’FIRST_WINDOW’);

Trigger: WHEN–BUTTON–PRESSED on the LINES button
app_custom.open_window(’LINES’);

Modify APP_CUSTOM.OPEN_WINDOW as follows:

IF wnd = ’LINES’ THEN

 APP_WINDOW.SET_WINDOW_POSITION(’LINES’,

 ’CASCADE’,’HEADER’);

 go_block(’LINES’);

END IF;

The styles available are:

• CASCADE: Child window overlaps the parent window, offset to
the right and down by 0.3” from the current position of the
parent window. Usually used for detail windows.

• RIGHT, BELOW: Child window opens to the right of, or below,
the parent window without obscuring it.

• OVERLAP: Detail window overlaps the parent window, aligned
with its left edge, but offset down by 0.3”.

• CENTER: Window opens centered relative to another window.
Usually used for modal windows.

Example

7 – 3Controlling Window, Block and Region Behavior

• FIRST_WINDOW: Position the window immediately below the
toolbar. Usually used for the main entity window.

Closing Windows

The window close events for all non–modal windows (but no modal
windows) get passed to APP_CUSTOM.CLOSE_WINDOW. The
default code provided in the TEMPLATE form does the following:

• If the form is in enter–query mode, APP_CUSTOM calls

APP_EXCEPTION.DISABLED

• Otherwise, if the cursor is currently in the window to be closed,
APP_CUSTOM issues a do_key(’PREVIOUS_BLOCK’) to
attempt to move the cursor out of the current window

• Finally, APP_CUSTOM hides the window with a call to
HIDE_WINDOW(’<window_name>’).

You need to modify this procedure to account for any other behaviors
you require. Specifically, modify it to handle block coordination issues
and detail windows.

Remember that you must move the cursor out of the window before
closing it, otherwise the window reopens automatically.

To close the first window of a form, which is equivalent to ”File–>Close
Form” call APP_WINDOW.CLOSE_FIRST_WINDOW.

In a form with windows ”Header,” ”Lines,” and ”Shipments,” where
Lines is a detail of Header, and Shipments is a detail of Lines, the logic
to close the windows is as follows:

PROCEDURE close_window (wnd VARCHAR2) IS

 IF wnd = ’HEADER’ THEN

 ––

 –– Exit the form

 ––

 app_window.close_first_window;

 ELSIF wnd = ’LINES’ THEN

 ––

 –– Close detail windows (Shipments)

 ––

 app_custom.close_window(’SHIPMENTS’);

 ––

 –– If cursor is in this window,

7 – 4 Oracle Applications Developer’s Guide

 –– move it to the HEADER block

 ––

 IF (wnd = GET_VIEW_PROPERTY(GET_ITEM_PROPERTY(

 :SYSTEM.CURSOR_ITEM,ITEM_CANVAS),

 WINDOW_NAME)) THEN

 GO_BLOCK(’HEADER’);

 END IF;

 ELSIF wnd = ’SHIPMENTS’ THEN

 ––

 –– If cursor is in this window,

 –– move it to the LINES block

 ––

 IF (wnd = GET_VIEW_PROPERTY(GET_ITEM_PROPERTY(

 :SYSTEM.CURSOR_ITEM, ITEM_CANVAS),

 WINDOW_NAME)) THEN

 GO_BLOCK(’LINES’);

 END IF;

 END IF;

 ––

 –– THIS CODE MUST REMAIN HERE. It ensures

 –– the cursor is not in the window that will

 –– be closed by moving it to the previous block.

 ––

 IF (wnd = GET_VIEW_PROPERTY(GET_ITEM_PROPERTY(

 :SYSTEM.CURSOR_ITEM, ITEM_CANVAS),

 WINDOW_NAME)) THEN

 DO_KEY(’PREVIOUS_BLOCK’);

 END IF;

 ––

 –– Now actually close the designated window

 ––

 HIDE_WINDOW(wnd);
END close_window;

 Master–Detail Relations (See page 7 – 6)

Warning: You must leave the default clause that attempts to
move the cursor and close the window name passed to this
procedure.

Dynamic Title
Example

Step 1

Step 2

Step 3

7 – 5Controlling Window, Block and Region Behavior

Setting Window Titles Dynamically

In the Enter Journal form, show the current Set of Books and Journal
name in the Journal Lines window.

Set the Lines window title to ”Journal Lines” in the Oracle Forms
Developer.

Code the PRE–RECORD trigger of the Journal block:

app_window.set_title(’LINES’, name_in(’Journal.SOB’),

 :journal.name);

Code the WHEN–VALIDATE–ITEM trigger of the journal.names field:

app_window.set_title(’LINES’, name_in(’Journal.SOB’),

 :journal.name);

If you need to change the base title of a window, call SET_WINDOW_
PROPERTY(...TITLE...). Any future calls to APP_WINDOW.SET_
TITLE preserve your new base title.

Warning: Do not include parentheses or colons (the characters
” (” or ” : ”) in any of your window titles. These characters
get added by the APPCORE window titling routine when you
need to dynamically change the title to show context. Your
base window titles should never include these characters. If
you use a hyphen (–), do not surround it with spaces. In other
words, do not both precede and follow your hyphen with
spaces.

Step 1

Step 2

Step 3

7 – 6 Oracle Applications Developer’s Guide

Controlling Block Behavior

Coding Master–Detail Relations

Coordination Between Windows

When a detail block is in a different window than its master, and each
window is non–modal, then the detail block must provide a mechanism
for the user to toggle between immediate and deferred coordination.
This allows a user to keep a block visible, but control the performance
cost of coordinating detail records when the master record is changed.

When a detail block is not visible, its coordination should always be
deferred. Use the procedure APP_WINDOW.SET_COORDINATION
to coordinate master–detail blocks in different windows.

APP_WINDOW: Window Utilities (See page 29 – 40)

The sample code below uses the following objects:

• Master block ORDERS, in window ORDERS

• Detail Block LINES, in window LINES

• Relation ORDERS_LINES

• Coordination check box CONTROL.ORDERS_LINES

• Button to navigate to the LINES block CONTROL.LINES

Create a button to navigate to the detail block.

Create a coordination check box in a control block in the detail window
to specify the user’s preference of immediate or deferred coordination
when the window is open. The check box should have the
CHECKBOX_COORDINATION property class, which provides a value
of ”IMMEDIATE” when checked and ”DEFERRED” when unchecked.
The check box value should default to checked (IMMEDIATE).

Create your item handler procedures as follows:

PACKAGE BODY control IS

 PROCEDURE lines(EVENT VARCHAR2) IS

 BEGIN

 IF (EVENT = ’WHEN–BUTTON–PRESSED’) THEN

 app_custom.open_window(’LINES’);

Step 4

Step 5

7 – 7Controlling Window, Block and Region Behavior

 END IF;

 END lines;

 PROCEDURE orders_lines(EVENT VARCHAR2) IS

 BEGIN

 IF (EVENT = ’WHEN–CHECKBOX–CHANGED’) THEN

 APP_WINDOW.SET_COORDINATION(EVENT,

 :control.orders_lines,

 ’ORDERS_LINES’);

 END IF;

 END orders_lines;

END control;

Customize the APP_CUSTOM template package as follows:

In the OPEN_WINDOW procedure, add:

 IF (WND = ’LINES’) THEN

 APP_WINDOW.SET_COORDINATION(’OPEN–WINDOW’,

 :control.orders_lines,

 ’ORDERS_LINES’);

 GO_BLOCK(’LINES’);

 END IF;

In the CLOSE_WINDOW procedure, add:

 IF (WND = ’LINES’) THEN

 APP_WINDOW.SET_COORDINATION(’WHEN–WINDOW–CLOSED’,

 :control.orders_lines,

 ’ORDERS_LINES’);

 END IF;

Call your field and event handler procedures in:

Trigger: WHEN–BUTTON–PRESSED on control.lines:
control.lines(’WHEN–BUTTON–PRESSED’);

Trigger: KEY–NXTBLK on ORDER:
control.lines(’WHEN–BUTTON–PRESSED’);

Trigger: WHEN–CHECKBOX–CHANGED on
 control.order_lines:

control.orders_lines(’WHEN–CHECKBOX–CHANGED’);

Step 1

Step 2

7 – 8 Oracle Applications Developer’s Guide

Implementing a Combination Block

Each item in a block can have its own Number of Items Displayed
property, so you can have a single block in which some items are
single–record (Detail) and some are multi–record (Summary). When
you implement a combination block, most items appear twice, so
coordination of the values in these items must be managed. The
Synchronize with Item property does this automatically. You control
which portion of the block is navigated to in different situations using a
field called Switcher. The Switcher field is the first navigable item in
the block. When the cursor enters the Switcher, it is immediately
moved to the first item in either the Detail or Summary portion of the
block.

Setting up the combination block

Create two windows and canvases to hold the different portions of
your block. Use the non–mirror items in your block for the Summary
portion. Duplicate the items to create the Detail portion. The Detail
portion of your combination block should be sequenced first. Thus,
when the user does not fill in a required item and tries to commit the
block, Oracle Forms positions the cursor in that item in the Detail
block.

Setting the item properties

For the mirror items, change the item names to reflect the real item that
they are mirroring (for example, name the mirror item of ”status” to
”status_mir”). Set the Synchronize with Item property, and make sure
the Database Item property is set to Yes (if the synchronized items are a
base table item).

Set the block–level Number of Records Displayed property for your
Summary portion. This will get picked up by the items so long as you
do not explicitly set the Number of Items Displayed property. So that
your Detail portion items do not get the same value, explicitly set their
Number of Items Displayed property to 1.

To prevent the user from tabbing out of the Detail and into the
Summary, set the Previous Navigation Item property for the first Detail
item, and the Next Navigation Item property for the last Detail item.

To enforce the standard multi–record block navigation behavior of
Change Record, call APP_COMBO.KEY_PREV_ITEM in the
KEY–PREV–ITEM (Fire in ENTER–QUERY mode: No) trigger of the
first navigable item of the Summary portion, and call next_record in

Step 3

Step 4

Step 5

7 – 9Controlling Window, Block and Region Behavior

the KEY–NEXT–ITEM trigger (Fire in ENTER–QUERY mode: No) of
the last navigable item of the Summary portion.

APP_COMBO: Combination Block API (See page 29 – 3)

If you are converting an existing block into a combination block, do not
forget to change references in any existing triggers to recognize that
there are now two instances of every field.

The Drilldown Record Indicator

Add a Drilldown Record Indicator that does an
execute_trigger(’SUMMARY_DETAIL’).

The Record Count Parameter

Create a parameter to store the record count for the portion of the block
you are currently in. Name the parameter <block>_RECORD_COUNT,
where <block> is the name of the combination block. The APPCORE
code depends on this naming standard. This information is used to
determine which portion of the block to navigate to. The parameter
should have a Data Type of NUMBER and a default value of 2, so that
the cursor is initially in the Summary portion. (If you want the cursor
to start in the Detail portion, set the default value to 1).

Create a block level WHEN–NEW–ITEM–INSTANCE trigger
(Execution Hierarchy: Before) that contains the following code:

:PARAMETER.<block>_RECORD_COUNT :=

GET_ITEM_PROPERTY(:SYSTEM.CURSOR_ITEM,

 RECORDS_DISPLAYED);

The Switcher

Create a text item and assign it the property class SWITCHER. It needs
to be the lowest sequenced item in the block. Place it at (0,0) on the
toolbar canvas (the switcher belongs on the toolbar canvas because
whatever canvas it is on paints). Create an item–level
WHEN–NEW–ITEM–INSTANCE trigger (Execution Hierarchy:
Override) that contains the following code:

IF(:PARAMETER.<block>_RECORD_COUNT > 1) THEN

 GO_ITEM(’<first Summary field>’);

ELSE

 APP_WINDOW.SET_WINDOW_POSITION(’<Detail window>’,

 ’OVERLAP’,

 ’<Summary window>’);

Step 6

Step 7

7 – 10 Oracle Applications Developer’s Guide

 GO_ITEM(’<first Detail field>’);

END IF;

The Summary/Detail Menu Item

Create a block–level SUMMARY_DETAIL trigger (Execution
Hierarchy: Override) that contains the following code:

IF GET_ITEM_PROPERTY(:SYSTEM.CURSOR_ITEM,

 RECORDS_DISPLAYED) > 1 THEN

 :PARAMETER.<block>_RECORD_COUNT := 1;

ELSE

 :PARAMETER.<block>_RECORD_COUNT := 2;

END IF;

GO_ITEM(’<block>.Switcher’);

This code changes the value in the RECORDS_DISPLAYED parameter
so that the Switcher sends the cursor into the opposite portion of the
block. It will fire whenever the user chooses ”Go –> Summary/Detail.”

Create a block–level PRE–BLOCK trigger (Execution Hierarchy:
Override) that contains the following code:

 APP_SPECIAL.ENABLE(’SUMMARY_DETAIL’, PROPERTY_ON);

Finally, create a form–level PRE–BLOCK trigger (Execution Hierarchy:
Override) that contains the code:

 APP_SPECIAL.ENABLE(’SUMMARY_DETAIL’, PROPERTY_OFF);

If all blocks are combination blocks, you can turn on
SUMMARY_DETAIL at the form–level and ignore the PRE–BLOCK
trigger. If most blocks are combination blocks, you can turn
SUMMARY_DETAIL on at the form–level, and disable it at the
block–level for those blocks that are not combination blocks.

 Initial navigation and window operations

If your combination block is the first block in the form, position the two
windows in the PRE–FORM trigger with the following calls:

 APP_WINDOW.SET_WINDOW_POSITION(’<Summary window>’,

 ’FIRST_WINDOW’);

 APP_WINDOW.SET_WINDOW_POSITION(’<Detail window>’,

 ’OVERLAP’,

 ’<Summary window>’);

Usually, the Summary is entered first, but there are cases where it is
dynamically determined that the Detail should be entered first. If you

7 – 11Controlling Window, Block and Region Behavior

need to dynamically decide this, set the parameter
<block>_RECORD_COUNT in the PRE–FORM trigger (1 to send it to
the Detail, 2 to send it to the Summary).

7 – 12 Oracle Applications Developer’s Guide

Coding Tabbed Regions

Definitions

Tabbed Region

A tabbed region is the area of the window that contains a group of
related tabs. The group of related tabs and their corresponding tab
pages are considered to make up the tabbed region. In Forms
Developer, this is called a tab canvas. Each tab canvas consists of one
or more tab pages.

Tab Page

A tab page is the area of a window and related group of fields (items)
that appears when a user clicks on a particular ”tab” graphic element.
The term ”tab” is often used interchangeably with the term ”tab page”.
In Form Builder, a tab page is the surface you draw on. Form Builder
sizes it automatically within the tab canvas viewport.

Topmost Tab Page

The topmost tab page is the tab page that is currently ”on top”; that is,
the currently–selected and displayed tab page.

Fixed Fields

Fixed fields are fields or items that appear in several or all tab pages of
a particular tabbed region. Fixed fields may include context fields
and/or primary key fields, the block scrollbar, a current record
indicator or drilldown indicator, and descriptive flexfields.

Alternative Region Fields

Alternative region fields (unique tab page fields) are fields that are
unique to a particular tab page and therefore do not appear on other
tab pages of a particular tabbed region. Alternative region fields are
the opposite of fixed fields, which appear on several or all tab pages of
a particular tabbed region.

7 – 13Controlling Window, Block and Region Behavior

Controls

”Controls” is another term for fields, items, or widgets. Includes text
items, display items, check boxes, scroll bars, buttons, tabs, option
groups, and so on.

Tabbed Region Behavior

The desired Oracle Applications behavior for tabbed regions is to show
the tab page and move focus to the appropriate field depending on
which tab is clicked. You must write code to achieve this behavior,
because the standard behavior in Oracle Forms is to put the focus in the
tab widget itself when the user clicks on a tab.

In Oracle Forms, ”cursor focus” is the same thing as ”mouse focus,”
thus the term is simply ”focus.”

Keyboard–only Operation

Users can access a tab directly via the keyboard using a definable hot
key to access a list of available tabs (the [F2] key by default).

In addition, as the user presses Next Field or Previous Field, navigation
cycles through all the fields of the block, and across tab pages as
appropriate. The selected tab must always be synchronized with the
current group of fields that is being displayed. Because many tabbed
regions use stacked canvases to hold the fields, rather than placing the
fields directly on tab pages, the code needs to keep the tabs
synchronized with the stacked canvases.

Dynamic Tab Layouts

Hide a tab at startup if it will not apply for the duration of the form
session. Do not hide and show tabs within a form session. It is
acceptable, though not ideal, to have only one tab remaining visible.
Dynamically disable and enable a tab if its state is determined by data
within each record.

Other Behaviors

Tabs should operate in enter–query mode. The field that a go_item call
goes to in enter–query mode must be queryable. Some forms also
require canvas scrolling within a tab page.

7 – 14 Oracle Applications Developer’s Guide

These desired behaviors result in the specific ways of coding handlers
for tabbed regions described in the following sections.

Three Degrees of Coding Difficulty

The three degrees of difficulty require different types of layout methods
and coding methods.

• Simple: no scrolling or fixed fields

• Medium: scrolling but no fixed fields

• Difficult: fixed fields with or without scrolling

The layout method differences include using stacked canvases or not,
and how many of them. The coding method differences include extra
code that is required for handling the behavior of tabs with stacked
canvases.

Simple case: no scrolling or fixed fields

The simple case includes single–row tab pages where no fields are
repeated on different pages. These are typically separate blocks of the
form.

If you have a form with multiple separate multi–row blocks
represented as one tabbed region (one block per tab page, and separate
block scrollbars for each, but no horizontal scrolling of fields), that can
also be coded as the simple case. For example, the Users window on
the System Administration responsibility fits the simple case.

In the simple case, you place items directly onto the tab pages. The
simple case does not require any stacked canvases.

Medium case: scrolling but no fixed fields

The medium case covers single–row tab pages where no fields are
repeated on different pages, but scrollbars are required to allow access
to all fields within a tab page. These tab pages are typically each
separate blocks of the form.

If you have a form with multiple separate multi–row blocks
represented as one tabbed region (one block per tab page, separate
block scrollbars for each, and horizontal scrolling of fields), that can
also be coded as the medium case. ”Fixed” (but not shared) objects
such as block scrollbars and buttons can be placed directly on the tab
page in this case.

Step 1

Step 2

7 – 15Controlling Window, Block and Region Behavior

In the medium case, you place items onto stacked canvases, in front of
the tab pages, to facilitate scrolling of fields.

Difficult case: fixed fields with or without scrolling

The difficult case covers the presence of fixed fields shared across
different tab pages. This case includes any multi–row blocks spread
across multiple tab pages. Fixed fields usually include context fields,
current or drilldown record indicator, descriptive flexfields, and the
block scrollbar.

For the fixed field case, you place items onto stacked canvases, in front
of the tab pages, to facilitate scrolling of fields. An extra stacked
canvas is required for the fixed fields, and additional code is required
in the tab handler.

Implementing Tabbed Regions

Implementing tabbed regions essentially consists of two main phases:

• Creating the layout in Forms Developer

• Coding the tab handler

The following steps describe how to implement tabbed regions to
follow Oracle Applications standards. These steps apply to all three
cases (simple, medium, difficult), with any differences noted in the step
description.

Creating the Layout in Forms Developer

Create the tab canvas. Name the tab canvas following the standard
TAB_ENTITY_REGIONS (where ENTITY is your entity such as LINES)
or similar. For example, the tab canvas name could be something like
TAB_LINES_REGIONS. Apply the TAB_CANVAS property class.

Set the Window property of the tab canvas so the tab canvas appears in
the correct window. If you do not set the Window property of the tab
canvas to be the correct window, you will not be able to use the View
–> Stacked Views menu choice in Form Builder to display your tab
canvas on the content canvas.

Adjust the tab canvas. Sequence the canvas after the content canvas,
and before any stacked canvases that will appear in front of it. Adjust

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

7 – 16 Oracle Applications Developer’s Guide

its viewport in the Layout Editor. Show the content canvas at the same
time so you can position the tab canvas well.

Create the tab pages.

For the medium and difficult cases, the names of the tab pages must
match the names of the ”alternative region” stacked canvases they
correspond to.

Adjust the tab pages. Apply the property class TAB_PAGE to each tab
page. Set the tab page labels. Sequence your tab pages in the Object
Navigator to match your item tabbing sequence.

For the difficult case only, create the fixed field stacked canvas. Name
it (tab_canvas)_FIXED. Sequence it after the tab canvas but before any
”alternative region” stacked canvases that you will create for the
difficult case. Apply the property class
CANVAS_STACKED_FIXED_FIELD. Set the fixed field canvas
viewport just inside the tab canvas viewport.

For the medium and difficult cases only, create the ”alternative region”
stacked canvases. These canvases must all have the same viewport size
and position. Check the Visible property for your alternative region
stacked canvases; only the first one to be displayed should be set to
Yes.

For the difficult case, these ”alternative region” canvases will obscure
part, but not all, of the fixed field canvas. Make sure their viewport
positions and sizes land in the appropriate place relative to the fixed
field canvas.

Place your items on the appropriate tab pages or stacked canvases.
Position the block scrollbar, if any, on the right edge of the canvas.

If you are using stacked canvases, be sure that the stacked canvases do
not overlap fields that are placed directly on the tab pages. Similarly,
the sure that any ”alternative region” stacked canvases do not overlap
any items on the fixed field stacked canvas.

Adjust your layout. Set the field prompts as properties of your fields
as appropriate.

Note on arranging your tabbed region layout: the primary standard for
arranging the layout of fields and other elements in your tabbed region
is to create an aesthetically pleasing appearance. This includes leaving
sufficient space around the inside and outside of the actual tab pages so

Step 9

Step 10

7 – 17Controlling Window, Block and Region Behavior

that the layout does not appear overly crowded. There is no single set
of required layout settings to achieve this goal. For example, a
multi–row check box at the end of a tabbed region may require more
white space between it and the edge of the tab page than is needed to
make a text item look good in the same position.

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

Tabbed Regions
Oracle Applications User Interface Standards for Forms–Based
Products

Note also that the Forms Developer Layout Editor does not render tabs
and stacked canvases with the Oracle Look and Feel. You will see the
Oracle Look and Feel only at runtime. You need to rely on the numeric
value of viewports, rather than what you see at design time.

Coding Your Tab Handler

Code your tab handler. Oracle provides two template files to make
writing the handler easy:

• FNDTABS.txt for the simple and medium cases

• FNDTABFF.txt for the fixed field case

The location of FNDTABS.txt and FNDTABFF.txt is under
FND_TOP/resource (the file names may be lowercase). Choose the
appropriate tab handler template file (FNDTABS.txt or FNDTABFF.txt).
Import the handler text into your form (typically in the block package
or the control package) or library and modify it to fit your form.
Modify it as appropriate to fit your form object names and to account
for any special behavior required. The file includes extensive comments
that help you modify the correct parts of the file.

Call your tab handler from triggers. Add a form–level
WHEN–TAB–PAGE–CHANGED trigger and make it call your new
handler. The trigger should pass the WHEN–TAB–PAGE–CHANGED
event to the handler. For example:

MY_PACKAGE.TAB_MY_ENTITY_REGIONS(’WHEN–TAB–PAGE–CHANGED’);

Code the WHEN–NEW–ITEM–INSTANCE trigger to call your new
handler. You typically code this trigger at the block level (Execution
Hierarchy Style: Before). For example:

7 – 18 Oracle Applications Developer’s Guide

MY_PACKAGE.TAB_MY_ENTITY_REGIONS(’WHEN–NEW–ITEM–INSTANCE’);

Tab Handler Logic

Your tab handler typically accepts calls from the following triggers
(events):

• WHEN–TAB–PAGE–CHANGED

• WHEN–NEW–ITEM–INSTANCE

• others as appropriate, such as KEY–CLRFRM

The tab handler has a branch for each of these events.

WHEN–TAB–PAGE–CHANGED Logic

When the user presses a tab, your WHEN–TAB–PAGE–CHANGED
logic:

• validates the current field

• moves the cursor to the appropriate field

• explicitly displays a stacked canvas if necessary

The WHEN–TAB–PAGE–CHANGED trigger fires only when user
clicks on a tab. It cannot be fired programmatically, and it can only
exist at the form level.

Text of FNDTABS.txt WHEN–TAB–PAGE–CHANGED Branch

Here is the WHEN–TAB–PAGE–CHANGED branch of FNDTABS.txt
file (simple and medium cases):

IF (event = ’WHEN–TAB–PAGE–CHANGED’) THEN

 if name_in(’system.cursor_block’) = ’MY_BLOCKNAME’ then

 validate(item_scope);

 if not form_success then

 –– Revert tab to prior value and exit

 set_canvas_property(’TAB_ENTITY_REGIONS’,

 topmost_tab_page,

 name_in(’system.tab_previous_page’));

 return;

 end if;

 –– Move to first item on each tab

7 – 19Controlling Window, Block and Region Behavior

 if target_canvas_name = ’MY_FIRST_TAB_PAGE’ then

 go_item(’MY_BLOCKNAME.FIRST_TAB_PAGE_FIRST_FIELD’);

 elsif target_canvas_name = ’MY_SECOND_TAB_PAGE’ then

 go_item(’MY_BLOCKNAME.SECOND_TAB_PAGE_FIRST_FIELD’);

 elsif target_canvas_name = ’MY_THIRD_TAB_PAGE’ then

 go_item(’MY_BLOCKNAME.THIRD_TAB_PAGE_FIRST_FIELD’);

 end if;

 else

 show_view(target_canvas_name);

 end if;

Text of FNDTABFF.txt WHEN–TAB–PAGE–CHANGED Branch

Here is the WHEN–TAB–PAGE–CHANGED branch of FNDTABFF.txt
file (fixed field case):

IF (event = ’WHEN–TAB–PAGE–CHANGED’) THEN

 if name_in(’system.cursor_block’) = ’MY_BLOCKNAME’

then

 –– Process the ’First’ tab specially. If the

 –– cursor is already on a field on the

 –– ’Fixed’ canvas then we merely show the other

 –– stacked canvas; otherwise, we move the cursor

 –– to the first item on it.

 if target_canvas_name =

 ’MY_FIRST_ALT_REG_CANVAS’ then

 if curr_canvas_name =

 ’TAB_ENTITY_REGIONS_FIXED’ then

 show_view(target_canvas_name);

 go_item(name_in(’system.cursor_item’);

 –– move focus off the tab itself

 else

 validate(item_scope);

 if not form_success then

 –– Revert tab to prior value and exit

 set_canvas_property(’TAB_ENTITY_REGIONS’,

 topmost_tab_page,

 name_in(’system.tab_previous_page’));

 return;

 end if;

 show_view(’MY_FIRST_ALT_REG_CANVAS’);

 –– display first stacked canvas

 go_item(

 ’MY_BLOCKNAME.FIRST_ALT_REG_FIRST_FIELD’);

7 – 20 Oracle Applications Developer’s Guide

 –– go to first item on that stacked canvas

 end if;

 else

 validate(item_scope);

 if not form_success then

 –– Revert tab to prior value and exit

 set_canvas_property(’TAB_ENTITY_REGIONS’,

 topmost_tab_page,

 name_in(’system.tab_previous_page’));

 return;

 end if;

 ––

 –– Move to first item on each additional

 –– (non–first) tab

 ––

 if target_canvas_name =

 ’MY_SECOND_ALT_REG_CANVAS’ then

 go_item(

 ’MY_BLOCKNAME.SECOND_ALT_REG_FIRST_FIELD’);

 elsif target_canvas_name =

 ’MY_THIRD_ALT_REG_CANVAS’ then

 go_item(

 ’MY_BLOCKNAME.THIRD_ALT_REG_FIRST_FIELD’);

 end if;

 end if;

 else

 show_view(target_canvas_name);

 end if;

Variables for the WHEN–TAB–PAGE–CHANGED Trigger

The following variables are only valid within a
WHEN–TAB–PAGE–CHANGED trigger (or code that is called from it):

• :SYSTEM.TAB_NEW_PAGE is the name of tab page the user
clicked on.

• :SYSTEM.EVENT_CANVAS is the name of canvas that owns the
newly–selected tab page.

• :SYSTEM.TAB_PREVIOUS_PAGE is the name of tab page that
was topmost before the user clicked on the new tab.

Validation Checking in WHEN–TAB–PAGE–CHANGED Logic

The validation check is the part of the handler that contains the line:

7 – 21Controlling Window, Block and Region Behavior

 validate(item_scope);

followed by code that resets the tab to its original value if the
validation fails.

The validate routine is called to force validation of the current field as if
the user were tabbing out of the field. That validation includes
checking that the field contains a valid value (data type, range of value,
and so on) and firing any applicable WHEN–VALIDATE–ITEM logic
for the item. The validation check is necessary because the
WHEN–TAB–PAGE–CHANGED trigger fires immediately when the
user clicks on the tab (any WHEN–VALIDATE–ITEM trigger on the
field the user was in before clicking the tab does not get a chance to fire
before the WHEN–TAB–PAGE–CHANGED).

If the form is for inquiry only, the validation check is not needed, and
you may remove it from the tab handler.

WHEN–TAB–PAGE–CHANGED Variation for Enter–Query Mode

If some fields in your tab region are not queryable, you may need to
adjust your logic to allow operation in enter–query mode. All go_item
calls must move to Queryable fields, so you would need to test
whether the user is in enter–query mode and move to the appropriate
field.

Testing for enter–query mode:

 IF :system.mode = ’ENTER–QUERY’ THEN ...

Form–level WHEN–TAB–PAGE–CHANGED Trigger

If you only have one set of tabs in your form, call the tab handler from
the form–level WHEN–TAB–PAGE–CHANGED trigger and pass the
WHEN–TAB–PAGE–CHANGED event:

my_package.tab_my_entity_regions(’WHEN–TAB–PAGE–CHANGED’);

If you have multiple sets of tabs (multiple tabbed regions), you must
have separate tab handlers for each tabbed region. In this case, your
form–level WHEN–TAB–PAGE–CHANGED trigger must branch on
the current canvas name and call the appropriate tab handler. This
branching is only needed if your form has more than one tab canvas.
For example:

declare

 the_canvas varchar2(30) := :system.event_canvas;

begin

 if the_canvas = ’FIRST_TAB_REGIONS’ then

7 – 22 Oracle Applications Developer’s Guide

 control.first_tab_regions(’WHEN–TAB–PAGE–CHANGED’);

 elsif the_canvas = ’SECOND_TAB_REGIONS’ then

 control.second_tab_regions(’WHEN–TAB–PAGE–CHANGED’);

end if;

end;

Caution About WHEN–TAB–PAGE–CHANGED Event Logic:

Your WHEN–TAB–PAGE–CHANGED code assumes it was called as a
result of the user selecting a tab. Tab–related SYSTEM variables are
only valid in this mode. If you want to programmatically fire this code,
you need to pass a different event and adjust the logic so it does not
refer to the tab–related system variables.

WHEN–NEW–ITEM–INSTANCE Logic

The WHEN–NEW–ITEM–INSTANCE branch of the tab handler
handles the behavior for a user ”tabbing” through all the fields of the
block or when Oracle Forms moves the cursor automatically (for
example, when a required field is null).

As the cursor moves to a field in a tabbed region with stacked
canvases, the stacked canvases raise automatically, but the
corresponding tab pages do not. Logic in the
WHEN–NEW–ITEM–INSTANCE branch of your tab handler keeps the
”topmost” tab page in sync with the current stacked canvas and the
current item.

The WHEN–NEW–ITEM–INSTANCE branch is not required for the
simple case (items placed directly on the tab pages instead of on
stacked canvases). Because the fields are directly on the tab pages,
there is no need to programmatically synchronize the tab with the
current field. The WHEN–NEW–ITEM–INSTANCE branch is required
in all cases where you have stacked canvases (medium and difficult
cases). No extra code is required to specifically handle the fixed field
canvas.

Text of FNDTABFF.txt WHEN–NEW–ITEM–INSTANCE Branch

Here is the WHEN–NEW–ITEM–INSTANCE branch of the tab handler
in the FNDTABFF.txt file:

ELSIF (event = ’WHEN–NEW–ITEM–INSTANCE’) THEN

 if ((curr_canvas_name in (’MY_FIRST_ALT_REG_CANVAS’,

7 – 23Controlling Window, Block and Region Behavior

 ’MY_SECOND_ALT_REG_CANVAS’,

 ’MY_THIRD_ALT_REG_CANVAS’)) and

 (curr_canvas_name != current_tab)) then

 set_canvas_property(’TAB_ENTITY_REGIONS’,

 topmost_tab_page,

 curr_canvas_name);

 end if;

This code relies on the alternative region stacked canvases having
exactly the same names as their corresponding tab pages. This code
changes the topmost tab using:

set_canvas_property(...TOPMOST_TAB_PAGE...)

The default topmost tab page is the leftmost tab as it appears in the
Layout Editor.

Handling Dynamic Tabs

There are two main cases of ”dynamic tabs” used in Oracle
Applications:

• Showing or hiding tabs at form startup time

• Enabling or disabling (but still showing) tabs during a form
session

You can dynamically hide tabs at form startup using
Set_Tab_Page_Property(...VISIBLE...).

You can dynamically enable or disable tabs during a form session using
Set_Tab_Page_Property(...ENABLED...). You typically add code
elsewhere in your form that enables or disables tabs based on some
condition.

Use Get_Tab_Page_Property for testing whether a tab is enabled or
disabled:

 DECLARE

 my_tab_page_id TAB_PAGE;

 my_tab_enabled VARCHAR2(32);

 BEGIN

 my_tab_page_id := FIND_TAB_PAGE(’my_tab_page_1’);

 my_tab_enabled := GET_TAB_PAGE_PROPERTY (my_tab_page_id,

 ENABLED)

 IF my_tab_enabled= ’TRUE’ THEN ...

7 – 24 Oracle Applications Developer’s Guide

Note that you cannot hide or disable a tab page if it is currently the
topmost page.

Dynamic Tabs with a ”Master” Field

The case of a ”master” field, whose value controls enabling and
disabling of tabs, requires special logic. The logic must account for
user clicking onto the tab that should now be disabled. In this case, the
UI should act as if tab really was disabled.

How the situation occurs: suppose you have a field (either on a tab
page or not) where, based on the value of the field, a tab is enabled or
disabled. If the master field is a poplist, check box, or option group,
the enable/disable logic should be in the WHEN–LIST–CHANGED or
equivalent trigger.

There is a corner case that must be addressed differently: when your
master field is a text item. In this situation the user changes the value
of the master field such that the tab would be disabled, but then clicks
on that (still–enabled) tab before the field’s WHEN–VALIDATE–ITEM
logic would fire (that is, the user clicks on the tab instead of tabbing out
of the field, which would ordinarily fire the WHEN–VALIDATE–ITEM
logic).

Because the WHEN–VALIDATE–ITEM logic has not yet fired when the
user clicks on the tab, the tab is still enabled. However, the behavior
for the end user should be as if the tab was disabled and as if the user
never clicked on the disabled tab (the tab should not become the
topmost tab). Because tabs get focus immediately upon clicking, the
should–be–disabled tab immediately becomes the topmost tab, at
which point it must be programmatically disabled and the tabbed
region returned to its previous state upon validation of the master field.
However, the tab cannot be disabled while it is the topmost tab and has
focus.

The validate(item_scope) logic in the WHEN–TAB–PAGE–CHANGED
part of the tab handler fires the WHEN–VALIDATE–ITEM logic of the
field. The WHEN–VALIDATE–ITEM logic cannot access the
:system.tab_previous_page variable needed to revert the tab page to
the previous page (before the user clicked). The tab handler must
therefore contain code to store the topmost tab page information in a
package variable or form parameter at the end of each successful tab
page change. This stored value can then be used to revert the topmost
tab in case of a failed tab page change (where the failure is the result of
the WHEN–VALIDATE–ITEM logic). The tab handler must be
modified to do nothing (after the validate call) if the clicked–on tab is
disabled.

7 – 25Controlling Window, Block and Region Behavior

Other Code You May Need

You may need to add tab–related code for the following triggers:

• KEY–CLRFRM

• WHEN–NEW–FORM–INSTANCE or PRE–FORM

KEY–CLRFRM

Depending on the desired form behavior, you may want to reset the tab
pages to their initial state after a KEY–CLRFRM. You would add a
branch for KEY–CLRFRM to your handler and include something like
the following code:

set_canvas_property(’TAB_ENTITY_REGIONS’, topmost_tab_page,

 ’MY_FIRST_ALT_REG_CANVAS’);

 –– reset the tabs after KEY–CLRFRM

show_view(’MY_FIRST_ALT_REG_CANVAS’);

 –– display the first stacked canvas

WHEN–NEW–FORM–INSTANCE or PRE–FORM

You may also have branches for WHEN–NEW–FORM–INSTANCE or
PRE–FORM that initialize the tabbed region such as by doing a
show_view.

Oracle Forms does not guarantee canvas sequencing. You may need to
include extra show_view() commands at form startup or elsewhere in
your form to get proper canvas sequencing.

Testing Tab Page Properties

The Oracle Forms Set/Get_tab_page_property (canvas.tabpage...)
built–in routines use these properties:

• ENABLED

• LABEL

• VISIBLE

Use the Get_Tab_Page_Property routine for testing whether a tab is
enabled or disabled:

DECLARE

 my_tab_page_id TAB_PAGE;

 my_tab_enabled VARCHAR2(32);

BEGIN

7 – 26 Oracle Applications Developer’s Guide

 my_tab_page_id := FIND_TAB_PAGE(’my_tab_page_1’);

 my_tab_enabled := GET_TAB_PAGE_PROPERTY (my_tab_page_id,

ENABLED)

 IF my_tab_enabled= ’TRUE’ THEN ...

Setting and Getting Topmost Tab Pages

This example sets the topmost tab page (that is, the displayed tab page)
of the TAB_ENTITY_REGIONS tab canvas to be the
MY_SECOND_TAB_PAGE tab page:

set_canvas_property(’TAB_ENTITY_REGIONS’, topmost_tab_page,

 ’MY_SECOND_TAB_PAGE’);

You can also retrieve the name of the current tab page:

current_tab VARCHAR2(30) :=

get_canvas_property(’TAB_ENTITY_REGIONS’,

 topmost_tab_page);

7 – 27Controlling Window, Block and Region Behavior

Coding Alternative Region Behavior

For Oracle Applications Release 11i, alternative regions are replaced by
tabbed regions. Alternative regions still work, and they are still
documented for backwards compatibility, but you should implement
tabbed regions for all new code.

Alternative Regions

A block with multiple regions that cannot be rendered simultaneously
uses a series of stacked canvases to display each region, one at a time,
within a single region boundary. These stacked regions are called
”Alternative Regions”.

For more information, see the Oracle Applications User Interface Standards
for Forms–Based Products.

Alternative Regions
Oracle Applications User Interface Standards for Forms–Based
Products

Each alternative region has a poplist control element containing all
possible regions for that block.

Behavior of the Alternative Region Poplist

Alternative region poplists should behave according to the following
standards:

• The Alternative Region poplist should have the Query Allowed
attribute set to Yes, so that it can be used while the block is in
ENTER–QUERY mode.

• KEY–MENU invokes an LOV that allows the user to select from
the same list of choices as in the control poplist. The title of this
LOV is ”Regions.” You need this function for keyboard
compatibility because the control poplist is not otherwise
accessible except via the mouse.

Example: Coding an Alternative Region

Block LINES has some fields on a content canvas ORDER. The last of
these fields is ITEM.

Step 1

Step 2

Step 3

7 – 28 Oracle Applications Developer’s Guide

LINES has alternative regions on canvases LINES_PRICE and
LINES_ITEM. The regions are accessible only if LINES.ITEM is not
null. The first item of LINES_PRICE is LIST_PRICE. The first item of
LINES_ITEM is DESCRIPTION.

Create a poplist in a control block to select the current region. The
poplist should be queryable and non–navigable. The poplist should
display a friendly name for each region with a corresponding value
equal to the region’s canvas name.

The block CONTROL has a queryable, non–navigable poplist named
LINES_REGIONS (block name plus _REGIONS) that contains the
following values, with the internal value following the displayed value:
Price Information (LINES_PRICE), Item Information (LINES_ITEM).

Visit the CONTROL block:

At form startup, you must visit the block containing the control poplist
to instantiate it:

• Create a text item called DUMMY as the first item in the
CONTROL block. Make the text item Visible, Enabled and
Keyboard Navigable, Position 0,0, WD=0, HT=0, and
+–Length=1. Place it on the first canvas to be displayed.

• In WHEN–NEW–FORM–INSTANCE, make two GO_BLOCK()
calls, one to the CONTROL block and another to the First
Navigation Block.

• Make sure you do similar GO_BLOCK calls in the code where
you handle KEY–CLRFRM.

Setting the First Displayed Region:

Within Oracle Forms Designer, designate the first stacked canvas of the
set of alternative regions to show as displayed; make all other canvases
in the set not displayed to improve startup performance.

You must sequence the stacked canvases carefully by ordering the
canvases within the list in the Oracle Forms Object Navigator (the first
stacked canvas in the list is the first stacked canvas displayed). In
addition, you must sequence your items to have the correct order when
a user tabs through the fields on the alternative regions.

Suggestion: When stacked canvases are referenced, their
sequence may be unpredictable. In this case, issue a
SHOW_VIEW at form startup, or whenever the window is first
displayed, to force the proper canvas to render.

Step 4

7 – 29Controlling Window, Block and Region Behavior

Make sure your stacked canvas views are all exactly the same size and
occupy exactly the same space on the content canvas.

Create your item handler procedures to control which region displays
as in the following example. Remember, in our example form, we want
to disallow access to the regions unless the field LINES.ITEM is not
null:

PACKAGE BODY control IS

 g_canvas_name VARCHAR2(30) := null;

 PROCEDURE lines_regions(event varchar2) IS

 target_canvas_name VARCHAR2(30);

 curr_canvas_name VARCHAR2(30) :=

 get_item_property(:system.cursor_item,

 ITEM_CANVAS);

 BEGIN

 IF (event = ’WHEN–NEW–ITEM–INSTANCE’) THEN

 –– Check if the poplist and the canvas are out of synch

 –– to prevent flashing if they are not.

 IF ((curr_canvas_name in (’LINES_PRICE’, ’LINES_ITEM’)) AND

 (curr_canvas_name != :control.lines_regions)) THEN

 :control.lines_regions := curr_canvas_name;

 g_canvas_name := curr_canvas_name;

 END IF;

 ELSIF (event = ’WHEN–LIST–CHANGED’) THEN

 target_canvas_name := :control.lines_regions;

 –– The following is optional code to disallow access

 –– to certain regions under certain conditions

 –– Check that the region is accessible. Always allow access

 –– during queries.

 IF (:SYSTEM.MODE = ’ENTER–QUERY’) THEN

 null;

 ELSE

 IF (:lines.item is null) THEN

 FND_MESSAGE.SET_NAME(’OE’, ’OE_ENTER_ITEM_FIRST’);

 FND_MESSAGE.ERROR;

 :control.lines_regions := g_canvas_name;

 RAISE FORM_TRIGGER_FAILURE;

 END IF;

 –– End of optional code

 END IF;

 –– Display the region. If in the same block, go to the

 –– first item in the region.

 IF curr_canvas_name in (’LINES_PRICE’, ’LINES_ITEM’) THEN

 hide_view(curr_canvas_name);

Step 5

7 – 30 Oracle Applications Developer’s Guide

 END IF;

 show_view(target_canvas_name);

 IF (:system.cursor_block = ’LINES’) THEN

 IF (target_canvas_name = ’LINES_PRICE’) THEN

 –– Go to the first item in the canvas LINES_PRICE

 go_item(’lines.list_price’);

 ELSIF (target_canvas_name = ’LINES_ITEM’) THEN

 –– Go to the first item in the canvas LINES_ITEM

 go_item(’lines.description’);

 END IF;

 END IF;

 g_canvas_name := target_canvas_name;

 ELSE

 fnd_message.debug(’Invalid event passed to

 control.lines_regions’);

 END IF;

 END lines_regions;

END control;

After the user displays the LOV via KEY–MENU and chooses a value
from the list, the WHEN–LIST–CHANGED handler switches the
regions.

Call the following triggers:

Trigger: Block–level WHEN–NEW–ITEM–INSTANCE on the LINES
block:
CONTROL.LINES_REGIONS(’WHEN–NEW–ITEM–INSTANCE’);

Trigger: Block–level KEY–MENU on the LINES block (Execution
Hierarchy: Override):
IF APP_REGION.ALT_REGIONS(’CONTROL.LINES_REGIONS’) THEN

 CONTROL.LINES_REGIONS(’WHEN–LIST–CHANGED’);

END IF;

Trigger: Item–level WHEN–LIST–CHANGED on
CONTROL.LINES_REGIONS.
CONTROL.LINES_REGIONS(’WHEN–LIST–CHANGED’);

These triggers should fire in ENTER–QUERY mode.

7 – 31Controlling Window, Block and Region Behavior

Controlling Records in a Window

This section discusses

• Duplicating Records

• Renumbering All Records in a Window

Duplicating Records

Why Duplicate Record is Disabled by Default

By default, duplicate record is disabled at the form level. There are
several reasons for this:

• The special column ROW_ID is duplicated and must be
manually exempted if it exists

• The record is marked as valid even through the items may
contain time–sensitive data that is no longer valid

• Defaults are overridden

• In many blocks, Duplicate Record makes no sense (modal
dialogs, find blocks, etc.)

For any block where you want to enable Duplicate Record, you must
write code. You must process unique keys, possibly reapply defaults,
and confirm that copied data is still valid. None of this is done by
default, and this can lead to errors or data corruption.

In general, duplicate all item values, even if the item value must be
unique. The user may wish to create a unique value very similar to the
previous value.

Do not override a default if

• The item cannot be modified by the user

• The item must contain a specific value for a new record

• The item is a sequential number and the default is the correct
value most of the time

Example

A block order has items order_number and order_date which are defaulted
from the sequence order_S and from SYSDATE respectively, and which
cannot be modified by the user. The item status should contain ”Open”

Step 1

Step 2

7 – 32 Oracle Applications Developer’s Guide

for a new order, but the user can change the Status to ”Book” at any
time to book the order.

Create your event handler procedures as follows:

PACKAGE BODY order IS

 PROCEDURE KEY_DUPREC IS

 CURSOR new_order_number IS SELECT order_S.nextval

 FROM sys.dual;

 BEGIN

 DUPLICATE_RECORD;

 open new_order_number;

 fetch new_order_number into :order.order_number;

 close new_order_number;

 :order.status : = ’Open’;

 :order.order_date := FND_STANDARD.SYSTEM_DATE;

 :order.row_id := null;

 END KEY_DUPREC;

END order;

Call your event handler procedures in:

Trigger: KEY–DUPREC on order:
order.KEY_DUPREC;

Renumbering All Records in a Window

To renumber an item sequentially for all records on the block, create a
user–named trigger to increment the sequence variable and set the
sequence item. Use the procedure APP_RECORD.FOR_ALL_
RECORDS to fire the trigger once for each record.

To number an item sequentially as records are created, create a variable
or item to contain the sequence number. Create a WHEN–CREATE–
RECORD trigger to increment the sequence variable and default the
sequence item. However, if you want to renumber all the records in a
window, use the procedure APP_RECORD.FOR_ALL_RECORDS.

If you are renumbering your items after a query or commit, you may
wish to reset the record status so that the record is not marked as
changed.

Step 1

Step 2

Step 3

7 – 33Controlling Window, Block and Region Behavior

Example

A block lines has item line_number. When a record is deleted,
line_number must be renumbered.

Create your item handler procedures as follows:

 PACKAGE BODY lines IS

 line_number_seq number := 0;

 PROCEDURE delete_row IS

 BEGIN

 line_number_seq := 0;

 APP_RECORD.FOR_ALL_RECORDS(’reseq_line_number’);

 END delete_row;

 END lines;

Create a user–defined trigger RESEQ_LINE_NUMBER as follows:

lines.line_number_seq := lines.line_number_seq + 1;

:lines.line_number := lines.line_number_seq;

Call your item handler procedures in:

Trigger: KEY–DELETE:
lines.line_number(’KEY–DELETE’);

Warning: Be aware of the consequences of this type of
processing. Specifically, consider the following points:

If a very large number of records are queried in a block,
looping through them one at a time can be very slow.

Not all the records that could be in the block may be in the
current query set if you allow the user to enter the query.

If you are changing a value that is part of a unique key, you
may get errors at commit time because the record currently
being committed may conflict with another already in the
database, even though that record has also been changed in the
block.

7 – 34 Oracle Applications Developer’s Guide

Passing Instructions to a Form

To pass information when navigating from one form to another when
both forms are already open, use the WHEN–FORM–NAVIGATE
trigger. You do not code this trigger directly; instead pass the
information through global variables.

To use this trigger, populate a global variable called
GLOBAL.WHEN_FORM_NAVIGATE with the name of a user–named
trigger. When a form is navigated to, this trigger fires.

The WHEN–FORM–NAVIGATE trigger fires upon programmatically
navigating to a form using the GO_FORM built–in. Accordingly, this
trigger is referenced into all forms.

Querying an Item

It often makes sense to navigate to a form and query on a specific item.
For example, suppose you have an Order Entry form ORDERS and a
Catalog form CATALOGS. You want to navigate from the ORDERS
form to CATALOGS and query up a specific part number.

• In the ORDERS form, create a global variable called
GLOBAL.PART_NUMBER, and populate it with the value you
want to query.

• In the ORDERS form, create a global variable called
GLOBAL.WHEN_FORM_NAVIGATE. Populate this variable
with the string ”QUERY_PART_NUMBER”.

• Create a user–named trigger in the CATALOGS form,
”QUERY_PART_NUMBER”. In this trigger, enter query mode
by calling EXECUTE_QUERY.

• Create a PRE–QUERY trigger in the CATALOGS form that calls
copy(’GLOBAL.PART_NUMBER, ’PARTS_BLOCK.PART_
NUMBER’). Then call copy(’’,’GLOBAL.PART_NUMBER’).
When there is a value in GLOBAL.PART_NUMBER, it becomes
part of the query criteria.

C H A P T E R

8
T

8 – 1Enabling Query Behavior

Enabling Query
Behavior

his section describes how you build Row–LOVs and Find
windows and enable Query Find functionality for your form.

The following topics are covered:

• Implementing Row–LOVs

• Implementing Find Windows

8 – 2 Oracle Applications Developer’s Guide

Overview of Query Find

There are two implementations for Query Find. One implementation
shows a Row–LOV that shows the available rows and allows you to
choose one. The other implementation opens a Find window, which
shows you the fields the user is likely to want to use for selecting data.

Use only one implementation for a given block. All queryable blocks
within your form should support Query Find. The Oracle Applications
User Interface Standards for Forms–Based Products describe what
situations are better served by the two implementations.

APP_FIND: Query Find APIs (See page 29 – 23)

Query Find
Oracle Applications User Interface Standards for Forms–Based
Products

Raising Query Find on Form Startup

If you want a Row–LOV or Find window to raise immediately upon
entering the form, at the end of your WHEN–NEW–FORM–
INSTANCE trigger, call:

EXECUTE_TRIGGER(’QUERY_FIND’);

This will simulate the user invoking the function while in the first block
of the form.

Step 1

Step 2

Step 3

8 – 3Enabling Query Behavior

Implementing Row–LOV

To implement a Row–LOV, create an LOV that selects the primary key
of the row the user wants into a form parameter, and then copy that
value into the primary key field in the results block right before
executing a query.

This example uses the DEPT block, which is based on the DEPT table,
and consists of the three columns DEPTNO, DNAME and LOC. This
table contains a row for each department in a company.

Create a Parameter for Your Primary Key

Create a form parameter(s) to hold the primary key(s) for the LOV. If
the Row–LOV is for a detail block, you do not need a parameter for the
foreign key to the master block (the join column(s)), as you should
include that column in the WHERE clause of your record group in a
later step. Set the datatype and length appropriately.

For example, for the DEPT block, create a parameter called
DEPTNO_QF.

Create an LOV

Create an LOV that includes the columns your user needs to identify
the desired row. If the Row–LOV is for a detail block, you should
include the foreign key to the master block (the join column(s)) in the
WHERE clause of your record group. Return the primary key for the
row into the parameter.

For our example, create an LOV, DEPT_QF, that contains the columns
DEPTNO and DNAME. Set the return item for DEPTNO into
parameter DEPTNO_QF. Although the user sees DNAME , it is not
returned into any field.

Create a PRE–QUERY Trigger

Create a block–level PRE–QUERY trigger (Execution Hierarchy: Before)
that contains:

IF :parameter.G_query_find = ’TRUE’ THEN

 <Primary Key> := :parameter.<Your parameter>;

 :parameter.G_query_find := ’FALSE’;

END IF;

For multi–part keys, you need multiple assignments for the primary
key.

Step 4

8 – 4 Oracle Applications Developer’s Guide

The parameter G_query_find exists in the TEMPLATE form.

For the Dept example, your PRE–QUERY trigger contains:

IF :parameter.G_query_find = ’TRUE’ THEN

 :DEPT.DEPTNO := :parameter.DEPTNO_QF

 :parameter.G_query_find := ’FALSE’;

END IF;

Create a QUERY_FIND Trigger

Finally, create a block–level user–named trigger QUERY_FIND on the
results block (Execution Hierarchy: Override) that contains:

APP_FIND.QUERY_FIND(’<Your LOV Name>’);

For DEPT:

APP_FIND.QUERY_FIND(’DEPT_QF’);

Implementing Find Windows

To implement a Find window, create an additional window that
contains the fields a user is most likely to search by when they initiate
the search and copy all the item values from that block into the results
block just before executing a query.

In this example, there is a block based on the EMP table. This is
referred to as the results block. The primary key for this table is
EMPNO. This block also contains the date field HIREDATE. The Find
window is designed to locate records by EMPNO or a range of
HIREDATES.

For more information on the look and feel of Find windows, see the
Oracle Applications User Interface Standards for Forms–Based Products.

Find Windows
Field Ranges (From/To Field Pairs)
Oracle Applications User Interface Standards for Forms–Based
Products

Flexfields in Find windows require special treatment.

Using Key Flexfields in Find Windows (See page 14 – 65)

To code a Find window, follow the steps below.

Step 1

Step 2

Step 3

Step 4

8 – 5Enabling Query Behavior

Copy the QUERY_FIND Object Group from APPSTAND

Copy the QUERY_FIND object group from the APPSTAND form to
your form. It contains a window, a block and a canvas from which to
start building your Find window.

After you copy it, delete the object group. This leaves the window,
canvas and block, but allows you to copy the object group again if you
need another Find window.

Warning: DO NOT REFERENCE THIS OBJECT GROUP; you
need to customize it.

Rename the Block, Canvas and Window

Rename the Find Block, Canvas, and Window. Set the queryable
property of the block to No.

For this example, rename the block, canvas and window to EMP_QF,
EMP_QF_CANVAS, and EMP_QF_WINDOW, respectively.

Edit the NEW Button’s Trigger

Edit the WHEN–BUTTON–PRESSED trigger for the NEW button in the
Find window block so that it passes the Results block name as the
argument. This information allows Oracle Applications to navigate to
your block and place you on a new record. This button is included
because when you first enter a form, the Find window may
automatically come up; users who want to immediately start entering a
new record can press this button.

app_find.new(’<Your results blockname here>’);

 becomes

app_find.new(’EMP’);

Edit the FIND Button’s Trigger

Edit the WHEN–BUTTON–PRESSED trigger for the FIND button so
that it passes the Results block name. This information allows Oracle
Applications to navigate to your block and execute a query.

app_find.find(’<Your results blockname here>’);

becomes

app_find.find(’EMP’)

Step 5

Step 6

Step 7

Step 8

8 – 6 Oracle Applications Developer’s Guide

If you need to do further validation of items in the Find window, place
your code before the call to APP_FIND.FIND. Specifically, you should
validate that any low/high range fields are correct. You may also give
a warning if no criteria has been entered at all, or if the criteria entered
may take a very long time to process.

Set Navigation Data Block Properties

Set the Previous Navigation Data Block property of the Find block to be
the results block. This allows the user to leave the Find window
without executing a query.

From the results block, next and previous data block only move up and
down the hierarchy of objects; they never take you to the Find window.

Edit the KEY–NXTBLK Trigger

Edit the KEY–NXTBLK trigger on the Find block so that it has the exact
same functionality as the FIND button. If the user selects ”Go–>Next
Block,” the behavior should mimic pressing the FIND button.

Change the Find Window Title

Change the title of the Find window.

The EMP example uses ”Find Employees”.

Create Necessary Items

Create the items that the user can query on in the Find window block.
You may find it convenient to copy items from the Results block to the
Find window block.

Follow these guidelines for items in the Find window:

• Set the Required property to No

• Set the default value to NULL

• If you copied the items from the Results block, ensure that your
new items all have Database Item set to No, and remove all
triggers associated with them (especially validation triggers). If
for some reason you decide you need to keep a particular trigger,
remember to change the fields it references to point to the Find
block.

• Typically, an item in the Find window block has an LOV
associated with it, because users should usually be able to select

Step 9

Step 10

8 – 7Enabling Query Behavior

exactly one valid value for the item. The LOV should show all
values that have ever been valid, not just those values that are
currently valid. Date fields may use the Calendar and the
related KEY–LISTVAL trigger.

• If you have an item that has a displayed value and an associated
ID field, the Find window block should have both as well. The
ID field should be used to drive the query to improve
performance.

• Items that are check boxes or option groups in the Results block
should be poplists in the Find window block. When they are
NULL, no restriction is imposed on the query.

Fit the Find Window to Your Form

Adjust your Find window for your specific case: resize the window,
position, fields, and so on.

Create a PRE–QUERY Trigger

Create a block–level Pre–Query trigger in the Results block (Execution
Hierarchy: Before) that copies query criteria from the Find window
block to the Results block (where the query actually occurs).

You can use the Oracle Forms COPY built–in to copy character data.
For other data types, you can assign the values directly using :=, but
this method does not allow the user to use wildcards. However, most
of your Find window items use LOVs to provide a unique value, so
wildcards would not be necessary.

IF :parameter.G_query_find = ’TRUE’ THEN

 COPY (<find Window field>,’<results field>’);

 :parameter.G_query_find := ’FALSE’;

END IF;

A commonly used ’special criteria’ example is to query on ranges of
numbers, dates, or characters. The APP_FIND.QUERY_RANGE
procedure is defined to take care of the query logic for you. Pass in the
low and high values as the first two arguments, and the name of the
database field actually being queried on as the third argument.

In our EMP example,

IF :parameter.G_query_find = ’TRUE’ THEN

 COPY(:EMP_QF.EMPNO, ’EMP.EMPNO’);

 APP_FIND.QUERY_RANGE(:EMP_QF.Hiredate_from,

 :EMP_QF.Hiredate_to,

Step 11

8 – 8 Oracle Applications Developer’s Guide

 ’EMP.Hiredate’);

 :parameter.G_query_find := ’FALSE’;

END IF;

• Your base table field query length (in the Results block) must be
long enough to contain the query criteria. If it is not, you get an
error that the value is too long for your field. All fields should
have a minimum query length of 255.

• If you have radio groups, list items, or check boxes based on
database fields in your Results block, you should only copy
those values from the Find window if they are not NULL.

Create a QUERY_FIND Trigger

Create a block–level user–named trigger ”QUERY_FIND” (Execution
Hierarchy: Override) on the Results block that contains:

APP_FIND.QUERY_FIND(’<results block window>’,

 ’<Find window>’,

 ’<Find window block>’);

In our EMP example:

APP_FIND.QUERY_FIND(’EMP_WINDOW’, ’EMP_QF_WINDOW’,

 ’EMP_QF’);

C H A P T E R

9
T

9 – 1Coding Item Behavior

Coding Item Behavior

his section describes the following topics:

• Item Relations

• Defaults

• Integrity Checking

• The Calendar

• CALENDAR: Calendar Package

9 – 2 Oracle Applications Developer’s Guide

Item Relations

There are many behaviors in complex forms that must be enforced
dynamically at runtime, either to adhere to the field–level validation
model of Oracle Applications, or to enforce specific business rules.

• Dependent Items

• Conditionally Dependent Items

• Multiple Dependent Items

• Two Master Items and One Dependent Item

• Cascading Dependence

• Mutually Exclusive Items

• Mutually Inclusive Items

• Mutually Inclusive Items with Dependents

• Conditionally Mandatory Items

You should model your form’s item and event handlers after these
examples.

Disabled Items and WHEN–VALIDATE–ITEM Trigger

In most of the item relations you are dynamically disabling and
enabling items. For your disabled items, note these Oracle Forms
coding issues:

• WHEN–VALIDATE–ITEM always fires the first time a user Tabs
through each field on a brand new record, even if they do not
make a change. Internally Oracle Forms notes that the value
changes from unknown to null, therefore it fires
WHEN–VALIDATE–ITEM. Also, WHEN–VALIDATE–ITEM
fires when a user changes a field from a non–null value to null.

Furthermore, a user can leave a required field null at any time; it
is only trapped at record level. Therefore, all WHEN–
VALIDATE–ITEM triggers must account for the value of the field
being null, and act accordingly. Since you cannot distinguish
between the user changing the value to null, or Oracle Forms
setting the value to null the first time, both must behave as if the
user changed the value.

• Most of the time, a disabled item has a null value. Since you
account for nulls because of the previous issue, this is not a
problem. In those rare cases that a disabled field has a value,
and that value got set while it was disabled and the field has not

�

Step 1

9 – 3Coding Item Behavior

been validated yet, you may need to add logic to
WHEN–VALIDATE–ITEM to do nothing.

Dependent Items

To create a text item, check box, or poplist that is enabled only when a
master item is populated, use the procedure APP_FIELD.SET_
DEPENDENT_FIELD. This routine enforces the following behaviors:

• The dependent item is either cleared or made invalid when the
master item changes.

• If the master item is NULL or the condition is FALSE, the
dependent item is disabled.

Create the item handler procedures as shown below and then call the
procedures from the specified triggers.

Attention: These routines do not apply to display–only text
items. To conditionally grey out display–only text items, use
the routine APP_ITEM_PROPERTY.SET_VISUAL_
ATTRIBUTE.

 APP_ITEM_PROPERTY: Property Utilities (See page
29 – 28)

In this example, a block order has items item_type and item_name.
Item_name is dependent on item_type, thus item_name is enabled only
when item_type is NOT NULL.

Create your item handler procedures as follows:

 PACKAGE BODY ORDER IS

 PROCEDURE ITEM_TYPE(EVENT VARCHAR2) IS

 BEGIN

 IF (EVENT = ’WHEN–VALIDATE–ITEM’) THEN

 ––– Any validation logic goes here.

 ITEM_NAME(’INIT’);

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.ITEM_TYPE: ’ || EVENT);

 END IF;

 END ITEM_TYPE;

Step 2

Step 3

9 – 4 Oracle Applications Developer’s Guide

 PROCEDURE ITEM_NAME(EVENT VARCHAR2) IS

 BEGIN

 IF ((EVENT = ’PRE–RECORD’) OR

 (EVENT = ’INIT’)) THEN

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 ’ORDER.ITEM_TYPE’,

 ’ORDER.ITEM_NAME’);

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.ITEM_NAME: ’ || EVENT);

 END IF;

 END ITEM_NAME;

 END ORDER;

Call your item handler procedures in:

Trigger: WHEN–VALIDATE–ITEM on item_type:
order.item_type(’WHEN–VALIDATE–ITEM’);

Trigger: PRE–RECORD on order (Fire in Enter–Query Mode: No):
order.item_name(’PRE–RECORD’);

If your master and dependent items are in a multi–row block, or if they
are items in a single–row block that is a detail of a master block, you
must call SET_DEPENDENT_FIELD for the POST–QUERY event as
well.

PROCEDURE ITEM_NAME(EVENT VARCHAR2) IS

 BEGIN

 IF ((EVENT = ’PRE–RECORD’) OR

 (EVENT = ’INIT’) OR

 (EVENT = ’POST–QUERY’)) THEN

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 ’ORDER.ITEM_TYPE’,

 ’ORDER.ITEM_NAME’);

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.ITEM_NAME: ’ || EVENT);

 END IF;

 END ITEM_NAME;

Add another call to your item handler procedure in:

Trigger: POST–QUERY
ORDER.ITEM_NAME(’POST–QUERY’);

�

�

Step 1

9 – 5Coding Item Behavior

Attention: In a multi–record block, if the dependent item is
the last item in the record, the cursor navigates to the next
record when tabbing from the master. To work around this
behavior, code a KEY–NEXT–ITEM trigger that does a
VALIDATE(Item_scope) and then a NEXT_ITEM.

Attention: If the dependent item is a required list or option
group, set the ”invalidate” parameter in the call to
APP_FIELD.SET_DEPENDENT_FIELD to TRUE. When this
flag is TRUE, the dependent item is marked as invalid rather
than cleared.

Conditionally Dependent Item

A conditionally dependent item is enabled or disabled depending on
the particular value of the master item. In this example, the block order
has items item_type and item_size. Item_size is enabled only when
item_type is ”SHOES.”

Create your item handler procedures as follows. Note that this item
handler is very similar to the simple master/dependent situation, but
you specify the condition instead of the name of the master item.

PACKAGE BODY order IS

 PROCEDURE ITEM_TYPE(EVENT VARCHAR2) IS

 BEGIN

 IF (EVENT = ’WHEN–VALIDATE–ITEM’) THEN

 size(’INIT’);

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.ITEM_TYPE: ’ || EVENT);

 END IF;

 END item_type;

 PROCEDURE size(EVENT VARCHAR2) IS

 BEGIN

 IF ((EVENT = ’PRE–RECORD’) OR

 (EVENT = ’INIT’)) THEN

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 (:order.item_type = ’SHOES’),

 ’ORDER.SIZE’);

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.SIZE: ’ || EVENT);

 END IF;

Step 2

Step 1

9 – 6 Oracle Applications Developer’s Guide

 END size;

END order;

Call your item handler procedures in:

Trigger: PRE–RECORD on order (Fire in Enter–Query Mode: No):
order.item_size(’PRE–RECORD’);

Trigger: WHEN–VALIDATE–ITEM on item_type:
order.item_type(’WHEN–VALIDATE–ITEM’);

Multiple Dependent Items

There are cases where multiple items are dependent on a single master
item. For example, only certain item_types can specify a color and size.
Therefore, the color and size fields are dependent on the master field
item_type, and they are enabled only when item_type is ”RAINCOAT.”

Create your item handler procedures as follows:

PACKAGE BODY order IS

 PROCEDURE item_type(EVENT VARCHAR2) IS

 BEGIN

 IF (EVENT = ’WHEN–VALIDATE–ITEM’) THEN

 color(’INIT’);

 size(’INIT’);

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.ITEM_TYPE: ’ || EVENT);

 END IF;

 END item_type;

 PROCEDURE color(EVENT VARCHAR2) IS

 BEGIN

 IF (EVENT = ’PRE–RECORD’) OR

 (EVENT = ’INIT’) THEN

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 (:order.item_type = ’RAINCOAT’),

 ’ORDER.COLOR’);

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.COLOR: ’ || EVENT);

 END IF;

 END color;

Step 2

Step 1

9 – 7Coding Item Behavior

 PROCEDURE size(EVENT VARCHAR2) IS

 BEGIN

 IF (EVENT = ’PRE–RECORD’) OR

 (EVENT = ’INIT’) THEN

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 (:order.item_type = ’RAINCOAT’),

 ’ORDER.SIZE’);

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.SIZE: ’ || EVENT);

 END IF;

 END size;

END order;

Call your item handler procedures in:

Trigger: WHEN–VALIDATE–ITEM on order.item_type:
order.item_type(’WHEN–VALIDATE–ITEM’);

Trigger: PRE–RECORD (Fire in Enter–Query Mode: No):
order.color(’PRE–RECORD’);

order.size(’PRE–RECORD’);

Two Master Items and One Dependent Item

There may also be cases where an item is dependent on two master
items. Suppose that different sizes of sweaters come in different colors.
You cannot fill in the color of the sweater until you have filled in both
item_type and size. The validation of block.dependent is controlled by
the content of both master_1 and master_2.

Create your item handler procedures as follows:

PACKAGE BODY order IS

 PROCEDURE item_type(EVENT VARCHAR2) IS

 BEGIN

 IF (EVENT = ’WHEN–VALIDATE–ITEM’) THEN

 color(’INIT’):

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.ITEM_TYPE: ’ || EVENT);

 END IF;

 END item_type;

Step 2

9 – 8 Oracle Applications Developer’s Guide

 PROCEDURE size(EVENT VARCHAR2) IS

 BEGIN

 IF (EVENT = ’WHEN–VALIDATE–ITEM’) THEN

 color(’INIT’);

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.SIZE: ’ || EVENT);

 END IF;

 END size;

 PROCEDURE color(EVENT VARCHAR2) IS

 BEGIN

 IF (EVENT = ’PRE–RECORD’) OR

 (EVENT = ’INIT’) THEN

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 ((:order.item_type IS NOT NULL) AND

 (:order.size IS NOT NULL)),

 ’ORDER.COLOR’);

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.COLOR: ’ || EVENT);

 END IF;

 END color;

END order;

Call your item handler procedures in:

Trigger: WHEN–VALIDATE–ITEM on order.item_type:
order.item_type(’WHEN–VALIDATE–ITEM’);

Trigger: WHEN–VALIDATE–ITEM on order.size:
order.size(’WHEN–VALIDATE–ITEM’);

Trigger: PRE–RECORD (Fire in Enter–Query Mode: No):
order.color(’PRE–RECORD’);

Cascading Dependence

With cascading dependence, item_3 depends on item_2, which in turn
depends on item_1. Usually all items are in the same block.

For example, the block order contains the items vendor, site, and contact.

The list of valid sites depends on the current vendor.

Step 1

9 – 9Coding Item Behavior

• Whenever vendor is changed, site is cleared.

• Whenever vendor is null, site is disabled.

The list of valid contacts depends on the current site.

• Whenever site is changed, contact is cleared.

• Whenever site is null, contact is disabled.

To code the correct behavior for these dependent items, follow these
steps.

Create your item handler procedures as follows:

PACKAGE BODY order IS

PROCEDURE vendor(EVENT VARCHAR2) IS

BEGIN

 IF (EVENT = ’WHEN–VALIDATE–ITEM’) THEN

 SITE(’INIT’);

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.VENDOR: ’ || EVENT);

 END IF;

END VENDOR;

PROCEDURE SITE(EVENT VARCHAR2) IS

BEGIN

 IF (EVENT = ’WHEN–VALIDATE–ITEM’) THEN

 CONTACT(’INIT’);

 ELSIF (EVENT = ’PRE–RECORD’) OR

 (EVENT = ’INIT’) THEN

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 ’ORDER.VENDOR’,

 ’ORDER.SITE’);

 CONTACT(EVENT);

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.SITE: ’ || EVENT);

 END IF;

END SITE;

PROCEDURE CONTACT(EVENT VARCHAR2) IS

BEGIN

 IF (EVENT = ’PRE–RECORD’) OR

 (EVENT = ’INIT’) THEN

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 ’ORDER.SITE’,

 ’ORDER.CONTACT’);

 ELSE

Step 2

9 – 10 Oracle Applications Developer’s Guide

 fnd_message.debug(’Invalid event passed to

 ORDER.CONTACT: ’ || EVENT);

 END IF;

END CONTACT;

END ORDER;

Call your item handler procedures in:

Trigger: WHEN–VALIDATE–ITEM on vendor:
order.vendor(’WHEN–VALIDATE–ITEM’);

Trigger: WHEN–VALIDATE–ITEM on site:
order.site(’WHEN–VALIDATE–ITEM’);

Trigger: PRE–RECORD on order (Fire in Enter–Query Mode: No):
order.site(’PRE–RECORD’);

order.contact(’PRE–RECORD’);

Remember that the following chain of events occurs whenever the
VENDOR field is validated:

• VENDOR is validated, which calls SITE (’INIT’).

• SITE (’INIT’) causes the state of SITE to change and calls
CONTACT (’INIT’).

• CONTACT (’INIT’) causes the state of CONTACT to change.

Mutually Exclusive Items

Use the procedure APP_FIELD.SET_EXCLUSIVE_FIELD to code two
items where only one item is valid at a time.

The key to coding an item handler procedure for mutually exclusive
items is to realize that mutually exclusive items are logically one item.
Whenever one of a pair of mutually exclusive items is dependent on or
depended upon by another item, they both are. Their relationship to
other items is always identical. Therefore, code a single item handler
procedure for the single logical item.

If both mutually exclusive items are NULL, then both items are
navigable. If one item is populated, then the other item is unnavigable
(you can still click there), and any value in that item is cleared.

�

Step 1

Step 2

9 – 11Coding Item Behavior

If one item must be not null, set the REQUIRED property of both items
to be Yes in the Oracle Forms Developer. If both items may be null, set
the REQUIRED property of both items to be No. APP_FIELD.SET_
EXCLUSIVE_FIELD reads the initial REQUIRED property and
dynamically manages the REQUIRED properties of both items.

You can also use the procedure APP_FIELD.SET_EXCLUSIVE_FIELD
for a set of three mutually exclusive items. For more than three items,
you must write your own custom logic.

Attention: Mutually exclusive check boxes and required lists
require mouse operations.

For example, a block lines has mutually exclusive items credit and debit.

Create your item handler procedures as follows:

PACKAGE BODY lines IS

 PROCEDURE credit_debit(EVENT VARCHAR2) IS

 BEGIN

 IF ((EVENT = ’WHEN–VALIDATE–ITEM’) OR

 (EVENT = ’PRE–RECORD’)) THEN

 APP_FIELD.SET_EXCLUSIVE_FIELD(EVENT,

 ’LINES.CREDIT’,

 ’LINES.DEBIT’);

 ELSIF (EVENT = ’WHEN–CREATE–RECORD’) THEN

 SET_ITEM_PROPERTY(’lines.credit’, ITEM_IS_VALID,

 PROPERTY_TRUE);

 SET_ITEM_PROPERTY(’lines.debit’, ITEM_IS_VALID,

 PROPERTY_TRUE);

 ELSE

 fnd_message.debug(’Invalid event passed to

 Lines.credit_debit: ’ || EVENT);

 END IF;

 END credit_debit;

END lines;

Call your item handler procedures in:

Trigger: WHEN–VALIDATE–ITEM on credit:
lines.credit_debit(’WHEN–VALIDATE–ITEM’);

Trigger: WHEN–VALIDATE–ITEM on debit:
lines.credit_debit(’WHEN–VALIDATE–ITEM’);

Trigger: PRE–RECORD on lines (Fire in Enter–Query Mode: No):

Step 1

9 – 12 Oracle Applications Developer’s Guide

lines.credit_debit(’PRE–RECORD’);

Trigger: WHEN–CREATE–RECORD on lines:
lines.credit_debit(’WHEN–CREATE–RECORD’);

You only need the WHEN–CREATE–RECORD trigger if the resulting
one of your mutually–exclusive fields is required. This trigger initially
sets all the mutually–exclusive fields of the set to be required. The
fields are then reset appropriately once a user enters a value in one of
them.

Mutually Inclusive Items

Use APP_FIELD.SET_INCLUSIVE_FIELD to code a set of items where,
if any of the items is not null, all of the items are required.

The item values may be entered in any order. If all of the items are
null, then the items are optional.

You can use the procedure APP_FIELD.SET_INCLUSIVE_FIELD for up
to five mutually inclusive items. For more than five items, you must
write your own custom logic.

This example shows a block payment_info with mutually inclusive items
payment_type and amount.

Create your item handler procedures as follows:

PACKAGE BODY payment_info IS

 PROCEDURE payment_type_amount(EVENT VARCHAR2) IS

 BEGIN

 IF ((EVENT = ’WHEN–VALIDATE–ITEM’) OR

 (EVENT = ’PRE–RECORD’)) THEN

 APP_FIELD.SET_INCLUSIVE_FIELD(EVENT,

 ’PAYMENT_INFO.PAYMENT_TYPE’,

 ’PAYMENT_INFO.AMOUNT’);

 ELSE

 fnd_message.debug(’Invalid event to

 payment_info.payment_type_ amount: ’ || EVENT);

 END IF;

 END payment_type_amount;

END payment_info;

Step 2

Step 1

9 – 13Coding Item Behavior

Call your item handler procedures in:

Trigger: WHEN–VALIDATE–ITEM on payment_info.payment_type:
payment_info.payment_type_amount(’WHEN–VALIDATE–ITEM’);

Trigger: WHEN–VALIDATE–ITEM on payment_info.amount:
payment_info.payment_type_amount(’WHEN–VALIDATE–ITEM’);

Trigger: PRE–RECORD on payment_info (Fire in Enter–Query Mode:
No):
payment_info.payment_type_amount(’PRE–RECORD’);

Mutually Inclusive Items with Dependent Items

There are cases where items are dependent on master items, where the
master items are mutually inclusive.

Item Relations (See page 9 – 2)

This example shows a block payment_info with mutually inclusive items
payment_type and amount, just as in the previous example. The block
also contains two regions, one for check information and one for credit
card information. Check Information has a single item, check_number.
Credit Card Information has five items: credit_type, card_holder, number,
expiration_date, and approval_code.

Payment Type can be Cash, Check, or Credit.

• When Payment Type is Check, the Check Information region is
enabled.

• When Payment Type is Credit, the Credit Card Information
region is enabled.

Create your item handler procedures as follows:

PACKAGE BODY payment_info IS

PROCEDURE payment_type_amount(EVENT VARCHAR2) IS

BEGIN

 IF (EVENT = ’WHEN–VALIDATE–ITEM’) THEN

 APP_FIELD.SET_INCLUSIVE_FIELD(EVENT,

 ’PAYMENT_INFO.PAYMENT_TYPE’,

 ’PAYMENT_INFO.AMOUNT’);

 IF (:SYSTEM.CURSOR_ITEM =

 ’payment_info.payment_type’) THEN

9 – 14 Oracle Applications Developer’s Guide

 check_info(’INIT’);

 credit_info(’INIT’);

 END IF;

 ELSIF (EVENT = ’PRE–RECORD’) THEN

 APP_FIELD.SET_INCLUSIVE_FIELD(EVENT,

 ’PAYMENT_INFO.PAYMENT_TYPE’,

 ’PAYMENT_INFO.AMOUNT’);

 ELSE

 fnd_message.debug(’Invalid event in

 payment_info.payment_type_amount: ’ || EVENT);

 END IF;

END payment_type_amount;

PROCEDURE check_info IS

BEGIN

 IF ((EVENT = ’PRE–RECORD’) OR

 (EVENT = ’INIT’)) THEN

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 (:payment_info.payment_type = ’Check’),

 ’PAYMENT_INFO.CHECK_NUMBER’);

 ELSE

 fnd_message.debug(’Invalid event in

 payment_info.check_info: ’ || EVENT);

 END IF;

END check_info;

PROCEDURE credit_info IS

 CONDITION BOOLEAN;

BEGIN

 IF ((EVENT = ’PRE–RECORD’) OR

 (EVENT = ’INIT’)) THEN

 CONDITION := (:payment_info.payment_type = ’Credit’);

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 CONDITION,

 ’PAYMENT_INFO.CREDIT_TYPE’);

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 CONDITION,

 ’PAYMENT_INFO.NUMBER’);

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 CONDITION,

 ’PAYMENT_INFO.CARD_HOLDER’);

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 CONDITION,

 ’PAYMENT_INFO.EXPIRATION_DATE’);

 APP_FIELD.SET_DEPENDENT_FIELD(EVENT,

 CONDITION,

 ’PAYMENT_INFO.APPROVAL_CODE’);

Step 2

Step 1

9 – 15Coding Item Behavior

 ELSE

 fnd_message.debug(’Invalid event in

 payment_info.credit_info: ’ || EVENT);

 END IF;

END credit_info;

END payment_info;

Call your item handler procedures in:

Trigger: WHEN–VALIDATE–ITEM on payment_info.payment_type:
payment_info.payment_type_amount(’WHEN–VALIDATE–ITEM’);

Trigger: WHEN–VALIDATE–ITEM on payment_info.amount:
payment_info.payment_type_amount(’WHEN–VALIDATE–ITEM’);

Trigger: PRE–RECORD on payment_info (Fire in Enter–Query Mode:
No):
payment_info.payment_type_amount(’PRE–RECORD’);

payment_info.check_info(’PRE–RECORD’);

payment_info.credit_info(’PRE–RECORD’);

Conditionally Mandatory Items

Use the procedure APP_FIELD.SET_REQUIRED_FIELD to code an
item that is only mandatory when a certain condition is met. If the
condition is FALSE, the dependent item is optional. Any value in the
dependent item is not cleared. If an item is both conditionally required
and dependent, call APP_FIELD.SET_DEPENDENT_FIELD before
calling APP_FIELD.SET_REQUIRED_FIELD.

An example demonstrates using APP_FIELD.SET_REQUIRED_FIELD.

A block purchase_order has items total and vp_approval. Vp_approval is
required when total is more than $10,000. (Note: quantity * unit_price =
total).

Create your item handler procedures as follows:

Step 2

9 – 16 Oracle Applications Developer’s Guide

PACKAGE BODY purchase_order IS

PROCEDURE vp_approval(EVENT VARCHAR2) IS

BEGIN

 IF ((EVENT = ’PRE–RECORD’) OR

 (EVENT = ’INIT’)) THEN

 APP_FIELD.SET_REQUIRED_FIELD(EVENT,

 (:purchase_order.total > 10000),

 ’PURCHASE_ORDER.VP_APPROVAL’);

 ELSE

 fnd_message.debug(’Invalid event in

 purchase_order.vp_approval: ’ || EVENT);

 END IF;

END vp_approval;

PROCEDURE total(EVENT VARCHAR2) IS

BEGIN

 IF (EVENT = ’INIT’) THEN

 :purchase_order.total := :purchase_order.quantity *

 :purchase_order.unit_price;

 vp_approval(’INIT’);

 ELSE

 fnd_message.debug(’Invalid event in purchase_order.total:

’ || EVENT);

END total;

PROCEDURE quantity(EVENT VARCHAR2) IS

BEGIN

 IF (EVENT = ’WHEN–VALIDATE–ITEM’) THEN

 total(’INIT’);

 ELSE

 fnd_message.debug(’Invalid event in

 purchase_order.quantity: ’ || EVENT);

 END IF;

END quantity;

PROCEDURE unit_price(EVENT VARCHAR2) IS

BEGIN

 IF (EVENT = ’WHEN–VALIDATE–ITEM’) THEN

 total(’INIT’);

 ELSE

 fnd_message.debug(’Invalid event in

 purchase_order.unit_price: ’ || EVENT);

 END IF;

END unit_price;

END purchase_order;

Call your item handler procedures in:

9 – 17Coding Item Behavior

Trigger: PRE–RECORD on purchase_order (Fire in Enter–Query
Mode: No):
purchase_order.vp_approval(’PRE–RECORD’);

Trigger: WHEN–VALIDATE–ITEM on quantity:
purchase_order.quantity(’WHEN–VALIDATE–ITEM’);

Trigger: WHEN–VALIDATE–ITEM on unit_price:
purchase_order.unit_price(’WHEN–VALIDATE–ITEM’);

Step 1

Step 2

9 – 18 Oracle Applications Developer’s Guide

Defaults

Defaults on a New Record

To default values when the user first creates a new record, use the
Default values property in the Oracle Forms Designer. For more
complex defaulting behavior, follow the example below.

Create your event handler procedure as follows:

PACKAGE block IS

PROCEDURE WHEN_CREATE_RECORD IS

BEGIN

 :block.item1 := default_value1;

 :block.item2 := default_value2;

 ...

END WHEN_CREATE_RECORD;

END block;

Call your event handler procedures in:

Trigger: WHEN–CREATE–RECORD:
block.WHEN_CREATE_RECORD;

Applying Defaults While Entering a Record

When you want to set a default for an item whose validation depends
on another item (for example, to apply the default when the master
value changes), set the default values in the dependent item’s INIT
event.

9 – 19Coding Item Behavior

Integrity Checking

This section discusses how to handle:

• Uniqueness Checks

• Referential Integrity Checks

Uniqueness Check

To do a uniqueness check for a key, use a select statement that is
invoked by the WHEN–VALIDATE–ITEM event.

Note that a uniqueness check done in WHEN–VALIDATE–ITEM does
not catch duplicates residing in uncommitted rows (for instance, a user
enters uncommitted, duplicate rows in a detail block). The database
constraints will catch this situation, as well as the situation where an
identical key is committed by someone else between the time that the
WHEN–VALIDATE–ITEM fired and your record is committed. For
this reason, you do not need to write a uniqueness check in
PRE–UPDATE or PRE–INSERT.

• If there is a single unique key field, always call the
CHECK_UNIQUE package from WHEN–VALIDATE–ITEM for
that field.

• If the unique combination is comprised of multiple fields, call the
CHECK_UNIQUE package from the WHEN–VALIDATE–
RECORD trigger.

Example:

PROCEDURE CHECK_UNIQUE(X_ROWID VARCHAR2,

 pkey1 type1, pkey2 type2, ...) IS

 DUMMY NUMBER;

BEGIN

 SELECT COUNT(1)

 INTO DUMMY

 FROM table

 WHERE pkeycol1 = pkey1

 AND pkeycol2 = pkey2

 ...

 AND ((X_ROWID IS NULL) OR (ROWID != X_ROWID));

 IF (DUMMY >= 1) then

 FND_MESSAGE.SET_NAME(’prod’, ’message_name’);

 APP_EXCEPTION.RAISE_EXCEPTION;

9 – 20 Oracle Applications Developer’s Guide

 END IF;

END CHECK_UNIQUE;

Create your item handler procedure as follows:

PACKAGE BODY block IS

 PROCEDURE item(EVENT VARCHAR2) IS

 BEGIN

 IF (EVENT = ’WHEN–VALIDATE–ITEM’) THEN

 table_PKG.CHECK_UNIQUE(:block.row_id,

 :block.pkey1, :block.pkey2, ...);

 ELSE

 message(’Invalid event in block.item’);

 END IF

 END item;

END block;

Referential Integrity Check

When deleting a record, you must be concerned about the existence of
other records that may be referencing that record. For example, if an
item has already been placed on a Purchase Order, what should occur
when you attempt to delete the item? Three possible answers are:

• Don’t allow the item to be deleted.

• Also delete the Purchase Order.

• Allow the item to be deleted, and null out the reference to it on
the Purchase Order.

Most of the time, the first solution is both the most practical and
sensible. To do this, create a procedure that detects these referenced
cases, and raise an exception.

Giving Warning Before Deleting Details

To give a warning when detail records will be deleted, create
CHECK_REFERENCES as a function which returns FALSE if detail
records exist (CHECK_REFERENCES should still raise an exception if
deleting the row would cause a referential integrity error).

If a table contains subtypes, you must decide whether you need one
CHECK_REFERENCES procedure or one CHECK_REFERENCES
procedure per subtype.

Step 1

Step 2

9 – 21Coding Item Behavior

If the subtypes share most of the foreign key references with some
subtype–specific foreign key references, then create just one
CHECK_REFERENCES procedure with the first parameter a subtype
discriminator.

If the subtypes are orthogonal, then create a
CHECK_subtype_REFERENCES procedure for each subtype.

Example Referential Integrity Check

Create your table handler procedures as follows:

 CREATE OR REPLACE PACKAGE BODY table_PKG AS

 PROCEDURE CHECK_REFERENCES(pkey1 type1, pkey2 type2, ...)

IS

 MESSAGE_NAME VARCHAR2(80);

 DUMMY credit;

 BEGIN

 MESSAGE_NAME := ’message_name1’;

 SELECT 1 INTO DUMMY FROM DUAL WHERE NOT EXISTS

 (SELECT 1 FROM referencing_table1

 WHERE ref_key1 = pkey1

 AND ref_key2 = pkey2

 ...

);

 MESSAGE_NAME := ’message_name2’;

 SELECT 1 INTO DUMMY FROM DUAL WHERE NOT EXISTS

 (SELECT 1 FROM referencing_table2

 WHERE ref_key1 = pkey1

 AND ref_key2 = pkey2

 ...

);

 ...

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 FND_MESSAGE.SET_NAME(’prod’, MESSAGE_NAME);

 APP_EXCEPTION.RAISE_EXCEPTION;

 END CHECK_REFERENCES;

 END table_PKG;

Create your event handler procedures as follows:

 PACKAGE BODY block IS

 PROCEDURE key_delete IS

 BEGIN

Step 3

9 – 22 Oracle Applications Developer’s Guide

 ––

 –– First make sure its possible to delete this record.

 –– An exception will be raised if its not.

 ––

 table_PKG.CHECK_REFRENCES(pkey1, pkey2, ...);

 ––

 –– Since it is possible to delete the row, ask the

 –– user if they really want to,

 –– and delete it if they respond with ’OK’.

 ––

 app_record.delete_row;

 END key_delete;

 END block;

Call the event handler:

Trigger: KEY–DELETE:
block.dey_delete;

Suggestion: You should do similar steps again with the
ON–DELETE trigger. It is possible that between the time a
user requested the delete, and actually saved the transaction, a
record was entered elsewhere that will cause referential
integrity problems. Remember that KEY–DELETE fires in
response to the user initiating a delete, but it does not actually
perform the delete; it just flags the record to be deleted and
clears it from the screen. The ON–DELETE trigger fires at
commit time and actually performs the delete.

9 – 23Coding Item Behavior

The Calendar

The Calendar is a standard object that allows selection of date and time
values from a Calendar. It also allows the developer to specify
validation rules ensuring that only valid dates can be selected. Both
the List and Edit functions should invoke the Calendar on any date
field.

For each date field within a form, you should provide the code
necessary for the user to call the Calendar feature. However, the
calendar is not a replacement for validating the data in the field.

The Calendar is automatically included in the TEMPLATE form.

For more information on the user interface standards for the Calendar,
see the Oracle Applications User Interface Standards for Forms–Based
Products.

Calendar
Oracle Applications User Interface Standards for Forms–Based
Products

LOV for Date and Datetime Fields

Date and datetime fields should enable the List lamp. When the user
invokes List on these fields, the form opens the Calendar window.

Date fields should use the ENABLE_LIST_LAMP LOV, which is
included in the TEMPLATE form. This setting enables the menu and
Toolbar List of Values entries for your date fields. Set ’”Validate from
List” to No on fields that use this LOV. If you leave ”Validate from
List” set to Yes, you will see an LOV that has no columns.

Required Calls

Each date field within a form needs to have the following code:

Trigger: KEY–LISTVAL:
calendar.show([first_date]);

By default, the Calendar shows the month of the value in the date field
(if a value exists) upon first opening. If no specific date is supplied, the
Calendar shows the current month.

Do not pass the current field into CALENDAR.SHOW as a parameter,
as this forces validation of the field. The current field is used as a
default. Generally, the code in KEY–LISTVAL should be:

calendar.show;

�

9 – 24 Oracle Applications Developer’s Guide

Attention: Never pass the value of the current date field as
the argument to CALENDAR.SHOW. Because the calendar
actually disables all Oracle Forms validation momentarily, if
the user has entered an invalid date then immediately invokes
the calendar, a PL/SQL error occurs. SHOW automatically
handles this case when no argument is passed to it.

The KEY–LISTVAL trigger must have Execution Hierarchy ”Override,”
and should not fire in enter–query mode.

CALENDAR: Calendar Package (See page 9 – 28)

Display Only Mode

The entire calendar can be run in a display–only mode, where it is used
to show one or more dates as Selected, rather than allowing the user to
select a particular date. For example, it can be used to show all dates
on which an employee was absent.

 In this mode, characteristics of the field the cursor is on are ignored.
All the user can do is change the month and year shown, and press
’OK’ to close the window (no value is ever written back to the form).

To invoke this mode, the following calls are required in addition to
those listed above:

Trigger: KEY–LISTVAL:
calendar.setup(’DISPLAY’);

calendar.setup(’TITLE’, null, null,

 ’<translated text for window title>’);

Additional CALENDAR.SETUP calls are required after these two calls
to establish those dates that should be shown as selected.

Advanced Calendar Options

You can incorporate optional features into your Calendar call. If you
use any of the optional calls, they must be placed before the mandatory
calendar.show call.

The following examples customize the Calendar to show or disable
specific dates.

9 – 25Coding Item Behavior

Disable Weekends in the Calendar Window

To disable weekends (where the weekend is defined as Saturday and
Sunday):

calendar.setup(’WEEKEND’);

Disable Specific Date Ranges

To disable specific date ranges where the dates are either hard–coded
or references to other fields on the form:

calendar.setup(<30 char identifying name>, <low_date>,

 <high_date>);

This call can be repeated as many times as needed. A null LOW_DATE
is treated as the beginning of time; a null HIGH_DATE is treated as the
end of time.

Disable Specific Date Ranges From a Table

To disable specific date ranges where the dates are contained in a table:

calendar.setup(<30 char identifying name>, null, null,

<SQL>);

This call may be made only once per field, but may return multiple
rows. A null LOW_DATE is treated as the beginning of time; a null
HIGH_DATE is treated as the end of time. Use NVL in your SQL
statement if this is not the desired behavior.

Restrictions from several tables can be performed by using UNION
SQL statements. The selected columns must be aliased to LOW_DATE
and HIGH_DATE.

Suggestion: Ordering on the LOW_DATE column may
improve performance. Restricting the dates returned to a small
range near the anticipated selected value also improves
performance.

Calling the Calendar from non–DATE fields

If you need to be able to activate the Calendar from a field that is not
explicitly declared as a DATE or DATETIME field (such as a CHAR
text item that serves multiple purposes depending on context), write
the Calendar calls as normal. The Calendar acts as if invoked from a
DATE field, and when the user selects a value the date is written back
to the field in the format ”DD–MON–YYYY.”

9 – 26 Oracle Applications Developer’s Guide

Then user–named trigger CALENDAR_WROTE_DATE fires. Create
that trigger at the item level, and add any code you need to process the
value (typically you need to apply a mask to it).

Calendar Examples

Example – Weekdays Only

In this example, you want to open the Calendar to show either the date
currently displayed in the DATE item, or the current month if no date
is displayed. Additionally, you want to disable weekends (Saturdays
and Sundays).

Trigger: KEY–LISTVAL:
calendar.setup(’WEEKEND’);

calendar.show;

Example – Only Include Workdays

In a form with the field SHIP_BY_DATE, you want to open the
Calendar and customize it to:

• Disable all holidays defined in the ORG_HOLIDAYS table

• Disable weekends

• Show the month corresponding to the date in field
”LINES.NEED_BY_DATE” when the Calendar is opened

The code to implement this is:

Trigger: KEY–LISTVAL:
calendar.setup(’WEEKEND’);

calendar.setup(’Manufacturing Holidays’, null, null,

 ’select action_date LOW_DATE,

 action_date HIGH_DATE ’||

 ’from org_holidays where

 date_type = ’’HOLIDAY’’’);

calendar.show(:lines.need_by_date);

Example – Range of Days Enabled

In a form with a field NEED_BY_DATE, you want the Calendar to
show the month corresponding to the date in the field

9 – 27Coding Item Behavior

LINES.CREATED_DATE + 30 days. You also want to disable all dates
before and including: LINES.CREATED_DATE.

The code to implement this is:

Trigger: KEY–LISTVAL:
calendar.setup(’After created date’, null,

 lines.created_date);

calendar.show(:lines.need_by_date + 30);

Example – Display Only Calendar

A form uses a button called ”Holidays” to show all Manufacturing
holidays. The current month displays initially, and the calendar finds
the selected dates in the ORG_DATES table.

The code to implement this is:

Trigger: WHEN–BUTTON–PRESSED on HOLIDAYS:
calendar.setup(’TITLE’, null, null,

 ’<translated text for ”Manufacturing Holidays”>’);

calendar.setup(’Manufacturing Holidays’, null, null,

 ’select action_date LOW_DATE, action_date HIGH_DATE ’||

 ’from org_dates where date_type = ’’HOLIDAY’’’);

calendar.show;

Summary

Description

Summary

�

Summary

9 – 28 Oracle Applications Developer’s Guide

CALENDAR: Calendar Package

For standards and examples of coding calendars into your forms, see:

 The Calendar (See page 9 – 23)

CALENDAR.SHOW

PROCEDURE show (first_date date default null);

This call shows the calendar. Do not pass the current field value into
show; this value is used by default.

CALENDAR.SETUP

PROCEDURE setup (new_type varchar2,

 low_date date DEFAULT null,

 high_date date DEFAULT null,

 sql_string varchar2 DEFAULT null);

Attention: The WEEKEND argument is hardcoded to mean
Saturday and Sunday, so it is not applicable to all countries
(such as countries where the weekend is defined as Friday and
Saturday).

CALENDAR.EVENT

PROCEDURE event (event varchar2);

C H A P T E R

10
T

10 – 1Controlling the Toolbar and the Default Menu

Controlling the Toolbar
and the Default Menu

his chapter provides you with information you need to modify the
Oracle Applications default menu (also known as the pulldown menus)
and the toolbar. It also covers customizing right–mouse menus (also
known as popup menus).

The following topics are covered:

• Pulldown Menus and the Toolbar

• Application–Specific Entries: Special Menus

• Customizing Right–Mouse Menus (Popup Menus)

• APP_POPUP: Right–Mouse Menu Control

• APP_SPECIAL: Menu and Toolbar Control

10 – 2 Oracle Applications Developer’s Guide

Pulldown Menus and the Toolbar

The Oracle Applications pulldown menus (the default menu) allow the
user to invoke standard Oracle Forms functions, such as ”Clear
Record” as well as application–specific functions.

For detailed listings of each pulldown menu, see the Oracle Applications
User Interface Standards for Forms–Based Products.

Pulldown Menus
Oracle Applications User Interface Standards for Forms–Based
Products

For a detailed list of each iconic button on the Toolbar, see the Oracle
Applications User Interface Standards.

Toolbar
Oracle Applications User Interface Standards for Forms–Based
Products

Both the menu and the toolbar are included in the TEMPLATE form.
Entries on the menu and the toolbar are disabled and enabled
automatically based on the current context.

Menu and Toolbar Entries

Your menu and toolbar should react consistently to changes within
your forms. Unless specified otherwise, the following behaviors come
automatically from the form–level triggers embedded in your forms.
The triggers that control the behavior appear with each entry (if
applicable).

Both Menu and Toolbar Entries

In order as they appear on the toolbar:

• New (Record) (WHEN–NEW–BLOCK–INSTANCE)

Enabled if the block allows inserts.

• Find... (WHEN–NEW–RECORD–INSTANCE)

Enabled if the block allows querying and is not already in
enter–query mode.

• Show Navigator (WHEN–NEW–RECORD–INSTANCE)

Enabled except in called forms.

10 – 3Controlling the Toolbar and the Default Menu

• Save

Always enabled.

• Next Step

• Print...

Always enabled.

• Close Form

• Cut/Copy/Paste

These menu and toolbar items are processed by Oracle Forms

• Clear Record

Always enabled.

• Delete Record (corresponds to Edit, Delete on menu)
(WHEN–NEW–RECORD–INSTANCE)

Enabled if the block allows deletes.

• Edit Field... (WHEN–NEW–ITEM–INSTANCE)

Enabled when the current item is a text item.

• Zoom (WHEN–NEW–BLOCK–INSTANCE)

Enabled if the customer defines a zoom for the current block

• Translations

Disabled by default; developer can enable/disable as required
using APP_SPECIAL.ENABLE.

• Attachments (WHEN–NEW–RECORD–INSTANCE and
WHEN–NEW–BLOCK–INSTANCE)

The icon is set, and attachment entry is enabled or disabled
based on the existence of attachment definitions and actual
attachments.

• Folder Tools

Enabled if the cursor is in a folder block; developer must provide
code in a combination folder block.

• Window Help

Always enabled.

10 – 4 Oracle Applications Developer’s Guide

Menu–Only Entries

In order as shown on the pulldown menu, from File to Help:

• Clear Form

Always enabled

• Summary/Detail

Disabled by default; developer can enable/disable as required
using APP_SPECIAL.ENABLE.

• Save and Proceed

Always enabled.

• File, Exit Oracle Applications
(WHEN–NEW–RECORD–INSTANCE)

Enabled if not in enter–query mode.

• Edit, Duplicate, Field Above (WHEN–NEW–ITEM–INSTANCE)

Enabled if the current record number is > 1.

• Edit, Duplicate, Record Above
(WHEN–NEW–RECORD–INSTANCE)

Enabled if the current record number is > 1 and the record status
is ’NEW’. The developer must customize Duplicate Record
behavior in the form– or block–level KEY–DUPREC trigger.

• Edit, Clear, Field (WHEN–NEW–ITEM–INSTANCE)

Enabled when the current item is a text item.

• Edit, Clear, Block (WHEN–NEW–ITEM–INSTANCE)

Always enabled

• Edit, Clear, Form (WHEN–NEW–ITEM–INSTANCE)

Always enabled

• Edit, Select All

• Edit, Deselect All

• Edit, Preferences, Change Password

• Edit, Preferences, Profiles

10 – 5Controlling the Toolbar and the Default Menu

• View, Find All (WHEN–NEW–RECORD–INSTANCE)

Enabled if the block allows querying, and not already in
enter–query mode.

• View, Query by Example, Enter
(WHEN–NEW–BLOCK–INSTANCE)

Enabled if the block allows querying.

• View, Query by Example, Run
(WHEN–NEW–BLOCK–INSTANCE)

Enabled if the block allows querying.

• View, Query by Example, Cancel
(WHEN–NEW–RECORD–INSTANCE)

Enabled if in enter–query mode.

• View, Query by Example, Show Last Criteria
(WHEN–NEW–RECORD–INSTANCE)

Enabled if in enter–query mode.

• View, Query by Example, Count Matching Records
(WHEN–NEW–RECORD–INSTANCE)

Enabled if the block allows querying.

• View, Record, First

Enabled if the current record number is > 1.

• View, Record, Last

Enabled if the current record number is > 1.

• View, Requests

• Window, Cascade

• Window, Tile Horizontally

• Window, Tile Vertically

• Help, Oracle Applications Library

• Help, Keyboard Help

• Help, Diagnostics

The entire Diagnostics menu can be controlled using the profile
option:

10 – 6 Oracle Applications Developer’s Guide

• Help, Diagnostics, Display Database Error

• Help, Diagnostics, Examine

• Help, Diagnostics, Test Web Agent

• Help, Diagnostics, Trace

• Help, Diagnostics, Debug

• Help, Diagnostics, Properties, Item

• Help, Diagnostics, Properties, Folder

• Help, Diagnostics, Custom Code, Normal

• Help, Diagnostics, Custom Code, Off

• Help, Record History

Enabled if the current block has a base table or view. Disable this
menu option if the underlying table has no WHO columns.

• Help, About Oracle Applications

Dynamic Menu Control

You can use the APP_SPECIAL.ENABLE procedure to dynamically
control menu items, if the behavior you need is not provided
automatically. First, determine if the default menu control handles the
menu item in question, and ensure that there really is a need to
override the default behaviors.

If the menu item is not controlled by the default menu control, use any
appropriate trigger (typically PRE–BLOCK or
WHEN–NEW–BLOCK–INSTANCE), adding the code:

 app_special.enable(’the menu item’, PROPERTY_OFF|ON);

Turn the menu item back on when you leave (typically POST–BLOCK)
by calling:

 app_special.enable(’the menu item’, PROPERTY_ON|OFF);

Include the full name of the menu item in this call, for example:

 app_special.enable(’CLEAR.FIELD’, PROPERTY_OFF);

You can determine the full names of the menu items by copying
FNDMENU from the AU_TOP/resource/<language> area and opening

10 – 7Controlling the Toolbar and the Default Menu

the copy to examine the menu items, or see ”Changes to Internal Menu
Names from Release 11 to Release 11i” (See page 27 – 42).

If the menu item is controlled by the default menu control and you
want to modify its behavior (enable or disable it), create the field– or
block–level trigger listed (either WHEN–NEW–BLOCK–INSTANCE,
WHEN–NEW–RECORD– INSTANCE, or WHEN–NEW–ITEM–
INSTANCE). Set the trigger Execution Hierarchy to ”Override” and
add the following code:

 app_standard.event(’TRIGGER_NAME’);

 app_special.enable(’Menu_item’, PROPERTY_OFF|ON);

The item will be correctly reset in other blocks by the default menu
control, so it is not necessary to reset it when leaving the block, record,
or item.

APP_SPECIAL: Menu and Toolbar Control (See page
10 – 15)

Common Coding Mistakes That Affect the Menu

The most common sources of problems with menu include the
following coding mistakes:

• A trigger at the item or block level that has the Execution
Hierarchy set to Before but whose logic is then reset by the
form–level APP_STANDARD.EVENT() call

• A trigger at the item or block level that has the Execution
Hierarchy set to Override but that does not include the
APP_STANDARD.EVENT() call before the additional logic

• Incorrect settings for the block–level properties Query Allowed,
Delete Allowed, Insert Allowed, and so on. If at any time you
need to change a property and need to force a refresh of the
menu (because the appropriate WHEN– trigger will not fire after
the change you made), call APP_STANDARD.SYNCHRONIZE.

• Control blocks that list a Base Table (instead of no table as the
base table)

Blocks Where Only One Record Is Possible

You may want to disable some menu options for blocks in which only
one record is possible. The Single Record Blocks section discusses
when and how to do this.

Single Record Blocks (See page 5 – 13)

10 – 8 Oracle Applications Developer’s Guide

Save and Proceed

By default, this function performs a Save, then moves to the First
Navigation Data Block of the form and proceeds to the next record.
You can override this behavior.

Replace the code within the form–level ACCEPT trigger, or create a
block–level ACCEPT trigger with Execution Hierarchy set to Override
that calls any of the following:

• APP_STANDARD.EVENT(’ACCEPT’) to get the default
behavior

• APP_STANDARD.EVENT(’ACCEPT:0’) to get the default
behavior, except that the cursor does not change blocks

• APP_STANDARD.EVENT(’ACCEPT:<blockname>’) to get
default behavior except the cursor moves to the specified block

• or any other code that is appropriate for your form

Synchronizing

The toolbar and menu are automatically updated by the standard
form–level WHEN–NEW–RECORD–INSTANCE, WHEN–NEW–
BLOCK–INSTANCE, and WHEN–NEW–ITEM–INSTANCE triggers.
If you change a property of a block or an item, the menu and toolbar do
not reflect this change until the appropriate trigger fires.

For example, if you turn the block property Insert Allowed off on a
block while the cursor is already in that block, you must explicitly call
the routine below to synchronize the menu and the toolbar:

APP_STANDARD.SYNCHRONIZE;

 APP_STANDARD Package (See page 29 – 38)

Application–Specific Entries: Special Menus

You can customize the menu to display application–specific values.
The menu supports up to forty–five application–specific entries under
three top–level special menu entries (usually called Tools, Reports, and

Step 1

Step 2

Step 3

Step 4

10 – 9Controlling the Toolbar and the Default Menu

Actions). The toolbar supports corresponding iconic buttons for any of
the forty–five special menu entries.

APP_SPECIAL: Menu and Toolbar Control (See page
10 – 15)

Example Special Menu Entry

Suppose you have a special function called ’Book Order’ that you want
to add to the menu and the toolbar. To add ’Book Order’ as the first
entry on the first special menu (Tools) and as an icon on the toolbar,
such that they are only available in the ’Header’ block of a form, do the
following:

Modify the form level PRE–FORM trigger:

PRE–FORM
app_special.instantiate(’SPECIAL1’, ’&Book Order’, ’bkord’);

If you plan to translate your form, you should use Message Dictionary,
a parameter, or a static record group cell to store the Special Menu
entry. You then retrieve the value (which is translated when the
application is translated) into a variable and pass the variable to the
APP_SPECIAL routine. For example:

app_special.instantiate(’SPECIAL1’, my_menu_entry, ’bkord’);

Add a form–level PRE–BLOCK trigger:

PRE–BLOCK
app_special.enable(’SPECIAL1’,PROPERTY_OFF);

Add a block level PRE–BLOCK trigger to the block in which you want
to enable your special menu entries:

PRE–BLOCK in HEADER block
app_special.enable(’SPECIAL1’,PROPERTY_ON);

Add a block level SPECIAL1 user–named trigger that contains code to
actually perform your ’Book Order’ function. It executes when the
user chooses this menu entry.

Custom Toolbar Icons for Custom Forms

10 – 10 Oracle Applications Developer’s Guide

retrieving the icon file for a custom icon requires a round trip to the
forms server, so you should limit the number of icons you retrieve if
performance becomes an issue.

Disabling the Special Menu

To disable all special menu entries (for example, when entering
query–mode), call APP_SPECIAL.ENABLE(’SPECIAL’,
PROPERTY_OFF);

Customizing Right–Mouse Menus (Popup Menus)

Oracle Applications provides default right–mouse menu functionality
for all text items. When a user presses the right mouse button (or
equivalent ”secondary” button) while holding the mouse pointer over
the text item that currently has cursor focus, Oracle Applications
displays a context–sensitive popup menu. The default menu entries
are:

Cut

Copy

Paste

––––––

Folder

––––––

Help

You can customize the right–mouse menus to display
application–specific entries in addition to the default entries. The
right–mouse menu supports up to ten application–specific entries.
Application–specific entries appear between the Folder and Help
Entries (and separator lines). You can include separator lines among
your entries. For example:

Cut

Copy

Paste

––––––––––––

Folder

––––––––––––

First Entry

Second Entry

Step 1

10 – 11Controlling the Toolbar and the Default Menu

––––––––––––

Third Entry

––––––––––––

Help

APP_POPUP: Right–Mouse Menu Control (See page
10 – 10)

Adding Entries to Right–Mouse Menus

Adding entries to right–mouse menus requires at least two triggers in
your form for each entry. The first trigger is the PRE–POPUP–MENU,
which can be at block or item level depending on the desired behavior.
The PRE–POPUP–MENU trigger calls the APP_POPUP.INSTANTIATE
routine to set up the menu entry. This call includes the name, POPUP1
through POPUP10, of the menu entry function. Set the Execution
Hierarchy of your trigger to After so your trigger fires after the
form–level PRE–POPUP–MENU trigger (which must fire first to check
that the user clicked over the field that currently has focus and to set
the menu to its default state).

The second trigger is a corresponding user–named trigger called
POPUP1 through POPUP10, typically at the block or item level, that
contains the functionality you want to execute when a user selects your
menu entry. Note that the popup menu entries appear, and if chosen
will execute, even if the field is currently disabled, so if your logic
should not execute when the field is disabled, you must test for that in
your code.

Example Right–Mouse Menu Entry

Suppose you have a special function called ”Approve” that you want to
add to the right–mouse menu. To add Approve as the first custom
entry on the right–mouse menu, such that it is only available in the
Requisition Number field of a form, do the following:

Modify the item–level PRE–POPUP–MENU trigger on the Requisition
Number field. Be sure to set the trigger Execution Hierarchy to After.

app_popup.instantiate(’POPUP1’, ’Approve’);

If you plan to translate your form, you should use Message Dictionary,
a parameter, or a static record group cell to store the Special Menu
entry. You then retrieve the value (which is translated when the
application is translated) into a variable and pass the variable to the
APP_SPECIAL routine. For example:

Step 2

10 – 12 Oracle Applications Developer’s Guide

app_special.instantiate(’POPUP1’, my_menu_entry);

Add a field level POPUP1 user–named trigger that contains code to
actually perform your ”Approve” function. It executes when the user
chooses this menu entry.

Summary

Description

Arguments (input)

10 – 13Controlling the Toolbar and the Default Menu

APP_POPUP: Right–Mouse Menu Control

Use the APP_POPUP package to add entries on the right–mouse
menus. Entries you add using this package appear between the Folder
and the Help entries of the default right–mouse menu for text items.

Customizing Right–Mouse Menus (Popup Menus)
 (See page 10 – 10)

APP_POPUP.INSTANTIATE

procedure APP_POPUP.INSTANTIATE(

option_name varchar2,

txt varchar2,

initially_enabled boolean default true,

separator varchar2 default null);

This procedure allows you to add up to 10 custom entries to the default
right–mouse menu on a text item.

Call this procedure in a block– or item–level PRE–POPUP–MENU
trigger. Set the Execution Hierarchy of the trigger to After so your
trigger fires after the form–level PRE–POPUP–MENU trigger (which
must fire first to check that the user clicked over the field that currently
has focus and to set the menu to its default state).

POPUP1 to POPUP10, where POPUP1 is the
topmost entry of the ten customizable entries (just
below the Folder entry), and POPUP10 is at the
bottom (just above the Help entry).

Your menu item label. Pass a translated string (if
your form is to be translated, you should define a
message in Message Dictionary, retrieve the
message first, and pass the retrieved message
string to APP_POPUP).

A boolean value that lets you set the status of the
menu item. If you do not want to enable the item,
pass FALSE.

Pass ’LINE’ to display a menu separator line above
your menu entry. Note that the separator line

option_name

txt

initially_enabled

separator

Example

10 – 14 Oracle Applications Developer’s Guide

above the first custom entry (just below the Folder
entry) is displayed automatically.

APP_POPUP.INSTANTIATE(’POPUP1’,’First Entry’);

APP_POPUP.INSTANTIATE(’POPUP2’,’Second Entry’, TRUE,

 ’LINE’);

APP_POPUP.INSTANTIATE(’POPUP3’,’Third Entry’, FALSE);

results in a menu that looks like the following:

––––––––––––

Cut

Copy

Paste

––––––––––––

Folder

––––––––––––

First Entry

––––––––––––

Second Entry

Third Entry (disabled, so greyed out)

––––––––––––

Help

––––––––––––

Summary

Description

Arguments (input)

10 – 15Controlling the Toolbar and the Default Menu

APP_SPECIAL: Menu and Toolbar Control

Use the APP_SPECIAL package to enable and customize menu entries
and buttons on the toolbar.

Application–Specific Entries: Special Menus
 (See page 10 – 8)

APP_SPECIAL.INSTANTIATE

procedure APP_SPECIAL.INSTANTIATE(

option_name varchar2,

hint varchar2 default null,

icon varchar2 default null,

initially_enabled boolean default true,

separator varchar2 default null);

This call constructs the special menu according to your specifications.
Call this function in the PRE–FORM trigger, after the call to
APP_STANDARD.EVENT(’PRE–FORM’). When the user chooses an
entry on the special menus or presses a corresponding toolbar button, a
user–named trigger with the same name as the function is executed.

Pass SPECIAL1 to SPECIAL45 to indicate the slot
on the special menus in which you want to put
your function. SPECIAL1 is at the top of the first
of the three special menus, and SPECIAL15 is at
the bottom of the first special menu. SPECIAL16 is
at the top of the second of the three special menus,
and SPECIAL30 is at the bottom of the second
special menu. SPECIAL31 is at the top of the third
of the three special menus, and SPECIAL45 is at
the bottom of the third special menu. When you
instantiate any menu entry, the top level menu for
the corresponding special menu is enabled.

Check boxes are available on the first special menu
only. The check box entries provide a menu entry
that includes a check box. Pass
SPECIAL1_CHECKBOX to
SPECIAL15_CHECKBOX (instead of the
corresponding SPECIALn entry) to indicate the slot

option_name

10 – 16 Oracle Applications Developer’s Guide

on the special menu in which you want to put your
function. If you use the check box entries, you
must also use the APP_SPECIAL.SET_CHECKBOX
routine to set the initial value of the check box for
the corresponding menu entry.

Pass SPECIAL, SPECIAL_B, or SPECIAL_C to
explicitly control one of the three top–level special
menus. SPECIAL is at the top of the first of the
three special menus, SPECIAL_B is at the top of the
second special menu, and SPECIAL_C is at the top
of the third special menu. This is typically used to
explicitly enable or disable a top–level entry.

Your menu item label. Pass a translated string (if
your form is to be translated, you should define a
message in Message Dictionary, retrieve the
message first, and pass the retrieved message
string to APP_SPECIAL). Include an ’&’ in the
string to define which character becomes the
shortcut key for that item (this is the same as the
behavior in the Oracle Forms Form Builder. For
example, ’&Book Orders’). You can change the
label for SPECIAL_B (Reports) or SPECIAL_C
(Actions), but you cannot change the label of the
SPECIAL menu (Tools). In addition, you cannot
specify an access key for SPECIAL_B or
SPECIAL_C.

If you want to include an iconic button on the
toolbar for the function, give the name of the icon.
Any of the SPECIAL1 through SPECIAL45
functions can include a corresponding toolbar
button (though you should limit the number of
extra icons on the toolbar for aesthetic reasons). If
there is no corresponding toolbar button, pass
NULL. SPECIALn_CHECKBOX entries cannot
have icons on the toolbar.

For custom forms, the icon file must be a .gif file
located in the directory designated by the
OA_MEDIA virtual directory (see your web server
administrator for this information). Note that
retrieving the icon file for a custom icon requires a
round trip to the forms server, so you should limit
the number of icons you retrieve if performance
becomes an issue.

hint

icon

Example 1

Example 2

Summary

Description

10 – 17Controlling the Toolbar and the Default Menu

For Oracle Applications products, icon files are
included in a .jar file included in the Oracle
Applications installation.

A boolean value that lets you set the initial status
of the menu item. If you do not want to enable the
item when your application starts, pass FALSE.
The default value is TRUE.

Pass ’LINE’ to display a menu separator line above
your menu entry. The LINE argument is ignored
for SPECIAL1(_CHECKBOX), SPECIAL16, or
SPECIAL31. The default is no line.

APP_SPECIAL.INSTANTIATE(’SPECIAL3’,’&Book Order’, ’POBKORD’,

TRUE, ’LINE’);

app_special.instantiate(’SPECIAL12_CHECKBOX’,

 ’Specia&l 12 Check Box with Line’,

 separator=>’LINE’);

app_special.set_checkbox(’SPECIAL12_CHECKBOX’,’TRUE’);

results in a menu entry that looks like the following:

––––––––––––––––––––––––––––––––––

[x] Special 12 Check Box with Line

APP_SPECIAL.ENABLE

procedure APP_SPECIAL.ENABLE(

option_name varchar2,

state number);

This call controls the enabling and disabling of the items in the menu,
including the Special menu (and their corresponding toolbar buttons),
allowing you to customize your menus for each block.

 Menu and Toolbar Entries (See page 10 – 2)

If a special function is available for most of the blocks in a form, create
a form level PRE–BLOCK trigger that enables the function. For any
block where this is not a valid function, code a block level PRE–BLOCK
trigger with Execution Hierarchy set to Override that disables the
function.

initially_enabled

separator

Arguments (input)

Example

Summary

10 – 18 Oracle Applications Developer’s Guide

Enable and disable SAVE to control the ’File–>Save’ and ’File–>Save
and Enter Next’ menu entries. Save is automatically disabled when
you call APP_FORM.QUERY_ONLY MODE.

Before entering a modal window that allows access to the menu, call
APP_SPECIAL.ENABLE(’MODAL’, PROPERTY_OFF). When you
leave the block, call ENABLE again with PROPERTY_ON.
PROPERTY_OFF disables the menu items that are disallowed in a
modal block.

You can control the availability of the ATTACHMENTS,
TRANSLATION, SUMMARY/DETAIL, and SELECT_ALL menu
entries.

Use the SINGLE option to disable the first record, last record, previous
record, and next record options on the Go menu in a block with only
one available record.

 Single Record Blocks (See page 5 – 13)

Use the ABOUT option to disable the Help–>Record History menu
option.

The name of the option to be enabled. Possible
values include: ABOUT, ATTACHMENTS,
MODAL, SAVE, SELECT_ALL, SINGLE,
SPECIAL1, ...through SPECIAL45 (or
SPECIALn_CHECKBOX entries), SPECIAL,
SPECIAL_B, SPECIAL_C, SUMMARY/DETAIL,
TRANSLATION, or the full name of any menu
item. Setting SPECIAL to PROPERTY_OFF
disables all special menu items.

Either PROPERTY_ON or PROPERTY_OFF

APP_SPECIAL.ENABLE(’SPECIAL3’,PROPERTY_ON);

APP_SPECIAL.GET_CHECKBOX

function APP_SPECIAL.GET_CHECKBOX

(option_name varchar2)

RETURN varchar2;

option_name

state

Description

Arguments (input)

Example

Summary

Description

Arguments (input)

Example

10 – 19Controlling the Toolbar and the Default Menu

Use this procedure to get the current value of a check box in one of the
special menus. Call this procedure within the trigger that gets executed
by the check box entry on the first special menu. This function returns
the state of the checkbox menu item as either the string ’TRUE’ if the
check box is checked or ’FALSE’ if the check box is not checked. This
call will result in an error if the menu entry does not exist.

Pass SPECIAL1_CHECKBOX to
SPECIAL45_CHECKBOX to indicate the special
menu entry for which you want to get the value.

if (app_special.get_checkbox(’SPECIAL3_CHECKBOX’)
 =’TRUE’) then
 fnd_message.debug(’Special 3 is True!’);
else
 fnd_message.debug(’Special 3 is False!’);
end if;

APP_SPECIAL.SET_CHECKBOX

procedure APP_SPECIAL.SET_CHECKBOX(

option_name varchar2,

new_value varchar2);

Use this procedure to set the initial value of a check box in one of the
special menus. Call this procedure after instantiating the
corresponding check box menu entry on a special menu.

Pass SPECIAL1_CHECKBOX to
SPECIAL15_CHECKBOX to indicate the special
menu entry for which you want to set the value.

Pass the character string ’TRUE’ to set the check
box to checked or ’FALSE’ to set the check box to
unchecked.

app_special.instantiate(’SPECIAL3_CHECKBOX’,

 ’Spe&cial 3 Box with Line’,

 ’’,TRUE,’LINE’);

app_special.set_checkbox(’SPECIAL3_CHECKBOX’,’TRUE’);

option_name

option_name

new_value

10 – 20 Oracle Applications Developer’s Guide

app_special.instantiate(’SPECIAL4_CHECKBOX’,

 ’Special &4 Box’);

app_special.set_checkbox(’SPECIAL4_CHECKBOX’,’TRUE’);

C H A P T E R

11
T

11 – 1Menus and Function Security

Menus and Function
Security

his chapter provides you with information you need to implement
Function Security and application menus in the Navigator. This
chapter also provides you with Function Security APIs you can use in
your client–side PL/SQL procedures.

The following topics are covered:

• Overview of Menus and Function Security

• Function Security Standards

• Function Security APIs for PL/SQL Procedures

11 – 2 Oracle Applications Developer’s Guide

Overview of Menus and Function Security

Function security lets you restrict application functionality to
authorized users.

Application developers register functions when they develop forms. A
System Administrator administers function security by creating
responsibilities that include or exclude particular functions.

Basic Function Security

• Group the forms and functionality of an application into logical
menu structures that will appear in the Navigator

• Assign a menu to one or more responsibilities

• Assign one or more responsibilities to one or more users

Advanced Function Security

• Oracle Applications GUI–based architecture aggregates several
related business functions into a single form

• Not all users should have access to every business function in a
form

• Oracle Applications provides the ability to identify pieces of
application logic as functions

• Functions can be secured on a responsibility basis (that is,
included or excluded from a responsibility)

Terms

Function

A function is a part of an application’s functionality that is registered
under a unique name for the purpose of assigning it to, or excluding it
from, a menu (and by extension, a responsibility).

There are several types of functions: form functions, subfunctions, and
non–form functions. We often refer to a form function simply as a form.

11 – 3Menus and Function Security

Form (Form Function)

A form function (form) invokes an Oracle Forms Developer form. Form
functions have the unique property that you may navigate to them
using the Navigator window.

Subfunction

A subfunction is a securable subset of a form’s functionality: in other
words, a function executed from within a form.

A developer can write a form to test the availability of a particular
subfunction, and then take some action based on whether the
subfunction is available in the current responsibility.

Subfunctions are frequently associated with buttons or other graphical
elements on forms. For example, when a subfunction is enabled, the
corresponding button is enabled.

However, a subfunction may be tested and executed at any time during
a form’s operation, and it need not have an explicit user interface
impact. For example, if a subfunction corresponds to a form procedure
not associated with a graphical element, its availability is not obvious
to the form’s user.

Self–Service Function (Non–form Function)

Some functions provide a way to include other types of code, such as
HTML pages or Java Server Pages (JSPs) on a menu and responsibility.
These functions are typically used as part of the Oracle Self–Service
Web Applications. These functions include other information such as
URLs that point to the appropriate files or functionality.

Menu

A menu is a hierarchical arrangement of functions and menus of
functions that appears in the Navigator. Each responsibility has a
menu assigned to it.

The Oracle Applications default menu appears as the pulldown menu
across the top of a window and is not generally controlled using
Function Security.

 Pulldown Menus and the Toolbar (See page 10 – 2)

11 – 4 Oracle Applications Developer’s Guide

Menu Entry

A menu entry is a menu component that identifies a function or a menu
of functions. In some cases, both a function and a menu of functions
correspond to the same menu entry. For example, both a form and its
menu of subfunctions can occupy the same menu entry.

Responsibility

A responsibility defines an application user’s current privileges while
working with Oracle Applications. When an application user signs on,
they select a responsibility that grants certain privileges, specifically:

• The functions that the user may access. Functions are
determined by the menu assigned to the responsibility.

• The concurrent programs, such as reports, that the user may run
(request security group).

• The application database accounts that forms, concurrent
programs, and reports connect to (data group).

Forms and Subfunctions

A form is a special class of function that differs from a subfunction in
two ways:

• Forms appear in the Navigator window and can be navigated to.
Subfunctions do not appear in the Navigator window and
cannot be navigated to.

• Forms can exist on their own. Subfunctions can only be called by
logic embodied within a form; they cannot exist on their own.

A form as a whole, including all of its program logic, is always
designated as a function. Subsets of a form’s program logic can
optionally be designated as subfunctions if there is a need to secure
those subsets.

For example, suppose that a form contains three windows. The entire
form is designated as a function that can be secured (included or
excluded from a responsibility.) Each of the form’s three windows can
be also be designated as functions (subfunctions), which means they
can be individually secured. Thus, while different responsibilities may
include this form, certain of the form’s windows may not be accessible
from each of those responsibilities, depending on how function security
rules are applied.

�

11 – 5Menus and Function Security

How Function Security Works

Developers Register Functions

Developers can require parts of their Oracle Forms code to look up a
unique function name, and then take some action based on whether the
function is available in the current responsibility.

Developers register functions. They can also register parameters that
pass values to a function. For example, a form may support data entry
only when a function parameter is passed to it.

Register your functions and subfunctions on the Form Functions
window.

Developers Create Menus

Typically, developers define a menu including all the functions
available in an application (that is, all the forms and their securable
subfunctions). For some applications, developers may define
additional menus that restrict the application’s functionality by
omitting specific forms and subfunctions.

When developers define menus of functions, they typically group the
subfunctions of a form on a subfunction menu they associate with the
form.

When you create a menu, you typically include each form, each
subfunction, and each submenu on a separate line of the menu.
Generally, each form and each submenu should have a prompt so it
will show up as a separate item in the Navigator window.

Attention: Usually you should not include a prompt for
subfunctions, as you usually do not want them to be visible to
the user on the Navigator. This also applies for form functions
that you may open using the CUSTOM library and Zoom, but
that you do not want the user to navigate to explicitly (that is,
you should include the form function on the menu so it will be
available to the responsibility, but you should not give it a
prompt).

 Coding Zoom (See page 28 – 6)

System Administrators Exclude Functions

Each Oracle Applications product is delivered with one or more
predefined menu hierarchies. System Administrators can assign a
predefined menu hierarchy to a responsibility. To tailor a responsibility,

11 – 6 Oracle Applications Developer’s Guide

System Administrators exclude functions or menus of functions from
that responsibility using exclusion rules.

When a menu is excluded, all of its menu entries, that is, all the
functions and menus of functions that it selects, are excluded.

When you exclude a function from a responsibility, all occurrences of
that function throughout the responsibility’s menu structure are
excluded.

Available Functions Depend on the Current Responsibility

When a user first selects or changes their responsibility, a list of
functions obtained from the responsibility’s menu structure is cached in
memory.

Functions a system administrator has excluded from the current
responsibility are marked as unavailable.

Form functions in the function hierarchy (that is, the menu hierarchy)
are displayed in the Navigator window. Available subfunctions are
accessed by working with the application’s forms.

Using Form Functions

To call a form from the Navigator window menu, you define a form
function that consists of your form with any arguments you need to
pass. You then define a menu that calls your form function.

You should use FND_FUNCTION.EXECUTE instead of OPEN_FORM
whenever you need to open a form programatically. Using
FND_FUNCTION.EXECUTE allows you to open forms without
bypassing Oracle Applications security, and takes care of finding the
correct directory path for the form. If you need to open a form
programmatically and then restart the same instance of the form (for
example, with different parameters), use APP_NAVIGATE.EXECUTE
instead of FND_FUNCTION.EXECUTE.

Query–Only Forms

When you define a form function in the Form Functions window or call
an existing form function using FND_FUNCTION.EXECUTE or
APP_NAVIGATE.EXECUTE, you can add the string:

QUERY_ONLY=YES

�

11 – 7Menus and Function Security

to the string in the Parameters field or in the arguments string (using
the other_params argument). This argument causes the form to be
called in query–only mode. The FND_FUNCTION.EXECUTE
procedure (which is also used by the Oracle Application Object Library
Navigator) sets the QUERY_ONLY flag that sets all database blocks to
non–insertable, non–updatable, and non–deletable.

To dynamically determine when to call a form in query–only mode,
add the string to the other_params argument of the call to
FND_FUNCTION.EXECUTE.

Disable or remove all functionality that does not apply when the form
is run in Query–Only mode, such as ’New’ buttons in Find Windows.
Entries on the menu (other than Special) are handled automatically.
Turn off any logic that defaults values into new records when the form
is in Query–Only mode (this logic is usually called from the
WHEN–CREATE–RECORD triggers). Check for this mode by checking
the parameter query_only:

IF name_in(’parameter.query_only’) != ’YES’ THEN

<defaulting logic here>

END IF;

Attention: Use query–only forms only when the user does not
have update privileges on the form; not when the primary
purpose of the form is viewing values.

Do not limit a form to query only because the primary need is viewing
values. If the user has update privileges on a form, you should not
create a separate query–only form function, even when calling the form
from a special menu for the purpose of querying information. Forcing
users to use the Navigator to reopen a form in an updatable mode if
they need to make a change is a clear violation of our user interface
standards.

There may be rare cases where technical limitations force you to limit
the user to query mode on particular calls to a form. In general,
however, update privileges should remain constant within a
responsibility, regardless of how the user accesses the form (from a
branch of the Navigator menu, or from a special menu in another
form).

Form Window Name Changes

Some forms (such as the Submit Requests form) accept arguments that
change the form window name. With the Submit Requests form, you
use the parameter TITLE to specify the name of a message in the
Message Dictionary. That message becomes the window title.

11 – 8 Oracle Applications Developer’s Guide

The syntax to use is:

TITLE=”<appl_short_name>:<message_name>”

If the message REP_ROUTING contained (in English) the text ”Report
Routing”, you use the argument

TITLE=”MFG:REP_ROUTING”

to open the Submit Request window with the title Report Routing.

See the Oracle Applications System Administrator’s Guide for more
information on customizing the Submit Requests form.

Help Target Changes

When a user selects the help button in Oracle Applications, the
applications try to open the correct help file at a help target consisting
of the form name and the window name: form_name_window_name.
You can override the form name portion (and optionally the application
short name of the help file) of this target by passing the parameter

HELP_TARGET=”Application_short_name/Alternate_Form_name”

For example, to use Oracle Receivables help for the Submit Requests
form, you could define your form function for the FNDRSRUN form
name with the following parameter:

HELP_TARGET=”AR/FNDRSRUN”

You can pass the HELP_TARGET parameter either when calling the
form function using FND_FUNCTION.EXECUTE or
APP_NAVIGATE.EXECUTE (using the other_params argument) or
when you define the function in the Form Functions window.

See the Oracle Applications System Administrator’s Guide for more
information on help targets in Oracle Applications.

11 – 9Menus and Function Security

Function Security Standards

The section contains the function security standards followed by Oracle
Corporation developers.

General Function and Menu Standards

The Oracle Applications menu structure includes two types of items:
functions, and menus of functions. Generally, functions are either
forms (form functions) or subfunctions within those forms (non–form
functions).

There may be some cases of functions that are neither forms nor
subfunctions, but those cases should be rare, and thus are not
addressed by these standards.

A ”full access” responsibility with a menu that includes all the
functions in an application is predefined for each Oracle Applications
product and shipped to customers. This menu includes one link to
each of the product’s forms.

Menus are Object–based

A standard Oracle Applications menu structure is object–based (as
opposed to the type of action taken on an object). It has as many levels
of categorical grouping as necessary until eventually getting to a menu
entry for a single object, such as Purchase Orders. All Purchase Order
forms are grouped together, including transaction forms, maintenance
forms, inquiry forms, and any other form that works with Purchase
Orders.

Menu Categories

At the top level of a menu, two general categories should always exist:
Setup and Report. The setup forms are grouped separately, since they
are primarily used at installation time, and after that would be ”in the
way” if they were mixed with other forms. The report forms are
grouped separately for users whose sole task is to run reports. Report
forms are easy to secure using such a structure; moreover, reports
frequently do not group purely by single object. Thus, all reports
should be grouped under the Report top–level menu entry, not under
other category areas or other branches.

Here is a simplified example of a product’s top–level menu, with the
Purchase Orders entry decomposed to a second menu level:

11 – 10 Oracle Applications Developer’s Guide

Purchase Orders

 Purchase Orders (<–Purchase Orders Gateway)

 View Expiring Purchase Orders

 Mass Delete Purchase Orders

Quotes

Suppliers

Setup

Reports

Reports versus Processes

If you create separate instances of the Submit Requests form to launch
specific processes (programs) or groups of processes, place that form
function under the appropriate object–based name in your menu. (A
process is a program that manipulates data, rather than a report that
only sorts or displays the data.)

In the above example, the ”Mass Delete Purchase Orders” menu entry
might open a specialized Submit Request window to launch the Mass
Delete Purchase Order standard request submission program. Since
this process deletes data, it appears under the Purchase Order menu
entry rather than the Reports menu entry.

Multi–row and Single–row Displays

When you have both a multi–row and a single row display of data in a
form (usually in a combination block), title the multi–row window and
associated menu entry using the plural of the entity name followed by
”Summary”, for example: ”Purchase Orders Summary”. Title the
single–row window (and the associated menu entry, if there is one)
with the plural of the entity name, for example: ”Purchase Orders”. If
you have only a single–row version of a form, the form name and
associated menu entry are simply the plural of the entity name, for
example: ”Purchase Orders”.

Form Function Standards

Function Names and User Function Names

The user function name (which is defined using the Form Functions
form, and which is the selection value in the LOV on the Menus form)
is simply the form name, for example: ”Purchase Orders”. It is

11 – 11Menus and Function Security

important to follow these user function naming standards, since end
users see user function names in the Navigator window’s Top Ten List.

Create function names (not user function names) as:
<APPLICATION_SHORTNAME>_<FORMNAME>_<MODE>.
<MODE> is optional; use it if there are several functions that reference
the same form. If you create a function that references a form in
another product, use your products shortname as the application
shortname. For example, WIP_FNDRSRUN_AUTOCREATE.

Never begin a user function name with a number, such as ”2–Tier
Pricing Structure”, since the number would conflict visually with the
Top Ten List in the Navigator window. Menu entry prompts should
not have numbers anywhere in them, because the numbers would
conflict with the keyboard accelerators for the Top Ten List in the
Navigator.

When the same form is used for multiple functions, differing only in
the parameters passed to it, make the user function name the logical
name for the function, for example, ”View Purchase Orders”.
Internally, use a function like ”PO_POXPOMPO_VIEW”, for example,
if you want to show this is the version of the form used only for
viewing purchase orders. Do not use separator characters other than
underscores.

Subfunction Standards

Hide Unavailable Functions

If a subfunction determines whether a button, field, menu choice or
other form item is available, code the subfunction to hide the item if the
user does not have access to that function. Hide anything not enabled
while the user is in the form (as opposed to item that are
enabled/disabled based on actions taken in the form).

Subfunction Menus

A form may have subfunctions within it whose availability to the user
is determined by responsibility. To accomplish this, a menu of these
subfunctions is placed in the menu hierarchy below the level of the
form. A menu of subfunctions always assumes the name of the form
entry with ”_MENU” appended, for example:
”PO_POXPOMPO_MENU”. The user menu name should be the <form
name>: Subfunctions, for example: ”Purchase Orders: Subfunctions”.

11 – 12 Oracle Applications Developer’s Guide

Subfunctions are tied directly to forms in the shipped menu to make it
easier for the System Administrator to understand which subfunctions
are part of which forms. In other words, there is one hierarchy
combining the menu structure with the security structure, as opposed
to separate menu and security structures following different
hierarchies.

Subfunction Names

All subfunctions for each form are predefined by the developer, and are
named <form>_<subfunction>, for example: ”PO_POXPOMPO_
DELETE”. The user function name should be <form name>:
<subfunction>, for example: ”Purchase Orders: Delete”. This naming
standard is important because it enables the System Administrator to
find all the available functions to include or exclude from a
responsibility by using Autoreduction in the LOV in the
Responsibilities form. For example, the System Administrator can
enter ”Purchase Orders”, and then see the Purchase Orders form itself,
the subfunctions menu(s) for that form, and all the restrictable
subfunctions. Without this naming standard, it would be difficult to
find all the subfunctions of a form.

Grouping Subfunctions into Categories

Where there are many restrictable subfunctions for a particular form,
and those subfunctions group well into categories (Approvals, for
example), group the subfunctions according to their category, creating
for example, ”PO_POXPOMPO_APPROVALS_MENU”, linking all the
approval subfunctions below it. Grouping all Approval subfunctions
into a single category allows the System Administrator to restrict
access to all Approval subfunctions with one menu exclusion for that
responsibility.

Grouping subfunctions by category should be done only when multiple
subfunction categories exist, but not when all subfunctions of a form
belong to a single category. The user names for these subfunction
menus and the subfunctions under them follows the standard
described above for subfunctions, for example: ”Purchase Orders:
Approvals”, ”Purchase Orders: Approvals: Batch Approval”. Note that
the word ”Menu” is not included in the subfunction menu names to
help clarify that while subfunctions are stored like menus, they are not
really menus in the user presentation. Instead, plurality indicates
multiple subfunctions, as in ”Approvals” instead of ”Approval”.

11 – 14 Oracle Applications Developer’s Guide

Function Security Reports

Use the function security reports to document the structure of your
Navigator menus. You can use these reports as hardcopy to document
your customized menu structures before upgrading your Oracle
Applications software.

The function security reports consist of the Function Security Functions
Report, the Function Security Menu Report, and the Function Security
Navigator Report.

These reports are available through the Function Security Menu
Reports request set in the System Administrator responsibility. For
each report, specify the responsibility whose function security you
want to review.

Function Security Function Report

Specify a responsibility when submitting the report. The report output
lists the functions accessible by the specified responsibility.

The report does not include items excluded by function security rules.

Function Security Menu Report

Specify a responsibility when submitting the report. The report output
lists the complete menu of the responsibility, including all submenus
and functions.

The report indicates any excluded menu items with the rule that
excluded it.

Function Security Navigator Report

Specify a responsibility when submitting the report. The report output
lists the menu as it appears in the navigator for the responsibility
specified.

This report does not include items excluded by function security rules,
or non–form functions that do not appear in the Navigator.

Summary

Description

Arguments (input)

Example

Summary

11 – 15Menus and Function Security

Function Security APIs for PL/SQL Procedures

This section describes function security APIs you can use in your
client–side PL/SQL procedures.

FND_FUNCTION.TEST and FND_FUNCTION_QUERY indicate
whether a particular function is currently accessible. You can construct
your code to test the availability of a particular function, and then take
some action based on whether the function is available or not.

You can use FND_FUNCTION.EXECUTE to execute a particular form
function or self–service function.

FND_FUNCTION.TEST

function FND_FUNCTION.TEST

 (function_name IN varchar2) return boolean;

Tests whether a particular function is currently accessible. Typically
you would test for a function’s availability at form startup (for
example, to prevent certain buttons from being displayed or certain
windows from being accessible).

The name of the function to test.

IF (FND_FUNCTION.TEST(’DEM_DEMXXEOR_PRINT_ORDER’)) THEN

 /* Put Print Order on the Special menu */

 app_special.instantiate(’SPECIAL1’,’&Print Order’);

ELSE

 /* hide the corresponding button on the form

 (and the special menu is not instantiated) */

 app_item_property.set_property(’orders.print_order’,

 DISPLAYED, PROPERTY_OFF);

END IF;

FND_FUNCTION.QUERY

procedure FND_FUNCTION.QUERY

function_name

Description

Arguments (input)

Arguments (output)

Summary

Description

11 – 16 Oracle Applications Developer’s Guide

 (function_name IN varchar2,

 accessible OUT varchar2,

 function_type OUT varchar2,

 form_path OUT varchar2,

 arguments OUT varchar2);

Checks whether a particular function is currently accessible, and if so,
returns information about the function in function_type, form_path,
and arguments. If the function is not accessible, function_type,
form_path, and arguments are set to empty strings.

The name of the function to check.

Set to ’Y ’or ’N’ to indicate whether the function
can be accessed by the current responsibility.

The type of the function as specified in the Form
Functions form.

The file system path to the form (or an empty
string if there is no form associated with this
function.)

The list of arguments specified for this function.

FND_FUNCTION.EXECUTE

procedure FND_FUNCTION.EXECUTE

 (function_name IN varchar2,

 open_flag IN varchar2 default ’Y’,

 session_flag IN varchar2 default ’SESSION’,

 other_params IN varchar2 default NULL,

 activate IN varchar2 default ’ACTIVATE’,

 browser_target IN varchar2 default NULL);

Executes the specified form function. Only executes functions that
have a form attached. Displays a message to the end user if the
function is not accessible.

Make sure that the function is defined with Oracle Application Object
Library. Also, the function must be somewhere on the menu for the

function_name

accessible

function_type

form_path

arguments

Arguments (input)

11 – 17Menus and Function Security

responsibility, though the form does not need to be accessible from the
menu in the Navigator (do this by adding the function to the menu but
leaving the prompt blank). Otherwise, the user will get a message
saying that function is not available.

You should use FND_FUNCTION.EXECUTE instead of OPEN_FORM
whenever you need to open a form programatically. Using
FND_FUNCTION.EXECUTE allows you to open forms without
bypassing Oracle Applications security, and takes care of finding the
correct directory path for the form.

FND_FUNCTION.EXECUTE is similar to APP_NAVIGATE.EXECUTE,
except that APP_NAVIGATE.EXECUTE allows a form to be restarted if
it is invoked a second time.

APP_NAVIGATE.EXECUTE and FND_FUNCTION.EXECUTE store
the position and size of the current (source) window in the following
global variables so that the target form being opened can access them:

• global.fnd_launch_win_x_pos

• global.fnd_launch_win_y_pos

• global.fnd_launch_win_width

• global.fnd_launch_win_height

The intended usage is so that the target form can be positioned relative
to the current window of the calling form. When calling
APP_NAVIGATE.EXECUTE, these values are available when the target
form is opened the first time.

APP_NAVIGATE.EXECUTE and FND_FUNCTION.EXECUTE allow
you to open functions for Oracle Self–Service Applications (self–service
functions) from Oracle Forms Developer–based forms and the
Navigator window as well. The arguments require URL–style syntax
instead of OPEN_FORM–style syntax. You cannot use
APP_NAVIGATE.EXECUTE and FND_FUNCTION.EXECUTE to open
functions from Oracle Self–Service Applications, however (because
these routines are contained in Oracle Forms Developer–based
libraries).

The developer name of the form function to
execute.

’Y’ indicates that OPEN_FORM should be used;
’N’ indicates that NEW_FORM should be used.
You should always pass ’Y’ for open_flag, which
means to execute the function using the Oracle

function_name

open_flag

11 – 18 Oracle Applications Developer’s Guide

Forms OPEN_FORM built–in rather than the
NEW_FORM built–in.

This argument is ignored if the function type is one
of the following function types: WWW, WWK, JSP,
or SERVELET.

Passing ’NO_SESSION’ or ’N’ opens the form in
the same session as the existing form; passing
anything else opens your form in a new database
session (including ’SESSION’, the default).

Opening a form in a new database session causes
the form to have an independent commit cycle.
You should always pass ’SESSION’ or ’Y’ (which
has the same effect as ’SESSION’ for backwards
compatibility).

This argument is ignored if the function type is one
of the following function types: WWW, WWK, JSP,
or SERVELET.

An additional parameter string that is appended to
any parameters defined for the function in the
Parameters field of the Form Functions form. You
can use other_params to set some parameters
dynamically. It can take any number of
parameters.

For calling forms: if there are multiple additional
parameters, the values passed to those parameters
must have double quotes around them. For
example, suppose a form accepts two pieces of
context information to perform a query when the
form is accessed from a particular window. The
concatenated string to pass should have the
following syntax:

 FND_FUNCTION.EXECUTE(

 FUNCTION_NAME=> function_name,

 OPEN_FLAG=>’Y’, SESSION_FLAG=>’Y’,

 OTHER_PARAMS=>

 ’CONTEXT1=”’||:block.context1 || ’ ”

 CONTEXT2=” || :block.context2 || ’ ” ’);

For calling Oracle Self–Service Applications
functions, anything in the other_params argument
is appended to the URL as constructed from the

session_flag

other_params

Example

Summary

Description

11 – 19Menus and Function Security

function definition (with an ampersand &
delimiter). The URL is constructed as follows:

 HTML_Call_field&Parameters_field&OTHER_PARAMS

Use URL–style syntax for other_params if you are
calling a self–service function. For example, your
call might look like the following:

 FND_FUNCTION.EXECUTE(

 FUNCTION_NAME=> function_name,

 OPEN_FLAG=>’Y’, SESSION_FLAG=>’Y’,

 OTHER_PARAMS=>’partyId=’||

 to_char(:cust.party_id));

Either ACTIVATE or NO_ACTIVATE (default is
ACTIVATE). This flag determines whether the
focus goes to the new form (ACTIVATE) or
remains in the calling form (NO_ACTIVATE).

This argument is ignored if the function type is one
of the following function types: WWW, WWK, JSP,
or SERVELET.

Use this argument only for calling self–service
functions. This argument allows you to specify
which browser frame should be used. The NULL
default means that the function opens in a new
browser window.

The following is an example of calling a form function (not a
self–service function):

FND_FUNCTION.EXECUTE(FUNCTION_NAME=>’DEM_DEMXXEOR’,

 OPEN_FLAG=>’Y’, SESSION_FLAG=>’Y’,

 OTHER_PARAMS=>

 ’ORDER_ID=”’||param_to_pass1||

 ’” CUSTOMER_NAME=”’||param_to_pass2||’”’);

FND_FUNCTION.USER_FUNCTION_NAME

function FND_FUNCTION.USER_FUNCTION_NAME

 (function_name IN varchar2)

 return varchar2;

Returns the user function name.

activate_flag

browser_target

Arguments (input)

Summary

Description

11 – 20 Oracle Applications Developer’s Guide

The developer name of the function.

FND_FUNCTION.CURRENT_FORM_FUNCTION

function FND_FUNCTION.CURRENT_FORM_FUNCTION return varchar2;

Returns the function name with which the current form was called.

function_name

11 – 21Menus and Function Security

Forms Window

Register an application form with Oracle Applications.

You must register a form before you can call it from a menu or a
responsibility.

Prerequisites

• Register your application with Oracle Application Object Library
using the Applications window.

Forms Block

The combination of application name and form name uniquely
identifies your form.

11 – 22 Oracle Applications Developer’s Guide

Form

Enter the filename of your form (without an extension). Your form
filename must be all uppercase, and its .fmx file must be located in the
forms/<language> subdirectory of your application directory
structure.

Application

This is the application that owns your form. You can define an
application by using the Applications window.

Applications: page 2 – 6

Oracle Applications looks for your form in the appropriate language
directory of your forms directory, based on the application owning
your form.

For example, if you are using American English on a Unix platform,
Oracle Applications expects to find your form files in the directory
/<Your application top directory>/forms/US.

User Form Name

This is the form name you see when selecting a form using the
Functions window.

11 – 23Menus and Function Security

Form Functions Window

Define new functions. A function is a part of an application’s
functionality that is registered under a unique name for the purpose of
assigning it to, or excluding it from, a responsibility.

There are two types of functions: form functions, and non–form
functions.

For clarity, we refer to a form function as a form, and a non–form
function as a subfunction, even though both are just instances of
functions in the database.

11 – 24 Oracle Applications Developer’s Guide

Form Functions Block

Function

Users do not see this unique function name. However, you may use
this name when calling your function programmatically. You should
follow the naming conventions for functions.

Description

User Function Name

Enter a unique name that describes your function. You see this name
when assigning functions to menus. This name appears in the Top Ten
List of the Navigator window.

Type

Type is a free-form description of the function’s use (function type will
be validated in a future version of this form). A function’s type is
passed back when a developer tests the availability of a function. The
developer can write code that takes an action based on the function’s
type.

Standard function types include the following:

Oracle Applications form functions are registered
with a type of FORM. Even if you do not register a
form function with a type of FORM, Oracle
Applications treats it as a form if you specify a
valid Form Name/Application.

Subfunctions are added to menus (without
prompts) to provide security functionality for
forms or other functions.

Functions used for some products in the Oracle
Self–Service Web Applications. These are typically
JSP functions.

Functions used for some products in the Oracle
Self–Service Web Applications. These are typically
PL/SQL functions.

Functions used for some products in the Oracle
Self–Service Web Applications. These are typically
PL/SQL functions that open a new window.

FORM

SUBFUNCTION

JSP

WWW

WWK

11 – 25Menus and Function Security

Functions used for some products in the Oracle
Self–Service Web Applications.

Functions used for some products in the Oracle
Self–Service Web Applications.

Form

Form /Application

If you are defining a form function, select the name and application of
your form.

Parameters

Enter the parameters you wish to pass to your function. Separate
parameters with a space.

For a form function, if you specify the parameter QUERY_ONLY=YES,
the form opens in query–only mode. Oracle Application Object Library
removes this parameter from the list of form parameters before
opening the form in query–only mode.

You can also specify a differnt form name to use when searching for
help for a form in the appropriate help file. The syntax to use is:

HELP_TARGET = ”alternative_form_name”

Your form name overrides the name of the form.

Some Oracle Applications forms are coded to accept particular form
parameters. For example, the Submit Requests form accepts a TITLE
parameter you can use to change the Submit Requests window title.
The syntax you should use is:

TITLE=”appl_short_name:message_name”

where appl_shortname:message_name is the application short name and
message name of a Message Dictionary message. See: Customizing the
Submit Requests Window using Codes in the Oracle Applications System
Administrator’s Guide.

Warning: In general, System Administrators should not
modify parameters passed to functions that are predefined as
part of the Oracle Applications products. The few cases where
function parameters may be modified by a System
Administrator are documented in the relevant technical
reference manual or product update notes.

WWC

WWR or WWL

11 – 26 Oracle Applications Developer’s Guide

Web HTML and Web Host

The fields in the Web HTML and Web Host are only required if your
function will be accessed from Oracle Self–Service Web Applications.
You do not need to enter any of these fields for functions based on
Oracle Forms Developer forms.

HTML Call

The last section of your function URL is the HTML Call. The HTML
Call is used to activate your function. The function may be either a
static web page or a procedure.

For functions used with Mobile Application Server, enter the full name
of your your java class file, including <package name>.<class name>.
The class name and package name are case sensitive. Mobile
Application Server will try to load this class from the classpath as it is.
For example, ’oracle.apps.mwa.demo.hello.HelloWorld’.

Secured

Secured is only required when your function is accessed by Oracle
Workflow. Checking Secured enables recipients of a workflow E–Mail
notification to respond using E–Mail.

Encrypt Parameters

Checking Encrypt Parameters adds a layer of security to your function
to ensure that a user cannot access your function by altering the URL in
their browser window. You must define Encryption Parameters when
you define your function to take advantage of this feature.

Host Name

The URL (universal resource locator) or address required for your
function consists of three sections: the Host Name, Agent Name, and
the HTML Call. The Host name is the IP address or alias of the
machine where the Webserver is running.

Agent Name

The second section of your function URL is the Oracle Web Agent. The
Oracle Web Agent determines which database is used when running
your function. Defaults to the last agent used.

11 – 27Menus and Function Security

Icon

Enter the name of the icon used for this function.

Regions

The fields on this page are for future use.

11 – 28 Oracle Applications Developer’s Guide

Menus Window

Define a new menu or modify an existing menu.

A menu is a hierarchical arrangement of functions and menus of
functions. Each responsibility has a menu assigned to it.

A ”full access” responsibility with a menu that includes all the
functions in an application is predefined for each Oracle Applications
product. As a System Administrator, you can restrict the functionality
a responsibility provides by defining rules to exclude specific functions
or menus of functions. In fact, we recommend that you use exclusion
rules to customize a responsibility in preference to constructing a new
menu hierarchy for that responsibility.

If you cannot create the responsibility you need by applying exclusion
rules, you may build a custom menu for that responsibility using
predefined forms (i.e., form functions) and their associated menus of

11 – 29Menus and Function Security

subfunctions. However, we recommend that you do not disassociate a
form from its developer–defined menus of subfunctions.

See:

Overview of Function Security
Implementing Function Security
Oracle Applications System Administrator’s Guide

Prerequisites

• Register your application with Oracle Application Object Library
using the Applications window.

• Define any menus that you intend to call from your menu.
Define the lowest–level submenus first. A submenu must be
defined before it can be called by another menu.

Suggestion: By calling submenus from your menu, you can
group related windows together under a single heading on
your menu. You can reuse your menu on other menus.

Menus Block

Menu entries detail the options available from your menu.

Menu

Choose a name that describes the purpose of the menu. Users do not
see this menu name.

View Tree...

Once you have defined a menu, you can see its hierarchical structure
using the ”View Tree...” button.

User Menu Name

You use the user menu name when a responsibility calls a menu or
when one menu calls another.

�
�

11 – 30 Oracle Applications Developer’s Guide

Menu Entries Block

Sequence

Enter a sequence number to specify where a menu entry appears
relative to other menu entries in a menu. The default value for this
field is the next whole sequence number.

A menu entry with a lower sequence number appears before a menu
entry with a higher sequence number.

Attention: Use integers only as your sequence numbers.

Attention: If you change sequence numbers or frequently
insert and delete menu entries, carefully check the default
value. This value may be a duplicate sequence number or an
out of sequence number.

Suggestion: You cannot replace a menu entry sequence
number with another sequence number that already exists. If
you want to add menu entries to a menu entry sequence,
carefully renumber your menu entries to a sequence range well
outside the sequence range you want, ensuring that you do not
use existing sequence numbers.

Once you save this work, you can go back and renumber each
entry to have the final sequence number you want.

Navigator Prompt

Enter a user–friendly, intuitive prompt your menu displays for this
menu entry. You see this menu prompt in the hierarchy list of the
Navigator window.

Suggestion: Enter menu prompts that have unique first letters
so that power users can type the first letter of the menu prompt
to choose a menu entry.

Submenu

Call another menu and allow your user to select menu entries from that
menu.

Function

Call a function you wish to include in the menu. A form function
(form) appears in the Navigate window and allows access to that form.

11 – 31Menus and Function Security

Other non–form functions (subfunctions) allow access to a particular
subset of form functionality from this menu.

Description

Descriptions appear in a field at the top of the Navigate window when
a menu entry is highlighted.

Function Security Reports: page 11 – 14

11 – 32 Oracle Applications Developer’s Guide

C H A P T E R

12
T

12 – 1Message Dictionary

Message Dictionary

his chapter provides you with information you need to implement
Message Dictionary in your application.

• Overview of Message Dictionary

• Implementing Message Dictionary

• Message Dictionary APIs for PL/SQL Procedures

• Messages Window

12 – 2 Oracle Applications Developer’s Guide

Overview of Message Dictionary

Message Dictionary lets you catalog messages for display from your
application without hardcoding them into your forms and programs.
Using Message Dictionary, you can:

• Define standard messages you can use in all your applications

• Provide a consistent look and feel for messages within and
across all your applications

• Define flexible messages that can include context–sensitive
variable text

• Change or translate the text of your messages without
regenerating or recompiling your application code

Major Features

Modifiable Message Text

Message Dictionary makes it easy for you to modify your messages.
All your message text is available from one simple form, and you do
not need to regenerate your forms or recompile your programs if you
change your message text.

Message Dictionary displays your application messages in a format
you choose. For example, you can display your messages in a dialog
box or on the message line. You can also display messages without
codes, such as warnings that have an intuitive remedy or do not need
one.

Easy Translation

Message Dictionary facilitates translation of your messages by allowing
you to easily modify your messages and by allowing you to define
message notes for each message. Message Dictionary saves you time
because you do not need to regenerate your forms or recompile your
programs after translation of message text.

Standardized Messages

Message Dictionary lets you create standardized messages you can use
in your application. Message Dictionary reduces redundant
programming of standard messages by storing all of your messages as

12 – 3Message Dictionary

entries in Message Dictionary. Once you define your messages in the
Message Dictionary, you can refer to them in your forms, concurrent
programs, and other application modules using a simple message name
you define. You can call the same message many times, from anywhere
in your application. If you need to change your message, you only
need to change it in one place.

Dynamic Message Text

Message Dictionary lets you include information in your message that
Oracle Application Object Library derives at runtime. You can define
your messages to accept variable text such as field values or module
names. You specify the values of the variable message parts when you
call Message Dictionary from a form or other application module.
Message Dictionary inserts these values in the message before it returns
the message to you. You can also include a field reference in your
message call from a form, displaying the field’s value in the message
your user sees.

Definitions

Message Name

A non–updatable internal identifier for a message in your application.
A message name can be up to 30 characters of text. A message name,
together with your application name and language name, uniquely
identifies your message text. You specify the message name when you
call Message Dictionary from a form or program module.

Message

Text your application displays or prints to an output file. You can
define your message to be up to about 1800 characters long (about 1260
in English to allow for translation into longer languages such as
German).

Message Number

A number that appears with your message. If you define a non–zero
message number for your message, Message Dictionary automatically
prepends your message with the prefix APP– (or its translated
equivalent).

12 – 4 Oracle Applications Developer’s Guide

Variable Token

A keyword you create to represent a value when you define a message.
You specify the same variable token, along with its current value, when
you call Message Dictionary from your form or program module.
Message Dictionary replaces each variable token in your message with
the current value you specify and then displays the message.

12 – 5Message Dictionary

Implementing Message Dictionary

There are several steps to implementing Message Dictionary in your
application:

1. Create your message directories: page 12 – 5

2. Define your messages: page 12 – 5

3. Create your message files: page 12 – 6

4. Code logic to set up messages: page 12 – 7

5. Code logic to display messages: page 12 – 8

Create Your Message Directories

On most operating systems, you should create a special subdirectory to
hold your Message Dictionary files for your application. You must
create your message directory (or some other location for your
messages if your operating system does not support directories) before
you define your messages so Oracle Application Object Library can
store your message files. In general, name your subdirectory mesg,
and create it directly under your application’s base directory (exactly
how you create a location for your Message Dictionary files depends on
your operating system). You should have a mesg directory for your
application on each machine where you have a directory structure for
your application (concurrent processing servers, forms server
machines).

Setting Up Your Application Framework: page 2 – 1

Define Your Messages

Use the Messages window to define your message information. You
can include variable tokens in your message text when you define your
messages. Message Dictionary inserts your values in the message
automatically when it displays your message.

You can modify your messages at any time using the Messages
window. If you want to change your message text, you need only
change it once, instead of the many times your application may call it.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

12 – 6 Oracle Applications Developer’s Guide

You do not need to regenerate your forms or recompile your programs
when you change your messages.

Message Standards (See page 12 – 24)

Messages Window (See page 12 – 55)

Create Your Message Files

Use the Generate Messages concurrent program to generate your
runtime message files, such as US.msb.

To use the program to generate your message files:

Using the Application Developer responsibility, navigate to the Submit
Requests window.

Select the Generate Messages concurrent program in the Name field.

In the Parameters window, select the language code for the language
file you want to generate (for example, US for American English).

Provide the appropriate application name for the message file you wish
to create. Each application must have its own message file.

Select the mode for the program. To generate your runtime message
file, choose DB_TO_RUNTIME.

To generate human–readable text files that can be edited and loaded
back into the database (or into different databases), you must use the
FNDLOAD utility with the configuration file FNDMDMSG.lct.

Loaders
Oracle Applications System Administrator’s Guide

Leave the Filename parameter blank, as the message generator will
create a file with a standard name (such as US.msb) in the mesg
directory for your application on the server side (or an equivalent
location for your platform).

Make a copy of the resulting file (which is on the server side), and
transfer the copy to the appropriate mesg directory for your application
on other machines as needed (concurrent processing servers, forms
server machines). The file should have the same name (such as
US.msb) in each location.

12 – 7Message Dictionary

Command Line Interface

On UNIX systems, you can also use a command line interface to
generate your message files (such as US.msb):

FNDMDGEN <Oracle ID> 0 Y <language codename> <application

shortname> DB_TO_RUNTIME

where Oracle ID is the username and password of the APPS schema
and language codename is a language code such as US.

To generate human–readable text files that can be edited and loaded
back into the database (or into different databases), you must use the
FNDLOAD utility with the configuration file FNDMDMSG.lct.

 Loaders
Oracle Applications System Administrator’s Guide

Code Logic to Set Up Messages

Generating a message and showing it to a user is a two–step process:
first you must set up the message (on the client side) or retrieve it from
the server side, and then you must display it to the user (or write it to a
file for a concurrent program). This section covers the setup part of the
process.

When your application calls Message Dictionary, Message Dictionary
finds the message associated with your application and the message
name you specify, and replaces any variable tokens with your
substitute text. If a concurrent process generates the message,
depending on which routine it calls, Message Dictionary either writes
the message to the concurrent program log or out file, or returns your
message to your concurrent program so your program can write it to
the log or out file. You can call Message Dictionary from any form or C
concurrent program.

Client–side APIs for Retrieving and Setting up Messages

The following routines in the FND_MESSAGE package are used in
client–side (that is, Oracle Forms) PL/SQL procedures to retrieve and
set up messages for subsequent display.

Retrieves your message from Message Dictionary
and sets it on the message stack.

Takes an input string and sets it on the message
stack.

SET_NAME

SET_STRING

12 – 8 Oracle Applications Developer’s Guide

Substitutes a message token with a value you
specify.

Retrieves a message from the server–side message
buffer, translates and substitutes tokens, and sets
the message on the message stack.

Retrieves a message from the message stack and
returns a VARCHAR2.

Clears the message stack.

Server–side APIs for Messaging

The following server–side routines are used to buffer a message (and if
necessary, token/value pairs) so that a client–side PL/SQL Procedure
(that is, one called from Oracle Forms) can retrieve and display it.
Only one message can be buffered on the server.

Sets a message name in the global area without
actually retrieving the message from Message
Dictionary.

Adds a token/value pair to the global area without
actually doing the substitution.

Clears the message stack.

Code Logic to Display Messages

Once you have set up or retrieved the message and substituted any
tokens, you can then display it to a user (on the forms server side; that
is, in forms) or write it to a file (on the database server side for a
concurrent program).

Forms Server–side APIs for Displaying Messages

The following routines are used in PL/SQL procedures in forms and
libraries to display messages. Each of these routines displays the
message placed on the message stack by the most recent
FND_MESSAGE.SET_NAME or FND_MESSAGE.RETRIEVE call in
your program.

The FND_MESSAGE.ERROR, FND_MESSAGE.SHOW,
FND_MESSAGE.WARN, and FND_MESSAGE.QUESTION routines
each display a message in a forms modal window (on the client side).
The primary difference between these routines is the icon they display

SET_TOKEN

RETRIEVE

GET (function)

CLEAR

SET_NAME

SET_TOKEN

CLEAR

12 – 9Message Dictionary

next to the message in a forms modal window. For each routine, the
icon is designed to convey a particular meaning. You should choose
which routine to use based on the type of message you wish to display.
For example, you should use the FND_MESSAGE.ERROR routine to
display error messages, the FND_MESSAGE.SHOW routine to display
informational messages, and so on.

Note that the look of the icons that the FND_MESSAGE.ERROR,
FND_MESSAGE.SHOW, FND_MESSAGE.WARN, and
FND_MESSAGE.QUESTION routines display is platform–dependent.

Displays an error message in a forms modal
window or a concurrent program log file.
(Example: “Invalid value entered.”)

Displays an informational message in a forms
modal window or a concurrent program log file.
(Example: “To complete this function, please enter
the following... ”)

Displays a warning message in a forms modal
window and allows the user to either accept or
cancel the current operation. (Example: “Do you
wish to proceed with the current operation?”)

Displays a message and up to three buttons in a
forms modal window. (Example: “Please choose
one of the following actions.”)

Displays a message in the forms status line.

Clears the forms status line.

Methods for Database Server–side Messaging

Database server–side PL/SQL currently has no I/O abilities by itself.
Therefore, it relies on the environment that called the server–side
routine to output the message.

There are three distinct, non–interchangeable methods for displaying
messages that were set on the server:

Method 1: Set an error message on the server, to be displayed by the
forms client that called the server procedure.

On the server, use FND_MESSAGE.SET_NAME and
FND_MESSAGE.SET_TOKEN to set the message. Then call
APP_EXCEPTION.RAISE_EXCEPTION (an APPCORE routine) to raise
the application error PL/SQL exception. This exception is trapped
when the server procedure is exited and control resumes on the client

ERROR

SHOW

WARN

QUESTION

HINT

ERASE

�

12 – 10 Oracle Applications Developer’s Guide

side in the standard Oracle Forms ON_ERROR trigger. The
ON–ERROR trigger retrieves the message from the server and displays
it.

Attention: All forms built to integrate with Oracle
Applications should have a form–level ON–ERROR trigger that
calls APP_STANDARD.EVENT(’ON–ERROR’).
APP_STANDARD.EVENT(’ON–ERROR’) in the ON–ERROR
trigger automatically detects application errors raised on the
server and retrieves and displays those error messages in a
forms alert box.

Method 2: Set a message on the server, to be retrieved on the client
side.

On the server, use FND_MESSAGE.SET_NAME and
FND_MESSAGE.SET_TOKEN to set the message. Return a result code
to the calling client code to indicate that a message is waiting. If there
is a message waiting, the client calls FND_MESSAGE.RETRIEVE to
pull the message from the server to the client, placing the message on
the client’s message stack. The client calls FND_MESSAGE.ERROR,
FND_MESSAGE.SHOW, FND_MESSAGE.HINT, or
FND_MESSAGE.WARN to display the message, or
FND_MESSAGE.GET to retrieve the message to a buffer.

Method 3: Get a message into a buffer on the server

Use the FND_MESSAGE.SET_NAME, FND_MESSAGE.SET_TOKEN,
and FND_MESSAGE.GET routines to get the message into a buffer. Or,
use FND_MESSAGE.GET_STRING to get a single message into a
string.

Calling Message Dictionary From Concurrent Programs

If you call Message Dictionary routines from your concurrent
programs, the messages are treated differently according to the routine
you use, as shown in the following table:

Routine
Output
Destination

Message
Numbers

Messages
Displayed

SHOW out file Not printed One; top of stack

ERROR log file Printed if
nonzero

One; top of stack

Table 12 – 1 (Page 1 of 1)

Summary

Location

Description

Summary

Location

Description

12 – 11Message Dictionary

Message Dictionary APIs for PL/SQL Procedures

This section describes Message Dictionary APIs you can use in your
PL/SQL procedures. This section also includes examples of PL/SQL
procedure code using these Message Dictionary APIs.

Some of these PL/SQL procedures have C code analogs that you can
use for concurrent programs written in C. The syntax for the C code
API is included at the end of the PL/SQL API routine description. All
of the Message Dictionary C routines require the use of the fddutl.h
header file.

FND_MESSAGE.CLEAR

procedure FND_MESSAGE.CLEAR;

FNDSQF library and database (stored procedure)

Clears the message stack of all messages.

FND_MESSAGE.DEBUG

procedure FND_MESSAGE.DEBUG

 (value IN varchar2);

FNDSQF library

Immediately show a string. This procedure is normally used to show
debugging messages only, not messages seen by an end user. The
string does not need to be defined in the Messages window. These
strings may be hardcoded into the form and are not translated like
messages defined in Message Dictionary.

The string to display.value

Example

Summary

Location

Description

Summary

Location

Description

Example

12 – 12 Oracle Applications Developer’s Guide

 /* as the last part of an item handler */

 ELSE

 fnd_message.debug(’Invalid event passed to

 ORDER.ITEM_NAME: ’ || EVENT);

 END IF;

FND_MESSAGE.ERASE

procedure FND_MESSAGE.ERASE;

FNDSQF library

Clears the Oracle Forms status line.

Suggestion: Due to the way that Oracle Forms handles I/O to
the status line, changes made to the status line with HINT or
ERASE may not appear immediately if the call is made in the
middle of some PL/SQL routine that does not involve user
input. In such cases it may be necessary to use the forms
Synchronize built–in to force the message to get displayed on
the status line.

FND_MESSAGE.ERROR

procedure FND_MESSAGE.ERROR;

FNDSQF library

Displays an error message in an Oracle Forms modal window or a
concurrent program log file. (Example: “Invalid value entered.”)

FND_MESSAGE.ERROR takes its message from the stack, displays the
message, and then clears all the messages from the message stack.

/* Display an error message with a translated token */

FND_MESSAGE.SET_NAME (’FND’, ’FLEX_COMPILE_ERROR’);

FND_MESSAGE.SET_TOKEN (’PROCEDURE’, ’TRANS_PROC_NAME’,

TRUE);

C Code API

Summary

Location

Description

12 – 13Message Dictionary

FND_MESSAGE.ERROR;

 /* Then either raise FORM_TRIGGER_FAILURE, or exit

 routine*/

boolean afderror(/*_ void _*/);

Requires the fddutl.h header file.

FND_MESSAGE.GET

function FND_MESSAGE.GET

 return varchar2;

FNDSQF library and database (stored function)

Retrieves a translated and token–substituted message from the
message stack and then clears that message from the message stack.
This could be used for getting a translated message for a forms built–in
or other function. Assumes you have already called
FND_MESSAGE.SET_NAME and, if necessary,
FND_MESSAGE.SET_TOKEN. GET returns up to 2000 bytes of
message.

If this function is called from a stored procedure on the database server
side, the message is retrieved from the Message Dictionary table. If the
function is called from a form or forms library, the message is retrieved
from the messages file on the forms server.

If you are trying to get a message from a stored procedure on the
database server side to a form, you should use
FND_MESSAGE.SET_NAME and, if necessary,
FND_MESSAGE.SET_TOKEN in the stored procedure. The form
should use Method 1 or Method 2 (See page 12 – 9) to obtain the
message from the stored procedure. You should not use
FND_MESSAGE.GET in the stored procedure for this case.

Example

C Code API

Summary

Location

Description

Summary

12 – 14 Oracle Applications Developer’s Guide

/* Get translated string from message file */

declare

 msg varchar2(2000);

begin

 FND_MESSAGE.SET_NAME (’FND’, ’A_2000_BYTE_MSG’);

 msg := FND_MESSAGE.GET;

end;

 /* We now have a translated value in the msg variable

 for forms built–in or other function */

Pass this function a buffer and tell it the size, up to 2001 bytes
(including the null terminator), of the buffer in bytes.

boolean afdget(/*_text *msg_buf, size_t buf_size _*/);

Requires the fddutl.h header file.

FND_MESSAGE.HINT

procedure FND_MESSAGE.HINT;

FNDSQF library

Displays a message in the Oracle Forms status line.
FND_MESSAGE.HINT takes its message from the stack, displays the
message, and then clears that message from the message stack.

The user may still need to acknowledge the message if another message
immediately comes onto the message line.

FND_MESSAGE.QUESTION

function FND_MESSAGE.QUESTION

 (button1 IN varchar2 default ’YES’,

 button2 IN varchar2 default ’NO’,

 button3 IN varchar2 default ’CANCEL’,

 default_btn IN number default 1,

 cancel_btn IN number default 3,

Location

Description

Arguments (input)

�

12 – 15Message Dictionary

 icon IN varchar2 default ’question’

) return number;

FNDSQF library

Displays a message and up to three buttons in an Oracle Forms modal
window. (Example: “Please choose one of the following actions: ”)

FND_MESSAGE.QUESTION takes its message from the stack, and
clears that message. After the user selects a button,
FND_MESSAGE.QUESTION returns the number of the button
selected.

For each button, you must define or use an existing message in
Message Dictionary (under the Oracle Application Object Library
application) that contains the text of the button. This routine looks for
your button name message in the Oracle Application Object Library
messages, so when you define your message, you must associate it
with Oracle Application Object Library (the “FND” application) instead
of your application.

Specify the message name that identifies the text
for your rightmost button. This name is identical
to the message name you use when you define
your button text using the Messages form.

Specify the message name that identifies the text
for your middle button. This name is identical to
the message name you use when you define your
button text using the Messages form.

Specify the message name that identifies the text
for your leftmost button. This name is identical to
the message name you use when you define your
button text using the Messages form.

Attention: Specifying no buttons produces a
“Cancel/No/Yes” three–button display. Specifying one button
displays that button as the first button, and defaults the second
button to “Cancel”. Button one appears on the lower right of
the window, button2 to the left of button1, and button3 to the
left of button2.

button3 button2 button1

button1

button2

button3

Example 1

Example 2

Example 3

12 – 16 Oracle Applications Developer’s Guide

To specify two buttons without a cancel button, pass in
arguments of ’<FIRST_OPTION>’, ’<SECOND_OPTION>’,
and NULL.

Specify the number of the button that will be
pressed when the user presses the ”default”
keyboard accelerator (usually the return or enter
key). Passing NULL makes button 1 be the default.

Specify the number of the button that will be
pressed when the user presses the ”cancel”
keyboard accelerator (usually the escape key).
Passing NULL makes no buttons get pressed by the
”cancel” keyboard button.

Specify the icon to display in the decision point
box. If you do not specify an icon, a standard
FND_MESSAGE.QUESTION icon is displayed.

Standard icons you can use include STOP,
CAUTION, QUESTION, NOTE, and FILE. In
addition, you can use any icon in the
AU_TOP/resource directory on your platform.

/* Display a message with two buttons in a modal window */

FND_MESSAGE.SET_NAME(’INV’, ’MY_PRINT_MESSAGE’);

FND_MESSAGE.SET_TOKEN(’PRINTER’, ’hqunx138’);

FND_MESSAGE.QUESTION(’PRINT–BUTTON’);

 /* If ’PRINT–BUTTON’ is defined with the value “Print”,
 the user sees two buttons: “Print”, and “Cancel”. */

/* Display a message with three buttons in a modal window.

 Use the Caution icon for the window. */

FND_MESSAGE.SET_NAME(’FND’, ’DELETE_EVERYTHING’);

FND_MESSAGE.QUESTION(’DELETE’, NULL, ’CANCEL’, 1, 3,

’caution’);

/* Display a message with two buttons in a modal window.

 ”Yes” and ”No” */

default_btn

cancel_btn

icon

Summary

Location

Description

Example

Summary

Location

Description (Forms)

Description
(Database Server)

Arguments (input)

12 – 17Message Dictionary

FND_MESSAGE.SET_NAME(’FND’, ’REALLY’);

FND_MESSAGE.QUESTION(’YES’, ’NO’, NULL);

FND_MESSAGE.RETRIEVE

procedure FND_MESSAGE.RETRIEVE;

FNDSQF library

Retrieves a message from the database server, translates and
substitutes tokens, and sets the message on the message stack.

/* Retrieve an expected message from the server side,

 then show it to the user */

FND_MESSAGE.RETRIEVE;

FND_MESSAGE.ERROR;

 /* Then either raise FORM_TRIGGER_FAILURE, or exit

 routine*/

FND_MESSAGE.SET_NAME

procedure FND_MESSAGE.SET_NAME

 (application IN varchar2,

 name IN varchar2);

FNDSQF library and database (stored procedure)

Retrieves your message from Message Dictionary and sets it on the
message stack. You call FND_MESSAGE.SET_NAME once for each
message you use in your client–side PL/SQL procedure. You must call
FND_MESSAGE.SET_NAME before you call
FND_MESSAGE.SET_TOKEN.

Sets a message name in the global area without actually retrieving the
message from Message Dictionary.

The short name of the application this message is
associated with. This short name references the

application

Example 1

Example 2

Example 3

Example 4

C Code API

12 – 18 Oracle Applications Developer’s Guide

application you associate with your message when
you define it using the Messages form.

The message name that identifies your message.
This name is identical to the name you use when
you define your message using the Messages form.
 Message Dictionary names are not case sensitive
(for example, MESSAGE_NAME is the same name
as message_name).

/* Display a warning, asking OK/Cancel question */

FND_MESSAGE.SET_NAME (’FND’, ’WANT_TO_CONTINUE’);

FND_MESSAGE.SET_TOKEN (’PROCEDURE’, ’Compiling this

flexfield’);

if (FND_MESSAGE.WARN) then

 /* User selected OK, so add appropriate logic ... */

/* Display a warning, asking OK/Cancel question */

FND_MESSAGE.SET_NAME (’FND’, ’WANT_TO_CONTINUE’);

FND_MESSAGE.SET_TOKEN (’PROCEDURE’, translated_text_vbl);

if (FND_MESSAGE.WARN) then

 /* User selected OK, so add appropriate logic ... */

/* Show an informational message */

FND_MESSAGE.SET_NAME (’FND’, ’COMPILE_CANCELLED’);

FND_MESSAGE.SHOW;

/* This code is on the server. It sets up a message and

 then raises an error so the client will retrieve the

 message and display it to the user */

FND_MESSAGE.SET_NAME (’FND’, ’FLEX_COMPILE_ERROR’);

FND_MESSAGE.SET_TOKEN (’PROCEDURE’, ’My Procedure’);

APP_EXCEPTION.RAISE_EXCEPTION;

boolean afdname(/*_ text *applsname, text *msg_name _*/);

name

Summary

Location

Description

Arguments (input)

Example 1

Example 2

Summary

12 – 19Message Dictionary

Requires the fddutl.h header file.

FND_MESSAGE.SET_STRING

procedure FND_MESSAGE.SET_STRING

 (value IN varchar2);

FNDSQF library

Takes an input string and sets it directly on the message stack. The
string does not need to be defined in the Messages window. These
strings may be hardcoded into the form and are not translated like
messages defined in Message Dictionary.

Indicate the text you wish to place on the message
stack.

/* Set up a specific string (from a variable) and show it */

FND_MESSAGE.SET_STRING (sql_error_message);

FND_MESSAGE.ERROR;

/* Set up a specific string and show it */

FND_MESSAGE.SET_STRING (’Hello World’);

FND_MESSAGE.SHOW;

FND_MESSAGE.SET_TOKEN

procedure FND_MESSAGE.SET_TOKEN

 (token IN varchar2,

 value IN varchar2,

 translate IN boolean default FALSE);

value

Location

Description (Forms)

Description
(Database Server)

Arguments (input)

Example 1

12 – 20 Oracle Applications Developer’s Guide

FNDSQF library and database (stored function)

Substitutes a message token with a value you specify. You call
FND_MESSAGE.SET_TOKEN once for each token/value pair in a
message. The optional translate parameter can be set to TRUE to
indicate that the value should be translated before substitution. (The
value should be translated if it is, itself, a Message Dictionary message
name.)

Same behavior as for client–side FND_MESSAGE.SET_TOKEN, except
that adds a token/value pair to the global area without actually doing
the substitution.

Specify the name of the token you want to
substitute. This token name is identical to the
token name you use when you define your
message using the Messages form. Though you
specify & before each of your variable tokens when
you define messages, you should not include the &
in your Message Dictionary calls.

Indicate your substitute text. You can include as
much substitute text as necessary for the message
you call.

You can specify a message name instead of actual
substitute text. You must also specify TRUE for the
translate argument in this case. If you are passing
a Message Dictionary message this way, Message
Dictionary looks for the message under the
application specified in the preceding call to
FND_MESSAGE.SET_NAME.

Indicates whether the value is itself a Message
Dictionary message. If TRUE, the value is
”translated” before substitution; that is, the value is
replaced with the actual Message Dictionary
message text. Note that if the ”token message” in
turn contains a token, that token will not be
substituted (that is, you cannot have ”cascading
substitution”).

/* Display a warning, asking OK/Cancel question */

FND_MESSAGE.SET_NAME (’FND’, ’WANT_TO_CONTINUE’);

token

value

translate

Example 2

Example 3

C Code API

12 – 21Message Dictionary

FND_MESSAGE.SET_TOKEN (’PROCEDURE’, ’Compiling this

flexfield’);

if (FND_MESSAGE.WARN) then

 /* User selected OK ... */

/* Display a warning, asking OK/Cancel question */

FND_MESSAGE.SET_NAME (’FND’, ’WANT_TO_CONTINUE’);

FND_MESSAGE.SET_TOKEN (’PROCEDURE’, translated_text_vbl);

if (FND_MESSAGE.WARN) then

 /* User selected OK ... */

/* Display an error message with a translated token */

FND_MESSAGE.SET_NAME (’FND’, ’FLEX_COMPILE_ERROR’);

FND_MESSAGE.SET_TOKEN (’PROCEDURE’, ’TRANS_PROC_NAME’,

TRUE);

FND_MESSAGE.ERROR;

 /* Then either raise FORM_TRIGGER_FAILURE, or exit

 routine*/

The C code equivalent to SET_TOKEN(token_name, token_value,
FALSE) is:

boolean afdtoken(/*_ text *token_name,

 text *token_value _*/);

The C code equivalent to SET_TOKEN(token_name, token_value,
TRUE) is:

boolean afdtrans(/*_ text *token_name,

 text *token_value _*/);

The C code equivalent to SET_TOKEN(token_name, token_value,
FALSE for number val* is:

boolean afdtkint(/*_ text *token_name, sb4 token_value _*/);

Requires the fddutl.h header file.

Summary

Location

Description

Example

C Code API

Summary

Location

Description

Example

12 – 22 Oracle Applications Developer’s Guide

FND_MESSAGE.SHOW

procedure FND_MESSAGE.SHOW;

FNDSQF library

Displays an informational message in an Oracle Forms modal window
or a concurrent program log file. (Example: “To complete this function,
please enter the following... ”)

FND_MESSAGE.SHOW takes its message from the stack, displays the
message, and then clears only that message from the message stack.

/* Show an informational message */

FND_MESSAGE.SET_NAME (’FND’, ’COMPILE_CANCELLED’);

FND_MESSAGE.SHOW;

boolean afdshow(/*_ void _*/);

Requires the fddutl.h header file.

FND_MESSAGE.WARN

function FND_MESSAGE.WARN

 return boolean;

FNDSQF library

Displays a warning message in an Oracle Forms modal window and
allows the user to either accept or cancel the current operation.
(Example: “Do you wish to proceed with the current operation?”)

FND_MESSAGE.WARN returns TRUE if the user accepts the message
(that is, clicks OK), or FALSE if the user cancels.

FND_MESSAGE.WARN takes its message from the stack, displays the
message, and clears that message from the message stack.

/* Display a warning, asking OK/Cancel question */

FND_MESSAGE.SET_NAME (’FND’, ’WANT TO CONTINUE’);

FND_MESSAGE.SET_TOKEN (’PROCEDURE’, ’Compiling this

flexfield’);

12 – 23Message Dictionary

IF (FND_MESSAGE.WARN) THEN

 /* User selected OK, so add appropriate logic ... */

ELSE

 /* User selected Cancel, so add appropriate logic ... */

END IF;

12 – 24 Oracle Applications Developer’s Guide

Application Message Standards

Oracle Applications use messages to communicate with users. Typical
messages include warnings and error messages, brief instructions, and
informative messages that advise your user about the progress of
concurrent requests, work done, and anything else of interest or helpful
to users. Forms–based applications display messages on the user’s
screen; applications also print messages to output and log files.

Messages are part of the product, and should be treated with the same
amount of care and attention to the user interface as a form. These
message standards help you write messages that are brief, clear, and
informative. When you follow these standards and use Message
Dictionary, your application provides messages that are easy to
understand, document, edit, and translate into other languages,
resulting in an application that is easy to support and enhance.

Definitions

Message Type

A message type classifies your message as an Error, Prompt, and so on.
Generally speaking, error messages display information about
problems, while hint messages display helpful information that appears
during the normal use of your form.

Error Message

An error message contains substantive information about your
application that a user should consider and acknowledge. An error
message does not always indicate a malfunction or user mistake. It may
simply be a warning.

Most commonly, an error message informs your user of an invalid
entry or action, or it reports a function that is not operating correctly.

Message Name

A message name is an internal identifier for a message in your
application. A message name can be up to 30 characters long.

A message name, together with your application name and language
name, uniquely identifies your message. You specify the message

12 – 25Message Dictionary

name when you call Message Dictionary from a form or program
module.

Message Prefix

A message prefix is a short code that automatically precedes your
message number and text for those messages that have numbers. The
standard message prefix is APP:<application short name> for Release
11i and higher.

Message Number

A message number is a number that precedes your message when your
message is displayed to users. A message number is not changed by
translators. The message number also helps your user determine
which application generates a message, and helps your user to locate a
message in the documentation.

If you define a message number for your message, Message Dictionary
automatically precedes your message with the Oracle message
standard ”APP:<application short name>–nnnnn”, where APP is a
standard message prefix for Oracle Applications and nnnnn is your
message number. Your message number may be up to 5 digits long.
For example, your user might see ”APP:SQLGL–0032 Please enter ...”
for an Oracle General Ledger message.

Message Description

The Description field in the Messages form describes your message for
other developers and translators. You can enter up to 230 characters of
text in your message description. Typically this field contains
information for translators about the context of your message.

Variable Token

A variable token, also called a substitute token, acts as a placeholder
when you define message text. When Message Dictionary displays a
message, it substitutes a developer–specified value for each variable
token, allowing you to create dynamic messages.

Boilerplate

Boilerplate is any fixed text contained in a form. Boilerplate includes
form titles, zone titles, region titles, and field prompts.

12 – 26 Oracle Applications Developer’s Guide

Message Naming Standards

The following suggested standards provide a consistent naming
convention for message names.

• Message names are hardcoded into forms and programs and
should never change.

• Use descriptive words and make your message names
meaningful to other developers. Your name should clearly
summarize the content or purpose of the message.

• Message names can contain no more than 30 characters.

• Make message names all uppercase. Although message names
are case insensitive, this provides consistency so that messages
can be searched for easily.

• Do not use spaces in message names; use underscore characters
instead to separate words.

• Message names should not contain message numbers (or
prefixes), because message numbers may change over time.

• Include your two–to–three–character application short name or
abbreviation as the first word in each message name (optional).

Use a group identifier as the second word in each message name

Include a group identifier that indicates the functional area or
organizational function that your message addresses. Your group
identifier should correspond to the group identifier you use in your
form names, which helps break your set of messages into smaller,
manageable chunks.

FND_FLEX_SEGMENT_NOT_REGISTERED
[group identifier is FLEX, for Flexfields]

FND_MD_MESSAGE_NOT_FOUND
[group identifier is MD, for Message Dictionary]

FND_MESSAGE_NOT_FOUND

Some examples of message names are:

• INV_UOM_REQUIRED

• AP_MATCH_BAD_SEGMENT

• SPEC_INFO_IN_USE

• MAND_PARAMETER_NULL

Right:

Right:

Wrong:

12 – 27Message Dictionary

• ZOOM_BAD_FIELD

• AFDICT_HISTORY_BUTTON

Message Numbering Standards

Oracle Applications products all have assigned message number
ranges. These ranges, and messages that have non–zero numbers
appear in the Oracle Applications Messages Manual. Messages without
numbers are not included.

• Use a number for all errors and warnings, but not hints, notes or
questions.

– All errors and warnings now have message numbers to help
developers trace a message if the problem comes from an
installation running in a language other than English.

• Message Dictionary displays message numbers with the message
prefix. The message prefix is APP– for Release 11 and lower, and
APP:<application short name>– for Release 11i.

– The application short name has been added for Release 11i
to make messages easier to trace, especially after messages
have been translated

• If your message number is less than 1000, Message Dictionary
extends your number to four places with leading zeros.

• A zero (0) message number is equivalent to a null (blank)
message number and does not display (the prefix does not
display either).

– Messages with a null message number that have been
loaded into Message Dictionary from a file will have the
message number changed to zero.

• Do not put the message prefix or a message number in your
message text.

Here are some guidelines to help you decide whether to use a number.

Messages That Require Numbers

If the answers to any of the following questions are yes, the message
probably needs a number:

• Is this a message that someone such as a support representative
might want to look up in a manual (for example, a user might

12 – 28 Oracle Applications Developer’s Guide

call a support representative, say ”I got an APP–12345 error”,
and expect the representative to know what the message
means)?

• Is this a message that requires someone to get assistance (from a
system administrator, for example) to solve the problem?

• Is this a message where correcting the problem may require
reading the message more than once or writing the message
down?

Messages That Should Not Have Numbers

If the answers to any of the following questions are yes, the message
probably does not need a number:

• Is this a text fragment such as a token translation?

• Is the message merely explanatory and informative (for example,
”Your concurrent request number is 86477”)?

Custom Applications and Other Products

For custom applications and third–party products not included in the
published message number ranges, we recommend that you avoid
using message numbers 0–2999. Those are Oracle Application Object
Library messages that appear in cross–product features such as
flexfields and concurrent processing, and they may appear in your own
applications.

In general, it may be useful to avoid duplicating any numbers that
appear in Oracle Applications products even though there is no
technical requirement to avoid duplication. Keeping your custom
messages numerically separate from Oracle Applications messages
may help users distinguish whether a problem stems from an Oracle
Applications product or a custom application, and help them decide
where they should seek assistance for problems.

If you want to avoid clashing with numbers that Oracle Applications
products use or may use in the foreseeable future, we recommend that
you number messages using 400000 (400,000) and up (the largest
possible message number is about 2 billion).

12 – 29Message Dictionary

Message Type Standards

Message type is used primarily for translation purposes. The correct
message type (Error, Title, and so on) allows translators to distinguish
between text that can be translated without worrying about length
expansion, such as error messages, and text that has strict expansion
limits, such as field prompts for a form. Note that for Oracle
Applications Release 11i messages in English, one character is
equivalent to one byte, but in other languages one character may
require more than one byte.

Type is ERROR in script file. Use for error and
warning messages. Messages with the Error type
can be up to 1260 characters long in English and
allow a translation length expansion up to a
maximum length of 1800 bytes (at least 30%
allowed expansion). Messages with the Error type
should have a message number.

Type is NOTE in script file. Use for informational
or instructional messages (typically messages
displayed using FND_MESSAGE.SHOW).
Messages with the Note type can be up to 1260
characters long in English and allow a translation
length expansion up to a maximum length of 1800
bytes (at least 30% allowed expansion). Messages
with the Note type should usually not have a
message number.

Type is HINT in script file. Use for informational
or instructional messages (typically messages
displayed using FND_MESSAGE.HINT).
Messages with the Hint type can be up to 190
characters long in English and allow a translation
length expansion up to a maximum length of 250
bytes (at least 30% allowed expansion).

Type is TITLE in script file. Use for window titles,
report titles, report group titles, graph titles, and so
on. Messages with the Title type can be up to 61
characters long in English and allow a translation
length expansion up to a maximum length of 80
bytes (at least 30% allowed expansion).

Type is 30_PCT_EXPANSION_PROMPT in script
file. Use for field prompts, report column labels,
graph labels, and so on, where space has been
allowed for up to 30% expansion during translation

Error

Note

Hint

Title

30% Expansion
Prompt

12 – 30 Oracle Applications Developer’s Guide

(allowing for a mimimum of 10 bytes after
translation, except for approved phrases and
abbreviations). For example, a 23–character field
prompt in English would be allowed to expand to
30 bytes when translated. Most prompts and
boilerplate should use this type. However, if you
have more expansion space available on your form
or layout, use the appropriate type (50% or 100%
Expansion Prompt), especially for short prompts.

Type is 50_PCT_EXPANSION_PROMPT in script
file. Use for field prompts, report column labels,
graph labels, and so on, where space has been
allowed for up to 50% expansion during translation
(allowing for a mimimum of 10 bytes after
translation). For example, a 10–character field
prompt in English would be allowed to expand to
15 bytes when translated.

Type is 100_PCT_EXPANSION_PROMPT in script
file. Use for field prompts, report column labels,
graph labels, and so on, where space has been
allowed for up to 100% expansion during
translation (allowing for a mimimum of 10 bytes
after translation). For example, a 6–character field
prompt in English would be allowed to expand to
12 bytes when translated.

Type is MENU in script file. Use for menu entries,
such as choices on the Special menu, especially
where such entries have accelerator keys (keyboard
equivalents) denoted by a double ampersand (&&).
Ideally, menu entries should be less than about 25
characters long in English (for aesthetic reasons).
The maximum length for a menu entry message is
46 bytes in English (60 bytes after translation).

Type is TOKEN in script file. Use for messages
that are used as token values in other messages.
This type is for backwards compatibility only, and
should not be used for new messages (new
messages should not use tokens that require
translation). You must include a message
description that contains the name of the message
that uses the token and any translation length
restrictions.

50% Expansion
Prompt

100% Expansion
Prompt

Menu Entry

Token

12 – 31Message Dictionary

Type is OTHER in script file. Use for text not
covered by any other type. You must include a
message description explaining the message and its
translation requirements (for example, if the
message should not be translated or has a specific
maximum length).

Message Description Standards

Use the description field to tell translators and other developers the
purpose of the message, where it is used, and how it is used. For
example, if you define a message to use as a label for a Special menu
entry, you should mention that in the description field for your
message. The message description is especially important for short
pieces of text that will be translated, so that translators have some idea
of how the text would appear.

Even if your message is unambiguous, translators may need to know
where it occurs so that they can match their translations of your
message to their translations of other text in related areas of your
application.

Include a message description for any of the following cases:

• Table and column names in the message

• Uppercase or lowercase values in the message (indicating
whether values should be translated)

• Any uppercase words in the message, or if the entire message is
uppercase

• Any words other than tokens that contain underscores (_)

• Tokens that represent sentence fragments

– include what text is expected to replace the token.

• If your message contains a nonobvious variable token name, use
your notes field to tell translators what your token represents.

• Very short messages or text fragments

– include where and how the message is used (button label,
form message, boilerplate, etc.). If it is a text fragment used
to build another message (as a token value), include the text
defined for the target message and the target message name
so the translator can see the expected context of the
fragment.

Other

12 – 32 Oracle Applications Developer’s Guide

• Ampersands (&) other than those preceding tokens (for
example, for menu accelerator keys, especially where the
ampersand is in the middle of a word)

• Messages where the text must match the translated text in some
other part of the application, such as field names, profile option
names, menu paths, and so on

• Messages defined as Oracle Application Object Library messages
that do not belong to Oracle Application Object Library

– include name of product using the message, where and how
the message is used (button label, forms message, menu
entry, boilerplate, etc.).

Enter your message notes using the following format:

This message appears context.

where context is when and where your message appears. (You can use
any format to explain token names, as long as your notes are clear and
well–written).

This message appears only when making new
entries in the Enter Journals form.

This message appears in the Invoice Register report
to indicate division by zero.

Example:

Example:

12 – 33Message Dictionary

Message Content Standards

Following content standards makes your application more pleasant to
use and easier to translate.

Messages should never exceed about 1260 characters in English. This
allows space for the messages to be translated to ”longer” languages
such as German.

Message Token Standards

Using tokens to include values at runtime can make the message more
flexible, but use them sparingly.

Always make tokens in your message uppercase so they are easy to
identify in a messages manual or in a message file being translated.

Use tokens only if different values for a token do not require different
translations for surrounding text. Avoid using tokens for text where
the value of the token must be translated. In general, you can use
tokens to represent the following types of values:

• Monetary

• Numerical

• Date (must use conversion routine)

• Proper names

• User names (such as from a profile option)

• File names

• Some field values

Avoid using tokens to substitute for words or phrases in a sentence.
These are nearly impossible to translate, because different token values
may require different translations for the surrounding text. For
example:

This &ENTITY must be &ACTION.

This bad example is impossible to translate because the noun, ENTITY,
could be either masculine or feminine, and singular or plural, all of
which may affect translation of both the pronoun ”This” and the verb
”must” (for example, singular or plural, or masculine or feminine). The
message would be better written as one or more messages without

Wrong:

12 – 34 Oracle Applications Developer’s Guide

tokens at all (assuming the user seeing the message can approve the
purchase order):

Please approve this purchase order.

Some phrases that appear contiguously in an English sentence may be
dispersed across the sentence when it is translated into another
language. Dispersion can even be a problem for single words if they
translate into multiple words. For example, the expression ”not”
occupies one location in English sentences, but it may appear in a
French sentence as two separated words, ”ne” and ”pas.”

The sentence ”Terminal is operational”, for instance, translates into
”Terminal est operationnel.” The negative form of this sentence,
however, translates from ”Terminal is not operational” to ”Terminal
n’est pas operationnel.” Therefore, while you could represent the
expression ”not” with a single token in English, you would need two
tokens placed in different locations to make a French translation.

You should make sure that any substitutable text does not include
phrases that depend on word order, as word order and sentence
structure may change when translators translate a message.

Avoid hardcoding text into your code

You should also avoid hardcoding substitute text into your forms, since
this would prevent you from updating or translating your message text
later using the Messages window (and you would have to regenerate
your form if you needed to change your message). If you must have
text fragments in your message, you should use the TRANSLATE
token with Message Dictionary routines for substitute text that may
require translation.

Use descriptive variable token names

Avoid cryptic variable tokens. Make token names clear and readable so
that the message makes sense to a reader even before substitution takes
place. Messages containing descriptive variable tokens are easier to
use and debug. You can use underscores in your token names to
separate words.

&PURCHASE_ORDER_NUMBER

&USER_NAME

&ROUTINE_NAME

Right:

Right:

Right:

Right:

�

12 – 35Message Dictionary

&ENTITY1

&TOKEN

&NUMBER

&NAME

&TYPE

The &ROUTINE_NAME token, for instance, might be used in a
message as follows:

APP–0123 Could not run routine &ROUTINE_NAME.

Even a descriptive token name can contain ambiguities, so use the
notes field to clarify the purpose of your token if translators might not
know exactly what your token represents. This information is
important to translators, since your token often provides critical
information about the purpose and context of your message.

Attention: Do not change or remove an existing token name
without also changing the code that calls the message.

Use two messages to distinguish singular and plural token values

Do not use the same message for both singular and plural token
values. Simply placing an ”(s)” after your token is not acceptable, since
your message may be translated into a language that does not specify
plural forms with a trailing ”s”, or any other trailing letter or letters.
For example:

One row updated.
&NUMBER_OF_ROWS rows updated.
[Two distinct messages]

&NUMBER_OF_ROWS row(s) updated.

&NUMBER_OF_ROWS rows updated.
[No singular message defined]

Converting a Date or Date–Time Value

If you pass dates in tokens, use a conversion routine to make the date
appear in the correct format. Otherwise, they will show up as
DD–MON–YY format no matter what the NLS_DATE_FORMAT is set
to.

Wrong:

Wrong:

Wrong:

Wrong:

Wrong:

Right:

Wrong:

Wrong:

12 – 36 Oracle Applications Developer’s Guide

FND_MESSAGE.SET_TOKEN(’ORDER_DATE’,
 app_date.date_to_chardate(:ORDERS.DATE_ORDERED),
 FALSE);

FND_MESSAGE.SET_TOKEN(’ORDER_DATE_TIME’,
 app_date.date_to_chardt(:ORDERS.DATE_ORDERED),
 FALSE);

A Few General Guidelines for Writing Good Messages

Address the Correct Person (Do Not Accuse the Innocent Bystander)

Always keep in mind who is the person most likely to encounter your
message, and write your message for that audience. In most cases, the
person seeing the message is the end user of the application, not the
developer, system administrator, or support representative.

Just the Important Information

In general, end users (and other users) want to know the minimum
information necessary to correct a problem and get on with their work.
End users do not necessarily want to know information such as the
routine name of the routine that generated the error, or other technical
information, unless it helps them solve the problem.

Give Users Actions They Can Accomplish

Think about what access the user is likely to have to application
functions. A clerk is unlikely to have sufficient authority to go into
application setup forms to change the default value for a flexfield
segment, for example. Similarly, the clerk probably does not have the
access or ability to go and modify the code of a form that a developer
coded improperly.

Write your explanation with the expectation that your end user will
encounter it, even if your message is intended only for developers and
debugging. Label technical actions that are intended for system
administration, development, or support personnel so that your end
user knows what to do.

Example

12 – 37Message Dictionary

If the Problem Is Not the User’s Fault, Say So Immediately

Optionally use the convention ”Program error: ” at the start of a
message if the problem is not something the user did or can do
something about. This is especially important for ”developer–error”
problems where an error traps for something that the developer or
installer should have caught during system testing.

APP:FND–1514 Program error: Invalid
arguments specified for the flexfield
user exits.

Avoid including the routine name in the message unnecessarily

In many cases, a routine name (especially delivered by a token) is both
unnecessary and unduly intimidating.

Do not change existing message text unnecessarily

Each change usually requires the combined efforts of a number of
people. When you change the text of a message, translators must also
revise existing translations of your message to prevent mismatches
between versions of your application in different languages.

Never write ”temporary” messages

Prevent embarrassing errors from appearing in your messages; always
assume that the message you define is ”the real thing”, even if you
expect someone else to check it. Similarly, give your error and warning
messages a ”real” message number immediately.

APP–8402 Account number does not exist.

APP–9999 John, we need a message here.

Spell–check your messages

Prevent embarrassing errors from appearing in your messages; pass
them through a spell–checking program.

When the User Needs to Get Help

When a user needs to get someone else to help solve the problem, use
one of the following phrases. If the content of the message includes

Right:

Wrong:

12 – 38 Oracle Applications Developer’s Guide

tokens whose values are important to know to solve the problem, use
the version of the phrase containing ”that:”, implying to the user that
writing down the entire message is important for getting help. If there
are no tokens, and a support representative or other person could look
up the entire message given only the message number, then use the
”Please contact your...” version.

Please inform your support representative that: (then
blank line)

Please inform your system administrator or support
representative that: (then blank line)

Please inform your system administrator that: (then
blank line)

Please contact your support representative.

Please contact your system administrator.

Please contact your system administrator or support
representative.

APP:FND–1591 Program error: Invalid arguments
to the flexfield routines. Please inform your
support representative that:

The argument &ARGUMENT_NAME was spelled
incorrectly.

If a problem can be resolved by a system administrator, use the same
heading, but substitute ”system administrator” for ”support
representative”.

APP:FND–1591 Flexfield validation table
&TABLE_NAME was not found.

The flexfield validation table associated with a
value set was not found, so the default value for
the segment using that value set could not be
validated.

Please contact your system administrator.

If a problem cannot be resolved by most system administrators (or if
what you really want to say is ”call support and log a bug”), use one of
the standard phrases above that includes the phrase ”support
representative”. The support representative should be able to
determine whether a bug should in fact be reported.

Example:

Example:

12 – 39Message Dictionary

You should never specifically ask users to contact Oracle, Oracle
Support or Worldwide Support (or anything similar), or Oracle
Consulting in your message. End users at many customer sites usually
must contact someone at their site who in turn may contact someone at
Oracle or elsewhere (or visit a Web site) so the term ”your support
representative” is appropriate for those cases. In addition, the name of
the support organization at Oracle has changed several times, and
some customers may contact different parts of the support organization
that have different names.

You can also use the following optional phrases (including punctuation
and spacing) where appropriate in your messages. Using standard
phrases helps contain translation costs because a standard translation
can be reused cheaply.

Program error: (1 space, then init cap)

Possible causes: (then blank line)

Additional information for support representative:
(then blank line)

APP:FND–01234 Unable to execute &TRIGGER
trigger.

Please contact your support representative.

Additional information for support representative:
Check that the trigger exists in the form.

Note: Omit the sentence ”Additional information...” if you do not
include further technical information.

Complex Messages

Many messages require more explanation than will fit in a short simple
message. In these cases, you need to provide all the necessary
information while still keeping the message as brief as possible.

First, provide a short version of the message so the user can get the
sense of the problem quickly without needing to read through the
entire message. Add a blank line, then provide further information to
help the user result the problem.

If the problem has several possible causes, list them by number and
include the remedy with the description of the cause.

Example:

Example

12 – 40 Oracle Applications Developer’s Guide

APP:FND–1518 Program error: Invalid arguments
specified for the flexfield user exits.

Flexfield cannot find the segment qualifier name for
your value validation rule.

Possible causes:

1. The flexfield user exits #FND LOADID, #FND POPID,
or #FND VALID are specified incorrectly. Check the
syntax and spelling of the user exit arguments.

2. The VRULE= parameter may be incorrect. Make sure
the value is in quotes, the \n’s are in lower case,
there are no spaces around the \n’s, and all the
information is provided.

Specific Types of Message Content

UPPERCASE, Mixed Case, and lowercase

Translators use case as an indicator of what should be translated. The
general rule for messages is that all uppercase words are not translated
(they are assumed to be objects such as table or column names, or to be
literal values). Mixed–case words are translated.

Messages that are completely in lowercase usually cause confusion as
to how they should be translated, because they may be fragments of
other messages. For example, ”enter a value” could be interpreted as a
complete but incorrect message, or it could be interpreted as a
fragment of another message (such as ”Please &ACTION for the
&FIELD field.”) Message descriptions are required for clarification in
these cases.

Substitute tokens must always be completely in uppercase, as in
&REQUEST_ID. Tokens are never translated (translation would cause
the substitution to fail at runtime because the token is embedded in the
code).

Table and Column Names

Avoid having table or column names in messages because they are not
generally considered user–friendly. For forms, typically the user will
not have direct access to tables and columns anyhow and may not be
able to carry out the instructions in the message, so table and column
names in form messages are especially inappropriate.

12 – 41Message Dictionary

If you must have table or column names in your message, they should
be all uppercase, not lowercase or mixed case, to indicate that they
should not be translated. If appropriate, include the words table or
column in the message to make it clear to the user as well, for example,
”... the table FND_CONCURRENT_REQUESTS has been...”. You must
also include a description for the message to tell the translator not to
translate the table or column name (include the table or column name
in the description just to be clear).

Navigation or Menu Paths in Messages

Never use a navigation path (what a user chooses from the Navigator
window) to a form or function in a message, because the navigation
path is very likely to change at a customer site (customers can redefine
menus), so your message would then be incorrect.

Avoid using menu paths (the default or pulldown menu) in messages if
possible. Translators would need to know the entire corresponding
menu path in the target language to translate the path correctly. If you
must use a menu path for a choice on the default menu, use –> as the
delimiter between menu entries. For example, Help–>Tools–>Custom
Code–>Off. Indicate that this is a default menu path in your message
description so translators can figure out the corresponding translated
menu path.

Field Names

Avoid using field names in messages. Field names written directly in
the message may not match the actual field name once both the form
and the message are translated. Field names may also change over
time, rendering the message obsolete or requiring extra maintenance of
the message to keep the message correct.

If you must have a field name in a message, the preferred method is to:

• Use a token for the displayed field name (such as
&FIELD_NAME, not &NAME)

• Put the field name itself in the form using a parameter default
value or static record group cell, where it will be translated with
the rest of the form

• Substitute the field name into the message at runtime

12 – 42 Oracle Applications Developer’s Guide

Avoid Listing Values in Messages

Avoid listing values in messages. A typical type of message where you
might expect to list values in the message would be: ”Please enter one
of the following values: Blanket, Standard.” However, in general, you
should not list values in messages at all. Valid values are likely to
change over time, rendering messages obsolete or requiring extra
maintenance of the message to keep the message correct. Further, users
can usually get a list of valid values using the LOV on the field (if
available) or, if the field is a poplist, from the field itself. Duplicating
the value list in the message is unnecessary.

Suggestion: If a field requires a message like ”Choose A for
Amount or R for Rate”, because there is no list of values
available, the field itself should probably be changed. The field
could have a list of values added, or be reimplemented as a
poplist or option group as appropriate. File an enhancement
request for the affected form.

Where it is absolutely necessary to list values, list the values exactly as
the user should type them. Typically that would be in mixed case
instead of uppercase or lowercase, depending on the field
requirements. You do not need to put quotes around your values
unless the values contain spaces, in which case you should put double
quotes around each of the values in the list (as in ”My first value”, ”My
second value”, ”Third”).

If you must have values in your message, you must include a
description for the message that tells translators whether they should
translate the values. For example, in a message like ”Choose A for
Amount or R for Rate.”, the translator would not know whether (or
how) to translate ”A”, ”R”, ”Amount”, or ”Rate”.

Message Writing Style

Preferred Word Choices

Using preferred word choices and spellings help messages appear
consistent across applications. In general, prefer American English
spelling of words. The following table contains words you should
avoid using and their preferred alternatives.

12 – 43Message Dictionary

Situation Avoid Prefer

General username user name

filename file name

commit save

ID (unless part of a column or field name)
Id (never use this)

number

e.g. such as, for example

i.e. that is

Dates less than before

greater than after

Table 12 – 2 (Page 1 of 1)

Colloquialisms and Informal Expressions

Avoid colloquial or informal expressions, because these often are
difficult to translate.

Contractions

Avoid using contractions wherever possible. Contractions reflect
informal speech and writing and are not always translated correctly.
Spell out words that you might present as contractions in less formal
writing, such as it’s (it is), don’t, can’t (cannot is the accepted spelling),
you’ve, and so on.

Special Characters: Quotes

Limit the use of quotation marks in messages. They make messages
choppy and difficult to read. However, quotes are useful for setting off
phrases such as complex values from the rest of the message (such as
when the complex values contain spaces).

Please assign a value to the ”JLBR Interest Debit
Memo Batch Source” profile option.

Please assign a value to the JLBR Interest Debit
Memo Batch Source profile option.

In many cases, the careful use of capitalization and descriptive words
may be sufficient to set apart a value or field name.

Right:

Wrong:

12 – 44 Oracle Applications Developer’s Guide

Please enter a positive numeric value in the Interest
Amount field.

Please enter a positive ”Interest Amount”.

Please enter a positive numeric value in the
”Amount” field.

Prefer to use double quotes (”double quotes”) instead of single quotes
(’single quotes’). In American English, single quotes are typically used
as apostrophes indicating possession and contractions (as in ”Don’t
forget Sara’s lecture.”).

Special Characters: Underscores

Avoid having words with underscores in your messages other than
tokens. Translators assume that words containing underscores are
code or table or column names that should not be translated. If you
have words with underscores, include a description that tells
translators what to do with them.

Special Characters: Ampersands, At–signs

Avoid using ampersands (&) other than for tokens (or accelerator keys
if you also include a note in the description) in your messages. They
will be confusing to translators, and your message may be translated
incorrectly. Use the word ”and” instead if that is what you mean.

You should also avoid using at–signs (@) in your messages. In early
versions of Message Dictionary, at–signs were used to indicate
formatting information (such as @PARAGRAPHEND). Such
formatting information should no longer be present in any messages.

Industry Jargon

Keep extremely industry–specific jargon to a minimum. While users
and support personnel may know many industry–specific terms,
messages are likely to be easier to read and translate if they use simpler
language.

Standard Capitalization

Use standard capitalization for feature names and terms. For example,
use the following capitalizations for these phrases:

• system administrator (not capitalized)

• support representative (not capitalized)

Right:

Wrong:

Wrong:

12 – 45Message Dictionary

• flexfields (usually not capitalized unless referring to a specific
flexfield, such as the Accounting Flexfield)

• descriptive flexfields (not capitalized)

• Message Dictionary

Formatting Messages (Multiple Paragraphs, etc.)

Keep message formatting simple. Where you need to have multiple
sections or paragraphs in the message, use a blank line to separate
them.

APP:FND–01234 Unable to execute [Trigger]
trigger.

Please contact your support representative.

Additional information for support representative:
Check that the trigger exists in the form.

Avoid using tab characters or spaces for formatting, because these are
difficult to see and are hard to maintain or translate. Avoid using
complex formatting in Message Dictionary.

Emphasis

Do not use uppercase, mixed case, exclamation marks (!), multiple
punctuation marks (such as ”Do you want to quit???” or ”Do you want
to quit?!”), or anything else for emphasis. Emphasis is not translatable.
The fact that the user has just gotten a message in a dialog box should
be enough to make the user pay attention. Ensure that the message is
called using the correct routine for the situation (error, warning, etc.).

Terminal Punctuation

Use terminal punctuation (period, question mark) at the end of your
message if it is a complete sentence. If there is no terminal
punctuation, users and translators may wonder if the message was
accidentally truncated.

Please enter a value.

Please enter a value between 1 and 9.

Please enter a value

Do you want to quit?

Example:

Right:

Right:

Wrong:

Right:

12 – 46 Oracle Applications Developer’s Guide

Do you want to quit

Do not use exclamation marks, because they seem to indicate that you
are ”shouting” at the user.

Be precise and concise

Treat message text as formal written prose. Use powerful and succinct
language that can be easily translated. Omit unnecessary words.

APP:SQLAP–14039 You cannot add lines to a
completed requisition.

APP:SQLAP–14039 You cannot affix any more new
lines to a requisition that has already been
completed.

Avoid ambiguous words

Try to use words that have only one meaning. Avoid words with data
processing connotations unless you are referring to a specific
application function.

Say please wherever possible

Be polite. When a message contains instructions, and the message is
short enough to fit in the message field with room to spare, use please.

APP–2201 Please enter an amount greater than 1.

APP–2201 Enter an amount greater than 1.

Use vocabulary consistent with form boilerplate

Refer to a form field by its correct name. If a field is labelled Sales
Representative, do not use the message ”Please enter a different
salesperson.”

Address the user as you

Talk to the user, not about the user. Users prefer friendly messages that
address them directly and make them feel they control the application.
”You” is also more concise and more forceful than ”The user ...”

APP–0842 You cannot delete this row.

APP–0842 The user cannot delete this row.

Wrong:

Right:

Wrong:

Right:

Wrong:

Right:

Wrong:

12 – 47Message Dictionary

Avoid nonspecific future tense

Use future tense only when your message refers to a specific time or
event in the future. In other cases, ”will” is usually ambiguous.

Checks will print on Tuesday.

APP–10491 Please select an invoice to cancel.

APP–10491 Please select an invoice that you
will cancel.

Use active voice

Avoid passive voice. If a message refers to a specific person (such as
the user, the system administrator, another user), the message should
mention that person.

APP–4194 You have cancelled this process.

APP–4194 This process has been cancelled.

APP–4194 This process has been cancelled by
you.

APP–0513 You cannot delete a row in this
zone.

APP–0513 Rows in this zone cannot be
deleted.

[Who cannot delete rows in this zone?]

APP–4882 Your password has expired. Please
contact your system administrator.

APP–4882 Your password has expired. It
must be changed.

Avoid accusatory messages

Do not insinuate that the user is at fault. Do not mention a user’s
mistake unless it pertains to the problem’s solution.

APP–11394 Check number does not exist for
this account. Please enter another.

APP–11394 You entered an illegal check
number

APP–11394 Please enter another check number

APP–11394 You made a mistake. Enter the
right check number.

Right:

Right:

Wrong:

Right:

Wrong:

Wrong:

Right:

Wrong:

Right:

Wrong:

Right:

Wrong:

Wrong:

Wrong:

12 – 48 Oracle Applications Developer’s Guide

APP–17503 Please enter a deliver–to person.

APP–17503 You did not enter a deliver–to
person. Enter a deliver–to person.

Use imperative voice

Sentences containing auxiliary verbs imply uncertainty. Prefer
imperative voice.

In many cases, you can transform sentences containing auxiliary verbs
into imperatives.

APP–17493 Please enter a commission plan.

APP–17493 You can enter a commission plan.
[or you can go to lunch, or ...]

Avoid conditionals

Prefer positive, imperative statements over statements containing
conditionals.

APP–14583 Save your screen to submit this
requisition for approval.

APP–14583 If you save your screen, the
requisition will be submitted for
approval.

Use ”can” to indicate either capability or permission

Auxiliaries such as ”could”, ”may”, and ”might” are ambiguous and
imply more uncertainty than ”can”. Limit the range of uncertainty by
using ”can”, which always implies capability or permission but does
not imply chance or luck.

The person you named cannot approve requisitions
online.

The person you named may not approve
requisitions online.
[The person may not approve a requisition because
of a foul mood or capriciousness or ...]

You cannot delete a printed release.

You may not delete a printed release.
[and it may not rain tomorrow, if you’re lucky.]

Right:

Wrong:

Right:

Wrong:

Right:

Wrong:

Right:

Wrong:

Right:

Wrong:

12 – 49Message Dictionary

Refer to menu paths, not power–user or terminal–specific keys

Do not force your user to remember which key performs a function.
Also remember also that your user may not have the same kind of
terminal as you do.

APP–0457 Please use the list of values to see
values for this segment.

APP–0457 Please press [QuickPick] to see
values for this segment.

APP–0457 Please press [Do] to save your
changes.

When you must refer to keys, use the standard key names listed below:

[Next Field]
[Previous Field]
[Insert/Replace]
[Enter Query]
[Execute Query]
[Exit/Cancel]
[Save]

If you use a key name in your message, you must include a note in the
message description indicating that it is a key name. Key names are
translated for most languages other than Arabic (key names are in
English in the English/Arabic keyboard), so translators specifically
need to know if the message contains key names.

Use consistent vocabulary to describe application functions

When you write a message that advises your user to perform some
other application function, use the same terminology as the application
forms do.

APP–16934 Please define a sales
representative.
[where the form is the Sales Representatives form]

APP–16934 You have not entered any sales
people.

[where the form is the Sales Representatives form]

Right:

Wrong:

Wrong:

Right:

Wrong:

12 – 50 Oracle Applications Developer’s Guide

Use only abbreviations that match forms and reports

Keep abbreviations to a minimum, because they often make messages
harder to read and translate. Use only abbreviations that match those
used in your application forms. If the forms that use a message do not
abbreviate a term, do not abbreviate that term in a message.

If your form or report abbreviates a word or phrase simply because of
space constraints (that is, if there were room on the form, the full
phrase would be used), your message should use the full word or
phrase.

APP–24943 Please close your MRP cycle.

APP–24943 You are not authorized to complete
this TRXN.

When a term is not used in any application forms, or when a term is
abbreviated inconsistently, use the following criteria to decide whether
to abbreviate a term:

• The abbreviation is commonly accepted in the industry

• The abbreviation is used in trade journal articles

• Industry professionals commonly spell or pronounce the
abbreviation in everyday conversation

Do not use feature names as verbs

Do not use feature names as verbs.

APP–8402 You cannot use DateTrack to
change this record.

APP–8402 You cannot DateTrack this record.

Use friendly, simple, non–technical language in your message

Do not confront your user with technical or database jargon. Use your
end user’s vocabulary. Prefer to use the simplest words possible that
will get your meaning across.

APP–8402 Account number does not exist.

APP–8402 Account ID does not exist.

APP–0127 No records exist.

APP–0127 Application located no rows
matching specified relationship.

Right:

Wrong:

Right:

Wrong:

Right:

Wrong:

Right:

Wrong:

12 – 51Message Dictionary

Begin messages with a capital letter

Capitalize the first character of a message. Do not capitalize every
word.

At last zone.

at last zone

At Last Zone

Prefer solution–oriented messages

When there is a simple error that your user can easily correct (for
example, a field without a value in it or a field containing an illegal
value), give directions for fixing the problem in your short message.

Do not describe the problem; tell how to fix it.

APP–17403 Please enter a shipper.

APP–17403 Shipper is missing.

Explain why your user cannot perform a function

When a user tries to do something that does not make sense in the
current context, tell why it cannot be done.

APP–14420 You cannot update this invoice
because it is selected for payment.

APP–14420 Invalid action

APP–12483 You have already cleared this
exception.

APP–12483 You cannot clear this exception.

Differentiate between similar messages

If your form has several closely–related error conditions, use messages
that distinguish between them.

APP–17403 Vendor cannot accept new
purchase orders. Choose another
vendor.

APP–17408 Vendor cannot ship item in
requested quantity. Choose
another vendor.

Right:

Wrong:

Wrong:

Right:

Wrong:

Right:

Wrong:

Right:

Wrong:

Right:

12 – 52 Oracle Applications Developer’s Guide

APP–17403 Vendor cannot accept this purchase
order. Choose another vendor.

APP–17408 Vendor cannot accept this purchase
order. Choose another vendor.

Use precise, descriptive, and unambiguous language

Make sure that a translator, as well as your user, can easily understand
your message. Your message is easier to translate if you do not use
abbreviated, obscure, ambiguous, or context–sensitive language.

Special Purpose Messages

Messages to Be Used as Boilerplate, Titles, Button Text, Labels

Avoid storing text to be used as boilerplate, prompts, titles, button text,
labels, report titles, or HTML in Message Dictionary. Such pieces of
text are extremely difficult to translate out of context. In particular, text
with HTML markup requires translators to use a separate toolset for
translation and should not be stored in Message Dictionary.

The preferred method for storing such text is to put the text in the form
using a parameter default value or static record group cell, where it
will be translated with the rest of the form.

If you must store such text in Message Dictionary, provide a complete
message description indicating exactly how and where the text is to be
used, and the maximum length to which it can be allowed to expand.
Do not give these messages message numbers.

Messages to Be Used as Menu Choices

Indicate that this is a menu entry in your message description. If there
is an ampersand (&) in the menu entry to enable an accelerator key,
indicate that in your message description so the translator does not
assume that you have simply misplaced the ampersand for a token.

Typically, the translator would eliminate ampersands in the translated
menu entry, but the translator must be careful not to eliminate
ampersands used for tokens. You may also use a double ampersand
(&&) in your menu entry, but you must still have an appropriate
message description.

Wrong:

Example

12 – 53Message Dictionary

Usage Messages

Provide usage information when a developer or user incorrectly
specifies arguments for a routine. You make it easier for support
personnel to resolve customer problems with your concurrent
programs if you include an action containing usage information for
your routine. You also help developers to implement your routines
more easily. Include the following information in your usage action:

• The syntax for your routine, including all applicable arguments

• An example of correct usage

• A description of each argument that you listed in the syntax
statement for your routine

Follow the example below when providing usage information:

APP:FND–0490 Please enter the correct arguments for
FNDMDCTM as follows.

Syntax: FNDMDCTM <ORACLE ID> <Request ID> <OS Flag>
<Source Language Short Name> <Destination Language
Short Name> [<Application Name>]

Example: FNDMDCTM APPLSYS/FND 0 Y usaeng gerger
’Oracle General Ledger’

ORACLE ID: Enter the username and password of the
applsys ORACLE ID. Enter the username and password
without any spaces and separated by a slash (”/”).

Request ID: This argument is no longer used and is
present for backward compatibility only. Enter 0.

OS Flag: This argument is no longer used and is
present for backward compatibility only. Enter Y.

Source Language Short Name: Enter the short name of
the language from which you wish to copy messages.

Destination Language Short Name: Enter the short
name of the language to which you wish to copy
messages.

Application Name: Enter the name of the application
for the messages you wish to copy. This argument is
optional.

Be sure to include a message description that tells translators what
parts, if any, of your message to translate (or not).

12 – 54 Oracle Applications Developer’s Guide

Debugging Messages

Many debugging messages are hardcoded directly into forms in
English and are never translated or defined in Message Dictionary.
These are typically messages embedded in PL/SQL code that act as the
last branch in a handler. For example:

 ELSE

 fnd_message.debug(’Invalid event passed to

 control.orders_lines: ’ || EVENT);

 END IF;

These messages should never be seen by an end user.

Another type of debugging message can appear to a user (typically
support personnel) when an application is being run in ”debug mode”
(supported by some applications, such as Oracle Receivables). These
messages typically appear in a log file, and they are defined in Message
Dictionary. These messages should be translated, and should follow all
appropriate message standards.

12 – 55Message Dictionary

Messages Window

Define your application messages before your routines can call them
from a form and before your users can request detailed messages from
a form. You should define your messages according to the Oracle
Applications message standards.

Define Your Messages: page 12 – 5

Application Message Standards: page 12 – 24

Once you leave the Messages window, after you make and save your
changes, you should submit a concurrent request for the Generate
Messages program to build your message file. Your new messages take

12 – 56 Oracle Applications Developer’s Guide

effect as soon as your concurrent request finishes successfully and you
have placed the new file in the appropriate directories.

Create Your Message Files: page 12 – 6

When you upgrade, any customizations you make to Oracle
Applications messages will be overwritten. However, an upgrade does
not overwrite messages you define using your own application.

Prerequisites

• Register your application.

• Create a mesg directory (or some other location if your operating
system does not support directories) directly under your
application’s base directory where Oracle Application Object
Library can store your message files. You need a mesg directory
on both the Forms Server machine(s) and the concurrent
processing server machine(s).

Create Your Message Directories: page 12 – 5

Messages Block

Application name, message name, and language uniquely identify your
message.

Name

Your message name can be any combination of letters, numbers,
hyphens (–), underscores (_) and spaces, up to 30 characters in length.
Message Dictionary names are not case sensitive (for example,
MESSAGENAME is the same name as messagename).

You use this message name in your forms or concurrent programs
when you invoke the Message Dictionary.

Define Your Messages: page 12 – 5

Language

Enter the language code for this message. Oracle Applications displays
the message in the correct language based on the user’s current
language.

12 – 57Message Dictionary

Application

Enter the name of the application for which you wish to define message
text.

When you upgrade, any customizations to Oracle Applications
messages will be overwritten. However, an upgrade does not
overwrite messages you define using your own application name.

Number

Enter a message number, if appropriate. If you define a non–zero
message number for your message, Message Dictionary automatically
prepends your message with the prefix APP:<application short name>–
(or its translated equivalent). Message Dictionary treats 0 and null as
the same (and does not display the APP:<application short name>– or
the message number).

Type

Use the message type to classify your messages. The message type
does not affect how your messages can be called in your code.

In Oracle Applications, the message type is used to help translators
translate messages within length expansion constraints that vary by
message type. For certain message types, this form enforces message
byte length limits smaller than 1800. The message length limits (in
bytes) are 60 for Menu Entry, 250 for Hint, and 80 for Title (note that
these limits are for translated messages, so messages in English should
be 30% shorter if they will be translated).

Application Message Standards: page 12 – 24

Maximum Length

In Oracle Applications, the maximum length (in bytes) is used to help
translators translate messages within length expansion constraints

12 – 58 Oracle Applications Developer’s Guide

(inclusive), and it must be equal to or greater than the actual (byte)
length of the message text you specify.

Application Message Standards: page 12 – 24

Description

You should enter information in this field that would help explain the
context of this message to translators. This field is required if the
message is of type Token or Other.

Current Message Text

Enter a message that describes the problem and its resolution. You can
include variable tokens (in uppercase) preceded by an ampersand (&)
to indicate the location of substitute text. You supply the substitute text
or field references in your form’s message calls. For example, you
could define an explanation for a message you call ”Value Less Than Or
Equal” like this:

Please enter a value that is less than or equal to &VALUE.

Your user sees the message explanation as:

Please enter a value that is less than or equal to $30.00.

You can specify your own variable tokens using numbers, uppercase
letters, and underscores (_). Your variable tokens can be up to 30
characters long. You can use the same token more than once in your
defined messages to repeat your substitute text.

Some uses of messages (such as entries for the Special menu)use an
ampersand character to indicate an access, power, or accelerator key.
In these cases, you should use a double ampersand (&&) to indicate the
letter for the key. Message Dictionary returns only a single ampersand
to the calling routine. Words with embedded double ampersands
should be mixed case or lowercase (to distinguish them further from
tokens).

Application Message Standards: page 12 – 24

Define Your Messages: page 12 – 5

C H A P T E R

13
T

13 – 1User Profiles

User Profiles

his chapter provides you with everything you need to know about
Oracle Application Object Library user profiles. It includes an
overview of using user profiles in your application, instructions on
how to implement them, and detailed descriptions of the Oracle
Application Object Library forms you use to implement user profiles.

The following topics are covered:

• Overview of User Profiles

• Implementing User Profiles

• FND_PROFILE: User Profile APIs

• User Profile C Functions

• Profiles Window

13 – 2 Oracle Applications Developer’s Guide

Overview of User Profiles

A user profile is a set of changeable options that affects the way your
applications run. Oracle Application Object Library establishes a value
for each option in a user’s profile when the user logs on or changes
responsibility. Your user can change the value of profile options at any
time. Oracle Application Object Library provides many options that
your users can set to alter the user interface of your applications to
satisfy their individual preferences. For a complete list of all
predefined user profile options, see the appendix in the Oracle
Applications System Administrator’s Guide.

Profile Options Appendix
Oracle Applications System Administrator’s Guide

You, as a developer, can define even more profile options that affect
your Oracle Application Object Library–based applications. And,
because you may not want your users to be able to override values for
each of your options, you can define options at one or more of four
levels: Site, Application, Responsibility and User. You can choose at
which of these levels you want your system administrator to be able to
see and update option values. You also decide which profile options
defined at the User level you want your users to be able to see and
update.

For example, you can define a user profile option to determine which
subset of the organization’s data your end user sees. From the point of
view of a system administrator or end user, user profile options you
define are indistinguishable from those Oracle Application Object
Library provides.

Definitions

User Profile Levels

User profile options exist at Site, Application, Responsibility and User
levels. Oracle Application Object Library treats user profile levels as a
hierarchy, where User is the highest level of the hierarchy, followed by
Responsibility, Application and at the lowest level, Site. Higher–level
option values override lower–level option values.

Each user profile option ordinarily exists at each level. For example,
Oracle Application Object Library provides a site–level Printer option,
an application–level Printer option, and so on. Oracle Application

13 – 3User Profiles

Object Library enforces the level hierarchy to ensure that higher–level
option values override lower–level values. As a result, if your
Site–level Printer value is ”New York”, but your User–level Printer
value is ”Boston”, your reports print on the Boston printer.

Site Level

Site is the lowest user profile level. Site–level option values affect the
way all applications run at a given installation.

Application Level

Application is the user profile level immediately above Site.
Application–level option values affect the way a particular application
runs.

Responsibility Level

Responsibility is the user profile level immediately above Application.
Responsibility–level option values affect the way applications run for
all users of a responsibility.

User Level

User is the highest user profile level and is immediately above
Responsibility. User–level option values affect the way applications
run for an application user.

Defining New User Profile Options

When you develop a new application, you can define user profile
options that affect the way your application runs. For example, you
might define a user profile option to determine which subset of the
organization’s data your end user sees. When you define a new option,
you specify criteria to describe valid values for that option. You can
also specify whether your end users can change the value of an option.

Profiles Window (See page 13 – 14)

You can obtain the value of a user profile option using Oracle
Application Object Library routines. You can construct your
application to react to the value of a profile option as you choose.

Implementing User Profiles (See page 13 – 5)

13 – 4 Oracle Applications Developer’s Guide

Setting User Profile Option Values

A system administrator can set values for user profile options at each
profile level. You can set default values for your new profile options by
using the System Administrator responsibility. Typically, a system
administrator sets site–level option values after installing Oracle
Application Object Library–based applications at a site. These
site–level option values then work as the defaults until the system
administrator or end user sets them at higher levels.

Oracle Application Object Library derives run–time values for each
user’s profile options based on values the system administrator sets at
each level. An option’s run–time value is the highest–level setting for
that option. For example, for a given end user, assume the Printer
option is set only at the Site and Responsibility levels. When the end
user logs on, the Printer option assumes the value set at the
Responsibility level, since it is the highest–level setting for the option.

If the default value of a user profile option at any level is inappropriate,
the system administrator can change it at any time. This change takes
effect as soon as end users log on again or change responsibilities.

Update System Profile Options
Oracle Applications System Administrator’s Guide

Setting Your Personal User Profile

Oracle Application Object Library establishes values for user profile
options when you log on or change responsibilities. You can change
the value of your own user–changeable options at any time.

You change an option value using the Update Personal Profile Options
form. Using this form, you can display all your options and review the
values your system administrator has set for them. You can also
change those that are updatable if you like. Any change you make to a
User–level profile option has an immediate effect on the way your
applications run for that session. And, when you log on again, changes
you made to your User–level options in a previous session are still in
force.

If you never set your own User–level option values, your user profile
options assume the Site–, Application–, Responsibility–, or User–level
values your system administrator has set for them. Only the system
administrator can set some profile options.

13 – 6 Oracle Applications Developer’s Guide

Your user’s current Oracle Application Object
Library username.

Your user’s current Oracle Application Object
Library user ID.

Your user’s current responsibility ID.

The short name of the application connected to
your user’s current responsibility.

The application ID of the application connected to
your user’s current responsibility.

The name of the current form. Not available for
concurrent programs.

The form ID of the current form. Not available for
concurrent programs.

The name of the application for which the current
form is registered. Not available for concurrent
programs.

The application ID of the application for which the
current form is registered. Not available for
concurrent programs.

Your user’s logon date for the current session.

Your user’s logon date for the previous session.

Your user’s Sign–On Audit login ID in Oracle
Application Object Library.

The request ID associated with a particular
instance of your running current program. You can
only use this profile option in a concurrent
program. You use this profile option to fill the
REQUEST_ID Who column.

Implementing Concurrent Processing (See page 15 – 21)
Tracking Data Changes with Record History (WHO) (See
page 3 – 2)

The program ID associated with a running current
program. You can only use this profile option in a

USERNAME

USER_ID

RESP_ID

APPL_SHRT_
NAME

RESP_APPL_ID

FORM_NAME

FORM_ID

FORM_APPL_
NAME

FORM_APPL_ID

LOGON_DATE

LAST_LOGON_
DATE

LOGIN_ID

CONC_
REQUEST_ID

CONC_
PROGRAM_ID

13 – 7User Profiles

concurrent program. You use this profile option to
fill the PROGRAM_ID Who column.

Implementing Concurrent Processing (See page 15 – 21)
Tracking Data Changes with Record History (WHO) (See
page 3 – 2)

The application ID associated with a running
current program. You can only use this profile
option in a concurrent program. You use this
profile option to fill the
PROGRAM_APPLICATION_ID Who column.

Implementing Concurrent Processing (See page 15 – 21)
Tracking Data Changes with Record History (WHO) (See
page 3 – 2)

The login ID associated with a running concurrent
program. You can only use this profile option in a
concurrent program. You can use this profile
option to fill the LAST_UPDATE_LOGIN Who
column.

Implementing Concurrent Processing (See page 15 – 21)
Tracking Data Changes with Record History (WHO) (See
page 3 – 2)

The value Yes or No that you enter in the Print
Output field when you register a concurrent
program. You can use the routine

13 – 8 Oracle Applications Developer’s Guide

for a particular instance of your running
concurrent program.

Implementing Concurrent Processing (See page 15 – 21)
Implementing User Profiles (See page 13 – 5)

Define Concurrent Program (See page 16 – 11)

Summary

Location

Description

13 – 9User Profiles

FND_PROFILE: User Profile APIs

This section describes user profile APIs you can use in your PL/SQL
procedures. You can use these user profile routines to manipulate the
option values stored in client and server user profile caches.

On the client, a single user profile cache is shared by multiple form
sessions. Thus, when Form A and Form B are both running on a single
client, any changes Form A makes to the client’s user profile cache
affect Form B’s run–time environment, and vice versa.

On the server, each form session has its own user profile cache. Thus,
even if Form A and Form B are running on the same client, they have
separate server profile caches. Server profile values changed from
Form A’s session do not affect Form B’s session, and vice versa.

Similarly, profile caches on the server side for concurrent programs are
separate. Also, note that the server–side profile cache accessed by
these PL/SQL routines is not synchronized with the C–code cache. If
you put a value using the PL/SQL routines, it will not be readable with
the C–code routines.

Any changes you make to profile option values using these routines
affect only the run–time environment. The effect of these settings ends
when the program ends, because the database session (which holds the
profile cache) is terminated. To change the default profile option values
stored in the database, you must use the User Profiles form.

FND_PROFILE.PUT

procedure FND_PROFILE.PUT

 (name IN varchar2,

 value IN varchar2);

FNDSQF library and database (stored procedure)

Puts a value to the specified user profile option. If the option does not
exist, you can also create it with PUT.

All PUT operations are localin other words, a PUT on the server
affects only the server–side profile cache, and a PUT on the client
affects only the client–side cache. By using PUT, you destroy the
synchrony between server–side and client–side profile caches. As a
result, we do not recommend widespread use of PUT.

Arguments (input)

Summary

Location

Description

Arguments (input)

Arguments (output)

Example

13 – 10 Oracle Applications Developer’s Guide

The (developer) name of the profile option you
want to set.

The value to set in the specified profile option.

FND_PROFILE.GET

procedure FND_PROFILE.GET

 (name IN varchar2,

 value OUT varchar2);

FNDSQF library and database (stored procedure)

Gets the current value of the specified user profile option, or NULL if
the profile does not exist. All GET operations are satisfied locallyin
other words, a GET on the server is satisfied from the server–side
cache, and a GET on the client is satisfied from the client–side cache.

The server–side PL/SQL package FND_GLOBAL returns the values
you need to set Who columns for inserts and updates from stored
procedures. You should use FND_GLOBAL to obtain Who values from
stored procedures rather than using GET, which you may have used in
prior releases of Oracle Applications.

Global APIs for PL/SQL Procedures (See page 30 – 5)

The (developer) name of the profile optionwhose
value you want to retrieve.

The current value of the specified user profile
option as last set by PUT or as defaulted in the
current user’s profile.

 FND_PROFILE.GET (’USER_ID’, user_id);

name

value

name

value

Summary

Location

Description

Arguments (input)

13 – 11User Profiles

FND_PROFILE.VALUE

function FND_PROFILE.VALUE

 (name IN varchar2) return varchar2;

FNDSQF library and database (stored function)

VALUE works exactly like GET, except it returns the value of the
specified profile option as a function result.

The (developer) name of the profile option whose
value you want to retrieve.

name

�

Syntax

13 – 12 Oracle Applications Developer’s Guide

User Profile C Functions

Oracle Application Object Library provides you with two functions you
can call from concurrent programs you write in the C programming
language. You can use these functions to store and retrieve profile
option values.

Attention: fdpgov and fdppov are not valid for Release 11
and later. You should use afpoget and afpoput instead, and
you should convert any old C code that uses fdpgov and
fdppov to use afpoget and afpoput instead.

afpoget

Get the current value of a profile option. Returns TRUE if successful,
FALSE if it cannot find the profile option value. Returns FALSE when
retrieving a profile that exists but has no value. You must include the
file fdpopt.h in your C code file (#include <fdpopt.h>) to use this C
function. For concurrent programs, the current user is the user who
submitted the concurrent request, and afpoget() reads the value at the
time the request runs, not the time the user submitted the request.
When the function afpoget() returns successfully, it sets option_value to
the value of your requested user profile option. If you are not sure of
the length of the value afpoget() will return, you should define
option_value[] to be at least 241 characters long.

boolean afpoget(option_name, option_value)

text *option_name;

text *option_value;

the name of the profile option.

the profile option value returned by the function.

afpoput

Change the value of a profile option for the current session. Create a
profile option. Returns TRUE if successful, FALSE if it tries to change
the value of a profile option for which the WRITE flag is set to No, or if
it tries to create a profile option for which the ENABLE_CREATE flag is
not set. You must include the file fdpopt.h in your C code file
(#include <fdpopt.h>) to use this C function.

option_name

option_value

Syntax

13 – 13User Profiles

Use ENABLE_CREATE if you afpoput() to create an option if the
option does not exist. This new option only exists within the current
concurrent process, and it is not available to other processes. You can
use the | (bitwise OR) operator to combine ENABLE_CREATE with
the options ENABLE_WRITE and/or ENABLE_READ. You cannot use
ENABLE_WRITE or ENABLE_READ to reset the privileges of an
existing profile option. Use ENABLE_WRITE if you want to allow
subsequent calls to afpoput() to change the value. Use ENABLE_READ
if you want to allow subsequent calls to afpoput() to read the value.

boolean afpoput(option_name, option_value)

text *option_name;

text *option_value;

the name of the profile option.

The value to which you wish to change the profile
option for the current session. All values are
stored as text. The value may be at most 240
characters.

option_name

option_value

13 – 14 Oracle Applications Developer’s Guide

Profiles Window

Define a user profile option. You define new user profile options when
you build an application. Once you define an option, you can control
access for it at different profile levels.

Prerequisites

• Define your application using the Application window.

13 – 15User Profiles

Profiles Block

You identify a profile option by application name and profile option
name.

Name

 The profile option name must be unique so that different profile
options do not conflict. This is the name you use when you access your
profile option using the Oracle Application Object Library profile
option routines.

Application

Normally, you enter the name of the application you are building.

User Profile Name

This is the name your users see as their profile option, so it should be
short but descriptive.

Description

Provide a better explanation of the content or purpose of this profile
option. This description appears in a window with User Profile Name
when a user or system administrator chooses profile options to set
values.

Active Dates

Start Date/End Date

Enter the dates on which the profile option becomes active/inactive.
The start date defaults to the current date, and if the end date is not
entered, the option will be effective indefinitely. You cannot delete a
user profile option, but you can disable it. Enter the current date if you
want to disable the user profile option. If you wish to reactivate a
disabled profile option, change the End Date to a date after the current
date.

Syntax

13 – 16 Oracle Applications Developer’s Guide

SQL Validation

If you want your profile option to provide a list of values (LOV) when
the system administrator or user sets profile options, you must use the
following syntax in the SQL Validation field.

To validate your user profile option, select the profile option value into
the fields :PROFILE_OPTION_VALUE and
:VISIBLE_OPTION_VALUE. The Profile Values form uses these fields
to ensure that your user enters valid values for your profile option.

SQL=”SQL select statement”

COLUMN=”column1(length), column2(length),...”

[TITLE=”{title text|*application shortname:message name}”]

[HEADING=”{heading1(length), heading2(length),...

 |*application shortname:message name|N}”]

A SELECT statement that selects the rows to
display in your LOV. In the SQL statement you can
specify column aliases, use an INTO clause to put
values into form fields, display database values
without selecting them into form fields (by
selecting values INTO NULL), and mix values to
put into form fields with display only values in the
same INTO clause.

If you specify more than one column in your
COLUMN option, the LOV displays the columns in
the order you specify in your COLUMN statement.

Suggestion: Column aliases cannot be longer than 30
characters. Larger identifiers will cause errors.

The HEADING option overrides the COLUMN
lengths and aliases.

This SQL statement differs from a normal SQL
statement in some ways. First, if you want to
include spaces in your column aliases, you must
put a backslash and double quotes before and after
the column alias, so that the LOV routine
recognizes the double quotes as real double quotes,
rather than the end of your parameter. For
example, your SQL option might look like the
following example:

SQL

13 – 17User Profiles

SQL=”SELECT SALES_REPRESENTATIVE_ID,

 SALES_REPRESENTATIVE_NAME

INTO :PROFILE_OPTION_VALUE,

 :VISIBLE_OPTION_VALUE

 FROM OE_SALES_REPRESENTATIVES

 ORDER BY SALES_REPRESENTATIVE_NAME”

We recommend that you provide aliases for your
column headings in the HEADING options below.

You can use GROUP BY or HAVING clauses in
your SQL statement, but only in your main query;
you cannot use them in sub–queries. You can use
DISTINCT and ORDER BY clauses as you would
normally.

Set functions such as MIN(), MAX(), SUM(), and
COUNT() can be used in the SELECT or HAVING
clause, but you cannot use them on the columns
that you select into the PROFILE_OPTION_VALUE
or VISIBLE_OPTION_VALUE fields.

Though you can use a fairly complex WHERE
clause and/or an ORDER BY clause in your SQL
definition, you cannot use UNION, INTERSECT, or
MINUS in your main query. If you need a UNION,
INTERSECT, or MINUS to select the proper values,
you should create a view on your tables, then select
from the view, or include these operators as part of
a sub–query.

In addition, you cannot use a CONNECT BY or
any other operation that would come after the
WHERE clause of a SELECT statement.

Finally, if you use OR clauses, you should enclose
them in parentheses.

We recommend that you put parentheses around
complex columns in your SQL SELECT statements.
For example, your SQL option could look like this:

SQL=”SELECT (DEPTNO ||’:’ ||DEPT_NAME)

 Department, LOCATION INTO

 :DEPT.DEPTNAME, :DEPT.LOCATION

 FROM DEPARTMENT”

Lists the names of columns (or column aliases) you
want to display in your LOV window, the order in

COLUMN

13 – 18 Oracle Applications Developer’s Guide

which to display them, and their display widths. If
you specify more than one column in your
COLUMN option, your LOV displays the columns
in the order you list them. This order can differ
from the column order in your SQL statement. You
must specify column widths in the COLUMN=
”...” parameter, although any column widths you
specify in the HEADING=”...” option below
override these values.

You can specify static or dynamic column widths in
your COLUMN option. Specify a static column
width by following the column name with the
desired width. Specify a dynamic width column
by placing an asterisk instead of a number in the
parentheses following the column name. When
you specify dynamic width for a column, the LOV
adjusts the size of the displayed column to
accommodate the longest value in the list. Note
that a dynamic column width may vary based on
the subset of data queried. The following example
shows a possible COLUMN option corresponding
to the department and location example, and
illustrates the use of static and dynamic column
widths.

COLUMN=”Department(20), LOCATION(*)”

If you do not use the HEADING option to supply
column heading or suppress headings, then the
LOV uses the names and widths from your
COLUMN option to display the column headings.
If you specify a column alias in your SQL
statement and you want that column to appear in
your QuickPick window, you must use that column
alias in COLUMN. The column headings appear in
the QuickPick window with the same upper– and
lowercase letters as you define here. If your
column alias has two words, you must put a
backslash and double quotes on both sides of the
alias. Column aliases cannot be longer than 30
characters. Using the first example from the SQL
option, your COLUMN option would look like
this:

COLUMN=”\”Sales Representative\”(30)”

13 – 19User Profiles

If your display width is smaller than your column
name or column alias, the LOV uses the length of
the column name or alias, even if you suppress
headings in your LOV window (see the HEADING
option). For your values to display properly, you
must specify a number for the column width.

Text you want to display centered and highlighted
on the top line of your QuickPick window. The
default is no title.

You can specify a Message Dictionary token in
your LOV definition by providing the application
short name and the message name. Any title
starting with ”*” is treated as a Message Dictionary
name, and the message contents are substituted for
the title. For example:

TITLE=”*FND:MY_MESG_NAME”

Lets you specify a list of column headings and
column widths, separated by spaces or commas.
There should be one heading in the
HEADING=”...” parameter for each column in the
COLUMN=”...” parameter. Specify column widths
as numbers in parentheses following the column
name, or as an asterisk in parenthesis for a
dynamic column width.

Column widths you specify in the HEADING
=”...” parameter override columns widths you
specify in the COLUMN=”...” parameter. We
recommend setting the widths in the COLUMN
option to * (dynamic width) when using the
HEADING and COLUMN options together.

You can suppress headings in your LOV window
altogether by setting HEADING=”N”.

You can specify a Message Dictionary token in
your LOV definition by providing the application
short name and the message name. Any heading
starting with ”*” is treated as a Message Dictionary
name, and the message contents are substituted for
the heading. For example:

HEADING=”*FND:MY_MESG_NAME(*)”

TITLE

HEADING

13 – 20 Oracle Applications Developer’s Guide

If you do not provide an explicit TITLE and HEADING in your SQL
validation, your profile has TITLE=”user_profile_option_name” and
HEADING=”N” appended to the definition at runtime. This appended
title overrides any heading defined in a COLUMN token or aliases in
the SQL statement.

For example, suppose you have an option called SECURITY_LEVEL
that uses the codes 1 and 2 to represent the values High and Low
respectively. You should select the code column into
:PROFILE_OPTION_VALUE and the meaning column into
:VISIBLE_OPTION_VALUE. Then, if you want to change the meaning
of your codes, you do not have to change your program or form logic.
If the value of your profile option is user–defined, you can select the
value into both fields. For example, suppose you have a table and form
where you maintain equipment information, and you have a profile
option called EQUIPMENT. You can select the same value into both
:PROFILE_OPTION_VALUE and :VISIBLE_OPTION_VALUE.

Here is an example of a definition for a new profile option called
SET_OF_BOOKS_NAME.

SQL=”SELECT SET_OF_BOOKS_NAME, SET_OF_BOOKS_NAME \”Set of

Books\” ’

INTO :PROFILE_OPTION_VALUE, :VISIBLE_OPTION_VALUE,

FROM SETS_OF_BOOKS”

COLUMN=”\”Set of Books\”(30)”

If you do not enter validation criteria in this field, your user or system
administrator can set any value for your profile option, if you allow
them to update it.

If Oracle Application Object Library cannot successfully perform your
validation, it does not display your profile option the user queries
profiles options. If the profile option Utilities:Diagnostics is No, then
no error messages appear either. For example, if a user cannot access
the table you reference in your validation statement, Oracle Application
Object Library does not display the profile option when the user
queries profile options on the Profile Values window, and does not
display any error message if Utilities:Diagnostics is set to No.

13 – 21User Profiles

User Access

Visible

Indicate whether your end users can see and query this profile option
in their personal profiles. Otherwise, they cannot query or update
values for this option.

Updatable

Indicate whether your end users can change the value of this profile
option using their Profile Values window. Otherwise, your system
administrator must set values for this profile option.

Program Access Block

Visible

Indicate whether you can read the value of your profile option from a
user exit or concurrent program.

If you enter Yes, you can construct your application to read the value of
a user profile option using the Oracle Application Object Library
profiles routines.

Updatable

Indicate whether you can change the value of this profile option using
Oracle Application Object Library profiles routines.

System Administrator Access Block

Define the characteristics of your profile option at each profile level
that the system administrator uses to define profile values. You can
define the characteristics at the Site, Application, Responsibility and
User levels.

Suggestion: You should specify Site–level characteristics of
every user profile option you create so that the system
administrator can assign a Site–level value for every profile
option.

You should provide access to each option at the Site level. You can also
provide access for any of the other three levels, Application,
Responsibility, and User.

13 – 22 Oracle Applications Developer’s Guide

Profile option values set at the User profile level override values set at
the Responsibility profile level, which override values set at the
Application profile level. If no values are set at these three levels, then
the value defaults to the value set at the Site profile level if the Site level
value has been set.

If you want your end user to be able to update profile option values in
the Profile Values window, that is, you chose Updatable in the User
Access region, you must provide user visible and updatable access at
the User level here.

Visible

Indicate whether your system administrator can see your profile option
while setting user profile option values for the specified profile level.

Updatable

Indicate whether your system administrator can change the value of
your profile option while setting user profile option values for the
profile level you select.

C H A P T E R

14
T

14 – 1Flexfields

Flexfields

his chapter describes Oracle Application Object Library flexfields.
It includes a conceptual overview that contains a summary of
flexfields, definitions of key concepts, and an outline of the steps
necessary to add flexfields to your application. This chapter also
includes implementation sections that provide technical details of
adding flexfields to your forms, and form descriptions that provide
information about each form available to help you implement
flexfields.

The following topics are covered:

• Overview of Flexfields

• Implementing Key Flexfields

• Implementing Descriptive Flexfields

• Adding Flexfields to Your Forms

• Flexfield Definition Procedures

• Key Flexfields Window

• Descriptive Flexfields Window

14 – 2 Oracle Applications Developer’s Guide

Overview of Flexfields

A flexfield is a field made up of segments. Each segment has a name
you or your end users assign, and a set of valid values. There are two
types of flexfields: key flexfields and descriptive flexfields.

For an explanation of flexfields features and concepts, as well as
information on setting up flexfields in Oracle Applications, see the
Oracle Applications Flexfields Guide. For information on entering and
querying data using flexfields, see the Oracle Applications User’s Guide.

Overview of Flexfield Concepts
Additional Terms and Concepts for Key Flexfields
Descriptive Flexfield Concepts
Overview of Setting Up Flexfields
Oracle Applications Flexfields Guide

Key Flexfields

Most businesses use codes made up of meaningful segments
(intelligent keys) to identify accounts, part numbers, and other business
entities. For example, a company might have a part number
”PAD–NR–YEL–8 1/2x14” indicating a notepad, narrow–ruled, yellow,
and 14” by 8 1/2”. A key flexfield lets you provide your users with a
flexible ”code” data structure that users can set up however they like
using key flexfield segments. Key flexfields let your users customize
your application to show their ”codes” any way they want them. For
example, a different company might have a different code for the same
notepad, such as ”8x14–PD–Y–NR”, and they can easily customize
your application to meet that different need. Key flexfields let you
satisfy different customers without having to reprogram your
application.

In another example, Oracle General Ledger uses a key flexfield called
the Accounting Flexfield to uniquely identify a general ledger account.
At Oracle, we have customized this Accounting Flexfield to include six
segments: company code, cost center, account, product, product line,
and sub–account. We have also defined valid values for each segment,
as well as cross–validation rules to describe valid segment
combinations. However, other companies might structure their general
ledger account fields differently. By including the Accounting Flexfield
key flexfield, Oracle General Ledger can accommodate the needs of
different companies. One company can customize the Accounting
Flexfield to include six segments, while another company includes
twelve segments, all without programming.

14 – 3Flexfields

A key flexfield represents an intelligent key that uniquely identifies an
application entity. Each key flexfield segment has a name you assign,
and a set of valid values you specify. Each value has a meaning you
also specify. Oracle General Ledger’s Accounting Flexfield is an
example of a key flexfield used to uniquely identify a general ledger
account.

You can use key flexfields in many applications. For example, you
could use a Part Flexfield in an inventory application to uniquely
identify parts. Your Part Flexfield could contain such segments as
product class, product code, size, color and packaging code. You could
define valid values for the color segment, for example, to range from 01
to 10, where 01 means red, 02 means blue, and so on. You could even
specify cross–validation rules to describe valid combinations of
segment values. For example, products with a specific product code
may only be available in certain colors.

Overview of Flexfield Concepts
Oracle Applications Flexfields Guide

Descriptive Flexfields

Descriptive flexfields let you satisfy different groups of users without
having to reprogram your application, by letting you provide
customizable ”expansion space” on your forms. For example, suppose
you have a retail application that keeps track of customers. Your
Customers form would normally include fields such as Name,
Address, State, Customer Number, and so on. However, your form
might not include extra fields to keep track of customer clothing size
and color preferences, or regular salesperson, since these are attributes
of the customer entity that depend on how your users use your
application. For example, if your retail application is used for a tool
company, a field for clothing size would be undesirable. Even if you
initially provide all the fields your users need, your users might later
identify even more customer attributes that they want to keep track of.
You add a descriptive flexfield to your form so that your users have the
desired expansion space. Your users can also take advantage of the fact
that descriptive flexfields can be context sensitive, where the
information your application stores depends on other values your users
enter in other parts of the form.

A descriptive flexfield describes an application entity, providing form
and database expansion space that you can customize. Each
descriptive segment has a name you assign. You can specify valid
segment values or set up criteria to validate the entry of any value.

14 – 4 Oracle Applications Developer’s Guide

Oracle General Ledger includes a descriptive flexfield in its journal
entry form to allow end users to add information of their own
choosing. For example, end users might want to capture additional
information about each journal entry, such as source document number
or the name of the person who prepared the entry.

You could use a descriptive flexfield in a fixed assets application you
build to allow further description of a fixed asset. You could let the
structure of your assets flexfield depend on the value of an asset type
field. For example, if asset type were ”desk”, your descriptive flexfield
could prompt for style, size and wood type. If asset type were
”computer”, your descriptive flexfield could prompt for CPU chip and
memory size.

Overview of Flexfield Concepts
Oracle Applications Flexfields Guide

Easy Customization

Flexibility is important. There is no way for you to anticipate all the
form and database fields your end users might want, nor how each
field should look as end user needs change. Using key and descriptive
flexfields, you give end users the ability to customize your application
to match their business needs, without programming. You should
build a flexfield into your application whenever you need a flexible
data structure.

Customizing a flexfield means specifying the prompt, length and data
type of each flexfield segment. It also includes specifying valid values
for each segment, and the meaning of each value to your application.
You or your end users can even define cross–validation rules to specify
valid combinations of segment values.

Ordinarily, your end users customize flexfields during application
installation. However, you, as a developer, can customize flexfields

14 – 5Flexfields

Multiple Structures for a Single Flexfield

In some applications, different users need different segment structures
for the same flexfield. Or, you might want different segments in a
flexfield depending on, for example, the value of another form or
database field.

Flexfields lets you define multiple segment structures for the same
flexfield. Your flexfield can display different prompts and fields for
different end users based on a data condition in your form or
application data.

Oracle General Ledger, for example, provides different Accounting
Flexfield structures for users of different sets of books. Oracle General
Ledger determines which flexfield structure to use based on the value
of a Set of Books user profile option.

Standard Request Submission Parameters

Most of the features used with your flexfield segments also apply to
your parameter window for Standard Request Submission programs.
For example, you can define security rules and special value sets for
your report parameters.

Overview of Flexfields and Standard Request Submission
Oracle Applications Flexfields Guide

Definitions

For more explanation of flexfields features and concepts, see the Oracle
Applications Flexfields Guide.

Overview of Flexfield Concepts
Additional Terms and Concepts for Key Flexfields
Descriptive Flexfield Concepts
Oracle Applications Flexfields Guide

Segment

For a key flexfield, a segment is a single piece of the complete code.
For a descriptive flexfield, a segment is a single field or a single
attribute of the entity. A segment is represented by a single column in a
table.

14 – 6 Oracle Applications Developer’s Guide

Combination

For a key flexfield, a combination of segment values that make up the
complete code or key. You can define valid combinations with simple
cross–validation rules when you customize your key flexfield. Groups
of valid combinations can be expressed as ranges.

Structure

A flexfield structure is a particular arrangement of flexfield segments.
The maximum size of the structure depends on the individual flexfield.
A flexfield may have one or more structures. Both key and descriptive
flexfields can have more than one structure. Users can tailor structures
for specific needs.

Combinations Table

For a key flexfield, a database table you include in your application to
store valid combinations of key flexfield segment values. Each key
flexfield must have a combinations table. It contains columns for each
flexfield segment, as well as other columns. This is the same table you
use as your entity table.

Combinations Form

For a key flexfield, a combinations form is the form whose base table
(or view) is the combinations table. The only purpose of the
combinations form is to maintain the combinations table. Most key
flexfields have one combinations form, although some key flexfields do
not have a combinations form. Key flexfields without combinations
forms are maintained from other forms using dynamic insertion.

Dynamic Insertion

Dynamic insertion is the insertion of a new valid combination into a
key flexfield combinations table from a form other than the
combinations form.

For key flexfields whose combinations table does not contain any
mandatory columns other than flexfield and WHO columns, you can
choose to allow dynamic inserts when you set up your key flexfield. If
you allow dynamic inserts, your user can enter new combinations of
segment values using the flexfield window from a form other than the
combinations form. If your end user enters a new combination that
satisfies cross–validation rules, your flexfield dynamically inserts it into
the combinations table. Otherwise, a message appears and the user is

14 – 7Flexfields

required to correct the segment values that violate the cross–validation
rules.

If you create your key flexfield using a combinations table that contains
mandatory columns other than flexfield or WHO columns, you cannot
allow dynamic inserts, and your end user cannot enter new
combinations through the flexfield window from any form other than
the combinations form.

Flexfield Qualifier

A flexfield qualifier identifies a segment your end user should define
when customizing your key flexfield. By specifying flexfield qualifiers
when you build your application, you ensure your end user customizes
your flexfield to include key segments that your application needs.

For example, suppose you build a general ledger accounting
application that uses a key flexfield to uniquely identify accounts. Your
application requires that one key segment be an account segment, and
one be a balancing segment. You ensure your end user defines these
key segments by defining two flexfield qualifiers, account and
balancing. When customizing your accounting flexfield, your end user
ties the account and balancing flexfield qualifiers to particular key
segments. You, as the developer, need not know which key segment
becomes the account or balancing segment, because the key flexfield
takes care of returning account and balancing information to your
application at run–time.

Segment Qualifier

A segment qualifier describes characteristics of key segment values.
You use segment qualifiers to obtain information about segment values
your end user enters while using your application.

For example, suppose your end user enters a value in the account
segment of a flexfield that uniquely identifies general ledger accounts.
Since you, as the developer, do not know which segment represents
account, your application cannot reference the account value directly.
However, you can construct your application so that each account
value has an associated segment qualifier called ”Account type” that
your application can easily reference.

Assume that account value 1000 (which means ”Cash”) has an account
type of ”Asset”. Your application can reference this account type
because your key flexfield returns it to a column you designate in your
generic combinations table. Your application can contain logic that is
conditional on account type.

�

14 – 8 Oracle Applications Developer’s Guide

You can define segment qualifiers when you define flexfield qualifiers.
You can assign one or more segment qualifiers to each flexfield
qualifier.

Structure Defining Column

A column you include in a combinations table or entity table so the
flexfield can support multiple segment structures. You can construct
your application so that it places a value in a structure defining column
to determine the flexfield segment structure your end user sees.

For example, Oracle General Ledger places a ”Chart of Accounts”
identifier in the structure defining column of the combinations table for
the Accounting Flexfield. As a result, Oracle General Ledger can
provide different Accounting Flexfield structures (different charts of
accounts) for different users.

Building a Flexfield into Your Application

To include a flexfield in an application you are building, you perform
the following steps.

First, you decide which application entities require key or descriptive
flexfields. You use a key flexfield to uniquely identify an entity that
needs an intelligent key.

Attention: We provide key flexfield information such as
combinations table structure and form syntax so you can
convert any existing non–Oracle Applications combinations
forms you may have from SQL*Forms 2.3 to Oracle Forms 6i.
You may also use this information to integrate your custom
forms and applications with key flexfields that Oracle
Applications provides. For example, you may build foreign
key forms that call Oracle Applications key flexfields.
However, the API for key flexfields may change in future
versions of Oracle Applications, so we recommend that you do
not create any new key flexfields that are not provided by
Oracle Applications.

You use a descriptive flexfield to provide context–sensitive expansion
space for carrying additional information about an entity. To maximize
your user’s flexibility, you should consider defining a descriptive
flexfield for every entity in your application.

After deciding that an application entity requires a flexfield, you design
the flexfield into your applications database. You register the flexfield

14 – 9Flexfields

with Oracle Application Object Library, and if you like, assign flexfield
and segment qualifiers for your key flexfields. Then, you develop
application forms that include your flexfield and call Oracle
Application Object Library routines to activate it.

After you are done defining a flexfield, you or your end user can
customize it to include a specific set of segments.

Designing Flexfields into Your Application Database

You include flexfield columns in the database table that represents the
application entity for which you are defining a flexfield. You include
one column for each flexfield segment you or your end user might wish
to customize. You need at least as many columns as the maximum
number of segments a user would ever want in a single flexfield
structure. If you have more segments than can fit on your screen when
the flexfield window is open, you can scroll through them vertically.

For a key flexfield, a combinations table represents the application
entity. A combinations table includes flexfield segment columns as
well as other columns a key flexfield requires. Key flexfields provided
by Oracle Applications already have combinations tables defined.

To permit the use of flexfield combinations from different application
forms, you must include foreign key references to your combination
table’s unique ID column in other application tables. That way, you can
display or enter valid combinations using forms not based on your
combinations table. When you build a custom application that uses
Oracle Applications key flexfields, you would include foreign key
references in your custom application tables wherever you reference
the flexfield.

To define a descriptive flexfield, you include descriptive segment
columns in the application table you choose. You also include a
structure defining column (sometimes called a context column), in case
your end user wants to define multiple segment structures.

Implementing Key Flexfields (See page 14 – 11)
Implementing Descriptive Flexfields (See page 14 – 20)

Registering a Flexfield

You register a flexfield with Oracle Application Object Library after
you design it into your database. By registering a flexfield, you notify
Object Library that your flexfield exists in the database, and provide
some basic information about it.

14 – 10 Oracle Applications Developer’s Guide

When you register a flexfield, you give it a name that end users see
when they open your flexfield pop–up window (for example,
”Accounting Flexfield” or ”Vendor Flexfield”). End users can change
the flexfield name you provide when they customize your flexfield.

Key Flexfields Window (See page 14 – 71)
Descriptive Flexfields Window (See page 14 – 78)

Building a Flexfield into a Form

To add a flexfield to a form, you define hidden form fields to represent
the flexfield columns you defined in your application table (that is,
unique ID, structure defining, segment, and other columns). You also
define a visible form field to hold the concatenated segment value
string that appears on your form after your end user enters segment
values. You can optionally include a visible form field to hold a
concatenated string of the meanings of each segment.

To activate your flexfield, you call Oracle Application Object Library
routines from your form’s triggers.

Implementing Key Flexfields (See page 14 – 11)
Implementing Descriptive Flexfields (See page 14 – 20)

Flexfields and Application Upgrades

Application upgrades do not affect the flexfields you have defined or
customized. However, you may have to recompile your flexfields for
some application upgrades. You recompile your key flexfields using
the Key Flexfield Segments form, and you use the Descriptive Flexfield
Segments form to recompile descriptive flexfields. Simply scroll
through and save each row that defines your flexfield, and the form
automatically recompiles your flexfield.

You can also recompile all of your frozen flexfields in one step from the
operating system. See your installation manual for more information
about compiling all your flexfields in one step after an application
upgrade.

Implementing Key Flexfields (See page 14 – 11)

Key Flexfield Segments Window
Descriptive Flexfield Segments Window
Oracle Applications Flexfields Guide

14 – 11Flexfields

Implementing Key Flexfields

To implement a key flexfield you must:

• Define key flexfield columns in your database

• Register your table with Oracle Application Object Library

• Register your key flexfield with Oracle Application Object
Library

• Create key flexfield fields in your forms

• Add key flexfield routines to your forms

Key flexfields can be implemented for the following three types of
forms, which are each implemented differently:

• Combinations form – The only purpose of a combinations form
is to create and maintain code combinations. The combinations
table (or a view of it) is the base table of this form and contains
all the key flexfield segment columns. The combinations table
also contains a unique ID column. This type of form is also
known as a maintenance form for code combinations. You
would have only one combinations form for a given key flexfield
(though you might not have one at all). You cannot implement
shorthand flexfield entry for a combinations form.

• Form with foreign key reference – The base table (or view) of the
form contains a foreign key reference to a combinations table that
contains the actual flexfield segment columns. You create a form
with a foreign key reference if you want to use your form to
manipulate rows containing combination IDs. The primary
purpose of foreign key forms is generally unrelated to the fact
that some fields may be key flexfields. That is, the purpose of
the form is to do whatever business function is required (such as
entering orders, receiving parts, and so on). You might have
many foreign key forms that use a given key flexfield. You can
choose to implement shorthand flexfield entry only for a form
with a foreign key reference.

• Form with key flexfield range – The base table is a special
”combinations table” that contains two columns for each key
flexfield segment so it can support both low and high values for
each segment of your key flexfield. This type of form is rare.

For many applications, you would have one combinations form that
maintains the key flexfield, where the key flexfield is the representation
of an entity in your application. Then, you would also have one or
more forms with foreign key references to the same key flexfield. For

14 – 12 Oracle Applications Developer’s Guide

example, in an Order Entry/Inventory application, you might have a
combinations form where you define new parts with a key flexfield for
the part numbers. You would also have a form with foreign key
reference where you enter orders for parts, using the key flexfield to
indicate what parts make up the order.

The following diagram shows the relationship between a combinations
form and the flexfield field on the form. It also shows the relationship
of flexfield segments with the SEGMENTn columns of the underlying
combinations table.

The following diagram shows the relationship between a form with a
foreign key reference and the flexfield field on the form. It also shows
the relationship of the flexfield with a column of the underlying table

14 – 13Flexfields

with a foreign key reference, where that column is a foreign key to the
primary key column of the associated combinations table.

The following diagram shows the relationship between a form with a
range flexfield and the two flexfield fields on the form. It also shows
the relationship of flexfield segments, contained in two separate
flexfield segment groups, with the SEGMENTn_LOW and
SEGMENTn_HIGH columns of the underlying range table.

14 – 14 Oracle Applications Developer’s Guide

Further, you can have another form, a form with a key flexfield range,
that you use to manipulate ranges of your part numbers. This range
flexfield form refers to the same key flexfield as both your
combinations forms and your foreign key forms, though the ranges of
segment values (a low value and a high value for each segment) are
stored in the special range flexfield table that serves as the range form’s
base table.

Key Flexfield Range

A special kind of key flexfield you can include in your application to
support low and high values for each key segment rather than just
single values. Ordinarily, a key flexfield range appears on your form as

14 – 15Flexfields

two adjacent flexfields, where the leftmost flexfield contains the low
values for a range, and the rightmost flexfield contains the high values.

In Oracle Application Object Library, we use a key flexfield range to
help you specify cross–validation rules for valid combinations.

Defining Key Flexfield Database Columns

For each key flexfield you design into your application, you must create
a combinations table to store the flexfield combinations that your users
enter. You can build a special form to let them define valid
combinations (the combinations form), or you can let Oracle
Application Object Library dynamically create the combinations when
users attempt to use a new one (from a form with a foreign key
reference). You must have the combinations table even if you do not
build a combinations form to maintain it. Key flexfields provided by
Oracle Applications already have combinations tables defined.

In addition to the combinations table for your key flexfield, you may
also have one or more tables for forms with foreign key references and
for forms with key flexfield ranges.

Combinations table

Key flexfields support a maximum of 70 segment columns in a
combinations table. For example, a combinations table includes a
column for the unique ID that your key flexfield assigns to each valid
combination. It also includes a structure defining column, in case your
end user wants to define multiple structures. If you want to use
segment qualifiers in your application, your table should include a
derived column for each segment qualifier you define.

To create a key flexfield combinations table for your application entity,
you must:

• Define an ID column to uniquely identify a row in your database
table (type NUMBER, length 38, NOT NULL). You should name
this column XXX_ID, where XXX is the name of your entity (for
example, PART_ID). This column holds the unique ID number
of a particular combination of segment values (also known as a
code combination). The unique ID number is also known as a
code combination ID, or CCID. Note that even though this
column is a NUMBER(38) column, Oracle Application Object
Library only supports code combination IDs up to two billion
(2,000,000,000).

14 – 16 Oracle Applications Developer’s Guide

• Define a column for each key segment, SEGMENT1 through
SEGMENTn, where n is the number of segments you want for
your key flexfield (type VARCHAR2, length 1 to 60, all columns
the same length, NULL ALLOWED). As a rule of thumb, you
should create about twice as many segment columns as you
think your users might ever need for a single key flexfield
structure. The maximum number of key flexfield segment
columns that Oracle Application Object Library supports in a
combinations table is 70. However, for a combinations table that
you want to use with a form with a foreign key reference, the
number of segments is also limited by the maximum size of the
field that holds the concatenated segment values and segment
separators. That field is normally 2000 characters, so if you have
40 segments and 40 separators, each segment could only have an
average width of about 49 characters. Having more segment
columns than you need does not significantly impact either space
requirements or performance. In fact, since you cannot add
more segment columns to a flexfield combinations table once
you have registered your flexfield, you should add at least a few
”extra” segment columns to your combinations table initially to
allow for future needs.

• Define SUMMARY_FLAG and ENABLED_FLAG (type
VARCHAR2, length 1, NOT NULL).

• Define START_DATE_ACTIVE and END_DATE_ACTIVE (type
DATE, NULL).

• Define a structure defining column (structure ID column) to
allow multiple structures (type NUMBER, length 38, NOT
NULL). You should name this column XXX_STRUCTURE_ID,
where XXX is the name of your entity (for example,
PART_STRUCTURE_ID). This column is optional but strongly
recommended.

• Define a unique index on the unique ID column.

• Create an ORACLE sequence for your column with the same
grants and synonyms as your combinations table (for insert
privileges). Name your sequence YOUR_TABLE_NAME_S.

• Define the Who columns, LAST_UPDATE_DATE (type DATE,
NOT NULL) and LAST_UPDATED_BY (type NUMBER, length
15, NOT NULL). All other Who columns should have NULL
ALLOWED.

If you want your application to allow dynamic insertion of new valid
combinations from a form with a foreign key reference, you must not

14 – 17Flexfields

include any mandatory application–specific columns in your
combinations table. Your combinations table contains only the columns
you need to define a key flexfield, such as unique ID, structure
defining, and segment columns. It can, however, include
non–mandatory application–specific columns and columns for derived
segment qualifier values. If you include mandatory
application–specific columns in your combinations table, you cannot
allow dynamic insertion of new valid combinations from a form with a
foreign key reference. If your table does not allow dynamic insertion,
you must create a combinations form, based on your combinations
table, for your users to create their valid combinations.

If you do not ever want to allow dynamic insertion of new valid
combinations, you should develop a single form that allows your end
user to directly display, enter, or maintain valid combinations in your
combinations table (a combinations form). You can set up your key
flexfield to not allow dynamic inserts (on a structure–by–structure
basis) even if dynamic inserts are possible.

Warning: You should never insert records into a code
combinations table through any mechanism other than Oracle
Application Object Library flexfield routines. Doing so could
lead to serious data corruption problems and compromise your
applications.

Table with a foreign key reference

For each table you use as a base table for a form with a foreign key
reference (to a combinations table’s unique ID column), define one
database column with the same name as the unique ID column in the
corresponding combinations table (type NUMBER, length 38, and
NULL or NOT NULL depending on your application’s needs).

If you have a structure column in your combinations table, you also
need to include a structure column in your foreign key table (with a
corresponding form field), or provide some other method for passing
the structure ID number to the NUM parameter in your calls to key
flexfield routines. For example, you could store the structure number
in a profile option and use the option value in the NUM parameter.

You do not need any SEGMENTn columns or other key flexfield
columns for this type of table.

Table for a form with a key flexfield range

To create a table that supports a key flexfield range instead of a foreign
key reference to a single combination, define SEGMENTn_LOW and

14 – 18 Oracle Applications Developer’s Guide

SEGMENTn_HIGH columns, one pair for each SEGMENTn column in
your combinations table (type VARCHAR2, length 1 to 60, all columns
the same length, NULL).

If you have a structure column in your combinations table, you also
need to include a structure column in your range table (with a
corresponding form field), or provide some other method for passing
the structure ID number to the NUM parameter in your calls to key
flexfield routines. For example, you could store the structure number
in a profile option and use the option value in the NUM parameter.

You do not need any other flexfield columns for this table.

Registering Your Key Flexfield Table

After you create your combinations table, you must register your table
with Oracle Application Object Library using the Table Registration
API.

Table Registration API (See page 3 – 11)
Key Flexfields Window (See page 14 – 71)

Registering Your Key Flexfield

Once your table is successfully registered, you register your key
flexfield with Oracle Application Object Library. You register your key
flexfield using the Key Flexfields window.

When you register a key flexfield, you identify the combinations table
in which it resides, as well as the names of the unique ID and structure
defining columns. Key flexfields provided by Oracle Applications are
already registered.

Defining Qualifiers for Key Flexfields

When you register a key flexfield, you can define flexfield and segment
qualifiers for it.

You should define flexfield qualifiers if you want to ensure your end
user customizes your key flexfield to include segments your
application needs. For example, Oracle General Ledger defines
account and balancing flexfield qualifiers in the Accounting Flexfield to
ensure that end users would define account and balancing segments.

14 – 19Flexfields

You should define segment qualifiers if your application needs to know
semantic characteristics of key segment values your end user enters.
You assign one or more segment qualifiers to each flexfield qualifier.
For example, Oracle General Ledger assigns a segment qualifier of
”account type” to the flexfield qualifier ”account” in the Accounting
Flexfield. As a result, end users can define account value 1000 to mean
”Cash,” and assign it a segment qualifier value of ”Asset.”

Note that flexfield qualifiers can be unique or global, and required or not.
You describe a flexfield qualifier as unique if you want your end user to
tie it to one segment only. You describe a flexfield qualifier as global if
you want it to apply to all segments. You can use a global flexfield
qualifier as a convenient means for assigning a standard set of segment
qualifiers to each of your flexfield’s segments. You describe a flexfield
qualifier as required if you want your end user to tie it to at least one
segment.

In Oracle General Ledger’s Accounting Flexfield, the ”Account”
flexfield qualifier is required and unique because Oracle General
Ledger requires one and only one account segment. Oracle General
Ledger defines a flexfield qualifier as ”global” so the segment qualifiers
”detailed posting allowed” and ”detailed budgeting allowed” apply to
each Accounting Flexfield segment.

Key Flexfield Segments Window
Segment Values Window
Value Sets Window
Oracle Applications Flexfields Guide

Derived Column

A column you include in a combinations table into which your flexfield
derives a segment qualifier value. You specify the name of a derived
column when you define a segment qualifier.

Add Your Flexfield to Your Forms

Once you have the appropriate table columns and your flexfield is
registered, you can build your flexfield into your application forms.

Adding Flexfields to Your Forms (See page 14 – 25)

14 – 20 Oracle Applications Developer’s Guide

Implementing Descriptive Flexfields

You add a descriptive flexfield to provide customizable ”expansion
space” for your entity. For example, suppose you have a retail
application that keeps track of customer entities. Your entity table,
CUSTOMERS, would normally include columns such as Name,
Address, State, Sex, Customer Number, and so on. However, your
table might not include extra columns to keep track of a customer’s
size and color preferences, or regular salesperson, since these are
attributes of the customer entity that depend on how your users use
your application. In fact, your users might later identify even more
customer attributes that they want to keep track of. You add
descriptive flexfield columns to your entity table (CUSTOMERS) so
that your users have the desired expansion space. Your users can also
take advantage of the fact that descriptive flexfields can be context
sensitive, where the information your application stores depends on
other values your users enter in the Customers form.

To implement a descriptive flexfield you must:

• Define descriptive flexfield columns in your database

• Register your table with Oracle Application Object Library

• Register your descriptive flexfield with Oracle Application
Object Library

• Create descriptive flexfield fields in your forms

• Add descriptive flexfield routines to your forms

Planning for Reference Fields

Reference fields are fields from which a descriptive flexfield can get a
context field value (optional, but recommended). Reference fields must
be separate fields from the structure defining field (typically
ATTRIBUTE_CATEGORY). Frequently, most of the existing
(non–flexfield) fields in your form can also serve as reference fields. In
general, fields that make good reference fields are those that have a
short, fairly static list of possible values. You specify fields as reference
fields when you register your descriptive flexfield in the Register
Descriptive Flexfield form. Your users then have the option of using a
reference field or not when they set up your flexfield.

For example, suppose you have a retail application that keeps track of
”customer” entities. Your Customers form would normally include
fields such as Name, Address, State, Sex, Customer Number, and so

14 – 21Flexfields

on. Your end users may want to make the descriptive flexfield
context–sensitive depending on what a user enters in the State field (if
the state is Colorado, for example, you may want to keep track of
customer preferences in ski–wear, while if the state is Florida, you may
want to keep track of preferences in warm–weather–wear).
Alternatively, your end users may want to make the descriptive
flexfield context–sensitive depending on what a user enters in the Sex
field (if the customer is female, for example, you may want to keep
track of her size preferences using standard women’s sizes, while if the
customer is male, you may want to keep track of size preferences using
standard men’s sizes). By specifying both the State field and the Sex
field as reference fields when you register your descriptive flexfield in
the Register Descriptive Flexfield form, you give your users the option
to set up the flexfield either way.

Suggestion: A descriptive flexfield can use only one form
field as a reference field. You may derive the context field
value for a descriptive flexfield based on more than one field
by concatenating values in multiple fields into one form field
and using this concatenated form field as the reference field.

Descriptive Flexfields Window (See page 14 – 78)

Descriptive Flexfield Segments Window
Oracle Applications Flexfields Guide

Defining Descriptive Flexfield Database Columns

To make your application very flexible, you should add descriptive
flexfield columns to all of your entity tables.

Oracle Application Object Library reserves table names that contain the
string ”_SRS_” for the Standard Request Submission feature, so you
should not give your descriptive flexfield table a name that includes
this string.

To add descriptive flexfield columns into your database table, you:

• Define a column for each descriptive segment, ATTRIBUTE1
through ATTRIBUTEn (type VARCHAR2, length 1 to 150, all
columns the same length, NULL ALLOWED).

• Define a structure defining column (context column) to identify
your descriptive flexfield structures (type VARCHAR2, length
30, NULL ALLOWED). Although you can name this column

14 – 22 Oracle Applications Developer’s Guide

anything you wish, we recommend that you name it
ATTRIBUTE_CATEGORY.

You should ensure you initially add enough segment columns to cover
any future uses for your descriptive flexfield, since you cannot add
extra segment columns to your flexfield later.

You determine the maximum number of segments you can have within
a single structure when you define your ATTRIBUTEn columns in your
table. You can define a maximum of 200 ATTRIBUTEn columns in one
table. As a rule of thumb, you should create about twice as many
segment columns as you think your users might ever need for a single
descriptive flexfield structure.

Adding a Descriptive Flexfield to a Table with Existing Data

You can add flexfield columns to a table that has never had any flexfield
columns but already contains data. However, you must be very careful
not to create data inconsistencies in your application when you do so.
To add your flexfield, you add columns, form fields, and invoke
descriptive flexfield routines exactly the same as if you were creating a
descriptive flexfield from the beginning. However, when you define
your flexfield using the Descriptive Flexfield Segments form, you must
consider whether any of the segments should use value sets that require
values. If none of your new segments requires a value, your users will
simply see an empty descriptive flexfield when they query up existing
records. For this case, no further action is necessary.

For the case where one or more of your segments require values, you
need to perform extra steps to prevent data inconsistencies. The
simplest way to do this is to define your segment structures completely,
navigate to your form with the new descriptive flexfield, query up each
record in your table, and enter values in the descriptive flexfield for
each record. Save your changes for each record. This method, while
tedious, ensures that all values go into the correct columns in your
entity table, including the structure defining (context) column.

For very large tables, you can add the values to your table directly
using SQL*Plus. You need to update each row in your table to include
a context field value (the structure defining column) as well as segment
values, so you must first determine the segment/column
correspondences for your structures. Your context (structure) values
must exactly match your context field values in the Descriptive
Flexfield Segments form. For example, if your context field value is
mixed case, what you put in the structure column must match the

14 – 23Flexfields

mixed case. If you put an invalid context value into the structure
column, a purely context–sensitive flexfield does not pop up at all for
that record. If you have global segments enabled, the flexfield window
will open. If Override Allowed is set to Yes, you will see the bad
context field value in the context field of the window.

Note that you should never use SQL*Plus to modify data in Oracle
Application Object Library tables.

Protected Descriptive Flexfields

In some cases, you may want to create a descriptive flexfield that
cannot be inadvertently changed by an installer or user. This type of
flexfield is called a protected descriptive flexfield. You build a
protected descriptive flexfield the same way you build a normal
descriptive flexfield. The main difference is that you check the
Protected check box in the Descriptive Flexfields form after defining
your segment structures. Once a descriptive flexfield is protected, you
cannot query or change its definition using the Descriptive Flexfield
Segments form. You should define your descriptive flexfield segments
before you check the Protected check box in the Descriptive Flexfields
form.

Descriptive Flexfields WIndow (See page 14 – 78)

In a case where your database table already includes a descriptive
flexfield, you need to define segment columns that have names other
than ATTRIBUTEn. For special purpose flexfields such as protected
descriptive flexfields, you can name your columns anything you want.
You explicitly enable these columns as descriptive flexfield segment
columns when you register your descriptive flexfield. Note that you
must also create a structure–defining column for your second flexfield.
Flexfields cannot share a structure column.

If your database table contains segment columns with names other than
ATTRIBUTEn, you create hidden fields corresponding to those
columns instead.

14 – 24 Oracle Applications Developer’s Guide

Registering Your Descriptive Flexfield Table

After you add descriptive flexfield columns to your table, you must
register your table with Oracle Application Object Library using the
Table Registration API.

Table Registration API (See page 3 – 11)

Registering Your Descriptive Flexfield

You must register your descriptive flexfield with Oracle Application
Object Library. You register your descriptive flexfield using the
Register Descriptive Flexfield form. When you register a descriptive
flexfield, you identify the application table in which it resides and the
name of the structure defining column. If you have created reference
fields in your form, you should enter their names as ”context fields”
when you register your flexfield.

Descriptive Flexfields Window (See page 14 – 78)

Add Your Flexfield to Your Forms

Once you have the appropriate table columns and your flexfield is
registered, you can build your flexfield into your application forms.

Adding Flexfields to Your Forms (See page 14 – 25)

�

14 – 25Flexfields

Adding Flexfields to Your Forms

There are four basic parts to calling a flexfield from an Oracle Forms
window. These steps assume that your flexfield is already registered
and defined in Oracle Application Object Library and that the flexfield
table and columns already exist. These steps apply to both key and
descriptive flexfields.

� To code a flexfield into your form:

• Create your hidden fields

• Create your displayed fields

• Create your flexfield definition

• Invoke your flexfield definition from several event triggers

Create Your Hidden Fields

In general, you create your hidden flexfield fields as part of creating
your default form block from the database table (or view). Set the
canvas property of the flexfield fields to null (so they do not appear on
a canvas).

Your hidden ID (for key flexfields only), structure field, and segment or
attribute fields must be text items on the null canvas. Note that these
must be text items rather than display items, and that they should use
the TEXT_ITEM property class. Set the field query lengths to 255 for
most fields, with a query length of 2000 for hidden ID fields.

Attention: You should never create logic that writes values to
the hidden fields directly. Since the flexfield keeps track of
whether a record is being inserted, updated, etc., putting
values in these fields by any method other than the flexfield
itself (or a query from the database) may cause errors and data
corruption.

In some foreign key forms for key flexfields, you may need to create
extra non–database fields that represent the segment columns
(SEGMENT1 through SEGMENTn) in your combinations table. Put
your SEGMENT1 through SEGMENTn fields on the null canvas (field
length the same as your SEGMENTn columns). These fields help
Oracle Application Object Library to create new code combinations
from your form with a foreign key reference (using dynamic insertion).

14 – 26 Oracle Applications Developer’s Guide

Normally, Oracle Application Object Library can create new code
combinations (dynamic insertion) from your form with a foreign key
reference using only the concatenated segment values field. However,
if you expect the concatenated length of your flexfield to be defined to
be larger than 2000 (the sum of the defined segments’ value set
maximum sizes plus segment separators), then you should create these
non–database fields to support the dynamic creation of new
combinations from your form.

If you do not have these fields and your users define a long flexfield (>
2000 characters), your users can experience truncation of key flexfield
data when trying to create new combinations.

If your key flexfield is registered with Dynamic Inserts Feasible set to
No, you do not need to add these fields, though they are
recommended. If you do not create these fields, and your users define
a long flexfield, your users may see empty flexfield segments upon
entering the flexfield pop–up window after a query. These blank
segments do not adversely affect the underlying data, nor do they
adversely affect flexfield changes if your user updates those segments
after querying.

If you use these fields and you have more than one key flexfield in the
same row (in a block) of your form, you should also create one extra set
of non–database segment fields per flexfield. So, if you have three
foreign–key–reference flexfields in your block, you should have four
sets of segment fields (for example, SEGMENT1 to SEGMENTn as the
main set; and SEGMENT1_A to SEGMENTn_A, SEGMENT1_B to
SEGMENTn_B, and SEGMENT1_C to SEGMENTn_C as the extra sets).
In addition, you should use the USEDBFLDS=”Y” argument for your
flexfield definition routine calls. When you do so, you must write
trigger logic to explicitly copy the appropriate values into or out of
these fields before your flexfield routine calls. You must copy your
values into the main set from the appropriate extra set before the
WHEN–NEW–ITEM–INSTANCE and the PRE–INSERT and
PRE–UPDATE flexfield event calls. You must copy your values out of
the main set into the appropriate extra set after the POST–QUERY,
WHEN–NEW–ITEM–INSTANCE, WHEN–VALIDATE–ITEM,
PRE–INSERT, or PRE–UPDATE calls.

For a descriptive flexfield, it is possible (though not recommended) to
create your form such that the table containing the descriptive flexfield
columns is not the base table (or included in the base view) of the form.
To do this, you create all the hidden fields (the ATTRIBUTEn fields and
the structure defining field) as non–database fields on the null canvas.
Then, code trigger and table handler logic that keeps the data in the
two tables synchronized. For example, when your form updates your

14 – 27Flexfields

base table, your ON_UPDATE table handler should update the
ATTRIBUTEn and structure defining columns in the descriptive
flexfield table. Likewise, when your form inserts new records, you
should have logic in your ON_INSERT table handler that inserts into
the descriptive flexfield table. Descriptive flexfields never write
directly to a table (base table or otherwise); they always write to the
hidden segment fields.

Create Your Displayed Fields

Create your concatenated segments field as a 2000 character displayed,
non–database text item for either key or descriptive flexfields. For a
range flexfield, you create two non–database fields with the same name
but with the suffixes _LOW and _HIGH.

Use the TEXT_ITEM property class for your key and range flexfields.
For a descriptive flexfield, use the property class
TEXT_ITEM_DESC_FLEX and name the field DESC_FLEX.

You must attach the dummy LOV from the TEMPLATE form,
ENABLE_LIST_LAMP, to the displayed key or descriptive flexfield
field. Make sure that ”Validate from List” property (formerly ”Use
LOV for Validation”) is set to No. This ensures that the List lamp
works properly for your flexfield.

If you experience strange LOV behavior (where the LOV provides
”null” as the only valid choice) or messages that the flexfield cannot be
updated and/or has invalid values, check that ”Validate from List” is
set to No.

Create Your Flexfield Definition

Call a flexfield definition procedure from your
WHEN–NEW–FORM–INSTANCE trigger to set up your flexfield.
Using this procedure, you specify the block and fields for your flexfield
and its related fields, the flexfield you want, and other arguments. See:
Flexfield Definition Procedures: page 14 – 30.

You may need to enable, disable, or modify your flexfield definition
depending on conditions in the form. For example, you may want to
have a flexfield be updatable under some conditions but not under
other conditions. In this case you should also call an

14 – 28 Oracle Applications Developer’s Guide

UPDATE_DEFINITION procedure after calling the appropriate
DEFINE procedure. See: Updating Flexfield Definitions: page 14 – 59.

Invoke Your Flexfield Definition from Several Event Triggers

Code handlers for special procedures into several form level triggers.
These procedures fire your flexfield at certain events such as WHEN–
NEW–ITEM–INSTANCE, WHEN–VALIDATE–ITEM, and
PRE–INSERT.

You call your flexfields from form level triggers using the
FND_FLEX.EVENT(EVENT) procedure. You can also call your
flexfields using this procedure from within your own procedures. This
procedure takes the event name as its argument. Call
FND_FLEX.EVENT and pass the trigger name from the triggers listed
in the following table:

Trigger Procedure

PRE–QUERY FND_FLEX.EVENT(’PRE–QUERY’);

POST–QUERY FND_FLEX.EVENT(’POST–QUERY’);

PRE–INSERT FND_FLEX.EVENT(’PRE–INSERT’);

PRE–UPDATE FND_FLEX.EVENT(’PRE–UPDATE’);

WHEN–VALIDATE–
RECORD

FND_FLEX.EVENT(’WHEN–VALIDATE–
RECORD’);

WHEN–NEW–ITEM–
INSTANCE

FND_FLEX.EVENT(’WHEN–NEW–ITEM–INSTANCE’);

WHEN–VALIDATE–
ITEM

FND_FLEX.EVENT(’WHEN–VALIDATE–ITEM’);

Table 14 – 1 (Page 1 of 1)

These calls should usually be coded into your form as form–level
triggers. If you define any of these triggers at the block or field level,
you need to make sure the block or field level triggers have execution
style set to ”Before” so the form–level flexfield calls still execute, or you
should include these procedure calls in those triggers as well.

While we recommend you code all the flexfields triggers at the form
level for convenience and consistency, having the triggers at form level
may cause performance problems for very large or complicated forms.
In that case, you may code the PRE–QUERY, POST–QUERY,

�

14 – 29Flexfields

PRE–INSERT, PRE–UPDATE, and WHEN–VALIDATE–RECORD
triggers at the block level on all blocks that have flexfields (key or
descriptive). You would then code the WHEN–NEW–ITEM–
INSTANCE and WHEN–VALIDATE–ITEM at the item level for items
on which the flexfields are defined.

You only need to code one set of these triggers regardless of how many
flexfields you have in your form (assuming these triggers are at the
form level).

Three form–level triggers in the TEMPLATE form, KEY–EDIT,
KEY–LISTVAL, and POST–FORM, already have the appropriate
FND_FLEX.EVENT calls performed through the
APP_STANDARD.EVENT(’trigger_name’) routines as part of the
APPCORE library. You must ensure that these
APP_STANDARD.EVENT calls are not overridden by triggers at the
block or item levels.

Attention: If you have a block or item level POST–QUERY
trigger that resets the query status of a record, you must set the
Execution Style of that block or item level POST–QUERY
trigger to After. Because the flexfield POST–QUERY logic
updates field values for your flexfield, the record must be reset
to query status after that logic has fired.

Opening a Flexfield Window Automatically

By default, descriptive flexfields open automatically without any
special code so long as the profile option Flexfields:Open Descr
Window is not set to No.

Normally, key flexfields do not open automatically. However, users
can set the profile option, Flexfields:Open Key Window, to Yes to
automatically open all key flexfields. You must not code any code in
your form to open the window automatically, because the window
would then be forced to open a second time.

You should remove any existing code that opens a key flexfield
automatically. Such code would probably be in your
WHEN–NEW–ITEM–INSTANCE trigger at the field level, instead of
the form level, on the field that contains the flexfield. You should
remove any ”FND_FLEX.EVENT(’KEY–EDIT’);” call that opens the
flexfield automatically.

�

14 – 30 Oracle Applications Developer’s Guide

Flexfield Definition Procedures

Flexfields packages and procedures are included in the FNDSQF
library. Call item handlers from your
WHEN–NEW–FORM–INSTANCE trigger to define key, range or
descriptive flexfields.

• To define a key flexfield, use the procedure
FND_KEY_FLEX.DEFINE

• To define a range or type flexfield, use the procedure
FND_RANGE_FLEX.DEFINE

• To define a descriptive flexfield, use the procedure
FND_DESCR_FLEX.DEFINE

When you call these procedures, you specify three types of arguments:

• location(s) of the flexfield (block and fields, including the
concatenated values field, the ID field if any, and any description
or related fields)

• specific registered flexfield you want (application, flexfield, and
structure if necessary)

• any additional arguments

If you have more than one flexfield, you call a complete flexfield
definition procedure for each of your flexfields from handlers in the
same WHEN–NEW–FORM–INSTANCE trigger.

Key Flexfield Definition Syntax

Use FND_KEY_FLEX.DEFINE for a key flexfield on a foreign key or
combinations form.

Attention: We provide combinations form syntax so you can
convert any existing non–Oracle Applications combinations
forms you may have from SQL*Forms 2.3 to Oracle Forms 4.5.
However, the API for key flexfields may change in future
versions of Oracle Applications, so we recommend that you do
not create any new key flexfields that are not provided by
Oracle Applications.

14 – 31Flexfields

FND_KEY_FLEX.DEFINE(

 /* Arguments that specify flexfield location */

 BLOCK=>’block_name’,

 FIELD=>’concatenated_segments_field_name’,

 [DESCRIPTION=>’description_field_name’,]

 [ID=>’Unique_ID_field’,]

 [DATA_FIELD=>’concatenated_hidden_IDs_field’,]

 /* Arguments that specify the flexfield */

 APPL_SHORT_NAME=>’application_short_name’,

 CODE=>’key_flexfield_code’,

 NUM=>’structure_number’,

 /* Other optional parameters */

 [VALIDATE=>’{FOR_INSERT|FULL|PARTIAL|NONE|

 PARTIAL_IF_POSSIBLE}’,]

 [VDATE=>’date’,]

 [DISPLAYABLE=>’{ALL | flexfield_qualifier |

 segment_number}[\\0{ALL |

 flexfield_qualifier | segment_number}]’,]

 [INSERTABLE=>’{ALL | flexfield_qualifier |

 segment_number}[\\0{ALL |

 flexfield_qualifier | segment_number}]’,]

 [UPDATEABLE=>’{ALL | flexfield_qualifier |

 segment_number}[\\0{ALL |

 flexfield_qualifier | segment_number}]’,]

 [VRULE=>’flexfield qualifier\\n

 segment qualifier\\n

 {I[nclude]|E[xclude]}\\n

 APPL=application_short_name;

 NAME=Message Dictionary message name\\n

 validation value1\\n

 validation value2...

 [\\0flexfield qualifier\\n

 segment qualifier\\n

 {I[nclude]|E[xclude]}\\n

 APPL=application_short_name;

14 – 32 Oracle Applications Developer’s Guide

 NAME=Message Dictionary message name\\n

 validation value1\\n

 validation value2...]’,]

 [COPY=>’block.field\\n{ALL | flexfield

 qualifier | segment_number}

 [\\0block.field\\n{ALL | flexfield

 qualifier | segment_number}]’,]

 [DERIVED=>’block.field\\nSegment qualifier’,]

 [DERIVE_ALWAYS=>’{Y|N}’,]

 [DINSERT=>’{Y|N}’,]

 [VALATT=>’block.field\\n

 flexfield qualifier\\n

 segment qualifier’,]

 [TITLE =>’Title’,]

 [REQUIRED=>’{Y|N}’,]

 [AUTOPICK=>’{Y|N}’,]

 [USEDBFLDS=>’{Y|N}’,]

 [ALLOWNULLS=>’{Y|N}’,]

 [DATA_SET=>’set number’,]

 [COLUMN=>’{column1(n) | column1 alias(n)

 [, column2(n), ...] [INTO block.field]}’,]

 [WHERE_CLAUSE=>’where clause’,]

 [COMBQP_WHERE=>’{where clause|NONE}’,]

 [WHERE_CLAUSE_MSG=>’APPL=application_short_

 name;NAME=message_name’,]

 [QUERY_SECURITY=>’{Y|N|}’,]

 [QBE_IN=>’{Y|N}’,]

 [READ_ONLY=>’{Y|N}’,]

 [LONGLIST=>’{Y|N}’,]

 [NO_COMBMSG=>’APPL=application_short_

 name;NAME=message_name’,]

 [AUTOCOMBPICK=>’{Y|N}’,]

 [LOCK_FLAG=>’{Y|N}’,]

 [HELP=>’APPL=application_short_name;

 TARGET=target_name’]

);

You should not use a colon (:) in block.field references for the
VALATT, COPY, or DERIVED arguments. The arguments for these

�

14 – 33Flexfields

routines go to an Oracle Application Object Library cover routine and
are not directly interpreted in PL/SQL.

Range (Type) Flexfield Definition Syntax

Use FND_RANGE_FLEX.DEFINE for a range flexfield. You use the
same procedure for a ”type” flexfield (which may also include range
flexfield segments) that contains extra fields corresponding to each
segment of the related key flexfield. For example, a type flexfield for
the Accounting Flexfield might contain one field for each Accounting
Flexfield segment, but you might enter only the values Yes or No in
those fields, instead of normal segment values. The Assign Function
Parameters form uses a type flexfield for its segment usage field (you
enter ”Yes” for any segment whose value you want to use). You may
build a type flexfield that contains more than one ”type column” (a
”column” of fields in the flexfield pop–up window that correspond to
the actual segment fields). If you do, you can specify your TYPE_
argument values multiple times, using \\0 to separate the values.

Attention: You should not append ”_LOW” or ”_HIGH” to
the FIELD, DESCRIPTION, DATA_FIELD or other values,
since this procedure appends them automatically. When you
use more than one type column, ensure that all TYPE_
arguments specify type columns in the same order to avoid
having argument values applied to the wrong type column.

FND_RANGE_FLEX.DEFINE(

 /* Arguments that specify flexfield location */

 BLOCK=>’block_name’,

 FIELD=>’concatenated_segments_field_name’,

 [DESCRIPTION=>’description_field_name’,]

 [DATA_FIELD=>’concatenated_hidden_IDs_field’,]

 /* Arguments that specify the flexfield */

 APPL_SHORT_NAME=>’application_short_name’,

 CODE=>’key_flexfield_code’,

 NUM=>’structure_number’,

14 – 34 Oracle Applications Developer’s Guide

 /* Other optional parameters */

 [VALIDATE=>’{PARTIAL|NONE}’,]

 [VDATE=>’date’,]

 [DISPLAYABLE=>’{ALL | flexfield_qualifier |

 segment_number}[\\0{ALL |

 flexfield_qualifier | segment_number}]’,]

 [INSERTABLE=>’{ALL | flexfield_qualifier |

 segment_number}[\\0{ALL |

 flexfield_qualifier | segment_number}]’,]

 [UPDATEABLE=>’{ALL | flexfield_qualifier |

 segment_number}[\\0{ALL |

 flexfield_qualifier | segment_number}]’,]

 [VRULE=>’flexfield qualifier\\n

 segment qualifier\\n

 {I[nclude]|E[xclude]}\\n

 APPL=application_short_name;

 NAME=Message Dictionary message name\\n

 validation value1\\n

 validation value2...

 [\\0flexfield qualifier\\n

 segment qualifier\\n

 {I[nclude]|E[xclude]}\\n

 APPL=application_short_name;

 NAME=Message Dictionary message name\\n

 validation value1\\n

 validation value2...]’,]

 [TITLE =>’Title’,]

 [REQUIRED=>’{Y|N}’,]

 [AUTOPICK=>’{Y|N}’,]

 [USEDBFLDS=>’{Y|N}’,]

 [ALLOWNULLS=>’{Y|N}’,]

 [DATA_SET=>’set number’,]

 [READ_ONLY=>’{Y|N}’,]

 /* Parameters specific to type flexfields */

 [TYPE_FIELD=>’block.concatenated_type_values_

 field\\ntype field suffix’,]

 [TYPE_VALIDATION=> ’Value set name\\n

 Required\\nDefault value’,]

�

14 – 35Flexfields

 [TYPE_SIZES=>’type_value_display_

 size\\nDescription_display_size’,]

 [TYPE_HEADING=>’type column heading’,]

 [TYPE_DATA_FIELD=>’block.type_data_field’,]

 [TYPE_DESCRIPTION=>’block.type_

 description_field’,]

 [SCOLUMN=>’single column title’,]

 [HELP=>’APPL=application_short_name;

 TARGET=target_name’]

);

Attention: TYPE_FIELD, TYPE_DATA_FIELD and
TYPE_DESCRIPTION require the block.fieldname
construction, unlike other flexfield arguments that specify field
names without block names.

Descriptive Flexfield Definition Syntax

Use FND_DESCR_FLEX.DEFINE for a descriptive flexfield.

FND_DESCR_FLEX.DEFINE(

 /* Arguments that specify the flexfield location */

 BLOCK=>’block_name’,

 FIELD=>’field_name’,

 [DESCRIPTION=>’description_field_name’,]

 [DATA_FIELD=>’concatenated_hidden_IDs_field’,]

 /* Arguments that specify the flexfield */

 APPL_SHORT_NAME=>’application_short_name’,

 DESC_FLEX_NAME=>’descriptive flexfield_name’

 /* Other optional parameters */

 [VDATE=>’date’,]

 [TITLE =>’Title’,]

 [AUTOPICK=>’{Y|N}’,]

 [USEDBFLDS=>’{Y|N}’,]

 [READ_ONLY=>’{Y|N}’,]

 [LOCK_FLAG=>’{Y|N}’,]

 [HELP=>’APPL=application_short_name;

14 – 36 Oracle Applications Developer’s Guide

 TARGET=target_name’,]

 [CONTEXT_LIKE=>’WHERE_clause_fragment’}

);

Flexfield Definition Arguments

The following arguments apply to all types of flexfields unless noted
otherwise. For those arguments that you would want to specify more
than once, you separate the multiple argument values using \\0 (as
noted).

Arguments that Specify the Flexfield Location

Name of the block that contains your flexfield.
Your value field, ID field (if any), and description
field (if any) must all be in the same block.

Name of the field where you want to put your
flexfield. This is a displayed, non–database form
field that contains your concatenated segment
values plus delimiters.

Description field for your flexfield. This is a
displayed, non–database, non–enterable field that
contains concatenated descriptions of your
segment values. If you do not specify the
DESCRIPTION parameter, your form does not
display concatenated segment descriptions.

For a key flexfield only. Specify the field, if any,
that contains the unique ID (CCID) for your key
flexfield.

The concatenated hidden IDs field is a
non–displayed form field that contains the
concatenated segment hidden IDs.

Arguments that Specify which Flexfield to Use

Shortname of the application with which your
flexfield is registered.

Key or range flexfields only. The short code that
identifies your flexfield. This is the flexfield code

BLOCK

FIELD

DESCRIPTION

ID

DATA_FIELD

APPL_SHORT_
NAME

CODE

14 – 37Flexfields

specified in the Key Flexfields form. This code
must match the registered code, such as GL# for
the Accounting Flexfield in Oracle Applications.

Key or range flexfields only. The structure number
(or the :block.field reference containing the
structure number) that identifies your key flexfield
structure.

You can specify the non–displayed database
:block.field that holds the identification number of
your flexfield structure. You may also specify
:$PROFILES$.your_profile_option_name to retrieve a
value you set in a user profile option. You can
”hardcode” a structure number, such as 101, into
this parameter instead of providing a field
reference, but such a number prevents you from
using multiple structures for your flexfield. You
must use this option if you are using multiple
structures.

You can use the following SQL statement to
retrieve the structure identification numbers for
your flexfield:

SELECT ID_FLEX_NUM, ID_FLEX_STRUCTURE_NAME

FROM FND_ID_FLEX_STRUCTURES

WHERE ID_FLEX_CODE = ’flexfield code’;

where flexfield code is the code you specify when
you register your flexfield.

The default value for NUM is 101.

Descriptive flexfields only. The registered name
that identifies your descriptive flexfield.

Other Optional Arguments

If you do not specify a particular optional argument, the flexfield
routine uses the usual default value for the argument.

Key or range flexfields only. For a key flexfield,
you typically use FOR_INSERT for a combinations
form and FULL for a foreign key form. For a
range flexfield, you typically use NONE to allow
users to enter any value into a segment or
PARTIAL to ensure that users enter valid

NUM

DESC_FLEX_
NAME

VALIDATE

14 – 38 Oracle Applications Developer’s Guide

individual segment values that do not necessarily
make up an actual valid combination.

Use a validation type of FULL for a foreign key
form to validate all segment values and generate a
new code combination and dynamically insert it
into the combinations table when necessary. If you
specify FULL, your flexfield checks the values your
user enters against the existing code combinations
in the code combinations table. If the combination
exists, your flexfield retrieves the code combination
ID. If the combination does not exist, your flexfield
creates the code combination ID and inserts the
combination into the combinations table. If you (or
an installer) define the flexfield structure with
Dynamic Inserts Allowed set to ”No”, then your
flexfield issues an error message when a user
enters a combination that does not already exist. In
this case, your flexfield does not create the new
code combination. FULL is the usual argument for
a form with a foreign key reference.

Use PARTIAL for a form where you want to
validate each individual segment value but not
create a new valid combination or check the
combinations table for an existing combination.
You would use PARTIAL when you want to have
application logic that requires flexfield segment
values but does not require an actual code
combination. For example, the Oracle Applications
Shorthand Aliases form requires that a user enters
valid values for each segment, but does not require
(or check) that the actual code combination already
exists in the combinations table. The Shorthand
Aliases form does not create the combination,
either. PARTIAL_IF_POSSIBLE is a special case of
PARTIAL. If you have dependent segments in
your flexfield (with independent segments),
PARTIAL does not provide a list of values on the
dependent segment if the user has not entered a
value for the associated independent segment.
PARTIAL_IF_POSSIBLE, however, will attempt to
provide a list of values on the dependent segment.
That list of values contains all dependent values for
all values of the associated independent segment

14 – 39Flexfields

(so, you would see multiple values 000 if that were
your default dependent value).

Use NONE if you wish no validation at all.

The default value for a key flexfield is FULL. The
default value for a range flexfield is NONE.

date is the validation date against which the Start
Date and End Date of individual segment values is
checked. You enter a Start Date and End Date for
each segment value you define using the Segment
Values form.

For example, if you want to check values against a
date that has already passed (say, the closing date
of an accounting period), you might specify that
date as VDATE using a field reference
(VDATE=>’:block.field’) and compare your segment
values against that date.

The default value is the current date (SYSDATE).

Key flexfields only. Use DINSERT to turn dynamic
inserts off or on for this form.

The default value is Y (the form can do dynamic
inserts).

Key or range flexfields only. The DISPLAYABLE
parameter allows you to display segments that
represent specified flexfield qualifiers or specified
segment numbers, where segment numbers are the
order in which the segments appear in the flexfield
window, not the segment number specified in the
Key Flexfield Segments form. For example, if you
specify that you want to display only segment
number 1, your flexfield displays only the first
segment that would normally appear in the
pop–up window (for the structure you specify in
NUM).

The default value for DISPLAYABLE is ALL, which
makes your flexfield display all segments.
Alternatively, you can specify a flexfield qualifier
name or a segment number.

You can use DISPLAYABLE as a toggle switch by
specifying more than one value, separated by \\0
delimiters. For example, if you want your flexfield

VDATE

DINSERT

DISPLAYABLE

14 – 40 Oracle Applications Developer’s Guide

to display all but the first segment, you would
specify:

DISPLAYABLE=>’ALL\\01’

Note that \\0 separates 1 from ALL.

If you do not display all your segments, but you
use default values to fill in your non–displayed
segments, you must also have hidden SEGMENT1
through SEGMENTn fields in your form. You need
these hidden fields because your flexfield writes
the values for all displayed fields to the
concatenated values field, but does not write the
values for the non–displayed defaulted fields.
Since your flexfield normally uses the values in the
concatenated values field to update and insert to
the database, the default values for the
non–displayed fields are not committed. However,
if you have the extra hidden fields (similar to a
combinations form), your flexfield writes flexfield
values to those fields as well as to the concatenated
segment values field. The non–displayed values
are written only to the hidden fields, but are used
to update and insert to the database.

Key or range flexfields only. The UPDATEABLE /
INSERTABLE parameters determine whether your
users can update or insert segments that represent
specified unique flexfield qualifiers or segment
numbers, where segment numbers are the order in
which the segments appear in the flexfield window,
not the segment number specified in the Key
Flexfield Segments form.

The default value for each is ALL, which allows
your user to update/insert all segments.
Alternatively, you can specify a flexfield qualifier
name or a segment number. You can enter
UPDATEABLE=>’’ or INSERTABLE=>’’ (two
single quotes) to prevent your user from updating
or inserting values for any segments.

You can use these parameters as toggle switches by
specifying more than one value, separated by \\0
delimiters. For example, if you want your user to
be able to update all but the first segment, you
would specify:

UPDATEABLE
INSERTABLE

14 – 41Flexfields

UPDATEABLE=>’ALL\\01’

Note that \\0 separates 1 from ALL.

If you use INSERTABLE=>’’ to prevent your user
from inserting values for any segments, Shorthand
Flexfield Entry is disabled for that form.

Specify the window title you want to appear at the
top of the pop–up window. The default value for a
key flexfield is the Structure Name you specify
when you set up this flexfield using the Key
Flexfield Segments form. For a descriptive
flexfield, the default value is the flexfield title you
specify when you set up this flexfield using the
Descriptive Flexfield Segments form.

Key or range flexfields only. Specify whether your
user can exit the flexfield window without entering
segment values.

The default value is Y.

If you specify Y, then your flexfield prevents your
user from leaving any required segment (a segment
whose value set has Value Required set to Yes)
without entering a valid value for that segment.
Also, if your user tries to save a row without ever
entering the flexfield pop–up window, your
flexfield attempts to use default values to fill in any
required segments and issues an error message if
not all required segments can be filled.

If you specify Y and VALIDATE as FULL, then
when your user queries up a row with no
associated flexfield (the foreign key flexfield ID
column contains NULL), your flexfield issues an
error message to warn the user that a NULL ID has
been returned for a required flexfield.

If you specify N, your flexfield allows your user to
save a row without ever entering the flexfield
pop–up window. If you specify N, your user can
navigate (without stopping) through a flexfield
window without entering or changing any values.
However, if a user enters or changes any segment
value in the flexfield, the user cannot leave the
flexfield window until all required segments
contain valid values. If you specify N and a user

TITLE

REQUIRED

14 – 42 Oracle Applications Developer’s Guide

does not open or enter values in the window, the
user can save the row regardless of whether the
flexfield has required segments. In this case, your
flexfield does not save default values as segment
values for the required segments, and it does not
issue an error message.

If you specify N and VALIDATE as FULL, then
when your user queries up a row with no
associated flexfield (the foreign key flexfield ID
column contains NULL), your flexfield validates
the individual segment values returned by the
query. Specify N if you want to query up
non–required flexfields without getting an error
message.

Note that even if REQUIRED is set to N, a user
who starts entering segment values for this
flexfield must either fill out the flexfield in full, or
abandon the flexfield.

Determines whether a list of values window
appears when your user enters an invalid segment
value. The default value is Y.

Key flexfields only. Copies a non–null value from
block.field into the segment representing the
specified flexfield qualifier or segment number before
the flexfield window pops up. Alternatively, if you
specify ALL, COPY copies a set of non–null,
concatenated set of segment values (and their
segment separators) that you have in block.field into
all of your segments. For example, if you have a
three–segment flexfield, and your block.field
contains 001.ABC.05, COPY puts 001 into the first
segment, ABC into the second segment, and 05 into
the third segment.

The value you COPY into a segment must be a
valid value for that segment. The value you COPY
overrides any default value you set for your
segment(s) using the Key Flexfield Segments form.
However, shorthand flexfield entry values override
COPY values. COPY does not copy a NULL value
over an existing (default) value. However, if the
value you copy is not a valid value for that
segment, it gives the appearance of overriding a

AUTOPICK

COPY

14 – 43Flexfields

default value with a NULL value: the invalid
value overrides the default value, but your
flexfield then erases the copied value because it is
invalid. You should ensure that the field you copy
from contains valid values.

When the flexfield window closes, your flexfield
automatically copies the value in the segment
representing the specified flexfield qualifier or
segment number into block.field. Alternatively, if you
specify ALL, your flexfield automatically copies
the concatenated values of all your segments into
block.field.

You can specify one or more COPY parameter
values, separated by \\0 delimiters. Later COPY
values override earlier COPY values. For example,
assume you have a field that holds concatenated
flexfield values, called Concatenated_field, and it
holds the string 01–ABC–680. You also have a
field, Value_field, that holds a single value that you
want to copy into your second segment, and it
holds the value XYZ. You specify:

COPY=>’block.Concatenated_field\\nALL\\0

block.Value_field\\n2’

Note that \\0 separates the different parameter
values.

When your user opens the flexfield window, Oracle
Application Object Library executes the two COPY
parameters in order, and your user sees the values
in the window as:

01

XYZ

680

After the flexfield window closes, your flexfield
copies the values back into the two fields as
01–XYZ–680 and XYZ respectively. Note that XYZ
overrides ABC in this case.

Key flexfields only. Use DERIVED to get the
derived value of segment qualifiers for a
combination that a user types in. Use block.field to
specify the block and field you want your flexfield
to load the derived value into. Use Segment

DERIVED

14 – 44 Oracle Applications Developer’s Guide

qualifier to specify the segment qualifier name you
want. Note: do not put spaces around \\n, and
\\n must be lowercase.

Your flexfield uses the following rules to get the
derived qualifier value from the individual
segment qualifier values: if the segment qualifier is
unique, the derived value is the segment qualifier
value; for non–unique segment qualifiers, if any
segment’s qualifier value = N, then the derived
value is N, otherwise, the derived value is Y. The
only exception to this rule is for the internal
SUMMARY_FLAG segment qualifier; the rule for
this is if any segment value is a parent, then the
derived value of SUMMARY_FLAG is Y. Your
flexfield loads derived values into the
combinations table qualifier column that you
specify when you define your qualifier.

You can specify one or more groups of DERIVED
parameters separated by \\0.

Key flexfields only. Use with the DERIVED
parameter. If you specify Y, the derived values are
computed even if the user navigates through the
flexfield without changing any values (choosing
the same value that is already in a segment does
mark the flexfield as having changed).

The default value is N, where the derived values
are calculated only if the flexfield is modified.

Key or range flexfields only. Use VRULE to put
extra restrictions on what values a user can enter in
a flexfield segment based on the values of segment
qualifiers (which are attached to individual
segment values). You can specify the name of a
flexfield qualifier and a segment qualifier, whether to
Include or Exclude the validation values, and the
Message Dictionary application short name and
message name for the message your flexfield
displays if the user enters an improper value. The
delimiter \\n must be lowercase, and you separate
the application name from the message name using
a semicolon.

For example, suppose you build a form where you
want to prevent your users from entering segment

DERIVE_
ALWAYS

VRULE

14 – 45Flexfields

values for which detail posting is not allowed into
all segments of Oracle General Ledger’s
Accounting Flexfield.
DETAIL_POSTING_ALLOWED is the segment
qualifier, based on the global flexfield qualifier
GL_GLOBAL, that you want to use in your rule.
You want to exclude all values where the value of
DETAIL_POSTING_ALLOWED is N (No). Your
message name is ”GL Detail Posting Not
Allowed”, and it corresponds to a message that
says ”you cannot use values for which detail
posting is not allowed.” You would specify your
rule as:

VRULE=’GL_GLOBAL\\nDETAIL_POSTING_ALLOWED\\nE

\\nAPPL=SQLGL;

NAME=GL Detail Posting Not Allowed\\nN’

Do not use line breaks (newline characters) in your
VRULE argument. The previous example includes
them for clarity, but in your code it should all be
one line. If it cannot fit on one line, use the
following format:

vrule => ’first line’ ||
 ’second line’;

When your user enters an excluded value in one of
the segments affected by this qualifier, your user
gets the message you specify. In addition, the
excluded values do not appear in the list of values
on your segments. All other values, not being
specifically excluded, are included.

You can specify one or more groups of VRULE
parameters separated by \\0 (zero). Oracle
Application Object Library checks multiple VRULE
parameters bottom–up relative to the order you list
them. You should order your rules carefully so
that your user sees the most useful error message
first.

Key flexfields only. VALATT copies the segment
qualifier value of the segment representing the
unique flexfield qualifier into block.field when the
flexfield window closes. The delimiter \\n must
be lowercase.

VALATT

14 – 46 Oracle Applications Developer’s Guide

For a combinations form, specify this parameter
only if your combinations table contains both a full
set of key flexfield columns (the primary flexfield)
and a column that is a foreign key reference to
another key flexfield (with a different combinations
table). You set this parameter to N to keep the
foreign key flexfield from using the database
segment fields belonging to the primary flexfield
(that your combinations form maintains).

For a foreign key form, specify this parameter if
your form is based on a table that has foreign key
references to two or more flexfields, and if you
have non–database SEGMENT1 through N fields
on your form (where N is the number of segments
in your combinations table). If such fields exist,
your flexfield by default will load values into them
that correspond to the combination of segment
values in the current flexfield. If you set this
parameter to N, your flexfield will not load the
segment fields for the current flexfield. If you have
more than one flexfield on your form, use this
parameter to specify which one should use the
segment fields (specify Y for one flexfield’s routine
calls, and specify N for other flexfields’ routine
calls).

For a descriptive flexfield, specify N for this
parameter to prevent the descriptive flexfield from
using hidden segment fields (such as
ATTRIBUTEn).

The default value is Y.

Key flexfields only. Use COLUMN to display
other columns from the combinations table in
addition to the current segment columns, where n
is the display width of the column. You can place
the values of the other columns into fields on the
current form. The value is automatically copied
into the field when the user selects an existing
flexfield combination.

For example, to display a description column
called SEG_DESC and an error message from
E_FLAG with the column headings DESCRIPTION
and ERROR FLAG, you could set

USEDBFLDS

COLUMN

14 – 47Flexfields

COLUMN=>’SEG_DESC DESCRIPTION(15),

E_FLAG \”ERROR_FLAG\”(*)’

The (*) sets a dynamic column width, with the size
determined by the value selected.

If you wanted to place the description into the field
block_1.field_1 and the error message into
block_1.field_2, you would set

COLUMN=>’SEG_DESC DESCRIPTION(15)

INTO BLOCK_1.FIELD_1,

E_FLAG \”ERROR_FLAG\” (*)

into BLOCK1_FIELD_2’

You may only use 32 distinct INTO columns in
your COLUMN= clause. Your maximum width for
additional columns is 240 characters.

Key flexfields only. Specify a WHERE clause to
restrict which code combinations to display in the
list of values window. This argument also prevents
a user from entering a combination that does not fit
the WHERE clause. This argument should not
normally be used for a flexfield on the
combinations form, since you would usually want
to display all combinations on the combinations
form.

Do not specify the word ”WHERE” in this WHERE
clause argument. You should use this token with
flexfields that do not allow dynamic inserts, either
using DINSERTS as N or preventing dynamic
inserts at the structure level.

You should not use the WHERE_CLAUSE
argument for a flexfield that allows dynamic
inserts.

Use the WHERE_CLAUSE_MSG argument to
specify an appropriate message to display to the
user when a combination violates your WHERE
clause.

Key flexfields only. The primary use of this
argument is to disable the combination list of
values for your flexfield on this form. Specify
NONE to disable the combination list of values.

WHERE_
CLAUSE

COMBQP_
WHERE

14 – 48 Oracle Applications Developer’s Guide

Alternatively, you could use this argument to
specify any additional WHERE clause to further
restrict which code combinations to display in the
list of values window. This WHERE clause is
appended to your WHERE_CLAUSE argument
using an AND expression. It affects only the
combination list of values however, and does not
affect a combination that a user enters manually.

Do not specify the word ”WHERE” in this WHERE
clause argument.

Key flexfields only. Use with the
WHERE_CLAUSE argument. If you wish to
display your own message when a user enters an
invalid combination restricted by your WHERE
clause, specify the applications short name and
message name here. Otherwise flexfields uses the
standard Oracle Applications message that
displays the entire WHERE clause to the user (not
recommended).

Key or range flexfields only. Specify the :block.field
that holds the set identifier for your flexfield.
DATA_SET specifies which set of code
combinations to use for this flexfield. For each
flexfield structure, you can divide code
combinations in your combinations table into sets
(for example, parts with high prices, medium
prices, and low prices).

You can only use DATA_SET if you implement a
structure defining column (that is, you must specify
NUM). The default for DATA_SET is your
structure number (as specified in NUM). If you
use DATA_SET, your application must maintain a
separate table that contains the correspondences
between sets and key flexfield structures. For
example, your correspondences table could contain
values such as:

Structure Set Set Description
101 1 Low priced truck parts
101 2 Medium priced truck parts
101 3 High priced truck parts
102 4 Low priced car parts
102 5 High priced car parts

WHERE_
CLAUSE_MSG

DATA_SET

14 – 49Flexfields

103 6 Low priced motorcycle parts
103 7 High priced motorcycle parts

If you use DATA_SET, your flexfield stores the set
number in the structure defining column instead of
the structure number. Note that you cannot have
duplicate set numbers in your correspondences
table, though you can have more than one set
number for a given structure number. You must
derive DATA_SET and NUM from different
:block.fields (or profile options, or ”hardcoded”
numbers) since they are distinctly different
numbers.

Determines whether NULLs should be allowed
into any segment. ALLOWNULLS only overrides
the segment definition (Value Required is Yes) for
each segment if you specify PARTIAL or NONE for
the VALIDATE parameter.

Key flexfields only. Determines whether flexfield
value security applies to queries as well as inserts
and updates. If you specify Y, your users cannot
query up existing code combinations that contain
restricted values. If you specify N, your users can
query and look at code combinations containing
restricted values, but they cannot update the
restricted values. The default value is N. This
option has no effect unless your users have enabled
and defined flexfield value security for your
flexfield’s value sets.

Key flexfields only. Controls the type of subquery
your flexfield uses to select the desired rows in
flexfield query–by–example.

The default value is N.

If you specify N, your flexfield generates a
correlated subquery. This query is effectively
processed once for each row returned by the main
query (generated by the rest of the form), and it
uses the code combination ID as a unique index.
Choose N if you expect your main query to return
a small number of rows and you expect your
flexfield query–by–example to return many rows.

ALLOWNULLS

QUERY_
SECURITY

QBE_IN

14 – 50 Oracle Applications Developer’s Guide

If you specify Y, your flexfield generates a
non–correlated subquery using the ”IN” SQL
clause. Your query is processed only once, but
returns all the rows in your combinations table that
match your flexfield query–by–example criteria.
Choose Y when you expect your main query to
return many rows and you expect your flexfield
query–by–example to return a small number of
rows (less than about 100). Such a condition
usually corresponds to a small number of rows in
the combinations table and many rows in the
application table. For example, assume you have a
Part Flexfield, where your company handles only a
limited number of parts (say, 75), but you have
thousands of orders for your parts (and a
correspondingly large Orders table). For this case,
choosing Y would greatly improve your
application performance on flexfield
queries–by–example.

Key flexfields only. Specify Y or N to allow or
disallow using LongList with this flexfield.
LongList allows users to specify a partial value
when querying a flexfield combination using
Combination QuickPick.

Key or range flexfields only. If you wish to display
your own message when a user enters an invalid
combination, specify the message name here.
Otherwise flexfields uses the standard Oracle
Applications message.

If you use the WHERE_CLAUSE argument, use the
WHERE_CLAUSE_MSG argument instead of
NO_COMBMSG to specify an appropriate message
to display to the user when a combination violates
your WHERE clause.

Specify Y to prevent any updating of your flexfield
segment values, whether by shorthand alias, copy,
or any other method.

Key flexfields only. Determines the behavior of the
combination list of values for direct entry flexfields
with no dynamic inserts allowed when the user
enters a non–existing code combination. If you
specify Y, the combination list of values appears if

LONGLIST

NO_COMBMSG

READ_ONLY

AUTO–
COMBPICK

14 – 51Flexfields

the user enters an incorrect value in a single
segment flexfield, or if there are non–constant
values (%) or null segments in a multi–segment
flexfield. If you specify N, the combination list of
values does not appear, and the error message
”This combination does not exist...” is generated.
The default value is Y.

Normally, when a user types a character into a
flexfield segment, that action locks the base table of
the form. However, in some cases you might want
to avoid locking the table; for example, you might
have several inquiry forms that use the same base
table, and you do not want other users to have to
wait until the table is unlocked. The default value
is Y. Specify N to turn off the locking behavior, or
specify D to lock the table only if the
flexfield–related field is a database field.

Use the HELP argument to specify a target name
for online help specific to this instance of this
flexfield. You specify the application short name
for the application that owns the help file (not
necessarily the same application that owns the
flexfield or the form). You also specify the target
name in your help file where the help resides. If
the corresponding help target is not found, the user
may receive an error message. If the HELP
argument is not specified, the online help displays
generic flexfields help. For example, to show
specific help for the Accounting Flexfield from the
Oracle General Ledger help file, you would specify
the following:

HELP=>’APPL=SQLGL;TARGET=FLEX.GL#’

Descriptive flexfields only. Specify a fragment of a
WHERE clause to restrict which context codes to
display in the list of values window of the context
field. This argument also prevents a user from
entering a context that does not fit the WHERE
clause. The resulting WHERE clause for the LOV
of the context field is like the following:

WHERE ...
AND DESCRIPTIVE_FLEX_CONTEXT_CODE LIKE
<CONTEXT_LIKE>...

LOCK_FLAG

HELP

CONTEXT_LIKE

14 – 52 Oracle Applications Developer’s Guide

The default value is ’%’. If this argument is used to
restrict context values then the Override Allowed
(Display Context) should be turned on (checked) in
the descriptive flexfield definition.

Flexfields do not use this constraint in the
POST–QUERY event. Therefore, a user can query
up existing data that would now be invalid under
the CONTEXT_LIKE part of the WHERE clause.
However, as in all flexfields where the user queries
up now–invalid flexfield data, if the user presses
OK (with or without changing flexfield values), the
flexfield is marked as changed and the invalid
value must be corrected. If the user presses the
Cancel button, the data is unaffected and does not
need to be corrected (even if the user changes
other non–flexfield parts of the record).

Note that, as always, any reference field for the
descriptive flexfield is only evaluated the first time
the descriptive flexfield is opened (or validated
upon commit if the user does not open the
flexfield before committing) for a new record. If
the user opens the flexfield, the context field is
populated with the value of the reference field. If
the user presses OK to exit the flexfield window,
then returns to the reference field and changes its
value, the context field value does not change to
reflect the new value in the reference field. Further,
the existing context field value is not re–evaluated
according to the value of the CONTEXT_LIKE
argument at that time. To avoid creating
apparently–inconsistent behavior, you should
avoid modifying the CONTEXT_LIKE argument at
any time after initially setting it in the flexfield
definition at form startup (for example, do not base
its value on the value of a field the user can
modify).

For example, this argument can be used to restrict
country–specific contexts in a given country.

Key flexfields only. Flexfields use code
combination table names to create select statements
for validation and lists of values. If your key
flexfield code combination table is the base table
(_B table) of a translated entity and if you want to

SELECT_COMB_
FROM_VIEW

14 – 53Flexfields

get additional columns from the translated table
(_TL table) by using the COLUMN token, then use
the SELECT_COMB_FROM_VIEW token to specify
the translated view name (the _VL view).

If the value specified in
SELECT_COMB_FROM_VIEW is different from
the key flexfield’s code combination table name
then dynamic inserts will be turned off
automatically.

Additional Optional Arguments for Type Flexfields

If you are building a type flexfield, you use these arguments in addition
to other optional and required arguments. If you do not specify a
particular optional argument, the flexfield routine uses the usual
default value for the argument. You may build a type flexfield that
contains more than one ”type column” (a ”column” of fields in the
flexfield pop–up window that correspond to the actual segment fields).
If you do, you can specify your TYPE_ argument values multiple times,
using \\0 to separate the values. SCOLUMN can have only one value,
however.

Range (type) flexfields only. Name of the field
where you want to put your ”type” flexfield. This
is a displayed, non–database form field that
contains your concatenated segment type values
plus delimiters.

You can include a suffix for all the fields related to
your type field. If you include a suffix, such as
TYPE1, your flexfield appends that suffix to all
field names automatically. If you specify a suffix,
you should not include the suffix in any of the
type–related field names for your
FND_RANGE_FLEX.DEFINE call. Note that if
you specify a suffix, your flexfield expects to store
each type value in a form field (one type field for
each segment), so you should specify a suffix if you
use those fields, but you should not specify a suffix
if you use only the concatenated fields.

If you specify TYPE_FIELD, you must also specify
TYPE_HEADING, TYPE_VALIDATION, and
TYPE_SIZES. TYPE_DESCRIPTION and other
type arguments are optional.

TYPE_FIELD

14 – 54 Oracle Applications Developer’s Guide

You can specify more than one type field and
suffix. Each field and suffix must be unique so that
the different types do not share the same
underlying fields and columns. Separate your first
field and suffix from your second field and suffix
(and so on) using \\0.

Range (type) flexfields only. Description field for
your type flexfield. This is a displayed,
non–database, non–enterable field that contains
concatenated descriptions of your type segment
values. If you do not specify this parameter, your
form does not display concatenated type segment
descriptions. If you specified a suffix for
TYPE_FIELD, do not include it for
TYPE_DESCRIPTION.

Range (type) flexfields only. Name of the
non–displayed form field that contains the
concatenated type segment hidden IDs. If you
specified a suffix for TYPE_FIELD, do not include
it for this argument.

Range (type) flexfields only. Specify the name of a
value set, such as Yes_No, that you want to use for
your type column (for all fields in the type
column). You also specify Y if the user is required
to enter a value for each field in the type column;
specify N if values are not required. Finally,
specify a single default value for all fields in your
type column. This default value appears in each of
the type fields when the pop–up window opens.
You may use either a hardcoded constant value or
a field reference (:block.field) for your default value.

If you have more than one type column, specify
subsequent groups of values separated by \\0
delimiters.

Range (type) flexfields only. Specify the maximum
display size for the value set your type field uses,
as well as the maximum display size for the value
description. The value display size must be at least
1 and not larger than the maximum size of the
corresponding value set (whose maximum size
must not be greater than the size of the underlying

TYPE_
DESCRIPTION

TYPE_DATA_
FIELD

TYPE_
VALIDATION

TYPE_SIZES

14 – 55Flexfields

database column). The description display size
may be 0 or larger.

If you have more than one type column, you
specify sizes for each pair of values and
descriptions, separated by the \\0 delimiter.

Range (type) flexfields only. Specify a title that you
want to appear above the type segments in the
flexfield pop–up window.

If you have more than one type column, specify
additional headings separated by the \\0 delimiter.

Range (type) flexfields only. The presence of the
SCOLUMN argument indicates that this is a
”single column type flexfield” (a flexfield that uses
only SEGMENTn_LOW and one or more type
columns, but does not use SEGMENTn_HIGH).
Specify a title for the SEGMENTn_LOW fields that
you want to display in the flexfield pop–up
window. The flexfield still assumes that the _LOW
suffix applies to each SEGMENTn field and related
concatenated fields, regardless of the title you
specify.

Flexfield Definition Examples

Simple Key Flexfield Example

Here is an example of a simple key flexfield definition. This definition
provides the default structure (101) of the Accounting Flexfield.

 FND_KEY_FLEX.DEFINE(

 BLOCK=>’ORDERS’,

 FIELD=>’KFF_CONCATENATED_VALUES’,

 APPL_SHORT_NAME=>’SQLGL’,

 CODE=>’GL#’,

 NUM=>’101’);

TYPE_HEADING

SCOLUMN

14 – 56 Oracle Applications Developer’s Guide

Key Flexfield Example with Additional Arguments

Here is an example of a more complex key flexfield definition. This
definition provides the default structure (101) of the Accounting
Flexfield.

 FND_KEY_FLEX.DEFINE(

 BLOCK=>’ORDERS’,

 FIELD=>’KFF_CONCATENATED_VALUES’,

 APPL_SHORT_NAME=>’SQLGL’,

 CODE=>’GL#’,

 NUM=>’101’,

 DISPLAYABLE=>’ALL’

 INSERTABLE=>’ALL’

 UPDATEABLE=>’’);

Key Flexfield Example with Variable Arguments

Here is an example from the Shorthand Aliases form, which overrides
several of the arguments and uses :block.field references to pass field
values to the procedure. Note that this example also provides three
fields related to the flexfield (FIELD, DESCRIPTION, and
DATA_FIELD):

FND_KEY_FLEX.DEFINE(

 BLOCK=>’ALIASES’,

 FIELD=>’SEGMENTS’,

 DESCRIPTION=>’SEGMENT_DESCRIPTIONS’,

 DATA_FIELD=>’CONCATENATED_SEGMENTS’,

 APPL_SHORT_NAME=>’:FLEX.APPLICATION_SHORT_NAME’,

 CODE=>’:FLEX.ID_FLEX_CODE’,

 NUM=>’:FLEX.ID_FLEX_NUM’,

 REQUIRED=>’Y’,

 USEDBFLDS=>’N’,

 VALIDATE=>’PARTIAL’,

 ALLOWNULLS=>’Y’);

In this example you override the default values for the arguments
REQUIRED, USEDBFLDS, VALIDATE and ALLOWNULLS.

14 – 57Flexfields

Descriptive Flexfield Example

Here is an example of a simple descriptive flexfield definition. This
definition provides the descriptive flexfield on the Shorthand Aliases
form in the Oracle Applications.

 FND_DESCR_FLEX.DEFINE(

 BLOCK=>’ALIASES’,

 FIELD=>’DF’,

 APPL_SHORT_NAME=>’FND’,

 DESC_FLEX_NAME=>’FND_SHORTHAND_FLEX_ALIASES’);

Range Flexfield Example

Here is an example of a simple range flexfield definition.

 FND_RANGE_FLEX.DEFINE(

 BLOCK=>’RANGES’,

 FIELD=>’SEGMENTS’,

 DESCRIPTION=>’DESCRIPTIONS’

 APPL_SHORT_NAME=>’SQLGL’,

 CODE=>’GL#’,

 NUM=>’101’,

 VALIDATE=>’PARTIAL’);

Note that the actual form fields corresponding to FIELD and
DESCRIPTION are SEGMENTS_LOW, SEGMENTS_HIGH,
DESCRIPTIONS_LOW and DESCRIPTIONS_HIGH.

Range with Types Flexfield Example

The following example uses the Accounting Flexfield with two type
fields.

FND_RANGE_FLEX.DEFINE(

 BLOCK=>’RANGES’,

 FIELD=>’SEGMENTS’,

 DESCRIPTION=>’DESCRIPTIONS’,

 APPL_SHORT_NAME=>’SQLGL’,

14 – 58 Oracle Applications Developer’s Guide

 CODE=>’GL#’,

 NUM=>’101’,

 VALIDATE=>’PARTIAL’,

 TYPE_FIELD=>’RANGES.SEGMENTS\\n_TYPE1\\0

 RANGES.SEGMENTS\\n_TYPE2’,

 TYPE_DATA_FIELD=>’RANGES.TYPE_DATA\\0

 RANGES.TYPE_DATA’,

 TYPE_DESCRIPTION=>’RANGES.TYPE_DESC\\0

 RANGES.TYPE_DESC’,

 TYPE_HEADING=>’Type 1\\0Type 2’,

 TYPE_VALIDATION=>’Yes_No\\nN\\nYes\\0

 Yes_No\\nN\\nNo’,

 TYPE_SIZES=>’4\\n4\\04\\n4’);

Single Range Column with Types Flexfield Example

The SCOLUMN argument is used to define a ”Single Column
Flexfield”. If SCOLUMN has a value, instead of having the ”Low”,
”High” and ”Type” columns this flexfield will have only the ”Low” and
”Type” columns. Since the title ”Low” is not appropriate here (since
we don’t have a ”High” column), the value passed in through the
SCOLUMN argument is used as the column title. The range flexfield
still writes to the underlying segments appended with the suffix
”_LOW”, and assumes that the ”_LOW” suffix is appended to the
concatenated segments, description and data_field fields.

The same flexfield as above but when only one column is used.

FND_RANGE_FLEX.DEFINE(

 BLOCK=>’RANGES’,

 FIELD=>’SEGMENTS’,

 DESCRIPTION=>’DESCRIPTIONS’,

 APPL_SHORT_NAME=>’SQLGL’,

 CODE=>’GL#’,

 NUM=>’101’,

 VALIDATE=>’PARTIAL’,

 SCOLUMN=>’Accounting Flexfield’,

14 – 59Flexfields

 TYPE_FIELD=>’RANGES.SEGMENTS\\n_TYPE1\\0

 RANGES.SEGMENTS\\n_TYPE2’,

 TYPE_DATA_FIELD=>’RANGES.TYPE_DATA\\0

 RANGES.TYPE_DATA’,

 TYPE_DESCRIPTION=>’RANGES.TYPE_DESC\\0

 RANGES.TYPE_DESC’,

 TYPE_HEADING=>’Type 1\\0Type 2’,

 TYPE_VALIDATION=>’Yes_No\\nN\\nYes\\0

 Yes_No\\nN\\nNo’,

 TYPE_SIZES=>’4\\n4\\04\\n4’);

Updating Flexfield Definitions

Normally you define a flexfield only once in your form, usually at the
form startup event. However, sometimes you need to change this
definition later. For example, you may want to make the flexfield
non–updatable and non–insertable. Instead of redefining the entire
flexfield with UPDATEABLE=>’’ and INSERTABLE=>’’ and all the
other arguments the same as before, you can use the following update
procedures to change only the arguments that need to be modified.

You can use the update procedures to control any of the ”other optional
arguments” that you specify in your flexfield definition procedures.
You cannot use these procedures to change arguments such as which
fields your flexfield uses, since those arguments essentially identify the
flexfield rather than modify it. For example, you may specify new
values for the VALIDATE argument, but you may not specify new
values for the DESCRIPTION or DATA_FIELD arguments.

Enabling or Disabling a Flexfield

Once a flexfield has been defined in your form, whenever the
FND_FLEX.EVENT calls occur at various block or form level triggers,
these events apply to all flexfields defined in the block or form. This
makes it difficult to handle situations where you want to make
FND_FLEX.EVENT calls for some flexfields but not others. For
example, you may not want to call VALID for a particular key flexfield
in PRE–UPDATE, but want to call it for all other flexfields in the block.
Using the update procedures you can enable and disable a flexfield
definition so that the FND_FLEX.EVENT calls do not apply to disabled
flexfield definitions.

14 – 60 Oracle Applications Developer’s Guide

The update procedures provide a special argument, ENABLED, in
addition to the optional arguments you can specify. You specify N for
this argument to disable the flexfield, and you specify Y to enable the
flexfield. You cannot use ENABLED in your normal flexfield definition
procedure calls (which automatically enable the flexfield).

Update Key Flexfield Definition Syntax

Use FND_KEY_FLEX.UPDATE_DEFINITION to update the definition
for a key flexfield on a foreign key or combinations form. Other than
the ENABLED argument, which you can only use for update
procedures, the arguments are the same as you use for the flexfield
definition procedures (See page 14 – 36).

FND_KEY_FLEX.UPDATE_DEFINITION(

 /* Arguments that specify flexfield location and

 thus identify the flexfield */

 BLOCK=>’block_name’,

 FIELD=>’concatenated_segments_field_name’,

 /* Argument to enable or disable flexfield */

 [ENABLED=>’{Y|N}’,]

 /* Other optional parameters */

 [VALIDATE=>’{FOR_INSERT|FULL|PARTIAL|NONE|

 PARTIAL_IF_POSSIBLE}’,]

 [VDATE=>’date’,]

 [DISPLAYABLE=>’{ALL | flexfield_qualifier |

 segment_number}[\\0{ALL |

 flexfield_qualifier | segment_number}]’,]

 [INSERTABLE=>’{ALL | flexfield_qualifier |

 segment_number}[\\0{ALL |

 flexfield_qualifier | segment_number}]’,]

 [UPDATEABLE=>’{ALL | flexfield_qualifier |

 segment_number}[\\0{ALL |

 flexfield_qualifier | segment_number}]’,]

 [VRULE=>’flexfield qualifier\\n

 segment qualifier\\n

14 – 61Flexfields

 {I[nclude]|E[xclude]}\\n

 APPL=application_short_name;

 NAME=Message Dictionary message name\\n

 validation value1\\n

 validation value2...

 [\\0flexfield qualifier\\n

 segment qualifier\\n

 {I[nclude]|E[xclude]}\\n

 APPL=application_short_name;

 NAME=Message Dictionary message name\\n

 validation value1\\n

 validation value2...]’,]

 [COPY=>’block.field\\n{ALL | flexfield

 qualifier | segment_number}

 [\\0block.field\\n{ALL | flexfield

 qualifier | segment_number}]’,]

 [DERIVED=>’block.field\\nSegment qualifier’,]

 [DINSERT=>’{Y|N}’,]

 [VALATT=>’block.field\\n

 flexfield qualifier\\n

 segment qualifier’,]

 [TITLE =>’Title’,]

 [REQUIRED=>’{Y|N}’,]

 [AUTOPICK=>’{Y|N}’,]

 [USEDBFLDS=>’{Y|N}’,]

 [ALLOWNULLS=>’{Y|N}’,]

 [DATA_SET=>’set number’,]

 [COLUMN=>’{column1(n) | column1 alias(n)

 [, column2(n), ...]}’,]

 [WHERE_CLAUSE=>’where clause’,]

 [COMBQP_WHERE=>’{Y|N}’,]

 [WHERE_CLAUSE_MSG=>’APPL=application_short_

 name;NAME=message_name’,]

 [QUERY_SECURITY=>’{Y|N}’,]

 [QBE_IN=>’{Y|N}’,]

 [READ_ONLY=>’{Y|N}’,]

 [LONGLIST=>’{Y|N}’,]

 [NO_COMBMSG=>’{Y|N}’,]

 [LOCK_FLAG=>’{Y|N}’,]

�

14 – 62 Oracle Applications Developer’s Guide

 [AUTOCOMBPICK=>’{Y|N}’,]

 [DERIVE_ALWAYS=>’{Y|N}’,]

 [HELP=>’APPL=application_short_name;

 TARGET=target_name’]

);

Update Range (Type) Flexfield Definition Syntax

Use FND_RANGE_FLEX.UPDATE_DEFINITION for a range flexfield.
You use the same procedure for a ”type” flexfield (which may also
include range flexfield segments) that contains extra fields
corresponding to each segment of the related key flexfield.

Other than the ENABLED argument, which you can only use for
update procedures, the arguments are the same as you use for the
flexfield definition procedures

Flexfield Definition Arguments (See page 14 – 36)

Attention: You should not append ”_LOW” or ”_HIGH” to
the FIELD, DESCRIPTION, DATA_FIELD or other values,
since this procedure appends them automatically. When you
use more than one type column, ensure that all TYPE_
arguments specify type columns in the same order to avoid
having argument values applied to the wrong type column.

FND_RANGE_FLEX.UPDATE_DEFINITION(

 /* Arguments that specify flexfield location */

 BLOCK=>’block_name’,

 FIELD=>’concatenated_segments_field_name’,

 /* Argument to enable or disable flexfield */

 [ENABLED=>’{Y|N}’,]

 /* Other optional parameters */

 [VALIDATE=>’{PARTIAL|NONE}’,]

 [VDATE=>’date’,]

 [DISPLAYABLE=>’{ALL | flexfield_qualifier |

14 – 63Flexfields

 segment_number}[\\0{ALL |

 flexfield_qualifier | segment_number}]’,]

 [INSERTABLE=>’{ALL | flexfield_qualifier |

 segment_number}[\\0{ALL |

 flexfield_qualifier | segment_number}]’,]

 [UPDATEABLE=>’{ALL | flexfield_qualifier |

 segment_number}[\\0{ALL |

 flexfield_qualifier | segment_number}]’,]

 [VRULE=>’flexfield qualifier\\n

 segment qualifier\\n

 {I[nclude]|E[xclude]}\\n

 APPL=application_short_name;

 NAME=Message Dictionary message name\\n

 validation value1\\n

 validation value2...

 [\\0flexfield qualifier\\n

 segment qualifier\\n

 {I[nclude]|E[xclude]}\\n

 APPL=application_short_name;

 NAME=Message Dictionary message name\\n

 validation value1\\n

 validation value2...]’,]

 [TITLE =>’Title’,]

 [REQUIRED=>’{Y|N}’,]

 [AUTOPICK=>’{Y|N}’,]

 [USEDBFLDS=>’{Y|N}’,]

 [ALLOWNULLS=>’{Y|N}’,]

 [DATA_SET=>’set number’,]

 [READ_ONLY=>’{Y|N}’,]

 /* Parameters specific to type flexfields */

 [TYPE_FIELD=>’block.concatenated_type_values_

 field\\ntype field suffix’,]

 [TYPE_VALIDATION=> ’Value set name\\n

 Required\\nDefault value’,]

 [TYPE_SIZES=>’type_value_display_

 size\\nDescription_display_size’,]

 [TYPE_HEADING=>’type column heading’,]

 [TYPE_DATA_FIELD=>’block.type_data_field’,]

�

14 – 64 Oracle Applications Developer’s Guide

 [TYPE_DESCRIPTION=>’block.type_

 description_field’,]

 [SCOLUMN=>’single column title’]

 [HELP=>’APPL=application_short_name;

 TARGET=target_name’]

);

Attention: TYPE_FIELD, TYPE_DATA_FIELD and
TYPE_DESCRIPTION require the block construction, unlike
other flexfield arguments that specify field names without
block names.

Update Descriptive Flexfield Definition Syntax

Use FND_DESCR_FLEX.UPDATE_DEFINITION for a descriptive
flexfield. Other than the ENABLED argument, which you can only use
for update procedures, the arguments are the same as you use for the
flexfield definition procedures (See page 14 – 36).

FND_DESCR_FLEX.UPDATE_DEFINITION(

 /* Arguments that specify the flexfield location */

 BLOCK=>’block_name’,

 FIELD=>’field_name’,

 /* Argument to enable or disable flexfield */

 [ENABLED=>’{Y|N}’,]

 /* Other optional parameters */

 [VDATE=>’date’,]

 [TITLE =>’Title’,]

 [AUTOPICK=>’{Y|N}’,]

 [USEDBFLDS=>’{Y|N}’,]

 [READ_ONLY=>’{Y|N}’,]

 [LOCK_FLAG=>’{Y|N}’,]

 [HELP=>’APPL=application_short_name;

 TARGET=target_name’,]

 [CONTEXT_LIKE=>’WHERE_clause_fragment’}

);

�

14 – 65Flexfields

Updating Flexfield Definition Example

Suppose you do not want to call VALID for a particular key flexfield in
PRE–UPDATE, but want to call it for all other flexfields in the block.
Here is an example of disabling and enabling a simple key flexfield
definition. This definition provides the default structure (101) of the
Accounting Flexfield. You would code your PRE–UPDATE trigger for
the block as:

 FND_KEY_FLEX.UPDATE_DEFINITION(

 BLOCK=>’ORDERS’,

 FIELD=>’KFF_CONCATENATED_VALUES’,

 ENABLED=>’N’);

 FND_FLEX.EVENT(’PRE–UPDATE’);

 FND_KEY_FLEX.UPDATE_DEFINITION(

 BLOCK=>’ORDERS’,

 FIELD=>’KFF_CONCATENATED_VALUES’,

 ENABLED=>’Y’);

Using Key Flexfields in Find Windows

You can use a key flexfield in your Find window if you wish to restrict
your query to certain segment values. Create a concatenated segments
field in your Find window as a 2000 character displayed text item. You
do not need the individual SEGMENTn fields in your Find window.
Define the key flexfield you want on this field using the
FND_KEY_FLEX.DEFINE procedure. This can be done at the same
point where you define the flexfield in your base block. Do not pass
values for the ID, DESCRIPTION and DATA_FIELD arguments. The
following arguments should be set to the values specified below:

VALIDATE => ’PARTIAL_IF_POSSIBLE’,

REQUIRED => ’N’,

USEDBFLDS => ’N’,

ALLOWNULLS => ’Y’

INSERTABLE => ’ALL’, –– Default value

UPDATEABLE => ’ALL’, –– Default value

Attention: You should set DISPLAYABLE to the same value
you used in the definition of the flexfield in your base block.

�

14 – 66 Oracle Applications Developer’s Guide

The above definition allows users to choose values for some segments
and leave other segments blank.

Follow the steps described for coding Find windows. In the
PRE–QUERY trigger of your base block call the procedure
FND_FLEX_FIND.QUERY_KFLEX. The arguments to this function are
the application short name, the flexfield code, the structure number, the
concatenated segment values and the name of the concatenated
segments field in your base block. The procedure specification is given
below.

 PROCEDURE query_kflex(appl_short_name VARCHAR2,

 code VARCHAR2,

 num NUMBER,

 segments VARCHAR2,

 segments_field VARCHAR2);

Attention: The call to FND_FLEX.EVENT(’PRE–QUERY’)
must be made after the FND_FLEX_FIND.QUERY_KFLEX
procedure is called.

Query Find Window Example Using Key Flexfields

The following example shows how the Accounting Flexfield can be
used in a Find window.

FND_KEY_FLEX.DEFINE(

 BLOCK => ’MY_BLOCK_QF’,

 FIELD => ’SEGMENTS’,

 APPL_SHORT_NAME => ’SQLGL’,

 CODE => ’GL#’,

 NUM => 101,

 VALIDATE => ’PARTIAL_IF_POSSIBLE’,

 REQUIRED => ’N’,

 USEDBFLDS => ’N’,

 ALLOWNULLS => ’Y’);

The PRE–QUERY trigger on MY_BLOCK will be:

...

IF (:parameter.G_query_find = ’TRUE’) THEN

 ...

 fND_FLEX_FIND.QUERY_KFLEX(’SQLGL’, ’GL#’, 101,

 :MY_BLOCK_QF.SEGMENTS,

 ’MY_BLOCK.SEGMENTS’);

 ...

 :parameter.G_query_find = ’FALSE’;

�

14 – 67Flexfields

END IF;

...

FND_FLEX.EVENT(’PRE–QUERY’);

Using Range Flexfields in Query Find Windows

It is often useful to code a range flexfield in your Find window so that
users can specify a value range for the flexfield segments instead of a
single value. Create two concatenated segments fields (for low and
high values) in your Find window as 2000 character displayed text
items. The field names should be of the form XXXX_LOW and
XXXX_HIGH. You do not need the individual SEGMENTn fields in
your Find window. Define the range flexfield you want on this field
using the FND_RANGE_FLEX.DEFINE procedure. This can be done at
the same point where you define the flexfield in your base block. Do
not pass values for the ID, DESCRIPTION and DATA_FIELD
arguments. The following arguments to the define call should be set to
the values specified below:

VALIDATE => ’NONE’,

REQUIRED => ’N’,

USEDBFLDS => ’N’,

ALLOWNULLS => ’Y’

INSERTABLE => ’ALL’, –– Default value

UPDATEABLE => ’ALL’, –– Default value

Attention: You should set DISPLAYABLE to the same value
you used in the definition of the flexfield in your base block.

The value for the VALIDATE argument can be ’PARTIAL’ if you want
users to enter valid segment values as the upper and lower limit of the
ranges they want to query on.

The above definition will allow users to choose values for some
segments and leave other segments blank. They can also leave either
the high or the low segment value blank to set either the lower limit or
the upper limit on the segment values. They can enter the same value
for both the low and high fields to query on a specific segment value.

Follow the steps for coding Find windows. In the PRE–QUERY trigger
of you base block call the procedure FND_FLEX_FIND.QUERY_
KFLEX_RANGE. The arguments to this function are the application
short name, the flexfield code, the structure number, the concatenated
low segment values, the concatenated high segment values and the

�

14 – 68 Oracle Applications Developer’s Guide

name of the concatenated segments field in your base block. The
procedure specification is given below.

 PROCEDURE query_kflex_range(appl_short_name VARCHAR2,

 code VARCHAR2,

 num NUMBER,

 low_segments VARCHAR2,

 high_segments VARCHAR2,

 segments_field VARCHAR2);

Attention: The call to FND_FLEX.EVENT(’PRE–QUERY’)
must be made after the FND_FLEX_FIND.QUERY
_KFLEX_RANGE procedure is called.

Query Find Window Example Using Range Flexfields

If you choose to use a range flexfield instead of a key flexfield in the
preceding example the flexfield definition and the PRE–QUERY trigger
will be:

FND_RANGE_FLEX.DEFINE(

 BLOCK => ’MY_BLOCK_QF’,

 FIELD => ’SEGMENTS’,

 APPL_SHORT_NAME => ’SQLGL’,

 CODE => ’GL#’,

 NUM => 101,

 VALIDATE => ’NONE’,

 REQUIRED => ’N’,

 USEDBFLDS => ’N’,

 ALLOWNULLS => ’Y’);

The PRE–QUERY trigger on MY_BLOCK will be:

...

IF (:parameter.G_query_find = ’TRUE’) THEN

 ...

 FND_FLEX_FIND.QUERY_KFLEX_RANGE(’SQLGL’, ’GL#’, 101,

 :MY_BLOCK_QF.SEGMENTS_LOW,

 :MY_BLOCK_QF.SEGMENTS_HIGH,

 ’MY_BLOCK.SEGMENTS’);

 ...

 :parameter.G_query_find = ’FALSE’;

END IF;

...

FND_FLEX.EVENT(’PRE–QUERY’);

14 – 69Flexfields

Troubleshooting Flexfields

Incorrect Behavior of Flexfields

If you are experiencing strange behavior of your flexfields, the first
thing to check is that each of the flexfield triggers pass the correct event
name to the flexfields routines. The flexfields routines perform
different behavior for different event arguments, and incorrect
arguments can cause unusual and unpredictable results.

For example, your FND_FLEX.EVENT call in the
WHEN–NEW–ITEM–INSTANCE trigger must pass
’WHEN–NEW–ITEM–INSTANCE’ to the flexfield routine. But if you
were to pass the ’POST–QUERY’ argument in the
WHEN–NEW–ITEM–INSTANCE or
WHEN–NEW–RECORD–INSTANCE trigger, the segment value
defaulting behavior would not work. Always pass the correct event
names in your flexfield triggers.

Flexfield Fails to Pop Open

It is the standard behavior of flexfields to not pop open automatically
when the user places the cursor in the field (unless the profile options
Flexfields:Open Descr Window and Flexfields:Open Key Window are
set to do so), so there is not necessarily a coding problem for this
behavior. However, if the flexfield fails to open when the user chooses
the Edit button on the toolbar or the list of values button, you should
verify that you have the correct APP_STANDARD.EVENT code in the
following two triggers and that the two triggers are not being
overridden by a lower–level trigger:

• KEY–EDIT

• KEY–LISTVAL

Flexfields FNDSQF Debugger

The global variable GLOBAL.FND_FLEX_FNDSQF_DEBUG takes one
of the following values: ’OFF’, ’EXCEPTION’, ’FAILURE’, ’DEBUG’.

You set GLOBAL.FND_FLEX_FNDSQF_DEBUG through the Examine
window before you open your form.

1. From the Help menu, navigate to Diagnostics > Examine.

14 – 70 Oracle Applications Developer’s Guide

2. Enter GLOBAL for Block, and FND_FLEX_FNDSQF_DEBUG for
Field. Tab to Value field. (If you get a ”variable doesn’t exist” error,
ignore it.) Enter one of the values below and click OK.

The following are valid values for
GLOBAL.FND_FLEX_FNDSQF_DEBUG:

• OFF – The default value. The debugger is turned off. Debug
messages will not be displayed.

• EXCEPTION – Only exception debug messages will be
displayed. These messages come from ’EXCEPTION WHEN
OTHERS THEN’ parts of the code. Flexfields will still RAISE the
exceptions, that is, these exceptions will not be handled by the
flexfields code.)

• FAILURE – Failure and exception debug messages will be
displayed. In general, these messages are from IF (NOT
FORM_SUCCESS) THEN parts of the code.

• DEBUG – All debug messages will be displayed.

�

�

14 – 71Flexfields

Register Key Flexfields

Register a key flexfield after defining the flexfield combinations table in
the database, and after registering your table using the table
registration API.

Attention: Do not modify the registration of any key flexfield
supplied with Oracle Applications. Doing so can cause serious
application errors. To enable an Oracle Applications key
flexfield, define and freeze it using the Key Flexfield Segments
window.

Attention: Do not attempt to make a copy of an Oracle
Applications key flexfield (using the same table, same title, or
same flexfield code), since the duplicates may cause errors in
forms that call these flexfields.

If you are using segment qualifiers with your flexfield, you should
define the QuickCode values for your segment types using the
Lookups window.

You name your flexfield and associate it with an application and a
database table. You also specify which table column you want to use as
a unique ID column and which table column you want to use as a
structure column.

See:

Table Registration API: page 3 – 11

14 – 72 Oracle Applications Developer’s Guide

Register Key Flexfields Block

Application

An application installer sees this application name when defining your
flexfield segments in the Define Key Segments window. Forms and
flexfield routines use the combination of application and flexfield name
to uniquely identify your flexfield. You use this application name when
you use flexfield routines to call your key flexfield from your forms or
programs.

Code

You use this short, unique code to invoke a key flexfield from a form
trigger.

Title

An installer may modify the user–friendly title of your flexfield using
the Define Key Segments form. You see this title whenever you choose
this flexfield in a flexfield window.

Table Application

Enter the name of the application with which your flexfield
combinations table is registered.

Table Name

Enter the name of your combinations table. Your combinations table
must already exist in the database, and it must have the appropriate
flexfield columns.

You must register your combinations table with Oracle Applications
before you can use it in this field.

Unique ID Column

Enter the name of the column in your combinations table that contains
the unique ID for this flexfield. Other tables which reference this
flexfield should use this column as a foreign key.

14 – 73Flexfields

Structure Column

Enter the name of the column in your combinations table that your
flexfield can use to differentiate among flexfield structures. If you enter
a column in this field you must also use the NUM= parameter in all of
the flexfield calls in your forms.

Dynamic Inserts Feasible

Indicate whether dynamic inserts are feasible for this key flexfield.
Dynamic inserts are feasible only if your combinations table contains
no mandatory, non–flexfield columns.

Dynamic inserts cannot be feasible if your application requires special
validation of new segment combinations.

Allow ID Value Sets

Indicate whether to allow values sets that use a hidden ID in your
flexfield.

Detail Buttons

Choose this button to open the Qualifies window
where you define flexfield and segment qualifiers.

Choose this button to open the Columns window
where you enable the columns to use with your
flexfield segments

Qualifiers

Columns

14 – 74 Oracle Applications Developer’s Guide

Qualifiers Window

Define flexfield and segment qualifiers. A flexfield qualifier applies to
specific segments your user define, and a segment qualifies applies to
specific values in your flexfield segments. You must define a flexfield
qualifier before you can define segment qualifiers.

Qualifier Name

Use this unique name to reference key flexfield structure information.

Prompt

When you set up your key segments this prompt asks you for the
qualifiers information for your key flexfield. Since flexfield qualifiers
use check boxes in the Define Key Segments form, you should specify
your prompt so it makes sense as the prompt of a Yes/No field.

When you set up your key segments this prompt asks you for the
qualifiers information for your key flexfield. Since flexfield qualifiers
use check boxes in the Define Key Segments form, you should specify
your prompt so it makes sense as the prompt of a check box.

14 – 75Flexfields

Global

Global flexfield qualifiers apply to all segments, and provide a
convenient mechanism for assigning a group of segment qualifiers to
all segments.

Required

Required flexfield qualifiers must apply to at least one but possibly
more segments.

Unique

Unique flexfield qualifiers apply to one segment only.

Segment Qualifiers

A segment qualifier applies to specific values your end user defines
using the Define Key Segment Values window. Segment qualifiers
expect QuickCodes values.

Name

Use this unique name to reference key segment value information in
flexfield routine calls and your application logic.

Prompt

The Segment Values window displays this prompt to ask you for
information about each segment value when you define key segment
values. Since segment qualifiers receive QuickCode values in the
Segment Values window, you should specify your prompt so it makes
sense to your end user.

Derived Column

Enter the name of a database column in your combinations table that
holds the derived value of this segment qualifier. Flexfields
automatically derives a value for your segment qualifier into this
column whenever your end user enters a new valid combination.

QuickCode Type

Enter a Special QuickCode type for this segment qualifier. A Special
QuickCode type defines the group of values you wish to allow for this

14 – 76 Oracle Applications Developer’s Guide

segment qualifier. For example, if you have a segment qualifier called
”Account Type” you might want a Special QuickCode type called
”ACCOUNT_TYPE” that has several codes and meanings. You define
Special QuickCode values using the Define Special QuickCodes form.

Default Value

A default value must be one of the defined Special QuickCode values
for the Special QuickCode type you choose in the QuickCode Type
field.

Columns Window

14 – 77Flexfields

Specify the columns your key flexfield can use as segment columns.
This window automatically queries up most of the columns you
registered when you registered your table. If you have recently added
columns to your table, you should reregister your table to ensure you
see all your columns. The table columns you specify as your unique ID
column or your structure column in the Key Flexfield zone do not
appear.

If your table contains columns with names of the form SEGMENT1,
SEGMENT2, SEGMENT3, and so on, those columns are automatically
Enabled for your flexfield. You must enable any other column you
want to use for your segment columns by changing the value of the
Enabled check box.

For example, if you have more than one key flexfield, your second key
flexfield may have different segment column names such as TAX1,
TAX2, TAX3 and TAX4. In this case, you would enable TAX1, TAX2,
TAX3 and TAX4 and disable SEGMENT1, SEGMENT2, SEGMENT3,
and so on for your second key flexfield.

Warning: If you are redefining the Accounting
Flexfield for Oracle General Ledger (this key flexfield is
used by most of the Oracle Applications products), you
must not use any columns other than those named
SEGMENT1 through SEGMENT30. Since the names of
these columns are embedded in the Oracle
Applications products, using other columns may
adversely affect your application features such as
summarization.

Enabled

Indicate whether this column can be used as a segment column for
your key flexfield. If you enable a column as a segment column for a
key flexfield, you should not enable the same column for another key
flexfield that uses the same table.

14 – 78 Oracle Applications Developer’s Guide

Register Descriptive Flexfields

Register your flexfield after adding the descriptive flexfield columns to
your table and registering your table. You must register a descriptive
flexfield before you can use it in an application.

Use this window to provide information about your descriptive
flexfield. Give your flexfield a name and associate it with an
application and a database table. Also specify which table column you
want to use as a structure column.

Register Descriptive Flexfields Block

Forms and flexfield routines use the combination of application name
and flexfield name to uniquely identify your flexfield.

Application

An application installer sees this application name when defining your
descriptive flexfield in the Define Descriptive Segments window. Use
this application name when you use flexfield routines to call your
descriptive flexfield from your forms or programs.

14 – 79Flexfields

Name

Use this name when you use flexfield routines to call your descriptive
flexfield from your forms or programs.

Title

Flexfields displays this unique title at the top of the flexfield window
when your users enter your descriptive flexfield. An application
installer can modify this title using the Define Descriptive Segments
window.

Table Name

Enter the name of the table that contains your descriptive flexfield
columns. Your table must already exist in the database, and it should
already have columns for your descriptive flexfield segments, as well
as a structure column. These segment columns are usually called
ATTRIBUTE1, ATTRIBUTE2, ..., ATTRIBUTEn.

You must register your table with Oracle Applications before you can
use it in this field.

Structure Column

Enter the name of the column, such as ATTRIBUTE_CATEGORY, in
your table that your flexfield uses to differentiate among descriptive
flexfield structures. Your descriptive flexfield uses this column to let
your users see different descriptive flexfield structures based on data
supplied by the form or the user. You must have a structure column
even if you only intend to use one descriptive flexfield structure.

Context Prompt

Enter a default context field prompt that asks your user which
descriptive flexfield structure to display. Depending upon how your
application installer defines your descriptive flexfield, your user may
or may not see a context field as part of the descriptive flexfield
pop–up window. Descriptive flexfield windows display this context
field prompt if the installer allows the end user to override the default
context field value.

If your application installer defines it, the context field appears to the
user as if it were simply another flexfield segment (with the prompt
you specify here). Your user enters a value in the context field, and
other descriptive flexfield segments pop up based on that value. The

14 – 80 Oracle Applications Developer’s Guide

installer can modify the context field prompt using the Define
Descriptive Segments window.

Protected

In some cases, you may want to create a descriptive flexfield that
cannot be inadvertently changed by an installer or user. This type of
flexfield is called a protected descriptive flexfield. You build a
protected descriptive flexfield the same way you build a normal
descriptive flexfield. The main difference is that you check the
Protected check box after defining your segment structures. Once a
descriptive flexfield is protected, you cannot query or change its
definition using the Descriptive Flexfield Segments window. You
should define your descriptive flexfield segments before you change
the Protected check box.

Descriptive Flexfield Segments Window
Oracle Applications Flexfields Guide

Detail Buttons

Choose this button to open the Reference Fields
window where you select possible reference fields
for your descriptive flexfield.

Choose this button to open the Columns window
where you enable table columns for your
descriptive flexfield segments.

Reference Fields

Columns

14 – 81Flexfields

Reference Fields Window

Use this window to specify any form fields that might serve as
descriptive flexfield reference fields. Your flexfield can use values in
one of these fields (context field values) to determine which flexfield
structure to display.

An installer using the Define Descriptive Segments window can choose
to use one of these window fields to obtain the context field value for
your descriptive flexfield.

�

14 – 82 Oracle Applications Developer’s Guide

You should specify all form fields that contain information an installer
might use to obtain a context field value. For example, the descriptive
flexfield in an application form may be used to capture different
information based on which country is specified in a field on that form,
or based on a name specified in another field. In this case, both the
country field and the name field should be listed as potential reference
fields, and the installer can decide which reference field to use (or
neither).

An installer typically defines different structures of descriptive flexfield
segments for each value that the reference field would contain. Though
the installer does not necessarily define a structure for all the values the
reference field could contain, a field that has thousands of possible
values may not be a good reference field. In general, you should only
list fields that will contain a relatively short, static list of possible
values, such as a field that offers a list of countries.

A good reference field usually has a defined List of Values. You should
not list fields that could contain an infinite number of unique values,
such as a PO Number field. Often the business uses of the particular
form dictate which fields, if any, are acceptable reference fields.

You may specify additional fields to be available as reference fields
even after you have registered your flexfield.

Attention: This zone will not be included in a future release of
the Oracle Applications. An installer will be able to use any
field of the form (that contains the flexfield) as a reference field.

Field Name

Enter the name of a reference field your flexfield can use to obtain
context field values.

Enter the actual (hidden) Oracle Forms name of the field, rather than
the boilerplate name of the field (the field prompt). Do not include the
block name. The Define Descriptive Segments window displays this
field name in a list an installer sees when defining descriptive flexfield
segments.

This field must exist in the same block as the descriptive flexfield. In
addition, if you call your descriptive flexfield from several different
forms or zones, the same field must exist in all form blocks that contain
this descriptive flexfield.

14 – 83Flexfields

Description

Since the actual Oracle Forms field names often do not match the
boilerplate prompts for your fields, we recommend that you enter the
visible field prompt as part of your description of your context
reference field so an installer can easily tell which field to define as the
reference field for your descriptive flexfield.

Columns Window

Use this window to specify the columns your descriptive flexfield can
use as segment columns. When you navigate into this block, this

14 – 84 Oracle Applications Developer’s Guide

window automatically queries up most of the columns you registered
when you registered your table.

If you have recently added columns to your table, you should reregister
your table to ensure you see all your columns in this zone. This
window does not display the table column you specify as your
structure column in the Descriptive Flexfield zone.

If your table contains columns with names ATTRIBUTE1, ATTRIBUTE
2, ATTRIBUTE3, and so on, those columns are automatically Enabled.
To use other columns for your flexfield segments, you must set
explicitly enable them.

For example, if you have more than one descriptive flexfield, your
second descriptive flexfield may be a protected descriptive flexfield
with different segment column names such as TAX1, TAX2, TAX3 and
TAX4. In this case, you would enable TAX1, TAX2, TAX3 and TAX4
and disable ATTRIBUTE1, ATTRIBUTE 2, ATTRIBUTE3, and so on for
your protected descriptive flexfield.

Enabled

Indicate whether this column can be used as a segment column for
your descriptive flexfield. If you enable a column as a segment column
for a descriptive flexfield, you should not enable the same column for
another descriptive flexfield that uses the same table.

Any columns you enable here appear when an installer defines
segments using the Define Descriptive Segments window.

Index – 1

Index

�

������ ���		
�� ���

���������	 ��
���
��� ��� �
� ��
���
���

����� � �! 	
� " � ##� " � #"

 ��
����$%� #� � #"

 ��	
�$%� #� � #� #& � �

 ��� '
$%� #� � #(� #& � �

 ���)�*$%� #� � ��

 ���!���$%� #� � �#

 ����!
�$%� #� � �#

 ���� ��$%� #� � �#

 ��
��$%� #& � �� #& � �� #& � #+

 �����$%� #, � � #, � ##� #& � �

��
���� - � #�

�.��/�0.� ����
���� - � �#

�.��/�0.���.12 ����
���� - � �#

���
�� ��3
 �
	����� � � ��
��� ���� � 44
� �
	����
����/�5678 �������� �& � "�
4
) 3���� � � ��
�����	
� '��
� � � ��
���3
����	 �� � 44
� �
	����� �� � ""
��9�:�81 ���		
�� ��(
� '��	� "# � �� "# � (

�����7:07� ��9��/�;�6��:� � � (�
�& � "

�����12�7:
�.72��<68�7<� � � "� � � �
7��8�<68�7<� , � � , � ,� � � �

��������� �- � ##� �& �
��8786��.��7������ �& � ,
�=�/������7������ �& � -
�=�/����7������ �& � �
������7���8786��.� �& � �
������7��=�/����� �& � (
������7��=�/��� �& � (
������7��6�.�� �& � &
�6�.���7������ �& � #+
;�.6������=�/����� �& � ##
;�.6������=�/��� �& � #�

���������� �(� "
��� ���� ��������
� �! 	
� �& �

�����>����678� �& � #,
�62�0.��� �& � #�
5����7��� �& � #-
5�����>�� �& � #-
5����9��� �& � #,
/�62���>����678� �& � #,
/��7/��.7����//7/� �& � #-
/��7/��.7����>����678� �& � #-
/��/6�;�� �& � #,

�����6�.�
�.��/�����8��8���6�.�2� �& � #(
�.��/��6�.�2� �& � #(
2�������8��8���6�.�� �& � #&
2����>�.126;���6�.�� �& � �+
2���68�.126;���6�.�� & � #�� �& � �#
2���/�?16/����6�.�� & � #,� �& � ��

Index – 2 Oracle Applications Developer’s Guide

�����68�
�.��/� �& � �"
�.��/�����6.� �& � �"
�68�� �& � �
8�<� �& � �"
?1�/9��68�� �& � �
?1�/9�/�85�� �& � �

����6��:
�7�9������ �- � #�� �& � �-
62�;�.6�� �& � �-
26@��<6�5��� �& � ��

����6��:��/7��/�9
5����/7��/�9� �& � �(
2����/7��/�9� �& � �(
2���;621�.����/601��� �& � �&

����6��:��/7��/�9�� �(� "
��� ��������6��:��/7��/�9

����8�;65���� �>��1��� ## � #��
�& � "+

��� ���� �8���18��678

�����7�1�� 682��8�6���� #+ � #"

����/��7/�
��.����/7<� �& � "
�7/��..�/��7/�2� �& � "
=65=.65=�� �& � ""
�71�=�/��7/�� �& � ""
;�.6�����/�85�� �& � ",

����/�5678� �.��/�56782� �& � "�

����2���6�.� #+ � &� #+ � ##
�8�0.�� #+ � #�
5����=���07>� #+ � #(
682��8�6���� #+ � #,
2����=���07>� #+ � #&

����2���6�.�� �(� "
��� ��������2���6�.

����2��8��/�
����;�.6����� - � ##� �& � "(
�;�8�� �& � "(
�.���7/:� �& � "&
298�=/786@�� �& � "&

����<68�7<
�.72���6/2��<68�7<� �& � +
�/75/�22� �& � +
2����77/�68��678� �& � +
2����6�.�� �& � �
2���<68�7<��726�678� �& � #

����7/� ��4� ��� # � � # � #�� ��"� �& � #

����7/�� ��4� ��� # � #�� �(� "� �& �

�����9�� ��4� ��� # � � ��"

����.�/ ��4� ��� # �

 ����������� ���
� �� � �� �� � #�

������ ����� �
	���
���	� � � -

������ ���� 4 �
� �)� � � �� � � (

������ ���� �
3
���'
�� ��
��� # � #-

������ ����
�3����'
�� 3 �� 4�
� � � (

������ ���� �)��� � '

 �� �����
)
��� ��&� �� � ��
��� �����' ����� ������ � �

���2��8� ���'� # � #+� ���

��� �)��	 ��4� ��
�� # � ,

��� �)'
�� ��������� ���'� �, � #-

��� �)'
���� �, � �
����'
�� � �
	���
�� �, � #"
����'
��
�����
�� �, � ##
���������� �, � #-
�
����	 ��� �, � #+

�����4��
�� 3��� �� # � #

�
0���! !
� '��
� 3�
*�� " � &

0���!�� , � #+
��'4�� ����� , � #-� � � (
����
��� , � ##
�� ��	� , � ##
��� '�� A�
��
�� , � #�
' ��
���
� �� �
� ������ , � #-� � � -
'������
����� , � #
���	�
��
����� , � #"

Index – 3

*��) �� 4 �
 � 4�
� , � #"

4��� $�4���
�
%� #& � &

4���
 �� #& � &

0��������� �
�� �
'
��� ���� � #

0������� - � #+
����;�.6����� - � ##

��
��A�
�� '��
� - � ##

�

��.�8��/
�;�8�� & � �(
2��1�� & � �,� & � �(
2=7<� & � �(

� �
�� �� & � �"
����� ������ '��
� & � �
�� � �
 ��
���� - � "

��..��7/:� � #
 �� �������� �
������� � #

� ����� � � �
 ���' �� �- � ,

� �3 ��
�� , � (
�� �!
�� , � (

� �� �
 �
�
�
� " � �

� �� ���	 �
�
��
��
� & � (

�)
�! 4��
�� - � &

���
����
�3
� ����
�� � -

���
������
� �
��������� � "

�.72���=62�<68�7< ���		
�� ��##

��'4�� ���� 4���!�� , � #-� � � (

��'4�� ����� �� 3 ��
�� # � -
��� ���� �
� ��
���
���

��'4�� ����� � 4�
� # � ##� # � #,

��'' �� ���� �� 3��

��'�����	 ��
���
���� # � #+

�������
�� : � 	
�� #, � "

�������
�� ����
����	� � �
 4���' � �
�'�� ����� #, � #(
 ���' �
� �
��3
��� #, � #�
�) �	��	 ��� �������� #, � #-
�)��� �
A�
��� #, � �
� � 4 �
 ����
�� '
�)��� �� � #�
��	�� � � � 4 �
� #, � �
� �
�� �
A�
��� #, � �
������
 �������� #, � "� #, � #-
���	� '�� #- � ##
A�
���	� #, � � #, � (
�
������ #, � "
�
A�
�� ���
�� #, � -
�
A�
���� #, � �� #, � #�
��4��
A�
��� #, � �
�
����	� #, � #"
�����
� �������
�� ����
����	 ��6� #& � �
������� ������
�� #& � #+
3�
*��	 ����'� ��4�
 � �!�� #- � ##
*)
� �� ��
� #, � (

�������
�� ���	� '�� #, �
��� ���� �������
�� ����
����	
� ����	 ���' ���	� '� #, � #
���
�� ���
 ��4'������� #, � #,
� � 4 �
 �
����� �������� #- � #(
�
3
�����	� #, � (� #, � �#
��� 4���	� #- � ##

�
������ '
�)��� #- � (� #- � ##
���
 � '��	 ���3
������� #- � "� #& � ��

#& � &
�8�.60/� #- � ,
) �����	 ����
' � ����
� #, � #+
)��� � �	� 	
� #, � ��
�''
�� �
� #, � -� #, � ��� #- �
����'� ��4�
� #, � &� #- � ##� #- � �+
��4� �� ��� #, � -� #- � � #- � ��� #& � &
�� �
� ������
�� �# � #,
��	 ���
�� #, � �"
'������
 � �	� 	
 �������� #- � (� #- � #�

�# � "(� �# � +
7� ��
 /
������ #� � �� #(� �� #(�
������ ���
�� #, � �"
� � '
�
� ���3
������� #� � ,� #(� � #& � -
� � '
�
� �
����������� #, � #+
� � '
�
� �
A�
��
� #- � �"

Index – 4 Oracle Applications Developer’s Guide

�.B2?.� #, � �#� #� � �� #� � ,
�
���� ���
�� #& � -� #& � �
������	 ���
� #- � ##� #- � #,
�� *�
�� #, � -� #, � ##� #, � �#� #& � �
2?.C.� �
�� #, � �#� #� � �� #� � ,
2?.C����� #, � �#� #� � �� #� � ,
2?.C/
����� #, � �#� #� � �� #� � ,
��4������
�� #- � &
���
� ��� #, � &� #, � �#
������� ������
�� #& � #+� �# � #
3�
*��	� #- � ##
<=7 ����'��� " � �� #, � �
*�����	 �� ���
�� #, � �"

�������
�� �
A�
��
�������� #, � #-
�
A�
�� ���
� #, � -
�� ��� ��� #, � #�

��������� ��� �
�
��
�� ��
'�� & � ,

��������� ��� ' �� ���� ��
'�� & � #,

����
�� � �3 �
����
��� �� ��� , � (
��D��	� , � (
����� , � (

����
�� 4���!�� , � ##

������� ����
�)
�! 4��� � � -
' ��
���
� ��� � � -

�����0 �
� 7���'�D
� $�07%� " � �� �� � ",

������ ����� ���� �
������	
�����' ����� ����� �� � #"
7/��.� 6�� �� � #�
� � '
�
� 3 ��� ����� �� � #�
������
 �������� �� � #"
���	� ' ����� ����� �� � -
�
������4����� ����� ����� �� � -

����
���

� '��
�� "+ � "
�8���1//�8�9 � �! 	
� "+ � �

����
�� �
���� ����� ���� , � #

�12�7:
�;�8�� �(� �+
2�9.�� �(� #&
@77:��;�6.�0.�� �(� #&

�12�7: ��4� ��� ��� �(� �
����7/� ��4� �� ��� �(� "
����7/�� ��4� �� ��� �(� "
 ��)��
����
� �(� �
�) �	��	 ��
' ����
���
�� �(� -� �(� #+
�����	 �� �� ��� ��� �(�
��� 4���	� �(� #,

3
��� � ��
�� �(� ,� �(� �+

� '��
� �(� �"
�8�2?� ��4� �� ��� �(�
��� ���� ��� �(� �
����
���
�� �(� #&
����������
�����
3
���� �(� #�� �(� #�
�
����������� �(� "
2�
�� � '
�� ��	��� �(� -� �(� #�� �(� #"
��	� ���	� �(� #-
*)
� �� ��
� ��� �(� �� �(� -
@��'� �(� -� �(� �
@��' .7;� �(� (

�����'�D��	 7� ��
 ������ ������ �(� #

�
������/6..�7<8� - � �-

�����/�?16/��� - � �-

�����2���6�.� - � �-

���� � � ���
� - � "

� �
 ��
���
� �
�� �� - � "
������	 3 ��
�� �- � #�
���' ��� - � "
�.B2?. 3 �� 4�
�� �- � -

� �
 ���' ��� - � "
� ����� �� �- � ,

�������� �- � -� �- � #�
��
��4�
� �- � �
�'������� �- � �� �- � #�

� �
 � � '
�
��� �- � #�

Index – 5

� �
�
 �� 8.2�������7/:��� �- � #+
� ����� � � �
 ���' �� �- � ,
�����	 �� �� ���� �- � &
���3
����� ������
�� �& �
���' � ' �!�� �- � ,
) �����	� �- � �
�� 7� ��
 ������ ������ �- �
E��� �� �- � ,
7� ��
 � �
� $7� � �
�%� �- � ,
����4�
�)�����	� �- � �+
9
 � �+++ ��'��� ��
� �- � �� �- � #,�

�- � �+

�����6:� � � ���
� - � "

�
�� � ��3
 ������ ����� 7� ��
 �� " � ,

�
� ��� 3 ��
�� �3
������	� # � �

�
� ����� & � #(

��.����5/71�� �# � �"

�
�
�
�� ��
3
����	� , � #+

�
�
��
�� 6�
'�� & � "

�
�������3
 ��
���
���� - � #&
��� ���� ��
���
���
 ����	 ��
������	 � 4�
�� # � ��
 ����	 �� ���'� # � #+
�) �	��	
������	� # � ��
����'��� # � &� # � �#
��'�����	� # � #+
����
�� ����'�� # � &� # � �#� # � �&
����
�� ���'��� # � �&
����
�� �
�
�
��
�� # � (#
� � 4 �
 �
��	� ���� # � &� # � �#
�
�����	� # � &
�
���������� # � "
�'��
'
����	� # � �+
:������
�� # � (
:������
� ����'�� # � �#
�
�
�
��
 ��
���� # � (#
�
	���
���	� # � #+� # � �� # � �(
�
	'
���� ��'4
� ��� # � ��
�
����	 ��� # � �(

��������
 �
�����	 ����'�� # � &� # � �#�
� �&

� 4�
 ����'��� # � �#
*)
� �� ��
� # � (

�� ��	 4���!�� , � ##

��� 4�
� 6�
'�� <=�8�;�.6�����6��:
���		
�� & � �

����� � ��
'�� - �

�62�.�9�� ����
���� - � �"

����'
�� � �
	���
� ���'� �, � #"

����'
�� ������
� *����*� �, � ##

�������*� ����� ���� , � #,

������ ���	 �
������ � � "#

��� '�� ����
���
��� ���� ����
���
� '��
 �
����� #(� #,
*��) 7� ��
 /
������ #(� &

��� '�� A�
��
�� , � #�

��� '�� ����
� 2�4'�� /
A�
��� ���'� ## � �

�
�������� - � #(

�8�0.�� ����
���� - � �

�8��/�0.� ����
���� - � ��

��3����'
�� 3 �� 4�
� � � �

�3
��) ���
��� � #&
� '��	� "# � (

�3
���� ����������
�����
�� �12�7: ��4� ��� �(� #�� �(� #�
�� 7� ��
 ������ ���� 74F
�� .�4� ��� �(� #�

�>:�68��� #& � �

�>�/75���
� '��
� #& �

�>�/75�� � #& � �

���
�� � ���	� '� �������
�� ���	� '� #, � ��

�
�������) � #� � ##

Index – 6 Oracle Applications Developer’s Guide

������$%� #& � ##

���	�3$%� #" � #�

�����3$%� #" � #�

������$%� #& � #"

������$%� #& � #

���*��$%� #, � �"

���'�	$%� #& � #-

���� <����*� (�

���
� ��
���� � � #�
��� ���� � 44
� �
	����

��
���
�� A� ����
��� # � �
��� ���� �
� ��
���
���

��
���
���
��� �����
�������3
 ��
���
���G �
� ��
���
���
 ����� ���� ��	� �
�� # � #+
����'��� # � &
��'�����	� # � #+
� � 4 �
 �
��	� ���� # � &
�
�����	� # � (
�
�������3
� - � #&
�8����2�/��.�> ����
���
�� # � "+� #

� ",� # � "-
�8���.�>��;�8�� # � �(
�8����9��.�> ����
���
�� # � "+� # �

"-
�8��/�85���.�> ����
���
�� # � "+�

� ""� # � "-
�'��
'
����	� # � ##
�� ���� *����*�� # � --
!
�� - � #&
'������
 �
�������3
 ��
���
��� �� � 4�
� # � �"
��
���	 ���' ��� ���� # � �&
A�
����	 ��� # � -,
�
��'�����	� # � #+
�
	���
���	� # � &
�
	���
���	 � 4�
� ���� " � ##
��������
� # � ,� # � -
��������
 �
�����	 ����'�� # � (
��	� �
�� # � #+

�����-+� �� � "�� �� � "-
��'' �� ���
 ���� �� �� � "(

�����-+��� �����	�� ���� ���
� �� � "�

�8� �7/:����1//�8�9� #(� #+

�8� 2/<�>6�� #(� (

�8� 2/<686�� #(� (

�8���78��5.70�.� �# � �
/�?1�2������� �# � �
2���/�?�5.70�.2� �# � �

�8���78�1//�8�
����7::6�� �# � ,
���/7..0���� �# � ,
5���/�?1�2��2���12� �# � ,
2����7:�.��678�2���12� �# � &
<�6���7/�/�?1�2�� �# � (

�8���1//�8�9

� '��
�� "+ � "
5����7/:���:�2�� "+ � �

�8������� �& �
��� ���� ��������
��8786��.��7������ �& � ,
������7���8786��.� �& � �
������7��62�.�9����� �& � (
������7��62�.�9��� �& � (
�62�.�9������7������ �& � -
�62�.�9����7������ �& � �
2�/685��7���8786��.� �& � #"
2�/685��7������ �& � #�

�8����2�/��.�>
���68�� # � ",

� '��
�� # � ,�
1���������686�678� # � -

�8���6.�
�.72�� �# � #"
8�<�.68�� �# � #�
�1�� �# � ##
�1��.68�� �# � ##
�1��8�:�� �# � #"

�8���.�>� �;�8�� # � �,� # � �(

�8���18��678
�>��1��� ## � #-
��� ���� ����8�;65���
 �� ����8�;65�����>��1��� �& � "+

?1�/9� ## � #,

Index – 7

��2�� ## � #,
12�/��18��678�8�:�� ## � #&�

� �+

�8���18��678��>��1��� ��
� *��)
@��'� �(� �-

�8��5.70�.
�78��.7568�6�� "+ � �
�78���/75/�:�6�� "+ � (
�78��/�?1�2��6�� "+ � (
.7568�6�� "+ � �
�/75����.�6�� "+ � �
12�/�6�� "+ � ,

�8����9��.�>
���68�� # � "+

� '��
�� # � ,,� # � -,
1���������686�678� # � -+

�8��:�22�5�
�.��/� #� � ##
��015� #� � ##
�/�2�� #� � #�
�//7/� #� � #�
5��� #� � #"
=68�� #� � #
?1�2�678� #� � #
/��/6�;�� #� � #�
2���8�:�� #� � #�
2���2�/685� #� � #&
2����7��8� #� � #&
2=7<� #� � ��
<�/8� #� � ��

�8��7/5
�=�85��5.70�.�7/5� "+ � &
�=�85��.7��.�7/5� "+ � &
�=772��7/5� "+ � &

�8���/7�6.�
5��� #" � #+
�1�� #" � &
;�.1�� #" � ##

�8���/75/�:
�����7�5/71�� �# � �
��.�����>��1��0.�� �# � #-
��.����5/71�� �# � �"

��.����68�7:���606.6�9� �# � ��
��.������/�:���/� �# � �#
��.�����/75/�:� �# � #&
�>��1��0.�� �# � #,
68�7:���606.6�9� �# � ��
:�22�5�� �# � #,
��/�:���/� �# � �+
/�562��/� �# � #�
/�:7;���/7:�5/71�� �# � �
/�?1�2��5/71�� �# � �"

�8��/�85���.�>
���68�� # � ""

� '��
� # � ,�
1���������686�678� # � -�

�8��/�?1�2�

� '��
�� �# � "
2���:7��� �# � ""
2���7��6782� �# � �&
2����/68��7��6782� �# � "#
2���/������7��6782� �# � "+
210:6��/�?1�2�� �# � "�

�8��/�?1�2��68�7
5�����/�:�68�7� �# � "&
5�����/�:�81:0�/� �# � "(
5�����/�:���/� �# � "&
5����/75/�:� �# � "&

�8��2��
�����/75/�:� �# �
����2����7�5/71�� �# � ,�
����2��5�� �# � �
�/�����2��� �# � �
��.����68�7:���606.6�9� �# � ,#
��.�����/75/�:���/�:���/�

�# � -
��.����2��� �# � "
68�7:���606.6�9� �# � &
.68��2��5�2� �# � &
:�22�5�� �# � �
�/75/�:���/�:���/� �# � ,
/�:7;���/75/�:� �# � ,
/�:7;��2����/7:�5/71�� �# � ,�
/�:7;��2��5�� �# � (

�8��2��8��/�
�7/:�68�7� ��&� �� � ��� "+ � #+

Index – 8 Oracle Applications Developer’s Guide

2���<=7� " � �� "+ � #+
292��:������ "+ � ##
12�/� "+ � ##

�8��210:6�
����87�6�6���678� �# � ,-
�����/68��/� �# � ,-
/�?1�2��2��� �# � ,,
2���:7��� �# � ,"
2���8.2�7��6782� �# � ,�
2����/68��7��6782� �# � ,,
2���/�.��.�22�7��6782� �# � ,"
2���/������7��6782� �# � ,
210:6���/75/�:� �# � ,�
210:6��2��� �# � ,(

�8��186?1��6��8�6�6�/��78�/7.
� 4�
� " � #+

�8��1�6.6�6�2
7��8�1/.� "+ � #�
��/�:��>62�2� "+ � #�

�8�.7��� ����	 �� �� � '
�� 	
�� #� � -�
#� � �

�8�2?� ��4� ��� # � � ��"� "+ � #
�12�7: ��4� �� ��� �(�

�7.��/�/��1/8����678 ���		
�� ���

���
�	� �
� ������ ���� " � �

���' ��������� =�.����/5�� � � '
�
��
� (

���' ���������� ## � (

���' ��	� �
 �������H �����-+� �� � "-

���' � ' �!�
� �
�� �- � ,

�������� �- � -

���'�� , � �
������ ������ � � -
�
���
 :
��� ## � �"� ## � �(
�
3
���'
�� ����
��� # � #�
�
	���
���	� ## � �#

�7/:2-+����=� # � (

�������� !
��
��
3
����	 ��
 ��� , � ##� , � #
����	� �)�� ���3
������� 3��

�������� �
������� ## � #
�8���18��678��1//�8���7/:�

�18��678� ## � �+
�8���18��678��>��1��� ## � #-
�8���18��678�?1�/9� ## � #,
�8���18��678���2�� ## � #,
�8���18��678�12�/��18��678�

8�:�� ## � #&
���' ��������� ## � "� ## � � ## � -
�
����� ��� ## � #
������
�� ## � #,
�� �� ���� ## � &

�������� 2
������ �������� /
����� ## � #

�������� 2
������ :
�� /
����� ## � #

�������� 2
������ 8 3�	 ��� /
����� ## � #

�
5
�
� �
 :
�� 	
� ���	� '� #� � -

5���/�?1�2��2���12�
�8���78�1//�8�� �# � ,

5��4 � 3 ��
�
��� ����1�
� ������
�
��
�
����� #" � ,

5.70� ��4� ��� ��

�
= ���
��� # � "� � #�

3
��� � #&
��
'� � #�
� 4�
� � �+

=
��� ���7����
)
��

=
�� � �	
��� �) �	��	 �)
 ���' � '
� ## � (

�
6''
�� �
 �������
�� ���	� '�� #, � -�

#, � ��

Index – 9

6��
���	
�� !
��� ��� �
� ��
���
���

6�
') ���
��� � #�
���' �� � #(
686�
3
��� � #(
� '��	� "# � &

6�
' ����
���
�� - � �+
�.��/�0.�� - � �+� - � �#
�.��/�0.���.12� - � �+� - � �#
����6��:��/7��/�9� �& � �(
�) �	��	 �� �12�7: ��4� ��� �(� #+
�62�.�9��� - � �+� - � �"
�8�0.��� - � �+� - � �
�8��/�0.�� - � �+� - � ��
��
' �� ���� ��
 �
3
��� - � �,
/�?16/��� - � �+� - � �,
�
����	� - � �+� �& � �(

6�
'�
����� �� - �
�
��� & � �

�
E� ��4� ��� ��,

E� ��4� ��� ��,

E. ��4� ��� ��,

E��� � � �
�� �- � � �- � ,

�
�
� ��
���
���� - � #&
��� ���� ��
���
���
 ����	 �� ���'� # � #+
��6�� # � #,
���
 ��'4�� ������ # � #,
����'��� # � &� # � #,
��'4�� ������ # � -
��'4�� ����� ���'� # � ##
��'4�� ����� � 4�
� # � -� # � &� # � ##�

� #,
��'�����	� # � #+
� � 4 �
 �
��	� ���� # � &� # � #,

�
� ��� ��
�
�
��
� # � �
�
��3
� ����'�� # � #&
�
���������� # � "
��� '�� ���
���� # � -� # � &� # � #-
��
���
�� A� ����
��� # � �� # � #(� # � �
���
�	� � 4�
�� # � ##� # � #�
	
�
��� � 4�
�� # � -� # � &
�'��
'
����	� # � ##
��'4
� �� �
	'
���� # � #-
A� ����
��� # � �� # � #(
� �	
� �� 3 ��
�� # � ##� # � #� # � #�
�
	���
���	� # � #+� # � #(� # � �#
�
	'
�� A� ����
��� # � �� # � #(� # � �,
�
	'
���� ��'4
� ��� # � #,� # � #-
�)���) ��
����� # � �
��
����� � 4�
�� # � -� # � #-
3 ��� ��'4�� ������ # � -
*)
� �� ��
� # � (� # � ##

��9� ���		
��� � #�

��9��./�/: ���		
�� ��(

��9��1�/�� ���		
�� ���

��9�.62�;�. ���		
�� ��(

��9�:�81 ���		
�� ��(

�
��� ��������� ��
3
����	 ��
 ��� , � ##� , � #

�
. �	� 	
 �) � ��
� �
�� # � (

. �	� 	
�� ���:������
 . �	� 	
 2������
$:.2%

.�2�/��7/� ���		
�� ��#"

.�4� ��
�� # �
����7/�� # � #�� ��"� �& � #
����7/��� # � #�� �(� "� �& �
�����9��� # � #�� ��"
����.�/� # � #�
 ����� �������
������ # � ,
 �� �)
� �� ��:�.��� ���'� # � #�� ��"
 �� �)��	� # � ,
��.�8��/� & � �(
�12�7:� ��� �(� #&
�8�2?�� # � #�� ��"� "+ � #

Index – 10 Oracle Applications Developer’s Guide

5.70�� ��
�� ��:�.��� ���'� ���
E�� ��,
E�� ��,
E.� ��,
��� ���� �� ���
�� # � ,
���
� �� � ��� ���' ����7/�� ��"
�� �� ��� # � ##
;�/�� ��

.��� �� ; ��
� $.7;%� - � #�
�� �8��/�?1�/9 '��
� - � #,
� '��	� "# � �� "# � (

.����� ��������� - � -

.�	�� � � � 4 �
� #, � �

.785 � � ���
� " � �

.785 /�<� � ���
� " � �

.7;� ��9�.62�;�. ���		
�� ��(

.7; ;�
* � '
� - � #,

: ��
� �� �
�
��
�� 6�
'�� & � "

: ��
���
� �� �
� �����)���� , � #-� � � -
������� ����� � � -
��)
� 4
) 3����� , � #�

:
��
 ����� �������
�����
����
�� #+ � (
��)��'���
 '
���� #+ � #+
2 3
 �� ����

�� #+ � (

:
���� #+ � �
��� ���� �������� �
������
�) �	
� ���' /
�
 �
 ##� �� � �
�
�����	� ## � �" �� ## � �(�

� �(�� ## � ""
�
�����	 '
��
����� ## � �&

��
���	 �	�'
���� ## � �,
'
�� ���'���� ## � "+
�
A�
��
 ��'4
��� ## � "+

:
�� 	
 ������� ��� #� � �
 ��	
�� #� � #
 ��� '
� #� � #(
 ���)�*� #� � ��
 ���!���� #� � �#
 ����!
�� #� � �#
 ���� ��� #� � �#
�
�����	 '
�� 	
�� #� � ,
���
����� ��������
 ���� #� � ,
�8��:�22�5� ������
�� #� � ##
� '��	 �� �� ���� #� � �-
�
�3
�����
 '
�� 	��	� #� � &
3 �� 4�
 ��!
�� #� �

:
�� 	
 ���
�� ��
 ���	� #� � -

:
�� 	
 ��'4
���	 �� �� ���� #� � ��

:
�� 	
 ��!
� �� �� ���� #� � ""

:����� 6�
'�� "# � -

:.2 ��������� #- � (� #- � #� �# � "(

� '��
� �# � +

:�� � *����* *��) :
��� , � ,

:�� � *����*�� , � ,
��� ���� �� ��	 4���!�
������	� , � -
��������� , � -

:����
�� , � �

:������ �	� 	
 �������� $:.2 ��������%�
#- � (� #- � #� �# � "(

� '��
� �# � +

:������
���� 4���!�� , � #
����
�� �
���� ����� ���� , � #
�������*� �
���� ����� ���� , � #,

:������
 �
�
��
�� 6�
'�� & � -

:������
 . �	� 	
 2������ $:.2%� :.2
��������� �# � "(� �# � +

:��� ��� �������3
 6�
'�� & � #+

:��� ��� 6������3
 6�
'�� & � #�

!
8�:��68� �- � -

Index – 11

8 '��	 �� �� ���� "# � #
 ��
�� ��3
 �
	����� "# � �� "# � (
4���!�� "# � -
� �3 ��
�� "# � �
� � 4 �
 �4F
���� "# � �
���
�� "# � &
���' �4F
���� "# � ,
���'�� "# � ,
	
�
� �� "# � �
��
'�� "# � -� "# � (
.7;�� "# � �� "# � (
'
�� 	
�� #� � �-
'����
�� "# � ,
� �! 	
�� "# � � "# � (� "# � #+
����
���
�� "# � � "# � ,� "# � (
�
���� 	������ "# � -� "# � (
�
� ������ "# � (
� 4�
) ���
��� "# �
� 4�
�� "# � �
3 �� 4�
�� "# � ,� "# � -
3�
*�� "# � "
������ "# � �

8
�� 0���! ����
���� , � ##

8.2�������7/:�� 3 �� 4�
� �- � �� �- � &�
�- � #+

8.2�.�85 3 �� 4�
� # � (

8���'�� � *����*�� , � "
������	� , �
��� '�� ����
� � � ,
��
���	� , � ,
����
� , �
*���) ��)
�)�� , �

8��� 3 ��
��) �����	 �� �.B2?.� � ,

�

78��//7/ ���		
�� ��(

7����
)
��
 ����� ���� �)��� � '
� ��&� �� � ��
4������)
�� ��� �����' ����� ������ �� � �-
��
 ���)�'� ���
�� �� � ��

)�* �)
)
�� ����
' *��!�� �� � �-
� 3�	 ���� ��

�� �� � �(
��
� ���	 ���� ���'�� �� � ��
��	� ���	� �� � �(

7��8��7/:� �� �������� �
������� � #�
� -� ## � #�

7����� 	������ - � (

7������� ���1�
� ������
�

7� ��
 ������ ������ �����'�D��	� �(� #

7� ��
 � �
�� �- � ,

7� ��
 .��! �� �

�� ��� 3���4�
 � �
��	� ��'
�
� � #�

7� ��
 /
�����
 3 �� 4�
 ��
�
����� #(� (
4��' ��
�� #- � #"� #(� "
�������
�� ����
����	� #(� �
���
	� ����� #(� �
�.B2?. ��4� ��
�� #(� "
���	� ' �	�'
���� #(�
�
����	� #(� -
����4�
�)�����	� #(� �+
��
�
����� #(� ,

7� ��
 2
���2
�3��
 <
4 ������ �����
���������� ## � "
��
���	 ���������� ## � #�� ## � #(� "+ � #�

7� ��
 ������ #, � ,

7/��.�����.6���6782 3 �� 4�
� # � &

73
����* �
	����� , � #&

"

� �! 	
�
�����7:07� �& � "
��������� �& �
���������� �(� "� �& �
�����>����678� �& � #,
�����6�.�� �& � #(
�����68�� �& � �"
����6��:� �& � �-
����6��:��/7��/�9� �& � �(

Index – 12 Oracle Applications Developer’s Guide

����6��:��/7��/�9�� �(� "
����8�;65���� �& � "+
����/��7/�� �& � ""
����/�5678� �& � "�
����2���6�.� #+ � #,
����2���6�.�� �(� "
����2��8��/�� �& � "(
����<68�7<� �& � +
��.�8��/� & � �(
�12�7:� �(� #&
�
�����	� � "
�8���78�1//�8�� �# � #
�8���1//�8�9� "+ � �
�8���6.�� �# � ##
�8���18��678� ## � #,
�8��5.70�.� "+ � ,
�8��:�22�5�� #� � ##
�8��7/5� "+ � &
�8���/7�6.�� #" � &� "+ � #+
�8���/75/�:� �# � #,
�8��/�?1�2�� �# � #
�8��/�?1�2��68�7� �# � "(
�8��2��� �# � �
�8��210:6�� �# � ,"
�8��1�6.6�6�2� "+ � #�
��D��	� � "

� � '
�
�
�
� ��� 3 ��
� �� � ##
�
��������� �� � ,
���78��/�?1�2��6�� #(� ,
� � '
�
� *����*� �� � &
3 ��� ����� �� � #�
3 ��
 �
�� �� � &

�
����' ��
� # � ,
����	 3�
*�� # � ,

�.B2?.� 	
�
� � �����	 ����
�� � "

�.B2?. ����
� ����
���
�� #� � "

��������� - � -

��������� '�� � *����*�� , � -

�72���7/: ���		
�� ��&

�/���7/: ���		
�� ��&

��
3���� 0���! ����
���� , � ##

���C� �������
�� ���	� '�� �
����	� #& � (

���C� �������
�� ���	� '�� #& � �

����
���
�
�
�����	� � �

������ � &
��� ����� � -

����������
�����
3
���
�����	 �� �12�7: ��4� ��� �(� #�
�� 7� ��
 ������ ���� 74F
�� .�4� ��� �(� #�

������
 �������
��� ����1�
� ������
�
������ ����� ���� /
������	� �� � #"
���	�3$%� #" � #�
�����3$%� #" � #�
�� 7� ��
 /
������ #(� ,
���
�� ��� 	
�
� �
�� #" � ,� #" � -
��
�
���
� �������� #" � ,
3 ��� ���	� #" � #-

������
�� ���1�
� ������
�

����
���
�� ��� 6�
' ����
���
�

����
��� �� ��
�� # � #"

������*� '
���� #+ � �

#

?� ����
��� # � �
��� ���� �
� ��
���
���
�
��3
� ����'�� # � #&
��
���
��� # � �
�
	'
��� # � �

?�
�� ����� (� �

?�
���7��� ���'�� ## � -

?1�/9��68� ���		
�� ��#+

?���!���!
 ����	 �� ���'� #" � #-� #" � #�
���		
��� #" � #-� #" � #�

Index – 13

�

/ ��� 	������ ���7����� 	�����

/�<� � ���
�� " � �

/
���� =������ $<=7%� " � �

/
���� ����� ���� , � #� , � #,

/
�
�
��
� �4F
���� 3�
*��	 ' �!
� ���� # � (

/
�
�
��
� ���		
��� ��#"

/
�
�
��� � 6��
	����� & � �+

/
	����� , � #&
 ��
�� ��3
� � � ��
�3
����*� , � #&
� 44
�� � � #�

/
	���
�
 ����� ����� � � -
�������
�� ���	� '� #- � ##
�������
�� ���	� ' ��4� ��� #- � � #- � ��
���'� ## � �#

/
	���
���	 � 4�
�� " � ##

/
��'4
���	 /
������ � � "�

/
���� �
��
��� ���� /
A�
�� �
��
�
��4'������� �� � "
�
������� �� � -

/
�����
� � '
�
� *����*� �� � &
� � '
�
��� �� � ,
�
��4'������� �� � "
�
������� �� � -
3 ��� ����� �� � #�
3 ��
 �
�� �� � &

/
A�
�� �
��� �" � �
�
��������� �� �
�8��210:6� � �! 	
� �# � ,"
�� 	
 ���������� �" � -
�� 	
�� �" � �
�� �� �� �� 	
 ��������� �" � �

/�?16/�� ����
���� - � �,

/
�
�3
� *����� "# � ##
�� � 4�
 ����'��� " � �

/
�����
 �)
�!��	� � #"

/�)��'���
 $�����% '
��� �� ��	� ���	
�����' ���'�� �� � "

/�)��'���
 '
��� $����� '
���%� #+ � #+

/�*�.7;� (� "

/7<6�� 3�
*�� " � (

/��
�0 �
� 7���'�D
� $/07%� " � �� �� � ",

�
2 3
 �� ����

�� #+ � (

2
������� ��� �������� �
������

2
	'
�� A� ����
��� # � �
��� ���� �
� ��
���
���

2
	'
���� �
�������3
 ��
���
�� ����'��� # � �#

2
���2
�3��
 ������ ������ ��
���	 ����������
� "� ## � #�� ## � #(� "+ � #�

2
����
�3��
 ���������� ## � "� ## � #�

2
A�
��
�� " � #+
������	 3 ��
�� " � #+

2
�3
�����
� �
��������� � "

2����7:�.��678�2���12�
�8���78�1//�8�� �# � &

2)�* �
�� �
��������� ����
���� � #�

2)�* �
�� ����
���� � #�

2��	�
 � 4�
 3�
*�� " � &

2��	�
��
���� 4���!�� , � #"

2� *�
� �������
�� ���	� '�� #, � -� #, � ##�
#, � �#

2�
�� � '
��� #+ � (� #+ � #,
 �� ��	� ���	 �����' ���'�� �� � "
�� �12�7: ��4� ��� �(� -� �(� #�� �(� #"

2?.C.� �
�� #� �

2?.C�.12 ���	� '�� #� � �

2� �!
� � �3 ��
�� , � (

Index – 14 Oracle Applications Developer’s Guide

2� �!
� �
	����� ��� ���
�� ��3
 �
	����G � 44
�
�
	����

2� �� �� /
���� 2�4'������
�)��� �
A�
��� �� � ,
� �
�� �
A�
��� �� � ,

2� �� �� /
���� 2�4'������ $2/2%
��� ���� 2� �� �� /
A�
�� 2�4'������ $2/2%
 ���' ��� �
��4'������� �� � "
������ ����� ���� �
������	� �� � � �� � #�
� � 4 �
 ����
�� '
�)��� �� � #�
�'��
'
����	� �� � (
� � '
�
� *����*� �� � &
��
�
���
� 3 ��
 �
��� �� � #+
���	� ' ����� ����� �� � -
�
������4����� ����� ����� �� � -

2� �� �� /
A�
�� 2�4'������ $2/2%
��� ���� /
����
������ ����� ���� �
������	� �� �

2� �� ��� ��'��� ��
 �)
�!
�H �����-+� �� � "-

2� ����� #, � #,

2�������
 �
�����	 ����'�� �
�������3
 ��
���
����
� �#

2�4����������)����	 ���' ��
�� ## � ##

2���)����D��	� #+ � (

292����� �- � #�

$

� 4) ���
�� � � #�

� 4 � 	
� � � #�

� 44
� �
	����
 ��
�� ��3
 �
	��� ��
���� � � #�
4
) 3���� � � #"
�����	� � � #�� � � #
��
��4����
�� � � #,

���3
����	 ���' ��
�� ��3
 �
	����� �� � ""
�
���������� � � #�
��� '�� � 4�� � � �"
� ���� �� �� ���� � � #-

'������
 �
�� �� � 4�� � � �#
� 4) ���
�� � � #�� � � #(

� 4�
 ����'��
�
�������3
 ��
���
��� # � �#
!
� ��
���
��� # � #,

� 4�
) ���
��� � �+
���
�� ���

� '��
� � �#
�
�3
� ���

� '��
� � �

� 4�
 �
	���� ���� ��6� " � ##
����� ����
���
�� " � ##� " � #"

� 4�
�� �
	���
���	� " � ##

� 4�� ��� � 44
� �
	����

��:�.��� ���'� # � ##� ���
��4� ��
�� ��"
��
�� � ���		
��� ��-

�
�� 6�
'� A�
�� �
�	�)� - � �

�
�� ��
'�� - � �

�)����� ��� ���	� '� �������
�� ���	� '�
#, � ��

����
�
��� '�� *����*� � � ,
����'�� � *����*�� , �

����4 �� #+ � �
 ����� �������
�����
����
�� #+ � (
�) �	
� ���' /
�
 �
 ##� �� � �
����������	� #+ � #,

���		
��
�� ���	�
��
���� 4���!�� , � #
��9 ���		
�� �� �� ��	 4���!�� , � ##

�����	� �� � ",

����	� �)�� ���3
������� 3��

%
1����
� �������
�� ����
����	� #& � �

1��A�
�
�� �)
�!� & � #&

1�	� �
 �������� �����-+� �� � "�� �� � "-

1�	� ���	 �����' ���'�� �� � "#

Index – 15

1�
�
����
�� 7� ��
 /
������ #(� ,
7� ��
 /
������ #(� ,

1�
�
����� ��
���
�
�.�>6�;�.� #(� -� #(� (
�.�>2?.� #(� -� #(� (
�7/:����1//�8�9� #(� -� #(� (
5��5.70�.� #" � ,
5���/7�6.�� #" � ,
	��4 � 3 ��
�� #" � ,
2/<�>6�� #(� ,
2/<686�� #(� ,
��
� ������
�� #" � ,

1�
�
����� *�����	
�) �	
 ������
� #" � #�
���	�3$%� #" � #�
�����3$%� #" � #�
	
� ������
� #" � #�

1�
� ������
�� #" � �
��� ���� ������
 �������
�������
�� ����
����	 �������� #, � #-
�
�����	 �������� #" � "� #" � #
�
��������� #" � �
���	�3$%� #" � #�
�����3$%� #" � #�
5���/7�6.�� #" � ,
)�
� ��)�� #" � �#
�
3
��� #" � �#
�
���� � ������
� #" �
�
����	 ������ 3 ��
�� #" �
��
�
����� #" � ,
3 ��� ����� #" � #-

12�/�8.2�.�85 3 �� 4�
� 3�����	� # � (

1������ ������
�� ���1�
� ������
�

&

; ��� ��'4�� ������ # � -
��� ���� �
� ��
���
���
� 4�
�� # � -

;�/� ��4� ��� ��

;�
*�� " � �
4���! �
� :��
� " � &
�����	 ���		
��� " � &
�
����' ��
 ��� " � (
�
 ���� ��� ��
 ���	� " � �
/7<�6� ��� " � (
���	�
 � 4�
� " � &

;��� � ����4��
�� # � #

'
<�6���7/�/�?1�2��

�8���78�1//�8�� �# � (

<
4� �����	 ��� ��'� ��4������ # � -

<=�8��/�����/��7/�� ��� '��
A�
������� '��
� � #�

<=�8��7/:�8�;65��� ���		
�� ��#"

<=�8�.7578��=�85�� �3
��� �(� #�

<=�8�8�<�0.7���682��8�� ���		
��
��##

<=�8�8�<��7/:�682��8�� ���		
��
��#+

<=�8�8�<�6��:�682��8�� ���		
��
��##

<=�8�8�<�/��7/��682��8��
���		
�� ��##

<=�8�/�2�782606.6�9��=�85��
�3
��� �(� #�

<=�8�;�.6�����6��: ���		
�� ��� 4�
�
��
'�� & � �

<=7
�������
�� ���	� '�� #, � �
�8��5.70�.� "+ � ,
�
�3
� ���
 3 ��
�� "+ � ,
�
����	 <=7 �����' ����� " � � "+ � ,

<=7 $/
���� =������%
�������
�� ���	� '�� " � �
�8��2��8��/��2���<=7� " � �

<����*�� , � "
������	� , � � , � -

Index – 16 Oracle Applications Developer’s Guide

'�� �� , � ,
� '��	 �� �� ���� "# � �
����'�� �� , � "
��
���	� , � ,

(
9
 � �+++ ��'��� ��
� �- � �� �- � #,� �- � �+

)

@��'� �(� -
��� ���� �12�7:��;�8�
�����	 �� �12�7: ��4� ��� �(� -

3
��� ��� �12�7:��;�8�

� '��
� �(� #&� �(� �#� �(� �"
.7; ��� �12�7: ��4� ��� �(� (

Reader’s Comment Form

Oracle� Applications Developer’s Guide VOLUME 1
Part No. A83705–03

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication. Your input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065 U.S.A.

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

Oracle
� Applications

Developer’s Guide
RELEASE 11i

VOLUME 2

April 2001

Oracle Applications Developer’s Guide, RELEASE 11i VOLUME 2

The part number for this volume is A83704–03.
To reorder this book, please use the set part number, A75545–03.
Copyright � 1995, 2001 Oracle Corporation. All rights reserved.
Contributing Authors: Anne Carlson, Emily Nordhagen, Lisa Nordhagen, Dana Spradley,
Martin Taylor, Peter Wallack, Millie Wang, Sara Woodhull
Contributors: Ram Bhoopalam, Eric Bing, Steven Carter, Cliff Godwin, Mark Fisher, Michael
Konopik, Michael Mast, Tom Morrow, Robert Nix, Gursat Olgun, Susan Stratton, Leslie
Studdard, Venkata Vengala, Maxine Zasowski

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual property law. Reverse
engineering of the Programs is prohibited. No part of this document may be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Oracle Corporation.

Program Documentation is licensed for use solely to support the deployment of the Programs and not for
any other purpose.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the Programs on behalf
of the U.S. Government, the following notice is applicable:

RESTRICTED RIGHTS LEGEND

Programs delivered subject to the DOD FAR Supplement are ’commercial computer software’ and use,
duplication and disclosure of the Programs including documentation, shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are ’restricted computer software’ and use, duplication and disclosure
of the Programs shall be subject to the restrictions in FAR 52.227–19, Commercial Computer Software –
Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be licensee’s responsibility to take all appropriate fail–safe, back up,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark and Oracle7, Oracle8, Oracle Application Object Library, Oracle Applica-
tions, Oracle Alert, Oracle Financials, Oracle Workflow, SQL*Forms, SQL*Plus, SQL*Report, Oracle Data
Browser, Oracle Forms, Oracle General Ledger, Oracle Human Resources, Oracle Manufacturing, Oracle
Reports, PL/SQL, Pro*C and SmartClient are trademarks or registered trademarks of Oracle Corporation.
All other company or product names are mentioned for identification purposes only, and may be trademarks
of their respective owners.

 iContents

Contents

Volume 1VOLUME 1 i.

Preface i.
Audience for This Guide ii.
Other Information Sources ii.
Do Not Use Database Tools to Modify Oracle
Applications Data vi.
Typographic Conventions vii.
About Oracle ix.
Your Feedback ix.

Chapter 1 Overview of Coding Standards 1 – 1.
Overview of Coding Standards 1 – 2.

Importance of these Standards 1 – 2.
Coding Principles 1 – 2.
Coding With Handlers 1 – 3.
Libraries 1 – 4.
Performance 1 – 5.
Coding for Web Compatibility 1 – 6.

The Standard Development Environment 1 – 7.
Oracle Application Object Library for Release 11i 1 – 9.
Setting Object Characteristics 1 – 9.
Shared Objects 1 – 10.
Standard Libraries 1 – 11.

 ii Oracle Applications Developer’s Guide

Property Classes 1 – 13.
Visual Attributes 1 – 14.

Overview of Building an Application 1 – 15.
Overall Design Issues to Consider 1 – 15.
Overview of Application Development Steps 1 – 16.
Overview of Form Development Steps 1 – 17.

Chapter 2 Setting Up Your Application Framework 2 – 1.
Overview of Setting Up Your Application Framework 2 – 2.

Definitions 2 – 2.
Set Up Your Application Directory Structures 2 – 3.
Register Your Application 2 – 3.
Modify Your Environment Files 2 – 4.
Set Up and Register Your Oracle Schema 2 – 4.
Create Database Objects and Integrate with APPS Schema 2 – 5.
Add Your Application to a Data Group 2 – 5.
Set Up Concurrent Managers 2 – 5.

Applications Window 2 – 6.
Prerequisites 2 – 7.
Applications Block 2 – 7.

Chapter 3 Building Your Database Objects 3 – 1.
Overview of Building Your Database Objects 3 – 2.

Using Cost–Based Optimization 3 – 2.
Tracking Data Changes with Record History (WHO) 3 – 2.
Oracle8i Declarative Constraints 3 – 5.
LONG, LONG RAW and RAW Datatypes 3 – 7.
Columns Using a Reserved Word 3 – 7.
Views 3 – 7.
Sequences 3 – 10.

Table Registration API 3 – 11.

Chapter 4 Using PL/SQL in Oracle Applications 4 – 1.
Overview of Using PL/SQL in Applications 4 – 2.

Definitions 4 – 3.
General PL/SQL Coding Standards 4 – 3.
Database Server Side versus Client Side 4 – 6.
Formatting PL/SQL Code 4 – 7.
Exception Handling 4 – 9.

 iiiContents

SQL Coding Guidelines 4 – 11.
Triggers in Forms 4 – 11.
Resources 4 – 12.

Replacements for Oracle Forms Built–ins 4 – 14.
Coding Item, Event and Table Handlers 4 – 17.

Coding Item Handlers 4 – 17.
Coding Event Handlers 4 – 19.
Coding Table Handlers 4 – 20.
Example Client–Side Table Handler 4 – 21.
Example Server–Side Table Handler 4 – 24.

Chapter 5 Setting the Properties of Container Objects 5 – 1.
Modules 5 – 2.
Windows 5 – 3.

Non–Modal Windows 5 – 3.
Modal Windows 5 – 5.

Canvases 5 – 8.
Content Canvases 5 – 8.
Stacked Canvases 5 – 8.

Blocks 5 – 10.
Context Blocks 5 – 11.
Dialog Blocks 5 – 11.
 Data Blocks With No Base Table 5 – 13.
Single–Record Data Blocks 5 – 13.
Multi–Record Blocks 5 – 14.
Combination Blocks 5 – 16.
Master–Detail Relations 5 – 16.
Dynamic WHERE Clauses 5 – 17.

Regions 5 – 19.
Tabbed Regions 5 – 19.
Alternative Regions (Obsolete for Release 11i) 5 – 19.
Overflow Regions 5 – 19.

Chapter 6 Setting the Properties of Widget Objects 6 – 1.
Text Items 6 – 2.

Date Fields 6 – 3.
Display Items 6 – 4.
Poplists 6 – 6.
Option Groups 6 – 8.

 iv Oracle Applications Developer’s Guide

Check Boxes 6 – 9.
Buttons 6 – 10.
Lists of Values (LOVs) 6 – 12.

LOV Behaviors 6 – 14.
LOVs in ENTER–QUERY Mode 6 – 15.

Alerts 6 – 17.
Editors 6 – 18.
Flexfields 6 – 19.
Setting Item Properties 6 – 20.

Using APP_ITEM_PROPERTY.SET_PROPERTY 6 – 20.
Item Properties with Unique Oracle Applications Behavior 6 – 21
Impact of Item–level and Item–instance–level Settings 6 – 25.
Setting Properties at Design Time 6 – 26.
Setting Visual Attributes Programatically 6 – 26.

Chapter 7 Controlling Window, Block and Region Behavior 7 – 1.
Controlling Window Behavior 7 – 2.

Positioning Windows Upon Opening 7 – 2.
Closing Windows 7 – 3.
Setting Window Titles Dynamically 7 – 5.

Controlling Block Behavior 7 – 6.
Coding Master–Detail Relations 7 – 6.
Implementing a Combination Block 7 – 8.

Coding Tabbed Regions 7 – 12.
Definitions 7 – 12.
Tabbed Region Behavior 7 – 13.
Three Degrees of Coding Difficulty 7 – 14.
Implementing Tabbed Regions 7 – 15.
Tab Handler Logic 7 – 18.
WHEN–TAB–PAGE–CHANGED Logic 7 – 18.
WHEN–NEW–ITEM–INSTANCE Logic 7 – 22.
Handling Dynamic Tabs 7 – 23.
Other Code You May Need 7 – 25.

Coding Alternative Region Behavior 7 – 27.
Alternative Regions 7 – 27.
Example: Coding an Alternative Region 7 – 27.

Controlling Records in a Window 7 – 31.
Duplicating Records 7 – 31.
Renumbering All Records in a Window 7 – 32.

Passing Instructions to a Form 7 – 34.

 vContents

Chapter 8 Enabling Query Behavior 8 – 1.
Overview of Query Find 8 – 2.

Raising Query Find on Form Startup 8 – 2.
Implementing Row–LOV 8 – 3.

Implementing Find Windows 8 – 4.

Chapter 9 Coding Item Behavior 9 – 1.
Item Relations 9 – 2.

Dependent Items 9 – 3.
Conditionally Dependent Item 9 – 5.
Multiple Dependent Items 9 – 6.
Two Master Items and One Dependent Item 9 – 7.
Cascading Dependence 9 – 8.
Mutually Exclusive Items 9 – 10.
Mutually Inclusive Items 9 – 12.
Mutually Inclusive Items with Dependent Items 9 – 13.
Conditionally Mandatory Items 9 – 15.

Defaults 9 – 18.
Integrity Checking 9 – 19.

Uniqueness Check 9 – 19.
Referential Integrity Check 9 – 20.

The Calendar 9 – 23.
Advanced Calendar Options 9 – 24.
Calendar Examples 9 – 26.

CALENDAR: Calendar Package 9 – 28.
CALENDAR.SHOW 9 – 28.
CALENDAR.SETUP 9 – 28.
CALENDAR.EVENT 9 – 28.

Chapter 10 Controlling the Toolbar and the Default Menu 10 – 1.
Pulldown Menus and the Toolbar 10 – 2.

Menu and Toolbar Entries 10 – 2.
Save and Proceed 10 – 8.
Synchronizing 10 – 8.
Application–Specific Entries: Special Menus 10 – 8.
Customizing Right–Mouse Menus (Popup Menus) 10 – 10.

APP_POPUP: Right–Mouse Menu Control 10 – 13.
APP_POPUP.INSTANTIATE 10 – 13.

APP_SPECIAL: Menu and Toolbar Control 10 – 15.
APP_SPECIAL.INSTANTIATE 10 – 15.

 vi Oracle Applications Developer’s Guide

APP_SPECIAL.ENABLE 10 – 17.
APP_SPECIAL.GET_CHECKBOX 10 – 18.
APP_SPECIAL.SET_CHECKBOX 10 – 19.

Chapter 11 Menus and Function Security 11 – 1.
Overview of Menus and Function Security 11 – 2.

Using Form Functions 11 – 6.
Function Security Standards 11 – 9.

General Function and Menu Standards 11 – 9.
Form Function Standards 11 – 10.
Subfunction Standards 11 – 11.

 viiContents

FND_MESSAGE.ERASE 12 – 12.
FND_MESSAGE.ERROR 12 – 12.
FND_MESSAGE.GET 12 – 13.
FND_MESSAGE.HINT 12 – 14.
FND_MESSAGE.QUESTION 12 – 14.
FND_MESSAGE.RETRIEVE 12 – 17.
FND_MESSAGE.SET_NAME 12 – 17.
FND_MESSAGE.SET_STRING 12 – 19.
FND_MESSAGE.SET_TOKEN 12 – 19.
FND_MESSAGE.SHOW 12 – 22.
FND_MESSAGE.WARN 12 – 22.

Application Message Standards 12 – 24.
Definitions 12 – 24.
Message Naming Standards 12 – 26.
Message Numbering Standards 12 – 27.
Message Type Standards 12 – 29.
Message Description Standards 12 – 31.

Message Content Standards 12 – 33.
Message Token Standards 12 – 33.
A Few General Guidelines for Writing Good Messages 12 – 36. . . .
When the User Needs to Get Help 12 – 37.
Complex Messages 12 – 39.
Specific Types of Message Content 12 – 40.
Message Writing Style 12 – 42.
Special Purpose Messages 12 – 52.

Messages Window 12 – 55.
Prerequisites 12 – 56.
Messages Block 12 – 56.

Chapter 13 User Profiles 13 – 1.
Overview of User Profiles 13 – 2.

Definitions 13 – 2.
Defining New User Profile Options 13 – 3.
Setting User Profile Option Values 13 – 4.
Setting Your Personal User Profile 13 – 4.

Implementing User Profiles 13 – 5.
Predefined User Profile Options 13 – 5.

FND_PROFILE: User Profile APIs 13 – 9.
FND_PROFILE.PUT 13 – 9.
FND_PROFILE.GET 13 – 10.
FND_PROFILE.VALUE 13 – 11.

 viii Oracle Applications Developer’s Guide

User Profile C Functions 13 – 12.
afpoget 13 – 12.
afpoput 13 – 12.

Profiles Window 13 – 14.
Prerequisites 13 – 14.
Profiles Block 13 – 15.

Chapter 14 Flexfields 14 – 1.
Overview of Flexfields 14 – 2.

Definitions 14 – 5.
Building a Flexfield into Your Application 14 – 8.
Flexfields and Application Upgrades 14 – 10.

Implementing Key Flexfields 14 – 11.
Defining Key Flexfield Database Columns 14 – 15.
Registering Your Key Flexfield Table 14 – 18.
Registering Your Key Flexfield 14 – 18.
Add Your Flexfield to Your Forms 14 – 19.

Implementing Descriptive Flexfields 14 – 20.
Planning for Reference Fields 14 – 20.
Defining Descriptive Flexfield Database Columns 14 – 21.
Adding a Descriptive Flexfield to a Table with Existing
Data 14 – 22.
Protected Descriptive Flexfields 14 – 23.
Registering Your Descriptive Flexfield Table 14 – 24.
Registering Your Descriptive Flexfield 14 – 24.
Add Your Flexfield to Your Forms 14 – 24.

Adding Flexfields to Your Forms 14 – 25.
Create Your Hidden Fields 14 – 25.
Create Your Displayed Fields 14 – 27.
Create Your Flexfield Definition 14 – 27.
Invoke Your Flexfield Definition from Several Event
Triggers 14 – 28.

Flexfield Definition Procedures 14 – 30.
Key Flexfield Definition Syntax 14 – 30.
Range (Type) Flexfield Definition Syntax 14 – 33.
Descriptive Flexfield Definition Syntax 14 – 35.
Flexfield Definition Arguments 14 – 36.
Flexfield Definition Examples 14 – 55.
Updating Flexfield Definitions 14 – 59.
Update Key Flexfield Definition Syntax 14 – 60.
Update Range (Type) Flexfield Definition Syntax 14 – 62.

 ixContents

Update Descriptive Flexfield Definition Syntax 14 – 64.
Updating Flexfield Definition Example 14 – 65.
Using Key Flexfields in Find Windows 14 – 65.
Using Range Flexfields in Query Find Windows 14 – 67.

Troubleshooting Flexfields 14 – 69.
Register Key Flexfields 14 – 71.

Register Key Flexfields Block 14 – 72.
Qualifiers Window 14 – 74.
Columns Window 14 – 76.

Register Descriptive Flexfields 14 – 78.
Register Descriptive Flexfields Block 14 – 78.
Reference Fields Window 14 – 81.
Columns Window 14 – 83.

Index

 x Oracle Applications Developer’s Guide

Volume 2VOLUME 1 14– 1.

Chapter 15 Overview of Concurrent Processing 15 – 1.
Overview of Concurrent Processing 15 – 2.

Basic Application Development Needs 15 – 2.
Major Features 15 – 2.
Definitions 15 – 4.

Overview of Designing Concurrent Programs 15 – 8.
Submitting Concurrent Programs on the Client 15 – 15.
Using Concurrent Processing 15 – 16.
Automated Recovery for Concurrent Processing 15 – 17.

Overview of Implementing Concurrent Processing 15 – 21.
Choosing Your Implementation 15 – 21.

Chapter 16 Defining Concurrent Programs 16 – 1.
Defining Concurrent Programs 16 – 2.
Concurrent Program Executable Window 16 – 6.

Concurrent Program Executable Block 16 – 6.
Stage Function Parameters Window 16 – 9.

Concurrent Programs Window 16 – 11.
Concurrent Programs Block 16 – 12.
Copy to Window 16 – 18.
Session Control Window 16 – 18.
Incompatible Programs Window 16 – 20.

Concurrent Program Libraries Window 16 – 27.
Prerequisites 16 – 28.
Concurrent Program Libraries Block 16 – 28.
Concurrent Programs Block 16 – 29.
Rebuild Library 16 – 29.

Chapter 17 Coding Oracle Tools Concurrent Programs 17 – 1.
Oracle Tool Concurrent Programs 17 – 2.

SQL*PLUS Programs 17 – 2.
PL/SQL Stored Procedures 17 – 3.
SQL*Loader 17 – 4.
Accepting Input Parameters For Oracle Tool Programs 17 – 5. . . .
Naming Your Oracle Tool Concurrent Program 17 – 5.

 xiContents

Chapter 18 Coding Oracle Reports Concurrent Programs 18 – 1.
Oracle Reports 18 – 2.

Concurrent Processing with Oracle Reports 18 – 2.
Oracle Reports Parameters 18 – 4.
Accessing User Exits and Profile Options 18 – 5.

User Exits Used in Oracle Reports 18 – 8.
FND SRWINIT / FND SRWEXIT 18 – 8.
FND FLEXIDVAL / FND FLEXSQL 18 – 8.

Using Dynamic Currency in Oracle Reports 18 – 9.
FND FORMAT_CURRENCY User Exit 18 – 10.

Example Report Using FND FORMAT_CURRENCY 18 – 15.
Sample Report Output 18 – 15.
Procedure 18 – 17.

Oracle Reports Troubleshooting 18 – 20.
Frequently Asked Questions 18 – 22.

Chapter 19 Coding C or Pro*C Concurrent Programs 19 – 1.
Coding C and Pro*C Concurrent Programs 19 – 2.

Pro*C Concurrent Programs 19 – 2.
Header Files Used With Concurrent Programs 19 – 9.

Concurrent Processing Pro*C Utility Routines 19 – 10.
afpend() 19 – 10.
fdpfrs() 19 – 11.
fdpscp() 19 – 13.
fdpscr() 19 – 14.
fdpwrt() 19 – 16.

Chapter 20 Coding Concurrent Programs using Java Stored Procedures 20 – 1. .
Coding Concurrent Programs Using Java Stored Procedures 20 – 2. . .

How to Write a Concurrent Program using a Java Stored
Procedure 20 – 2.
Example 20 – 2.

Chapter 21 PL/SQL APIs for Concurrent Processing 21 – 1.
FND_CONC_GLOBAL Package 21 – 2.

FND_CONC_GLOBAL.REQUEST_DATA 21 – 2.
FND_CONC_GLOBAL.SET_REQ_GLOBALS 21 – 2.
Example 21 – 2.

FND_CONCURRENT Package 21 – 5.

 xii Oracle Applications Developer’s Guide

FND_CONCURRENT.AF_COMMIT 21 – 5.
FND_CONCURRENT.AF_ROLLBACK 21 – 5.
FND_CONCURRENT.GET_REQUEST_STATUS (Client
or Server) 21 – 5.
FND_CONCURRENT.WAIT_FOR_REQUEST (Client
or Server) 21 – 8.
FND_CONCURRENT.SET_COMPLETION_STATUS
(Server) 21 – 9.

FND_FILE: PL/SQL File I/O 21 – 11.
FND_FILE.PUT 21 – 11.
FND_FILE.PUT_LINE 21 – 11.
FND_FILE.NEW_LINE 21 – 12.
FND_FILE.PUT_NAMES 21 – 13.
FND_FILE.CLOSE 21 – 13.
Error Handling 21 – 14.

FND_PROGRAM: Concurrent Program Loaders 21 – 15.
FND_PROGRAM.MESSAGE 21 – 15.
FND_PROGRAM.EXECUTABLE 21 – 15.
FND_PROGRAM.DELETE_EXECUTABLE 21 – 16.
FND_PROGRAM.REGISTER 21 – 17.
FND_PROGRAM.DELETE_PROGRAM 21 – 19.
FND_PROGRAM.PARAMETER 21 – 20.
FND_PROGRAM.DELETE_PARAMETER 21 – 21.
FND_PROGRAM.INCOMPATIBILITY 21 – 22.
FND_PROGRAM.DELETE_INCOMPATIBILITY 21 – 22.
FND_PROGRAM.REQUEST_GROUP 21 – 23.
FND_PROGRAM.DELETE_GROUP 21 – 23.
FND_PROGRAM.ADD_TO_GROUP 21 – 24.
FND_PROGRAM.REMOVE_FROM_GROUP 21 – 24.
FND_PROGRAM.PROGRAM_EXISTS 21 – 25.
FND_PROGRAM.PARAMETER_EXISTS 21 – 25.
FND_PROGRAM.INCOMPATIBILITY_EXISTS 21 – 26.
FND_PROGRAM.EXECUTABLE_EXISTS 21 – 26.
FND_PROGRAM.REQUEST_GROUP_EXISTS 21 – 27.
FND_PROGRAM.PROGRAM_IN_GROUP 21 – 27.
FND_PROGRAM.ENABLE_PROGRAM 21 – 27.

FND_REQUEST Package 21 – 29.
FND_REQUEST.SET_OPTIONS (Client or Server) 21 – 29.
FND_REQUEST.SET_REPEAT_OPTIONS (Client or Server)
21 – 30
FND_REQUEST.SET_PRINT_OPTIONS (Client or Server) 21 – 31.
FND_REQUEST.SUBMIT_REQUEST (Client or Server) 21 – 32. . . .

 xiiiContents

FND_REQUEST.SET_MODE (Server) 21 – 33.
Example Request Submissions 21 – 34.

FND_REQUEST_INFO and Multiple Language Support (MLS) 21 – 38
FND_REQUEST_INFO.GET_PARAM_NUMBER 21 – 38.
FND_REQUEST_INFO.GET_PARAM_INFO 21 – 39.
FND_REQUEST_INFO.GET_PROGRAM 21 – 39.
FND_REQUEST_INFO.GET_PARAMETER 21 – 39.
Example MLS Function 21 – 40.

FND_SET: Request Set Loaders 21 – 42.
FND_SET.MESSAGE 21 – 42.
FND_SET.CREATE_SET 21 – 42.
FND_SET.DELETE_SET 21 – 43.
FND_SET.ADD_PROGRAM 21 – 44.
FND_SET.REMOVE_PROGRAM 21 – 45.
FND_SET.PROGRAM_PARAMETER 21 – 45.
FND_SET.DELETE_PROGRAM_PARAMETER 21 – 46.
FND_SET.ADD_STAGE 21 – 47.
FND_SET.REMOVE_STAGE 21 – 48.
FND_SET.LINK_STAGES 21 – 49.
FND_SET.INCOMPATIBILITY 21 – 49.
FND_SET.DELETE_INCOMPATIBILITY 21 – 51.
FND_SET.ADD_SET_TO_GROUP 21 – 52.
FND_SET.REMOVE_SET_FROM_GROUP 21 – 52.

FND_SUBMIT: Request Set Submission 21 – 53.
FND_SUBMIT.SET_MODE 21 – 53.
FND_SUBMIT.SET_REL_CLASS_OPTIONS 21 – 53.
FND_SUBMIT.SET_REPEAT_OPTIONS 21 – 54.
FND_SUBMIT_SET.REQUEST_SET 21 – 55.
FND_SUBMIT.SET_PRINT_OPTIONS 21 – 55.
FND_SUBMIT.ADD_PRINTER 21 – 56.
FND_SUBMIT.ADD_NOTIFICATION 21 – 56.
FND_SUBMIT.SET_NLS_OPTIONS 21 – 57.
FND_SUBMIT.SUBMIT_PROGRAM 21 – 57.
FND_SUBMIT.SUBMIT_SET 21 – 58.
Examples of Request Set Submission 21 – 58.

Chapter 22 Standard Request Submission 22 – 1.
Overview of Standard Request Submission 22 – 2.

Basic Application Development Needs 22 – 2.
Major Features 22 – 3.
Definitions 22 – 5.

 xiv Oracle Applications Developer’s Guide

Controlling Access to Your Reports and Programs 22 – 6.
Implementing Standard Request Submission 22 – 8.

Developing Reports for Standard Request Submission 22 – 8. . . .
Defining Parameter Validation 22 – 9.
Defining Your Report or Other Program 22 – 11.
Cross–application Reporting 22 – 12.

Chapter 23 Request Sets 23 – 1.
Overview of Request Sets 23 – 2.

Sets, Stages, and Requests 23 – 2.
Stage Functions 23 – 6.
Request Set Completion Status 23 – 7.

Chapter 24 The TEMPLATE Form 24–1.
Overview of the TEMPLATE Form 24–2.
Libraries in the TEMPLATE Form 24–3.
Special Triggers in the TEMPLATE form 24–6.

Triggers That Often Require Some Modification 24–7.
Triggers That Cannot Be Modified 24–11.

Chapter 25 Attachments 25 – 1.
Overview of Attachments 25 – 2.

Definitions 25 – 2.
How Attachments Work 25 – 4.
Attachments for Forms or Form Functions 25 – 6.

Planning and Defining the Attachments Feature 25 – 7.
Planning to Add the Attachments Feature to Your
Application 25 – 7.
Setting Up the Attachments Feature for Your Form 25 – 10.

Document Entities Window 25 – 11.
Document Entities Block 25 – 11.

Document Categories Window 25 – 13.
Document Categories Block 25 – 13.
Category Assignments Window 25 – 14.

Attachment Functions Window 25 – 16.
Attachment Functions Block 25 – 16.
Categories Window 25 – 17.
Block Declaration Window 25 – 18.
Entity Declaration Window 25 – 20.

 xvContents

Chapter 26 Handling Dates 26 – 1.
Year 2000 Compliance in Oracle Applications 26 – 2.

RR Date Support 26 – 3.
Paths to Compliance 26 – 4.
Dates in Oracle Applications 26 – 4.

Date Coding Standards 26 – 9.
Using Dates While Developing Application Forms 26 – 9.
Using Dates With Compliant Versions of OAS 26 – 13.

Conversion To Date Compliance 26 – 15.
Verify Compliance 26 – 15.
Character Mode and External Programs Code Review 26 – 16.
Date–Enhanced Forms Code Review 26 – 17.
Non–Date–Enhanced Forms Code Review 26 – 17.
Testing 26 – 18.

Troubleshooting 26 – 20.
Use the DATECHECK Script to Identify Issues 26 – 20.
Problems Observed During Testing 26 – 21.
Date Checklist 26 – 21.

Chapter 27 Customization Standards 27 – 1.
Overview of Customizing Oracle Applications 27 – 2.

Basic Business Needs 27 – 2.
Definitions 27 – 3.
Determining Your Needs 27 – 5.

Customization By Extension 27 – 6.
Defining Your Custom Application 27 – 7.
Adding a Form 27 – 8.
Adding a Report or Concurrent Program 27 – 9.
Adding a New Report Submission Form 27 – 10.
Adding Online Help 27 – 10.
Adding Menus 27 – 10.
Adding Responsibilities 27 – 11.
Adding Message Dictionary Messages 27 – 11.

Customization By Modification 27 – 12.
Modifying an Existing Form 27 – 14.
Modifying an Existing Report 27 – 16.
Modifying an Existing C Program 27 – 18.
Modifying an Existing PL/SQL Stored Procedure 27 – 18.
Modifying Existing Online Help 27 – 19.
Modifying Existing Message Dictionary Messages 27 – 19.

 xvi Oracle Applications Developer’s Guide

Modifying Existing Menus and Responsibilities 27 – 19.
Oracle Applications Database Customization 27 – 21.
Oracle Applications Upgrades and Patches 27 – 24.
Building Online Help for Custom Applications 27 – 26.

How the Help System Works 27 – 26.
Prepare Your Forms 27 – 27.
Create HTML Help Files 27 – 27.
Create a Help Navigation Tree 27 – 28.
Upgrades and Patches 27 – 28.

Integrating Custom Objects and Schemas 27 – 29.
Upgrading Custom Forms to Release 11i 27 – 31.

Converting Your Form to Oracle Forms 6i 27 – 31.
Upgrading Your Forms to Release 11i Standards 27 – 32.
Performing Required Manual Changes on Your Forms 27 – 32. . . .
Performing Optional Manual Changes on Your Forms 27 – 33.

The Upgrade Utility and Standards Compliance Checker:
flint60 27 – 36.

Preparing to Run flint60 27 – 37.
Running the flint60 Utility 27 – 38.
Reviewing flint60 Log File Output 27 – 39.

Changes to Internal Menu Names from Release 11 to
Release 11i 27 – 42.

Chapter 28 Using the CUSTOM Library 28 – 1.
Customizing Oracle Applications with the CUSTOM Library 28 – 2. .

Writing Code for the CUSTOM Library 28 – 2.
Events Passed to the CUSTOM Library 28 – 5.
When to Use the CUSTOM Library 28 – 6.
Coding Zoom 28 – 6.
Coding Generic Form Events 28 – 10.
Coding Product–Specific Events 28 – 12.
Adding Custom Entries to the Special Menu 28 – 12.
Support and Upgrading 28 – 15.

Product–Specific Events in Oracle Application Object Library 28 – 17. .
WHEN–LOGON–CHANGED Event 28 – 17.
WHEN–RESPONSIBILITY–CHANGED Event 28 – 17.

CUSTOM Package 28 – 19.
CUSTOM.ZOOM_AVAILABLE 28 – 19.
CUSTOM.STYLE 28 – 19.
CUSTOM.EVENT 28 – 20.

Example of Implementing Zoom Using the CUSTOM Library 28 – 23. .

 xviiContents

Modify the Form 28 – 23.
Modify the CUSTOM Library 28 – 24.

Chapter 29 APPCORE Routine APIs 29 – 1.
APP_COMBO: Combination Block API 29 – 3.

APP_COMBO.KEY_PREV_ITEM 29 – 3.
APP_DATE and FND_DATE: Date Conversion APIs 29 – 4.

List of Date Terms 29 – 4.
APP_DATE.CANONICAL_TO_DATE and
FND_DATE.CANONICAL_TO_DATE 29 – 5.
APP_DATE.DISPLAYDATE_TO_DATE and
FND_DATE.DISPLAYDATE_TO_DATE 29 – 6.
APP_DATE.DISPLAYDT_TO_DATE and
FND_DATE.DISPLAYDT_TO_DATE 29 – 7.
APP_DATE.DATE_TO_CANONICAL and
FND_DATE.DATE_TO_CANONICAL 29 – 7.
APP_DATE.DATE_TO_DISPLAYDATE and
FND_DATE.DATE_TO_DISPLAYDATE 29 – 8.
APP_DATE.DATE_TO_DISPLAYDT and
FND_DATE.DATE_TO_DISPLAYDT 29 – 8.
APP_DATE.DATE_TO_FIELD 29 – 9.
APP_DATE.FIELD_TO_DATE 29 – 10.
APP_DATE.VALIDATE_CHARDATE 29 – 11.
APP_DATE.VALIDATE_CHARDT 29 – 12.
FND_DATE.STRING_TO_DATE 29 – 12.
FND_DATE.STRING_TO_CANONICAL 29 – 13.

APP_EXCEPTION: Exception Processing APIs 29 – 15.
APP_EXCEPTION.RAISE_EXCEPTION 29 – 15.
APP_EXCEPTION.RETRIEVE 29 – 15.
APP_EXCEPTION.GET_TYPE 29 – 15.
APP_EXCEPTION.GET_CODE 29 – 16.
APP_EXCEPTION.GET_TEXT 29 – 16.
APP_EXCEPTION.RECORD_LOCK_EXCEPTION 29 – 16.
APP_EXCEPTION.RECORD_LOCK_ERROR 29 – 16.
APP_EXCEPTION.DISABLED 29 – 17.

APP_FIELD: Item Relationship Utilities 29 – 18.
APP_FIELD.CLEAR_FIELDS 29 – 18.
APP_FIELD.CLEAR_DEPENDENT_FIELDS 29 – 18.
APP_FIELD.SET_DEPENDENT_FIELD 29 – 19.
APP_FIELD.SET_EXCLUSIVE_FIELD 29 – 20.
APP_FIELD.SET_INCLUSIVE_FIELD 29 – 21.
APP_FIELD.SET_REQUIRED_FIELD 29 – 22.

 xviii Oracle Applications Developer’s Guide

APP_FIND: Query–Find Utilities 29 – 23.
APP_FIND.NEW 29 – 23.
APP_FIND.CLEAR 29 – 23.
APP_FIND.CLEAR_DETAIL 29 – 23.
APP_FIND.FIND 29 – 24.
APP_FIND.QUERY_RANGE 29 – 24.
APP_FIND.QUERY_FIND 29 – 24.

APP_ITEM: Individual Item Utilities 29 – 26.
APP_ITEM.COPY_DATE 29 – 26.
APP_ITEM.IS_VALID 29 – 26.
APP_ITEM.SIZE_WIDGET 29 – 27.

APP_ITEM_PROPERTY: Property Utilities 29 – 28.
APP_ITEM_PROPERTY.GET_PROPERTY 29 – 28.
APP_ITEM_PROPERTY.SET_PROPERTY 29 – 28.
APP_ITEM_PROPERTY.SET_VISUAL_ATTRIBUTE 29 – 29.

APP_NAVIGATE: Open a Form Function 29 – 30.
APP_NAVIGATE.EXECUTE 29 – 30.

APP_RECORD: Record Utilities 29 – 33.
APP_RECORD.TOUCH_RECORD 29 – 33.
APP_RECORD.HIGHLIGHT 29 – 33.
APP_RECORD.FOR_ALL_RECORDS 29 – 34.
APP_RECORD.DELETE_ROW 29 – 34.
APP_RECORD.VALIDATE_RANGE 29 – 35.

APP_REGION: Region Utilities 29 – 37.
APP_REGION.ALT_REGION 29 – 37.

APP_STANDARD Package 29 – 38.
APP_STANDARD.APP_VALIDATE 29 – 38.
APP_STANDARD.EVENT 29 – 38.
APP_STANDARD.SYNCHRONIZE 29 – 39.
APP_STANDARD.PLATFORM 29 – 39.

APP_WINDOW: Window Utilities 29 – 40.
APP_WINDOW.CLOSE_FIRST_WINDOW 29 – 40.
APP_WINDOW.PROGRESS 29 – 40.
APP_WINDOW.SET_COORDINATION 29 – 40.
APP_WINDOW.SET_WINDOW_POSITION 29 – 41.
APP_WINDOW.SET_TITLE 29 – 42.

Chapter 30 FNDSQF Routine APIs 30 – 1.
FND_CURRENCY: Dynamic Currency APIs 30 – 2.

FND_CURRENCY.GET_FORMAT_MASK (Client or
Server) 30 – 2.

 xixContents

Currency Examples 30 – 3.
FND_DATE: Date Conversion APIs 30 – 4.
FND_GLOBAL: WHO Column Maintenance and Database
Initialization 30 – 5.

FND_GLOBAL.USER_ID (Server) 30 – 5.
FND_GLOBAL.APPS_INITIALIZE (Server) 30 – 5.
FND_GLOBAL.LOGIN_ID (Server) 30 – 7.
FND_GLOBAL.CONC_LOGIN_ID (Server) 30 – 7.
FND_GLOBAL.PROG_APPL_ID (Server) 30 – 7.
FND_GLOBAL.CONC_PROGRAM_ID (Server) 30 – 8.
FND_GLOBAL.CONC_REQUEST_ID (Server) 30 – 8.

FND_ORG: Organization APIs 30 – 9.
FND_ORG.CHANGE_LOCAL_ORG 30 – 9.
FND_ORG.CHANGE_GLOBAL_ORG 30 – 9.
FND_ORG.CHOOSE_ORG 30 – 9.

FND_STANDARD: Standard APIs 30 – 10.
FND_STANDARD.FORM_INFO 30 – 10.
FND_STANDARD.SET_WHO 30 – 10.
FND_STANDARD.SYSTEM_DATE 30 – 11.
FND_STANDARD.USER 30 – 11.

FND_UTILITIES: Utility Routines 30 – 12.
FND_UTILITIES.OPEN_URL 30 – 12.
FND_UTILITIES.PARAM_EXISTS 30 – 12.

Chapter 31 Naming Standards 31 – 1.
Naming Standards and Definitions 31 – 2.

Database Objects 31 – 2.
Form Objects 31 – 5.
File Standards 31 – 9.
PL/SQL Packages, Procedures and Source Files 31 – 10.
Reserved Words 31 – 11.

Glossary

Index

 xx Oracle Applications Developer’s Guide

C H A P T E R

15
T

15 – 1Overview of Concurrent Processing

Overview of
Concurrent Processing

his chapter provides an overview of Concurrent Processing in
Oracle Application Object Library. It includes a summary of
Concurrent Processing features, definitions of key concepts and an
outline of the steps necessary to add Concurrent Processing to your
application. The implementation section provides you with the
technical details of adding Concurrent Processing to your application.

• Overview of Concurrent Processing

• Overview of Designing Concurrent Programs

• Overview of Implementing Concurrent Programs

15 – 2 Oracle Applications Developer’s Guide

Overview of Concurrent Processing

In Oracle Applications, concurrent processing simultaneously executes
programs running in the background with online operations to fully
utilize your hardware capacity. You can write a program (called a
”concurrent program”) that runs as a concurrent process. Typically,
you create concurrent programs for long–running, data–intensive tasks,
such as posting a journal or generating a report.

For more information on concurrent processing from a user’s
viewpoint, see the Oracle Applications User’s Guide and the Oracle
Applications System Administrator’s Guide.

You can use PL/SQL to create a stored procedure concurrent program.
In addition, any PL/SQL procedure you develop—whether it runs on
the client, or on the server as a stored procedure or a database
trigger—can submit a concurrent request to run a concurrent program.

PL/SQL APIs for Concurrent Processing (See page 21 – 1)

Basic Application Development Needs

Oracle Application Object Library Concurrent Processing provides you
with all the features you need to satisfy the following application
development needs:

• Ensure consistent response time, regardless of the variability of
data your applications process

• Allow end users to keep working at their terminals while
long–running processes run concurrently

• Allow you to fully use all the capacity of your hardware by
executing many application tasks at once

Major Features

Online Requests

You and your end users can submit requests from forms to start any
concurrent program. Once your request has been submitted, the
concurrent managers immediately take over and complete the task
with no further online involvement.

15 – 3Overview of Concurrent Processing

Automatic Scheduling

Oracle Application Object Library automatically schedules requests
based on when they were submitted, their priority, and their
compatibility with programs that are already running. As a developer,
you can define which programs in your application should not run
simultaneously. A request for a program that is incompatible with a
currently running program does not start until the incompatible
program completes.

Concurrent Processing Options

You and your end users can control certain runtime options for each of
your concurrent requests. Profile options allow you to determine
printing decisions such as which printer to use and how many copies to
print.

Online Request Review

Your end users can review the progress of their concurrent requests
online. Once the request completes, they can view the report output
and log files from their concurrent requests. They can see the status of
a concurrent request without printing out the entire report by selecting
Requests from the default help menu.

Concurrent Managers

Concurrent managers are components of Concurrent Processing that
monitor and run time–consuming, non–interactive tasks without tying
up your terminal. Whenever you or your users submit a request to run
a task, a concurrent manager processes that request and does the work
in the background, giving you the ability to run multiple tasks
simultaneously.

Oracle Application Object Library predefines the Internal Concurrent
manager, which functions as the ”boss” of all other managers. The
Internal Concurrent Manager starts up, verifies the status of, resets,
and shuts down the individual managers. It also enforces program
incompatibility rules by comparing program definitions for requested
programs with those programs already running in an Oracle username
designated as a logical database.

After installation, the system administrator can create and tailor the
concurrent managers as needed. The system administrator chooses the
number of requests that each concurrent manager can process
simultaneously and what types of requests it can process. Concurrent

15 – 4 Oracle Applications Developer’s Guide

managers provide total control over the job mix and throughput in
your application.

Simultaneous Queuing

Simultaneous Queuing lets requests wait in many queues at once to
ensure that the first available concurrent manager starts your request.
Use Oracle System Administration to set up Concurrent Processing so
that requests can be run by more than one concurrent manager. When
the first available concurrent manager starts a request, it automatically
removes the request from all the other queues.

Multiple Concurrent Program For Each Executable

Concurrent program executables allow you to use the same execution
file for multiple concurrent programs. To create specialized versions of
a concurrent program, either define a new concurrent program using
the same executable, or copy the concurrent program. You can
specialize a concurrent program by required printers, specialization
rules, or application name so that the concurrent programs run using
the same execution file but with different parameters.

Unified C API

The Unified C API afprcp() function allows you to write C or Pro*C
programs using a standard format and use your programs with either
the spawned or immediate execution method. The same execution file
can run both as a spawned process or as a subroutine of the concurrent
manager.

Definitions

Concurrent Program

A concurrent program is an instance of an execution file, along with
parameter definitions and incompatibilities. Concurrent programs use
concurrent program executables to locate the correct execution file.
Several concurrent programs may use the same execution file to
perform their specific tasks, each having different parameter defaults
and incompatibilities.

�

15 – 5Overview of Concurrent Processing

Concurrent Program Executable

A concurrent program executable links an execution file or and the
method used to execute it with a defined concurrent program. Under
Concurrent Processing, an execution method may be a program written
in a standard language, a reporting tool, or an operating system
language.

An execution method can be a PL/SQL Stored Procedure, an Oracle
Tool such as Oracle Reports or SQL*Plus, a spawned process, or an
operating system host language.

Concurrent Program Execution File

A concurrent program execution file is an operating system file or
database stored procedure which contains your application logic and
can be executed by either invoking it directly on the command line or
by invoking a program which acts upon it. For example, you run a
Pro*C program by invoking it on the command line. You run a SQL
script by running SQL*Plus and passing the name of the SQL script
without the .sql extension.

Concurrent Program Subroutine

A concurrent program subroutine is a Pro*C routine which contains
your application logic and is linked in with the Concurrent Manager
code.

Execution Method

The execution method identifies the concurrent program executable
type and the method Oracle Application Object Library uses to execute
it.

An execution method can be a PL/SQL Stored Procedure, an Oracle
Tool such as Oracle Reports or SQL*Plus, a spawned process, or an
operating system host language.

Oracle Tool Concurrent Program

A concurrent program written in Oracle Reports, PL/SQL,
SQL*Loader, or SQL*Plus.

Attention: Starting with Release 11, SQL*Report (RPT) is no
longer supported.

�

15 – 6 Oracle Applications Developer’s Guide

Spawned Concurrent Program

A concurrent program that runs in a separate process (on most
operating systems) than that of the concurrent manager that starts it.
You write spawned concurrent programs as C or Pro*C stand–alone
executable files. On some operating systems, you can also write
spawned concurrent programs in your operating system language.

Spawned concurrent programs are the recommended execution
method for new C or Pro*C execution files.

Immediate Concurrent Program

A concurrent program that runs in the same process as the concurrent
manager that starts it. You write immediate concurrent programs as C
or Pro*C subroutines and link them in with a concurrent manager.

Attention: The immediate concurrent program functionality is
provided for backward compatibility only. You should not be
creating new immediate concurrent programs.

Program Library

A program library is a set of linked immediate concurrent programs
that are assigned to concurrent managers. A concurrent manager can
run any spawned or Oracle Tool concurrent programs, but only
immediate concurrent programs in its own program library. Use
Oracle System Administration to further restrict what concurrent
programs a concurrent manager can run when defining a concurrent
manager with specialization rules.

You register your program library with Oracle Application Object
Library. List the short names of the immediate concurrent programs in
your program library. Then, use Oracle System Administration to
assign program libraries to concurrent managers.

You can include an immediate concurrent program in different
libraries. Each concurrent manager that runs immediate concurrent
programs must have a program library, although several managers can
share the same library.

Request Type

A request type groups similar concurrent programs to save time in
defining and maintaining concurrent managers.

Grouping Programs As Request Types
Oracle Applications System Administrator’s Guide

15 – 7Overview of Concurrent Processing

Parent Request

A parent request is a concurrent request that submits another
concurrent request. In the case of Standard Request Submission, a
report set is a parent. When you submit a report set, the report set
submits the reports or programs that you have included in the report
set. A parent request may be sequential or parallel which determines
whether the requests it submits run one at a time or all at once.

Child Request (Sub–request)

A child request is a concurrent request submitted by another
concurrent request. When you submit a concurrent request to run a
report set, the report set submits the reports in the set for concurrent
processing. The requests submitted by the report set are child requests.

Logical Database

A logical database is a set of logically related data stored in one or
more ORACLE IDs. Concurrent managers use logical databases to
determine the scope of concurrent program compatibilities.

When you define a concurrent program, you specify what programs are
incompatible with this program and cannot run together with this
program in the same logical database. A user in a logical database
submits a concurrent request to run a concurrent program. If a
concurrent manager that can process your request finds that there are
no incompatible programs currently running in the user’s logical
database, then the concurrent manager processes the concurrent
request. Concurrent managers use logical databases to ensure that
incompatible programs do not run together.

15 – 8 Oracle Applications Developer’s Guide

Overview of Designing Concurrent Programs

Any program or any portion of a form that can be separately
constructed to be non–interactive could potentially be run as a
concurrent process. Generally, you should consider making any
application function that could tie up your end user’s terminal into a
concurrent program. Among the functions that best take advantage of
concurrent processing are reports and functions that perform many
database operations.

You should design your concurrent program to use the features and
specifications of concurrent processing most efficiently. Your program
should expect values to be passed as concurrent program parameters,
and should handle failure gracefully, allowing the concurrent manager
to restart your program without creating data integrity problems. If
you want to generate error messages and output, you should instruct
your program to write to separate log and output files. This makes
diagnosing any problems much easier. If you are writing programs
under a custom application, include that custom application in the
datagroups for the responsibilities with access to your program.
Finally, if your program access custom tables you build, implement
your tables to accept Who column values.

Users submit concurrent requests using Standard Request Submission
or from a form by performing an action that initiates a trigger step in
the form. If you want your users to submit your program through
Standard Request Submission, you must check the ”Use in SRS” check
box” and register your program parameters when you define your
concurrent program. To let your users submit a concurrent request for
your program from a form, you call an Oracle Application Object
Library user exit from a trigger step and specify the name of your
program and its arguments. Typically, your program takes arguments
from fields on your form. You can also submit a concurrent request
from within a program. Oracle Application Object Library provides a
standard interface between the calling form or program and your
concurrent program that is independent of the operating system you
are using.

When a user submits a concurrent request, the request waits in the
queue of each concurrent manager defined to be able to run the user’s
concurrent request. Use Oracle System Administration to set the
priority of requests that a user submits and change the priority of
individual requests. The request’s priority affects the request’s position
in the queues.

The first available concurrent manager that can process the user’s
request looks at predefined or system administrator–defined data

�

15 – 9Overview of Concurrent Processing

groups in Oracle Application Object Library tables. The data group
assigned the user’s responsibility contains a list of application names
and their corresponding ORACLE IDs. The concurrent manager
automatically uses the ORACLE ID associated with the concurrent
program’s application to run the program. Use Oracle System
Administration to set up data groups for each responsibility.

Define Data Group
Oracle Applications System Administrator’s Guide

When you write and define your concurrent program, you define what
programs are incompatible to run with your program in the same
logical database.

Implementing Standard Request Submission (See page
22 – 8)

If no concurrent manager is currently running an incompatible
program in the same logical database as the user’s concurrent request,
the concurrent manager removes the user’s concurrent request from
any other queues and runs your concurrent program. Your concurrent
program writes to a report output file and a log file. The concurrent
manager automatically prints the report output if you defined your
program to print output. The system administrator or user can specify
printing information such as the printer destination and the number of
copies using user profiles, in this case ”Printer” and
”Concurrent:Report Copies”. If the program is submitted using
Standard Request Submission, the user can specify printing and
submission information at runtime.

You can write different types of concurrent programs: Oracle Tool
programs written in SQL*Plus, PL/SQL, SQL*Loader, or Oracle
Reports; programs written in C or Pro*C, or host language programs.

Attention: Starting with Release 11, SQL*Report (RPT) is no
longer supported.

Creating Concurrent Programs

The basic process of creating a concurrent program is the same
regardless of the execution method. The steps you take include:

• Write your program execution file and place it in the appropriate
location for your operating system.

• Define the concurrent program executable with Oracle
Application Object Library to specify an execution file and an
execution method for your program.

15 – 10 Oracle Applications Developer’s Guide

• Define the concurrent program with Oracle Application Object
Library, define program parameters if necessary, and define any
incompatibilities with other concurrent programs

• Request your program from the Run Reports form, from a
trigger step in an application form, or from an Pro*C concurrent
program.

Define Concurrent Program Executable (See page 16 – 6)
Define Concurrent Program (See page 16 – 11)

Implementing Concurrent Processing (See page 15 – 21)
Implementing Standard Request Submission (See page
22 – 8)

Concurrent Program Parameters

The concurrent manager processes up to 100 arguments for a
concurrent program. Each argument can be no longer than 240
characters. For spawned Pro*C concurrent programs, the concurrent
manager can process arguments that are longer than 240 characters if
you use extended syntax to submit your program. When using
extended syntax, the concurrent manager can process a total argument
string (the length of all your arguments combined) of up to 24,000
characters.

Handling System Failures

If a concurrent manager terminates abnormally while it is processing
requests (for example, if your system crashes), it remembers the
requests that are running at the time of the failure. When you restart
the concurrent managers, they automatically restart those requests. To
ensure that your concurrent program handles system failures properly,
you should design your program so that a concurrent manager can
restart it from the beginning without your program creating data
inconsistencies or receiving errors such as ”duplicate key in index”
errors.

The simplest way to do this is to avoid committing transactions until
the last step in your program. If this is not feasible due to the amount
of data your program could potentially process, you have several
alternatives.

You can commit intermediate transactions to temporary tables, and
then perform one final transaction at the end of your program to
transfer data from your temporary tables to your main tables. When

15 – 11Overview of Concurrent Processing

your program starts, it should delete any data from the temporary
tables that might have resulted from a previous system crash.

Another alternative is to include a special status column in your tables
that you update in your program to indicate the rows that are ”being
processed.” You can then set the column to ”done” in the last
transaction in your program. You should ensure that your other
application programs ignore rows with the value ”being processed” in
the status column.

Writing Concurrent Programs

You can write concurrent programs using a variety of execution
methods. For example, you can use Oracle Tools, programming
languages such as Pro*C, or PL/SQL procedures to create the execution
files that your concurrent programs invoke.

This section concentrates on using PL/SQL procedures as execution
files and on calling your concurrent programs from PL/SQL
procedures.

For detailed information on writing concurrent programs using other
execution methods, see the following chapters:

Coding Oracle Reports Concurrent Programs (See page
18 – 2)
Coding C or Pro*C Concurrent Programs (See page 22 – 8)
Coding Oracle Tools Concurrent Programs (See page
17 – 2)

C and Pro*C Concurrent Programs Implementation

Spawned and immediate concurrent programs are programs written in
C or Pro*C. On some operating systems, you can write your spawned
concurrent programs in your operating system command language.

While spawned concurrent programs run in an independent spawned
process, immediate programs run as a subroutine of the concurrent
manager’s process. If you use the Unified C API afprcp(), you can use
the same execution file with both the spawned and immediate
execution methods.

If you use the immediate execution method, you must complete extra
steps before submitting your concurrent request.

• Create or modify a program library that includes your
immediate concurrent programs.

15 – 12 Oracle Applications Developer’s Guide

• Rebuild your program library with Oracle Application Object
Library and then link it.

• Assign new program libraries to concurrent managers using
Oracle System Administration.

Register Concurrent Program Library (See page 16 – 27)

Define Concurrent Manager
(Oracle Applications System Administrator’s Guide)

Stored Procedure Concurrent Programs

You can implement your concurrent program as a stored procedure.
Beginning with Release 11, file I/O operations are supported for stored
procedures.

A benefit of developing your concurrent program as a stored procedure
is that it runs as part of the concurrent manager’s database connection
and does not cause an additional process to be spawned, as do other
concurrent processing execution methods. Therefore, the “Stored
Procedure” execution method is appropriate for frequently–executed
concurrent programs (including those you develop to replace
immediate concurrent programs from prior releases of Oracle
Applications).

Stored procedure concurrent programs accept input parameters only,
and are submitted with the FND_REQUEST package. Following is an
example specification of a PL/SQL procedure you could create to run
as a concurrent program:

REM /* Beginning of SQL Script */

REM

CREATE PROCEDURE FND60.SAMPLE_PROC (ERRBUF OUT VARCHAR2,

 RETCODE OUT VARCHAR2,

 ARGUMENT1 IN VARCHAR2,

 ARGUMENT2 IN VARCHAR2,

 ARGUMENT3 IN VARCHAR2,

 .

 .

 .

 .

 ARGUMENT100 IN VARCHAR2,

)

�

15 – 13Overview of Concurrent Processing

Your stored procedure concurrent program is restricted to 100
parameters in addition to the first two parameters, which are required
and must be specified exactly as indicated in the example above. (You
must take these two parameters into account when you create your
stored procedure.) Use errbuf to return any error messages, and retcode
to return completion status. The parameter retcode returns 0 for
success, 1 for success with warnings, and 2 for error. After your
concurrent program runs, the concurrent manager writes the contents
of both errbuf and retcode to the log file associated with your concurrent
request.

Attention: You should restart your concurrent managers
whenever you create or reinstall a stored procedure concurrent
program.

PL/SQL Stored Procedures (See page 17 – 3)

Testing Concurrent Programs

The easiest way to test your concurrent program is to submit the
program for concurrent processing using the CONCSUB utility. You
also have the option to submit the request from the Submit Request
form if you are developing your concurrent program for Standard
Request Submission. Another way to test your program is to use the
form that submits it. Monitor the progress of the request until it
completes, then check its completion message and output. If your
process completes abnormally, the log file can give you the information
you need to take corrective action.

From the operating system, use CONCSUB to submit a concurrent
program. By using the WAIT token, the utility checks the request
status every 60 seconds and returns you to the operating system
prompt upon completion of the request. Your concurrent manager
does not abort, shut down, or start up until the concurrent request
completes.

If your concurrent program is compatible with itself, you can check it
for data integrity and deadlocks by submitting it many times so that it
runs concurrently with itself.

Implementing Concurrent Processing (See page 15 – 21)
Implementing Standard Request Submission (See page
22 – 8)

15 – 14 Oracle Applications Developer’s Guide

Submitting a Concurrent Request

Your PL/SQL procedures can submit a request to run a program as a
concurrent process by calling FND_REQUEST.SUBMIT_REQUEST.
Before submitting a request, your procedure can optionally call three
functions to set concurrent request attributes that determine printing
and resubmission behavior:

• FND_REQUEST.SET_OPTIONS

• FND_REQUEST.SET_REPEAT_OPTIONS

• FND_REQUEST.SET_PRINT_OPTIONS

If any of these functions should fail, all setup function parameters are
reset to their default values.

In addition, before you call FND_REQUEST.SUBMIT_REQUEST from
a database trigger, you must call FND_REQUEST.SET_MODE.

When you call FND_REQUEST.SUBMIT_REQUEST, you pass any
arguments required by the concurrent program you are requesting.
FND_REQUEST.SUBMIT_REQUEST returns the ID of the submitted
request if successful, and 0 otherwise.

Upon completion of the FND_REQUEST.SUBMIT_REQUEST function,
all the setup function parameters are reset to their default values. It is
up to the caller to perform a commit to complete the request
submission.

The FND_REQUEST functions are fully described in the Concurrent
Processing APIs for PL/SQL Procedures section of this chapter.

PL/SQL APIs for Concurrent Processing (See page 21 – 1)

Concurrent requests do not submit until they are committed. It is
sometimes desirable to immediately commit the requests, bet be aware
that there is no way to commit the request without committing all other
changes in the form. Do not attempt to commit just the server side,
because this releases any locks the user has. To avoid getting a ”no
changes to commit” message when the user doesn’t have any changes
(check SYSTEM.FORM_STATUS), use the APP_FORM.QUIET_
COMMIT routine.

Checking Request Status

Your PL/SQL procedure can check the status of a concurrent request
by calling FND_CONCURRENT.GET_REQUEST_STATUS.

Step 1

Step 2

Step 3

Step 4

15 – 15Overview of Concurrent Processing

FND_CONCURRENT.GET_REQUEST_STATUS returns the current
status of a concurrent request. If the request has already completed,
FND_CONCURRENT.GET_REQUEST_STATUS also returns the
completion message associated with the request.

The FND_CONCURRENT.WAIT_FOR_REQUEST function waits for
request completion, and then returns the request’s phase/status and
completion message to the caller. This function sleeps for a
developer–specified interval between checks for request completion.

The FND_CONCURRENT functions are fully described in the PL/SQL
APIs for Concurrent Processing section.

PL/SQL APIs for Concurrent Processing (See page 21 – 1)

Submitting Concurrent Programs on the Client

Oracle Application Object Library for Windows comes with a user
interface program which can be used to start and view the results of
concurrent programs. The interface for ”Start Concurrent Programs” is
modelled on the Run dialog in the Program Manager.

The dialog contains fields for the path to a concurrent program, a
database connect string and optional arguments. There is also a combo
box which lists concurrent programs which have been installed. To use
the program:

Select a concurrent program to run, either by typing a path into the
Path field, using the Browse button to select a program, or by selecting
one of the concurrent programs listed in the Program combo box.

Enter a valid database connect string including username and
password in the Connect String field.

Click on the Run button. A ”Working...” message should appear in the
bottom left corner of the dialog. When the program finishes, a Done
message will appear. At this point you may view the log and output
files (if any) for the concurrent program by pressing the View Log or
View Output buttons.

If you type an invalid connect string, an alert will appear saying
ABNORMAL PROGRAM TERMINATION. Click on Close, fix the
connect string and try again.

�

15 – 16 Oracle Applications Developer’s Guide

Attention: The program for Start Concurrent Program
(startcp.exe) and the associated program item are installed only
if you install the development Application Object Library.

Using Concurrent Processing

You can construct your application so that your end user is unaware of
concurrent processing. Even after a user or form submits a concurrent
request, your end user can keep working at the terminal without
interruption. However, your end user can modify a request’s
concurrent processing options up until it starts running. For example,
your user can change which printer prints a report.

Your end user can monitor the progress of a concurrent request using
the Requests window. For example, your end user can see when a
request starts running and then view the completion status and a
completion message for a concurrent request.

Concurrent Processing Options

Oracle Application Object Library uses the values of user profile
options as default values to apply to all concurrent requests that a user
submits.

• Number of report copies to print of a report

• Save report output to a file in your operating system

• Printer on which to print a report

• Start date and time for a concurrent request

• Run requests sequentially

• Hold a request temporarily

• Priority of a concurrent request

• Who can view the report

Users can set some of these options for an entire login session using
user profiles, and they can change some of these values at any time. If
the request is submitted through Standard Request Submission, they
can change printing and submission information when submitting the
request. After users submit a concurrent request, they or your system
administrator can modify these processing options for a concurrent
request up until the time it starts running. Use the Requests form to
modify the request’s concurrent options. During runtime, you can use

15 – 17Overview of Concurrent Processing

the Oracle Application Object Library utility afpoput (See page 13 – 12)
in your Pro*C concurrent programs to change user profile options.

This change is only effective during the runtime of your concurrent
programs.

Viewing the Status of Concurrent Requests

Your end user can check on a request to find out whether it is running,
waiting to be started, has completed successfully, or has terminated
with an error. You can build your concurrent programs so that if they
fail to complete successfully, the concurrent manager displays an error
message indicating the problem. If a request is pending normally, your
user can determine how soon it will start by reviewing the request’s
position in the queues of the various concurrent managers that can run
that particular request.

Automated Recovery for Concurrent Processing

Concurrent processing is an important component for your day to day
operation of Oracle Applications. You can operate your Oracle
Applications smoothly if you understand how concurrent managers
react to different kinds of unforeseen situations. Your concurrent
manager can detect concurrent programs or concurrent processes that
terminate abnormally. It is also capable of automatically recovering
from abnormal situations like operating system or internal failures such
as segmentation faults. This section describes the actions the
concurrent manager takes to recover from typical system problems.

Aborting Concurrent Programs

After you or your user submit a concurrent request, there may be
situations where you want to terminate the running request. You can
terminate a running request by changing the status to Completed in the
Requests form. You should always terminate running requests from
these forms whenever possible so that your concurrent manager can
update the status of these requests accordingly.

The Requests form only allows you to cancel programs that you
submitted and that are in your report security group. Use the
privileged System Administration form Concurrent Requests Summary
to cancel other requests as necessary.

If a concurrent request process is interrupted by a system signal or
segmentation fault, your concurrent manager detects the disruption of

15 – 18 Oracle Applications Developer’s Guide

the running request and updates the request phase/status to
Completed/Error. Your concurrent manager then goes on to process
other pending concurrent requests. If the disrupted request is a
sub–request, your concurrent manager updates its status to Error and
restarts the parent request. The parent request then communicates
with your concurrent manager whether to abort or continue processing
its remaining sub–requests. No other recovery procedures are required
to resume concurrent processing.

Concurrent Manager Process Terminations

When you start up your concurrent processing facility, the internal
concurrent manager starts up all the concurrent manager processes
defined. The internal concurrent manager monitors the operation of
these concurrent manager processes to make sure they function as
defined. If any of these processes exits abnormally, the internal
concurrent manager starts up a new process to ensure the correct
number of concurrent manager processes are running. This monitoring
process is completely invisible to you or your users.

Typically, if a concurrent manager process terminates abnormally while
running a request, the request then completes with a phase/status of
Complete/Error. If the running request is a sub–request (such as a
member of a report set), the request completes with an Error status.
When the parent request (such as a report set) restarts and detects the
failure of the report, it notifies the concurrent manager process whether
to abort or continue processing other sub–requests. If the running
request is a parent request (such as a report set), the request completes
with an Error status and the status of its sub–requests are all updated
to Error.

If the failing concurrent manager process is an internal concurrent
manager process, all you need to do is to restart your concurrent
processing facility. Although the internal concurrent manager
terminates abnormally, other concurrent manager processes continue to
operate and newly submitted concurrent requests keep going into other
available concurrent manager queues.

The only concurrent requests affected by a failure of the internal
concurrent manager process are run alone concurrent programs and
concurrent programs that have incompatibilities. If these concurrent
requests are submitted after the internal concurrent manager exits
abnormally, they remain in pending status until you restart the internal
concurrent manager process. If these concurrent requests are
submitted before the internal concurrent manager’s abnormal exit, they
remain pending and hold up all other concurrent requests belonging to

15 – 19Overview of Concurrent Processing

the same logical database unless you put these affected requests on
hold. Once your internal concurrent manager is running again, it
resumes the duty of monitoring other concurrent manager processes
and coordinating the processing of concurrent programs that are run
alone or have incompatibilities.

Administer Concurrent Managers
Oracle Applications System Administrator’s Guide

Shutdowns of Operating System and Database

Unusual operating system exits and abnormal database shutdowns are
two common reasons that cause concurrent manager processes to fail.
In these situations, all the concurrent manager processes are terminated
without any notice and the phase and status of your concurrent
requests remain as they are. All you have to do to resume normal
concurrent processing is restart your concurrent processing facility.
Once you restart your concurrent processing facility, your concurrent
managers rerun all the requests that were running at the time the
concurrent manager processes failed. After processing the previously
running requests, the concurrent managers then process other pending
concurrent requests.

Printer Support

Oracle Application Object Library provides printer drivers that
correspond to print styles for concurrent program output. These
drivers provide the four print styles for a variety of printers.

• L (Landscape)

• P (Portrait)

• A (A4)

• W (Landwide)

First the concurrent manager looks for a printer driver you can define
with the name of printer type concatenated with the print style. The
printer type is associated with the printer. The print style is associated
with the concurrent program. For Oracle Reports, every printer driver
is associated with an Oracle Reports driver of the form (L.prt). These
Oracle Reports drivers contain printer specific formatting characters
such as bold, italic, underline and new page markers.

When you review your reports on line, reports that use the Oracle
Application Object Library printer drivers display correctly. Reports

15 – 20 Oracle Applications Developer’s Guide

that use custom printer drivers may not display correctly on certain
terminals.

�

15 – 21Overview of Concurrent Processing

Overview of Implementing Concurrent Processing

To build applications that take advantage of concurrent processing, you
should understand aspects common to all types of concurrent
programs as well as how to implement each type.

Choosing Your Implementation

Oracle Application Object Library provides several different
implementation methods for concurrent programs:

• Oracle Tool concurrent programs

• Pro*C concurrent programs

• Host language concurrent programs

Before you begin writing your program, you should weigh the
advantages of each method and choose the one that best fits your
needs.

Oracle Tool Concurrent Programs

Oracle Reports, PL/SQL, SQL*Loader, and SQL*Plus programs are the
simplest to write and integrate with Oracle Application Object Library.
 You can also write PL/SQL stored procedures as concurrent programs.

Attention: Starting with Release 11, SQL*Report (RPT) is no
longer supported.

 Concurrent Processing with Oracle Reports (See page
18 – 2)

Pro*C Concurrent Programs

You can write either spawned or immediate concurrent programs in C
and Pro*C. Spawned concurrent programs are stand–alone programs
that run in a separate process. (On some operating systems, you can
also write spawned concurrent programs in your operating system
command language. See your Oracle Applications System Administrator’s
Guide for specific details.) Immediate concurrent programs run as
subroutines of a concurrent manager.

Spawned concurrent programs are not linked with a concurrent
manager. On most operating systems, concurrent managers start
spawned concurrent programs in a separate operating system process

�

15 – 22 Oracle Applications Developer’s Guide

than the concurrent manager. Spawned concurrent programs therefore
require more system resources. In a spawned concurrent program,
your SQL statements do not remain parsed between separate
invocations of the program.

Immediate concurrent programs run as subroutines in C or Pro*C. You
build a program library of immediate concurrent programs and assign
the program library to concurrent managers. To call an immediate
concurrent program, a concurrent manager invokes a subroutine call.

Immediate concurrent programs execute in the same operating system
process as the concurrent manager on most operating systems. Since
the concurrent manager is already connected to the database, your
program does not have to explicitly connect. Additionally, because the
process does not end when your program ends, the SQL statements in
your program can remain parsed after the first invocation of the
program. Subsequent invocations of the same program can run faster
because the database does not have to parse the SQL statements.

However, immediate programs are also harder to maintain and
support. Since they run as a subroutine of the concurrent manager,
failures can sometimes affect the manager itself. We recommend
implementing new Pro*C concurrent programs as spawned. In future
releases, we will only support Pro*C programs as spawned, as PL/SQL
stored procedures provide a mechanism for running concurrent
programs in the same process as the concurrent manager.

Attention: The immediate concurrent program functionality is
provided for backward compatibility only. You should not
create new immediate concurrent programs.

Host Language Concurrent Programs

Depending on which operating system you are using, you implement
host language concurrent programs in different ways.

You can use host language programs to integrate an external program
or package with Oracle Applications. For example, on some platforms
you can create a shell script as a host language program. Your script
can call a third–party program and then determine whether that
program completes successfully. The host program then passes this
information back to the concurrent manager.

Oracle Applications System Administrator’s Guide

15 – 23Overview of Concurrent Processing

Writing to Log and Output Files

Since your concurrent programs run non–interactively, they must print
output to files. Your Pro*C program should write report output to the
an out file and debugging or other technical messages to a log file. See
the Oracle Applications System Administrator’s Guide for details on where
these files are located for your platform.

Oracle Applications System Administrator’s Guide

Suggestion: Writing error messages to a log file rather than to
an output file makes it easier for users and system
administrators to find reports and diagnostic information, and
does not confuse novice users who may be unprepared to see
technical error messages when they review their reports online.

There are several methods to write to a standard log file or report
output file.

The first method is the easiest method. It is also the only portable
method across platforms. You call an Oracle Application Object
Library utility routine from your C or Pro*C concurrent program:

Writes a message to a standard log or report output
file. Oracle Application Object Library names this
file in the standard naming convention.

We highly recommend this method as the simplest to support and the
most robust across platform and release changes.

The second method is to use standard C functions such as fopen() or
fclose() to write to files. If you use this method, you must use the
Oracle Application Object Library standard naming convention for
your file names. Oracle Application Object Library uses the standard
naming convention to find your report and log files to display online in
the View Requests form and to automatically print your report output.

See the Reviewing Requests, Request Log Files, and Report Output
Files in your Oracle Applications System Administrator’s Guide for the
location of the log and out directories and the standard naming
conventions for these files on your operating system. The Oracle
Applications System Administrator’s Guide also contains information on
how to change the default file protection on your report output and log
files.

This second method exists for compatibility with concurrent programs
written with prior versions of Oracle Application Object Library. When
writing new concurrent programs, choose the first method and use the
fdpwrt() utility routine.

fdpwrt()

15 – 24 Oracle Applications Developer’s Guide

Printing Report Output Files

When you define your concurrent program, you can specify whether
the report output prints automatically and the maximum and
minimum row and columns it needs. You can also specify a
recommended or mandatory print style. The concurrent manager uses
the values of user profile options to send copies of report output to a
specific printer. Reports submitted through Standard Request
Submission have printing and submission options specified at
submission time.

A user can change the printer, number of report copies, and the print
style when requesting a reprint of report output in the Detail zone of
the Submit Requests form.

Implementing User Profiles (See page 13 – 5)

Define Concurrent Program (See page 16 – 11)

Data Groups

If you want users of another application to be able to run your
program, your application must be included in the appropriate data
groups. Please read the Cross–application Reporting section in the
Standard Request Submission chapter for more details.

Managing Concurrent Programs and Reports
Oracle Applications System Administrator’s Guide

Tracking Data Changes With WHO

If you add special WHO columns to your tables, your application users
can track changes made to their data. Oracle Application Object
Library lets users differentiate between changes they make using forms
and changes they make using concurrent programs. Columns that tell
you information about the creation and the last update of a row are:

• LAST_UPDATED_BY

• LAST_UPDATE_DATE

• LAST_UPDATE_LOGIN

• CREATED_BY

• CREATION_DATE

Add the following columns to tell you information about the
concurrent program that updated a row:

15 – 25Overview of Concurrent Processing

• REQUEST_ID, type NUMBER(15)

• PROGRAM_APPLICATION_ID, type NUMBER(15)

• PROGRAM_ID, type NUMBER(15)

• PROGRAM_UPDATE_DATE, type DATE

You should allow NULLs in these columns because they do not have
values when a user inserts a new row using a form.

If you include Who columns in a table, your concurrent program
should update some of them during every insert and update operation.
Oracle Application Object Library loads user profile options with the
values you use to update these columns. Call the function afpoget at
the beginning of your concurrent program to get the current values of
these user profile options. Use the values of the user profile options
listed in the following table to update the corresponding Who columns.
Update the CREATED_BY column only if you insert a row.

Who Column Name Profile Option Name

REQUEST_ID CONC_REQUEST_ID

PROGRAM_
APPLICATION_ID

CONC_PROGRAM_APPLICATION_ID

PROGRAM_ID CONC_PROGRAM_ID

LAST_UPDATE_LOGIN CONC_LOGIN_ID

CREATED_BY USER_ID

Table 15 – 1 (Page 1 of 1)

Use your operating system’s current date or SQL’s SYSDATE to update
the following Who columns. Update the CREATION_DATE column
only if you insert a row.

• PROGRAM_UPDATE_DATE

• CREATION_DATE

Implementing User Profiles (See page 13 – 5)
PL/SQL APIs for Concurrent Processing (See page 21 – 1)

15 – 26 Oracle Applications Developer’s Guide

C H A P T E R

16
T

16 – 1Defining Concurrent Programs

Defining Concurrent
Programs

his chapter provides an overview of how to define your
concurrent program within Oracle Applications. It describes the forms
necessary to define your program, executable, and library.

The following topics are covered:

• Overview of Defining Concurrent Programs

• Concurrent Program Executable Window

• Concurrent Programs Window

• Concurrent Program Libraries Window

16 – 2 Oracle Applications Developer’s Guide

Defining Concurrent Programs

After you have defined the logic for your program, you must define a
concurrent program that you call from your forms or from Standard
Request Submission. You first define a concurrent program executable
that tells the application where to find your program logic. You then
define as many concurrent programs as you need that use your
concurrent program executable. You can define which concurrent
programs are incompatible with your concurrent program, and if you
use Standard Request Submission, you define the parameters used by
your executable. You can specify validation information for your
parameters to control the values users select on the Submit Request
form.

If your program is a Pro*C immediate program, you must include the
concurrent program in a program library. After you change a
concurrent program library, you must rebuild the library and then
relink it. Only concurrent managers using a library that includes your
concurrent program can run your concurrent program.

If your concurrent program uses Standard Request Submission, you
should use Oracle System Administration to add your concurrent
program to the appropriate request groups. Users can then submit
your concurrent program using the Submit Request form.

Define Your Concurrent Program Executable

When you have completed your program and placed the execution file
in the correct directory of your application’s base directory, you must
define a concurrent program executable with Oracle Application Object
Library, using the Concurrent Program Executable form. When you
define your program executable, use the name that corresponds to your
program’s execution file without an extension. You use this name
when you define a concurrent program using this executable.

Oracle Applications System Administrator’s Guide

Specify the execution method appropriate for your execution file.
Oracle Application Object Library looks for the execution file based on
which execution method you identify. Your concurrent programs use
the concurrent program executable to locate and run the correct
execution file.

If your program is a Pro*C routine, and you want to run it as a
subprocess linked in with a concurrent manager, specify the name of
your subroutine as well as the execution file name and select
immediate as your execution method. The subroutine name is the

16 – 3Defining Concurrent Programs

name you substituted for SUBROUTINE_NAME in the program
templates. Although you select an execution method here, you may
create both spawned and immediate concurrent program using this
executable. You must include any concurrent program you write using
the immediate execution method in a concurrent program library.

We recommend using the spawned execution method for your Pro*C
programs whenever possible, as they are easier to maintain and
support than immediate programs. In future releases, only spawned
Pro*C programs will be supported, as PL/SQL stored procedures
provide you with a mechanism for writing custom concurrent
programs that do not spawn independent processes.

PL/SQL stored procedures are immediate programs in that they do not
spawn an independent process, but you should specify the name of the
procedure in the execution file field and select PL/SQL Stored
Procedure as your execution method.

Define Concurrent Program Executable (See page 16 – 6)

Define Your Concurrent Programs

Define your concurrent program using your executable with the Oracle
Application Object Library form Concurrent Programs. Give each
concurrent program a user–friendly program name used when
selecting your concurrent program from an end–user List of Values.
This name should convey the program’s purpose. Specify a short name
for the applications to pass to the concurrent manager or for you to use
when submitting your request through CONCSUB, the
FND_REQUEST PL/SQL API, or #FND CONCURRENT. For example,
in your program file you might write an initial function called glpost(),
and then define your executable with the name GL_POST. The
concurrent program you define with the name General Ledger Posting
and the short name GL_POST.

If you do not wish to make your concurrent program available through
Standard Request Submission, you leave the ”Use in SRS” box
unchecked. If your program is a Standard Request Submission report,
you can permit the report to access all values, including obsolete or
disabled values, or you can limit the report to current values. You can
disable your program at any time. Disabled programs do not show up
in end–user Lists of Values, and concurrent managers do not run
requests for disabled programs.

Specify the concurrent program executable you previously defined for
your program. You can decide whether to run your Pro*C program as

16 – 4 Oracle Applications Developer’s Guide

spawned or immediate (linked in with the concurrent manager process)
if you specified both a execution file name and a subroutine.

If your concurrent program generates output, you should specify the
maximum and minimum dimensions of the printed report. This
information determines which printer styles can accommodate your
report requirements. You can choose to have the concurrent manager
automatically print the report output file if your program creates one,
and you can choose a print style.

When you define your program, define any incompatibilities it has
with other concurrent programs or itself. List any concurrent
programs that your program should not run against in the same logical
database. If the concurrent program cannot run while any other
concurrent program runs, specify that your program is a Run Alone
program.

If your concurrent program uses Standard Request Submission, define
the parameters to pass to your execution file. You can define value sets
and set parameter validation similar to defining a flexfield segment.
This information determines the behavior of the segments in the
pop–up parameter window on the Run Reports form.

If your concurrent program uses Oracle Reports, you should specify
the tokens you defined for each parameter.

After you define your concurrent program, use Oracle System
Administration to reset the concurrent managers. This forces the
concurrent managers to recognize new concurrent programs or any
changes you have made in program registration. However, if you
change the Execution Method of your program from Spawned to
Immediate, your system administrator needs to shutdown and restart
the concurrent managers so that the concurrent managers recognize the
change.

Define Concurrent Program (See page 16 – 11)

Defining Your Concurrent Program Library

Use the Register Concurrent Program Library form to define your
program library. Specify the Library Name in the Program Library
zone and the application whose base directory your execution file
resides in. In the Concurrent Programs zone, list all the concurrent
programs that you defined as immediate with Oracle Application
Object Library that you want to include in this program library.

16 – 5Defining Concurrent Programs

Before you can run your immediate Pro*C concurrent program, use
Oracle System Administration to assign the library including the
program to a concurrent manager. If an immediate concurrent
program is not in a concurrent manager’s library, that concurrent
manager cannot process a request to run that immediate concurrent
program.

Rebuild your library and relink it whenever you add new concurrent
programs. Then restart your concurrent manager before requesting
your concurrent program.

The Oracle Applications installation process defines the Oracle
Application Object Library FNDLIBR program library. This library
contains Oracle Applications immediate concurrent programs. You
should assign this library to at least one concurrent manager.

Register Concurrent Program Library (See page 16 – 27)

Give Access to the Program

If you want users of another application to be able to run your
program, you should include your program’s application in the data
groups for the responsibilities of the other application. The concurrent
program runs in the ORACLE ID associated with its application in the
current responsibility’s data group.

Define Data Group
Oracle Applications System Administrator’s Guide

To allow users to run your Standard Request Submission program from
the Submit Requests form, add your program to the request group for
their responsibility.

Define Report Group
Oracle Applications System Administrator’s Guide

�

16 – 6 Oracle Applications Developer’s Guide

Concurrent Program Executable Window

Define a concurrent program executable for each executable source file
you want to use with concurrent programs. The concurrent program
executable links your source file logic with the concurrent requests you
and your users submit to the concurrent manager.

Attention: You cannot add new immediate programs to a
concurrent manager program library. We recommend that you
use spawned concurrent programs instead.

Define Concurrent Program : page 16 – 11
Register Concurrent Program Library : page 16 – 27

Concurrent Program Executable Block

The combination of application name plus program name uniquely
identifies your concurrent program executable.

 See: Concurrent Programs Window: page 16 – 11

16 – 7Defining Concurrent Programs

Executable

Enter a name for your concurrent program executable. In the
Concurrent Programs window, you assign this name to a concurrent
program to associate your concurrent program with your executable
logic.

Short Name

Enter a short name for your concurrent program executable.

Application

The concurrent managers use the application to determine in which
directory structure to look for your execution file.

Execution Method

The execution method cannot be changed once the concurrent program
executable has been assigned to one or more concurrent programs in
the Concurrent Programs window.

16 – 8 Oracle Applications Developer’s Guide

The possible execution methods are:

The execution file is a host script.

The execution file is an Oracle Reports file.

The execution file is a PL/SQL stored procedure.

The execution file is a Java stored procedure.

The execution file is a program written in Java.

The execution file is a function (MLS function) that
supports running concurrent programs in multiple
languages.

The execution file is a SQL script.

The execution file is a SQL*Plus script.

The execution file is a C or Pro*C program.

The execution file is a program written to run as a
subroutine of the concurrent manager. We
recommend against defining new immediate
concurrent programs, and suggest you use either a
PL/SQL Stored Procedure or a Spawned C
Program instead.

PL/SQL Stored Function that can be uesd to
calculate the completion statuses of request set
stages.

Execution File Name

Enter the operating system name of your execution file. Some
operating systems are case sensitive, so the name entered here should
match the file name exactly.

Do not include spaces or periods (.) in the execution file name, unless
the execution method is PL/SQL stored procedure or Request Set Stage
Function.

See the Oracle Applications System Administrator’s Guide for details on
the path Oracle Applications uses to find each executable file.

The maximum size of an execution file name is 60 characters.

Host

Oracle Reports

PL/SQL Stored
Procedure

Java Stored
Procedure

Java Concurrent
Program

Multi Language
Function

SQL*Loader

SQL*Plus

Spawned

Immediate

Request Set
Stage Function

16 – 9Defining Concurrent Programs

Subroutine Name

Enter the name of your C or Pro*C program subroutine here. Do not
use spaces or periods (.) in this field.

Only immediate programs or spawned programs using the Unified C
API use the subroutine field.

We recommend against defining new immediate concurrent programs,
and suggest you use either a PL/SQL Stored Procedure or a Spawned
C Program instead.

Stage Function Parameters

The Stage Function Parameters button opens a window that allows you
to enter parameters for the Request Set Stage Function. This button is
only enabled when you select Request Set Stage Function as your
Execution Method.

Stage Function Parameters Window

List the Parameters that your custom Stage Function uses.

16 – 10 Oracle Applications Developer’s Guide

Parameter

Enter a name for the Parameter. This name will be displayed in the
Stage Functions Parameter window of the Request Set form.

Short Name

Enter a short name that will be used by the function to reference the
parameter.

Implementing Concurrent Processing : page 15 – 21

16 – 11Defining Concurrent Programs

Concurrent Programs Window

Use this window to define and modify your concurrent programs.

Prerequisites

• Build the execution file for your concurrent program.

• Use the Concurrent Program Executables window to define a
concurrent program executable for your operating system
program.

Executable

16 – 12 Oracle Applications Developer’s Guide

Concurrent Programs Block

The combination of application name plus program name uniquely
identifies your concurrent program.

Program

You see this longer, more descriptive name when you view your
requests in the Requests window. If this concurrent program runs
through Standard Request Submission, you see this name in the Submit
Requests window when you run this program.

Short Name

Enter a brief name that Oracle Applications can use to associate your
concurrent program with a concurrent program executable.

Application

The program’s application determines what ORACLE username your
program runs in and where to place the log and output files.

Enabled

Indicate whether users should be able to submit requests to run this
program and the concurrent managers should be able to run your
program.

Disabled programs do not show up in users’ lists, and do not appear in
any concurrent manager queues. You cannot delete a concurrent
program because its information helps to provide an audit trail.

Executable: Name

Select the concurrent program executable that can run your program.
You define the executable using the Concurrent Program Executables
window. You can define multiple concurrent programs using the same
concurrent program executable. See: Concurrent Program Executables:
page 16 – 6.

Executable: Options

Some execution methods, such as Oracle Reports, support additional
execution options or parameters. You can enter such options in this
field. The syntax varies depending on the execution method.

16 – 13Defining Concurrent Programs

If you define a concurrent program with the bitmapped version of
Oracle Reports, you can control the orientation of the bitmapped report
by passing the ORIENTATION parameter or token. For example, to
generate a report with landscape orientation, specify the following
option in the Options field:

ORIENTATION=LANDSCAPE

Do not put spaces before or after the execution options values. The
parameters should be separated by only a single space. You can also
specify an orientation of PORTRAIT.

You can control the dimensions of the generated output with the
PAGESIZE parameter. A specified <width>x<height> in the Options
field overrides the values specified in the report definition. For
example:

ORIENTATION=LANDSCAPE PAGESIZE=8x11.5

The units for your width and height are determined by your Oracle
Reports definition. You set the units in your Oracle Reports menu
under Report => Global Properties => Unit of Measurement.

If the page size you specify with the PAGESIZE parameter is smaller
than what the report was designed for, your report fails with a
”REP–1212” error.

Executable: Method

The execution method your concurrent program uses appears here.

Valid values are:

Your concurrent program is a stand–alone program
in C or Pro*C.

Your concurrent program is written in a script for
your operating system.

Your concurrent program is a subroutine written in
C or Pro*C. Immediate programs are linked in
with your concurrent manage and must be
included in the manager’s program library.

Your concurrent program is an Oracle Reports
script.

Spawned

Host

Immediate

Oracle Reports

16 – 14 Oracle Applications Developer’s Guide

Your concurrent program is a stored procedure
written in PL/SQL.

Your concurrent program is a Java stored
procedure.

Your concurrent program is a program written in
Java.

A multi–language support function (MLS function)
is a function that supports running concurrent
programs in multiple languages. You should not
choose a multi–language function in the
Executable: Name field. If you have an MLS
function for your program (in addition to an
appropriate concurrent program executable), you
specify it in the MLS Function field.

Your concurrent program is a SQL*Loader
program.

Your concurrent program is a SQL*Plus or PL/SQL
script.

PL/SQL Stored Function that can be used to
calculate the completion statuses of request set
stages.

You can switch between Spawned and Immediate, overriding the
execution method defined in the Concurrent Program Executable
window, only if either method appears when the executable is selected
and both an execution file name and subroutine name have already
been specified in the Concurrent Program Executable window. See:
Concurrent Program Executables: page 16 – 6.

Priority

You can assign this program its own priority. The concurrent managers
process requests for this program at the priority you assign here.

If you do not assign a priority, the user’s profile option
Concurrent:Priority sets the request’s priority at submission time.

PL/SQL Stored
Procedure

Java Stored
Procedure

Java Concurrent
Program

Multi Language
Function

SQL*Loader

SQL*Plus

Request Set
Stage Function

Request

16 – 15Defining Concurrent Programs

Type

If you want to associate your program with a predefined request type,
enter the name of the request type here. The request type can limit
which concurrent managers can run your concurrent program.

Incrementor

For use by Oracle Applications internal developers only. The
incrementor function is shown here.

MLS Function

The MLS function, if any, used by the program.

The Multilingual Concurrent Request feature allows a user to submit a
request once to be run multiple times, each time in a different language.
If this program utilizes this feature the MLS function determines which
installed languages are needed for the request.

Use in SRS

Check this box to indicate that users can submit a request to run this
program from a Standard Request Submission window.

If you check this box, you must register your program parameters, if
any, in the Parameters window accessed from the button at the bottom
of this window.

Allow Disabled Values

If you check the Use in SRS box, you can also check this box to allow a
user to enter disabled or outdated values as parameter values.

Many value sets use special table columns that indicate whether a
particular value is enabled (using ENABLED_FLAG,
START_DATE_ACTIVE, and END_DATE_ACTIVE columns). These
value sets normally allow you to query disabled or outdated values but
not enter them in new data. For Standard Request Submission, this
means that a user would not normally be allowed to enter disabled
values as report parameter values when submitting a report, even if the
report is a query–only type report.

Run Alone

Indicate whether your program should run alone relative to all other
programs in the same logical database. If the execution of your

Output

16 – 16 Oracle Applications Developer’s Guide

program interferes with the execution of all other programs in the same
logical database (in other words, if your program is incompatible with
all programs in its logical database, including itself), it should run
alone.

You can enter any specific incompatible programs in the Incompatible
Programs windows.

Enable Trace

Turns on SQL tracing when program runs.

Restart on System Failure

Use this option to indicate that this concurrent program should
automatically be restarted when the concurrent manager is restored
after a system failure.

NLS Compliant

This box is checked if the program allows for a user to submit a request
of this program that will reflect a language and territory that are
different from the language and territory that the users are operating
in.

For example, users can enter orders in English in the United Kingdom,
using the date and number formats appropriate in the United
Kingdom, then generate invoices in German using the date and number
formats appropriate to their German customers.

If this box is left blank then a user can associate any installed language
with the request, but the territory will default to the territory of the
concurrent manager environment.

Note that this option should be set only by the developer of the
program. The program must be written as NLS Compliant to utilize
this feature.

Format

Select the output format from the following:

• HTML

• PCL (HP’s Printer Control Language)

• PDF

• PS (Post Script)

�

16 – 17Defining Concurrent Programs

• Text

Attention: If you choose HTML or PDF as the output type
with Oracle Report programs, you must use an appropriate
printer driver that handles HTML or PDF files.

Save

Indicate whether to automatically save the output from this program to
an operating system file when it is run. This value becomes the default
for all requests submitted for this program. The output of programs
with Save set to No is deleted after printing.

If this is a Standard Request Submission program, users can override
this value from the Submit Requests window.

Print

Enter Yes or No to indicate whether to allow the concurrent managers
to print your program’s output to a printer. If you enter No, your
concurrent program’s output is never sent to the printer.

Columns / Rows

Enter the minimum column and row length for this program’s report
output. Oracle Applications uses this information to determine which
print styles can accommodate your report.

Style

The print style you select depends on your system and printer setup.
Print styles include:

• 132 columns and 66 lines (Landscape)

• 180 columns and 66 lines (Landwide)

• 80 columns and 66 lines (Portrait)

• 132 columns and 62 lines (A4)

Your list is limited to those styles that meet your program’s columns
and row length requirements.

Style Required

If your program requires a specific print style (for example, a
checkwriting report), use this check box to enforce that print style.

Concurrent Programs
Buttons

16 – 18 Oracle Applications Developer’s Guide

Printer

If you want to restrict your program’s output to a single printer, enter
the name of the printer to which you want to send your output. If your
program has minimum or maximum columns or rows defined, your
list of values is limited to those printers that can support your
program’s requirements.

Users cannot override your choice of printer from the Submit Requests
or Requests windows.

Use these buttons to open detail windows for program
incompatibilities your program parameters.

Choose this button to create another concurrent
program using the same executable, request and
report information. You can elect to copy the
incompatibility and parameter details as well.

Choose this window to specify options for the
database session of the concurrent program when
it is executed.

Choose this button to open the Incompatible
Programs window.

Choose this button to open the Concurrent
Program Parameters window.

Copy to Window

Create another concurrent program using the same executable, request
and report information as the current program. You can optionally
copy the incompatibility and parameter details information as well.

See: Incompatible Programs Window: page 16 – 20

Session Control Window

Use this window to specify options for the database session of the
concurrent program when it is executed.

Copy to...

Session Control

Incompatibilities

Parameters

�

16 – 19Defining Concurrent Programs

Consumer Group

Optionally specify the resource consumer group for the concurrent
program.

Rollback Segment

Optionally specify a rollback segment to be used with the concurrent
program. This rollback segment will be used instead of the default and
will be used up until the first commit.

Attention: If you specify a rollback segment here, your
concurrent program must use the APIs
FND_CONCURRENT.AF_COMMIT and
FND_CONCURRENT.AF_ROLLBACK to use the specified
rollback segment. See: the Oracle Applications Developer’s Guide.

Optimizer Mode

Optionally specify an optimizer mode. You can choose ALL_ROWS,
FIRST_ROWS, Rules, or Choose. You would specify an optimizer
mode only for a custom program that may not perform well with the
default cost–based optimizer (CBO) and needs tuning. You can use a
different optimizer mode until your program is tuned for CBO.

A system administrator must use the Administer Concurrent Managers
window to have the internal concurrent manager verify the concurrent
managers before any changes you make in this zone take effect.

Resource Consumer Groups
Oracle Applications System Administrator’s Guide

16 – 20 Oracle Applications Developer’s Guide

Incompatible Programs Window

Identify programs that should not run simultaneously with your
concurrent program because they might interfere with its execution.
You can specify your program as being incompatible with itself.

Administer Concurrent Managers
Oracle Applications System Administrator’s Guide

Application

Although the default for this field is the application of your concurrent
program, you can enter any valid application name.

16 – 21Defining Concurrent Programs

Name

The program name and application you specify must uniquely identify
a concurrent program.

Your list displays the user–friendly name of the program, the short
name, and the description of the program.

Scope

Enter Set or Program Only to specify whether your concurrent program
is incompatible with this program and all its child requests (Set) or only
with this program (Program Only).

16 – 22 Oracle Applications Developer’s Guide

Concurrent Program Parameters Window

Enter and update the program parameters that you wish to pass to the
program executable. Program parameters defined here should match
the variables in your execution file.

Conflicts Domain Parameter

Enter the parameter which will hold the value of the conflict domain of
the program. For information on conflict domain parameters, see:
Concurrent Conflict Domains, Oracle Applications System Administrator’s
Guide.

Argument Detail

Validation
Information

�

16 – 23Defining Concurrent Programs

Security Group

This field is for HRMS security only. See: Customizing, Reporting, and
System Administration in Oracle HRMS.

Sequence

Choose the sequence numbers that specify the order in which your
program receives parameter values from the concurrent manager.

Parameter

Enter the parameter name. The value is case insensitive.

Enabled

Disabled parameters do not display at request submission time and are
not passed to your execution file.

You specify information about your parameter almost exactly as you
define a flexfield segment.

Value Set

Enter the name of the value set you want your parameter to use for
validation. You can only select from independent, table, and
non–validated value sets.

The maximum size of your value set is 240 characters.

Attention: If you are using a value set of dates, this value set
should have a format type of either Standard Date or Standard
DateTime if you are using the Multilingual Request feature.

Default Type

If you want to set a default value for this parameter, identify the type of
value you need.

Valid types include:

The default value can be any literal value.

The default value is the current value in the user
profile option defined in the Default Value field.
Use the profile option name, not the end–user
name. You do not need to include $PROFILE$.

Constant

Profile

16 – 24 Oracle Applications Developer’s Guide

The default value is determined by the SQL
statement you defined in the Default Value field.

The default value is the value entered in a prior
segment of the same parameter window.

Default Value

You can enter a default value for the parameter. This default value for
your parameter automatically appears when you enter your parameter
window. You determine whether the default value is a constant or a
context–dependent value by choosing the default type.

Your default value should be a valid value for your value set.
Otherwise you see an error message when you enter your parameter
window on the Run Request window and your default value does not
appear.

Valid values for each default type include:

Enter any literal value for the default value.

The default value is the current value of the user
profile option you specify here. Enter the profile
option name, not the end–user name.

The default value is the value entered in a prior
segment of the same flexfield window. Enter the
name of the segment whose value you want to
copy.

The default value is determined by the SQL
statement you enter here. Your SQL statement
must return exactly one row and one column in all
cases.

Required

If the program executable file requires an argument, you should require
it for your concurrent program.

Enable Security

If the value set for this parameter does not allow security rules, then
this field is display only. Otherwise you can elect to apply any security
rules defined for this value set to affect your parameter list.

SQL Statement

Segment

Constant

Profile

Segment

SQL Statement

Window
Information

16 – 25Defining Concurrent Programs

Range

Choose either Low or High if you want to validate your parameter
value against the value of another parameter in this structure.
Parameters with a range of Low must appear before parameters with a
range of High (the low parameter must have a lower number than the
high parameter). For example, if you plan two parameters named
”Start Date” and ”End Date,” you may want to force users to enter an
end date later than the start date. You could assign ”Start Date” a
range of Low and ”End Date” a range of High. In this example, the
parameter you name ”Start Date” must appear before the parameter
you name ”End Date.”

If you choose Low for one parameter, you must also choose High for
another parameter in that structure (and vice versa). Otherwise you
cannot commit your changes.

If your value set is of the type Pair, this field is display only. The value
defaults to Pair.

Display

Indicate whether to display this parameter in the Parameters window
when a user submits a request to run the program from the Submit
Requests window.

You should provide a default type and value for any non–displayed
parameter.

Display Size

Enter the field length in characters for this parameter. The user sees
and fills in the field in the Parameters window of the Submit Requests
window.

You should ensure that the total of the value set maximum sizes (not
the display sizes) for all of your parameters, plus the number of
separators you need (number of parameters minus one), does not add
up to more than 240. If your program values’ concatenated length
exceeds 240, you may experience truncation of your data in some
forms.

Description Size

Enter the display length in characters for the parameter value
description. Your window may show fewer characters of your
description than you specify here if there is not enough room

16 – 26 Oracle Applications Developer’s Guide

(determined by the sum of your longest prompt plus your display size
for this parameter plus seven). However, your window does not
display more characters of the description than you specify here.

Prompt

A user sees the prompt instead of the parameter name in the
Parameters window of the Submit Requests window.

The default is the name of the parameter.

Concatenated
Description Size

Enter the display length in characters for the parameter value
description. The user sees the parameter value in the Parameter
Description field of the Submit Requests and View Requests forms.
The Parameter Description field concatenates all the parameter values
for the concurrent program.

Suggestion: We recommend that you set the Concatenated
Description Size for each of your parameters so that the total
Concatenated Description Size for your program is 80 or less,
since most video screens are 80 characters wide.

Token

For a parameter in an Oracle Reports program, the keyword or
parameter appears here. The value is case insensitive. For other types
of programs, you can skip this field.

See: Incompatible Programs Window: page 16 – 20

16 – 27Defining Concurrent Programs

Concurrent Program Libraries Window

Use this window to register program libraries, which are lists of
immediate concurrent programs that you wish to link with a
concurrent manager. Concurrent managers use the programs in a
program library to run their immediate programs. You must register
libraries before you can define concurrent managers. You can only
include immediate–type concurrent programs in program libraries.

After adding any immediate concurrent program to your library or
creating a new library, you must rebuild and relink your library before
your changes take effect. After you rebuild and relink your library, the
system administrator must restart the concurrent manager using your
library.

16 – 28 Oracle Applications Developer’s Guide

You can only register program libraries that you have already built at
the operating system level.

Prerequisites

• Use the Applications window to register your application with
Oracle Application Object Library.

• Use the Concurrent Program Executables window to define your
concurrent program executable file.

Concurrent Program Libraries Block

The combination of application name plus library name uniquely
identifies your set of programs.

Library Name

This is the same name you gave to your program library file at the
operating system. The library name must be eight characters or less.

System administrators can then assign this library name to concurrent
managers. Each concurrent manager is linked to one program library
and can only run immediate–type programs that use concurrent
program executables that are part of that library. A concurrent
manager can run other execution type programs that are not in its
program library.

Application

The bin directory under this application’s top directory should contain
the executable program library file.

Library Type

There are two types of program library you can define:

A library of immediate concurrent programs to link
with a concurrent manager.

A library of transaction programs to link with a
transaction manager.

Concurrent
Library

Transaction
Library

16 – 29Defining Concurrent Programs

Concurrent Programs Block

List the concurrent program executables you have linked to this
program library at the operating system level.

Program

Enter the name of an immediate–type concurrent program executable
that you linked into your program library at the operating system. This
block verifies that the program name and application name you specify
uniquely identify a defined concurrent program executable.

Application

This is the application to which your concurrent program belongs.

Rebuild Library

Select this button when you need to rebuild your concurrent library.
You should rebuild your library whenever you add new programs to
your library.

16 – 30 Oracle Applications Developer’s Guide

C H A P T E R

17
T

17 – 1Coding Oracle Tools Concurrent Programs

Coding Oracle Tools
Concurrent Programs

his chapter provides an overview of how to code concurrent
programs using various Oracle Tools, such as SQL*Plus and
SQL*Loader.

The following topics are covered:

• SQL*Plus Programs

• PL/SQL Stored Procedures

• SQL*Loader

• Accepting Input Parameters for Oracle Tools Programs

• Naming Your Oracle Tool Concurrent Program

�

SQL*Plus Prologue

17 – 2 Oracle Applications Developer’s Guide

Oracle Tool Concurrent Programs

Oracle Application Object Library lets you write concurrent programs
in SQL*Plus, PL/SQL (if you have PL/SQL installed on your database),
SQL*Loader, or Oracle Reports.

Attention: Starting with Release 11, SQL*Report (RPT) is no
longer supported.

 Concurrent Processing with Oracle Reports (See page
18 – 2)

For SQL*Plus and PL/SQL programs, the concurrent manager logs
onto the database, starts your program, automatically spools output to
a report output file, and logs off the database when your program is
complete. If your program produces report output, you can define
your program to have the concurrent manager automatically print the
report output file after your program completes. Reports submitted
through Standard Request Submission have printing and submission
information set at run time.

SQL*PLUS Programs

For SQL*Plus programs, the concurrent manager automatically inserts
the following prologue of commands into your SQL*Plus script:

SET TERM OFF

SET PAUSE OFF

SET HEADING OFF

SET FEEDBACK OFF

SET VERIFY OFF

SET ECHO OFF

WHENEVER SQLERROR EXIT FAILURE

The concurrent manager also inserts a command into your SQL*Plus
script to set LINESIZE according to the print style of the script.

If you want your SQL*Plus script to continue after a SQL error, you
must insert the following line into your SQL*Plus script:

WHENEVER SQLERROR CONTINUE

17 – 3Coding Oracle Tools Concurrent Programs

PL/SQL Stored Procedures

PL/SQL stored procedures behave like immediate concurrent
programs in that they do not require the concurrent manager to create
an independent spawned process.

Concurrent Processing APIs for PL/SQL Procedures (See
page 21 – 1)

Beginning with Release 11, concurrent programs using PL/SQL stored
procedures can generate log files or output files.

PL/SQL File I/O Processing

Package FND_FILE contains routines which allow as concurrent
programs to write to the request log and output files, stored under
<PROD_TOP>/log and <PROD_TOP>/out.

Note: Beginning with Release 11i, FND_FILE is supported in
all types of concurrent programs.

Text written by the stored procedures is first kept in temporary files on
the database server, and after request completion is copied to the log
and out files by the manager running the request. Opening and closing
files is handled behind the scenes by the concurrent manager. Every
read and write to the temporary files is implicitly flushed to minimize
risk of data loss.

The concurrent managers maintain a shared pool of temporary files;
when a manager starts up, it attempts to use filenames from the pool. If
no filenames exist, the manager creates new temporary log and output
files. These two files are cleared after each concurrent request, and then
reused for the next request. As a result no more temporary files are
created than necessary.

The temporary files are named as follows, where the x’s indicate a
sequence number, padded to 7 digits:

lxxxxxxx.req

oxxxxxxx.req

The directory for temporary files must be set in the environment
variable APPLPTMP when the managers are started. This directory
must also be listed in the UTL_FILE_DIR parameter in init.ora.

To write to these log and output files, simply call the necessary
procedures. Opening and closing the files is handled by the concurrent
managers. Procedure arguments and exceptions are detailed below.

17 – 4 Oracle Applications Developer’s Guide

There are several limitations of these procedures. The temporary files
cannot be deleted, but are reduced to 0–length. Deleting them must be
handled by the system administrator. This package is not designed for
generic PL/SQL text I/O. It is only used for writing to request log and
output files.

Using these APIs may impact your application’s performance.
Temporary files are first created and then copied over the network to
the request log and out files. Moving large files can be slow, and can
create considerable network traffic. You may wish to be conservative
with the amount of data written from your concurrent program.

To facilitate debugging and testing from SQL*Plus, you can use the
procedure FND_FILE.PUT_NAMES(LOG, OUT, DIR). This function
sets the temporary log and out filenames and the temporary directory
to the user–specified values. DIR must be a directory to which the
database can write. FND_FILE.PUT_NAMES should be called before
calling any other FND_FILE function. If this function is not called
when using SQL*Plus, FND_FILE will choose a filename from the pool,
as described above. FND_FILE.PUT_NAMES works only once per
session, and it does nothing if called from a concurrent program.
Procedure FND_FILE.CLOSE will close the files in a command–line
session. FND_FILE.CLOSE should not be called from a concurrent
program; the concurrent manager will handle closing files.

See: FND_FILE page: 21 – 11

SQL*Loader

For SQL*Loader programs, the concurrent manager runs SQLLOAD on
the control file specified on the Concurrent Program Executable form.
If your program produces report output, you can define your program
to have the concurrent manager automatically print the report output
file after your program completes.

You can either supply information about the data file in the control file,
or pass the full directory path and file name of your data file as an
argument. The concurrent manager passes the ”data=(full pathname of
data file)” token at request run time. Without a data file name, the
concurrent manager skips that token and SQL*Loader uses the data file
name specified in the control file.

If you port your application to a different operating or hardware
system, check the directory and file name of your data file and change
the value of your program argument if necessary.

17 – 5Coding Oracle Tools Concurrent Programs

Accepting Input Parameters For Oracle Tool Programs

You should write your program to receive arguments in the same order
that you specify when you call your program and pass arguments.
Concurrent managers pass the arguments directly to your programs.

In SQL*Plus and PL/SQL programs, you must name your arguments
&1, &2, &3, etc. so that you are guaranteed to get the first argument
you pass in &1, the second in &2, and so on.

With PL/SQL stored procedures, you should define your arguments as
IN parameters.

In SQL*Loader programs, pass the full directory path and file name of
your data file as an argument. If you port your application to a
different operating or hardware system, check the directory and file
name of your data file and change the value of your program argument
if necessary.

 Oracle Reports Parameters (See page 18 – 4)

Naming Your Oracle Tool Concurrent Program

If your operating system is case–sensitive, the file name of your Oracle
Tool concurrent program should always be in uppercase and the
extension in lowercase.

Use the Oracle Applications System Administrator’s Guide for your
operating system to determine the correct naming conventions for your
Oracle Tool programs.

Oracle Tool Concurrent Programs
Oracle Applications System Administrator’s Guide

Suggestion: Effective with Oracle Applications Release 10,
you cannot reference the interface program FDPSGP when
submitting your Oracle Tool concurrent programs. You should
define your Oracle Tool concurrent programs to use the
appropriate execution methods.

17 – 6 Oracle Applications Developer’s Guide

C H A P T E R

18
T

18 – 1Coding Oracle Reports Concurrent Programs

Coding Oracle Reports
Concurrent Programs

his chapter tells you about using Oracle Reports with the Oracle
Application Object Library concurrent manager. It includes a
discussion on integrating custom Oracle Reports programs with Oracle
Applications, a list of user exits available for your programs, an
example program, and a troubleshooting guide.

The following topics are covered:

• Overview of Oracle Reports Concurrent Programs

• User Exits in Oracle Reports

• Using Dynamic Currency in Oracle Reports

• Oracle Reports Troubleshooting

18 – 2 Oracle Applications Developer’s Guide

Oracle Reports

You can write Oracle Reports reports, integrate them with Oracle
Application Object Library, and run them as concurrent programs from
your forms or though Standard Request Submission.

In this chapter, the Oracle Reports executable file is referred to as
ar25run or ar25runb (for the bitmapped version). The name of your
Oracle Reports executable file may vary depending on which version of
Oracle Reports you use.

You have the option of using Oracle Application Object Library user
exits such as dynamic currency formatting with your Oracle Reports
programs.

The concurrent manager can run Oracle Reports either in character
mode or in bitmap mode according to your specifications. You control
the orientation and page size of your report output.

A troubleshooting guide for your Oracle Reports programs appears at
the end of this chapter.

Concurrent Processing with Oracle Reports

Most Oracle Applications reports are launched from the concurrent
manager as concurrent processes. In most UNIX systems, the
concurrent manager inherits its environment variables from the shell
from which it was started; the reports are then run from this
environment.

Oracle Reports Integration

For Oracle Reports programs, the concurrent manager runs the
executable ar25run or ar25runb on the report description file.
ar25runb is used for bitmap reports (including PostScript, HTML, and
PDF files). Both executables include Oracle Applications user exits. If
your Oracle Reports program produces report output, the concurrent
manager can automatically print the report output file after your
program completes, provided that your site has the appropriate print
drivers defined.

18 – 3Coding Oracle Reports Concurrent Programs

Using PL/SQL Libraries

Immediately before running a report, the concurrent manager
dynamically prepends several values onto the environment variable
$REPORTS25_PATH, as shown below:

REPORTS25_PATH =

$[PROD]_TOP/$APPLPLS:$[PROD]_TOP/$APPLREP

 :$[PROD]_TOP/$APPLREP/LANGDIR

 :$AU_TOP/$APPLPLS:$REPORTS25_PATH

This puts the PL/SQL libraries in the $[PROD]_TOP/$APPLPLS, any
other report objects such as external queries, boiler plate text etc. in
$[PROD]_TOP/$APPLREP, and sharable libraries in
$AU_TOP/$APPLPLS in REPORTS25_PATH before the concurrent
manager runs a report. $[PROD]_TOP is the application basepath of
the application owning the report, and LANGDIR is the directory for a
particular language, such as US or FR.

The APPLSYS.env, set at installation, sets REPORTS25_PATH to
$AU_TOP/$APPLPLS. This may be modified to include customized
libraries.

Oracle Applications Concepts

Bitmapped Oracle Reports

If you define a concurrent program with the bitmapped version of
Oracle Reports, select PostScript, HTML, or PDF as appropriate from
the Output Type poplist in the Define Concurrent Program form.

You can control the orientation of the bitmapped report by passing the
ORIENTATION parameter or token. For example, to generate a report
with landscape orientation, specify the following option in the
Execution Option field:

ORIENTATION=LANDSCAPE

Do not put spaces before or after the execution options values. The
parameters should be separated by only a single space. You can also
specify an orientation of PORTRAIT.

You can control the dimensions of the generated output with the
PAGESIZE parameter. A specified <width>x<height> in the Execution
Options field overrides the values specified in the report definition.
For example:

ORIENTATION=LANDSCAPE PAGESIZE=8x11.5

18 – 4 Oracle Applications Developer’s Guide

The units for your width and height are determined by your Oracle
Reports definition. You set the units in your Oracle Reports menu
under Report => Global Properties => Unit of Measurement.

If the page size you specify with the PAGESIZE parameter is smaller
than what the report was designed for, your report fails with a
”REP–1212” error.

Oracle Reports Parameters

Though the concurrent manager passes program arguments to your
Oracle Reports program using tokens (so that their order does not
matter), you should write your program to receive arguments in the
same order that you specify when you call your program and pass
arguments for easier maintenance.

Your Oracle Reports program parameters should not expect NULL
values. The concurrent manager cannot pass a NULL value to your
program.

For Oracle Reports programs you have a choice of two implementation
methods.

Standard Request Submission

If you choose to make your Oracle Reports program available through
Standard Request Submission, you check the Use in SRS check box of
the Concurrent Programs form and define your arguments in the
Concurrent Program Parameters block. Your program is available for
the Submit Request form once you use Oracle System Administration
to add your program to the appropriate report security groups.

If you also call your program using FND_REQUEST.SUBMIT_
REQUEST from a form other than the Submit Request form, you
supply values for your arguments in the order in which you registered
them. The concurrent manager automatically adds the tokens you
defined when you registered your arguments to the values you supply
when you submit the program from the Submit Request form or from
FND_REQUEST. The concurrent manager passes tokenized arguments
(token1=parameter1, token2=parameter2, etc.) to your Oracle Reports
program. In this case, each parameter value can be up to 240 characters
in length, excluding the length of the associated token.

18 – 5Coding Oracle Reports Concurrent Programs

Non–Standard Request Submission

If you do not wish to make your Oracle Reports program available
through Standard Request Submission, you pass tokens to your Oracle
Reports program in your FND_REQUEST call from a form. In this case
you do not check the Use in SRS check box of the Concurrent Programs
form. Note that each argument of the form TOKEN=parameter must be
a maximum of 240 characters in length, including the token name.

Accessing User Exits and Profile Options

Oracle Application Object Library lets you access user profile
information and run user exits from your Oracle Reports program by
including the appropriate calls in your program. These Oracle
Application Object Library calls also allow your report to access the
correct organization (for multiple organizations or ”multi–org”
installations) automatically.

Call FND SRWINIT and FND SRWEXIT

To access profile values, multiple organizations, or Oracle Applications
user exits, and for your program to be used with concurrent processing
at all, you must have the first and last user exits called by your Oracle
Reports program be FND SRWINIT and FND SRWEXIT.

FND SRWINIT sets your profile option values and allows Oracle
Application Object Library user exits to detect that they have been
called by a Oracle Reports program. FND SRWEXIT ensures that all
the memory allocated for Oracle Application Object Library user exits
has been freed up properly. The steps below ensure that your program
correctly calls FND SRWINIT and FND SRWEXIT.

Warning: With future releases of Oracle Application Object
Library and Oracle Reports, we may provide a simpler set of
steps to access FND SRWINIT and FND SRWEXIT. We reserve
the right to discontinue support for these steps. If you use
the steps below to integrate your Oracle Reports programs
with Oracle Application Object Library, you should plan to
convert to a different set of integration steps in the future.

• Create a lexical parameter P_CONC_REQUEST_ID with the
datatype Number. The concurrent manager passes the
concurrent request ID to your report using this parameter.

• Call FND SRWINIT in the ”Before Report Trigger.”

18 – 6 Oracle Applications Developer’s Guide

• Call FND SRWEXIT in the ”After Report Trigger.”

Calling Other Oracle Application Object Library User Exits

These integration steps let you call certain Oracle Application Object
Library user exits, in addition to FND SRWINIT and FND SRWEXIT, to
access user profile values and perform calculations in your Oracle
Reports program:

• FND FORMAT_CURRENCY (See page 18 – 10)

• FND FLEXSQL

• FND FLEXIDVAL

Oracle Reports 2.5 Flexfield Support
Oracle Applications Flexfields Guide

Note that you can call many Oracle Applications PL/SQL routines,
such as user profiles routines, from your Oracle Reports programs as
well as these user exits. In general, you should use PL/SQL routines
instead of user exits where possible.

You can test your Oracle Reports program that calls Oracle
Applications user exits by running ar25run, ar25runb, ar25des, or
ar25desb from the operating system.

Definitions of Oracle Reports Executables

This is the character–mode runtime executable that
concurrent managers use to run the reports. If
your character mode report calls any applications
user exits, use this executable to run your report
when you run it interactively.

This is the bitmap mode runtime executable that
concurrent managers use to run the reports. If
your bitmap report calls any Applications user
exits and you want to generate a bitmap report
output (including PostScript, HTML, and PDF
files), use this executable to run the report when
you run it interactively. The concurrent manager
uses this executable to run the reports if you select
PostScript, HTML, or PDF from the Output Type
poplist in the Define Concurrent Program form.

This is the bitmap designer to build and modify
reports which use Oracle Applications user exits.

ar25run

ar25runb

ar25desb

18 – 8 Oracle Applications Developer’s Guide

User Exits Used in Oracle Reports

The user exits available in Oracle Reports are:

• FND SRWINIT

• FND SRWEXIT

• FND FORMAT_CURRENCY (See page 18 – 10)

• FND FLEXIDVAL

• FND FLEXSQL

Oracle Reports 2.5 Flexfield Support
Oracle Applications Flexfields Guide

FND SRWINIT / FND SRWEXIT

FND SRWINIT sets your profile option values and allows Oracle
Application Object Library user exits to detect that they have been
called by an Oracle Reports program. FND SRWINIT also allows your
report to use the correct organization automatically. FND SRWEXIT
ensures that all the memory allocated for Oracle Application Object
Library user exits has been freed up properly.

FND FLEXIDVAL / FND FLEXSQL

These user exits allow you to use flexfields in your reports. They are
documented in the Oracle Applications Flexfields Guide.

Oracle Reports 2.5 Flexfield Support
Oracle Applications Flexfields Guide

18 – 9Coding Oracle Reports Concurrent Programs

Using Dynamic Currency in Oracle Reports

Currency formatting support provides a flexible, consistent method to
format a numeric value according to its associated currency. The
currency value appears with the correct thousands separator and radix
character (decimal point) of the user’s country. The value appears with
positive and negative indicators of the user’s choice.

Displayed currency values are never rounded or truncated except
when explicitly specified to be scaled. If the formatted value (which
includes the thousands separator) does not fit in the output field, then
the currency value without the thousands separator is used. If this
value is still too large for the output field, then asterisk characters (***)
are displayed in the field to alert you of an overflow condition.

You use the same methodology to add support for report regions with
one currency type (for example, US dollar amounts) and for report
regions with mixed currency types (for example, US dollar and
Japanese yen amounts). However, when reporting on mixed currency
amounts you include a special argument to indicate that you wish to
align all different currency types at a standard point (usually the
precision of the currency with the greatest precision). This precision is
defined by a profile option or set by the user of the report at execution
time.

Currency Formatting Requirements

A report based on a single currency type should display currency
amounts aligned along the radix character as illustrated in the
following example:

 Currency Value Code

 –––––––––––––– ––––

 120,300.00 USD

 –4,201.23 USD

or

 120,300.00 USD

 (4,201.23) USD

or

 120,300.00+ USD

 –4,201.23 USD

If the user chooses a negative or a positive indicator such as
parentheses that appears at the right of the currency amount, then

18 – 10 Oracle Applications Developer’s Guide

values are not flushed with the right margin but are shifted to the left
to accommodate the indicator.

A mixed currency report should display currency amounts aligned
along the radix character (or implied radix for currencies with no
precision like JPY).

 Currency Value Code

 –––––––––––––– ––––

 300.00 USD

 105.250 DNR

 1,000 JPY

–24,000.34 FRF

Call the FND FORMAT_CURRENCY user exit to format the Currency
Value column. In this mixed currency report, the minimum precision
(specified in the MINIMUM_PRECISION token in the user exit) is set
to 3.

FND FORMAT_CURRENCY User Exit

This user exit formats the currency amount dynamically depending
upon the precision of the actual currency value, the standard precision,
whether the value is in a mixed currency region, the user’s positive and
negative format profile options, and the location (country) of the site.
The location of the site determines the thousands separator and radix
to use when displaying currency values. An additional profile
determines whether the thousands separator is displayed.

Use the Currencies window to set the standard, extended, and
minimum precision of a currency.

Defining Currencies
Oracle Applications [Public Sector] General Ledger User’s Guide

You obtain the currency value from the database into an Oracle Reports
column. Define another Oracle Reports column, a formula column of
type CHAR, which executes the FORMAT_CURRENCY user exit to
format the currency value. A displayed field has this formula column
as its source so that the formatted value is automatically copied into
the field for display.

18 – 11Coding Oracle Reports Concurrent Programs

Syntax

FND FORMAT_CURRENCY

CODE=”:column containing currency code”

DISPLAY_WIDTH=”field width for display”

AMOUNT=”:source column name”

DISPLAY=”:display column name”

[MINIMUM_PRECISION=”:P_MIN_PRECISION”]

[PRECISION=”{STANDARD|EXTENDED}”]

[DISPLAY_SCALING_FACTOR=””:P_SCALING_FACTOR”]

Options

Specify the column which contains the currency
code for the amount. The type of this column is
CHARACTER.

 Specify the width of the field in which you display
the formatted amount.

Specify the name of the column which contains the
amount retrieved from the database. This amount
is of type NUMBER.

Specify the name of the column into which you
want to display the formatted values. The type of
this column is CHARACTER.

Specify the precision to which to align all
currencies used in this report region. You specify
the MINIMUM_PRECISION token in mixed
currency report regions to ensure all currency
values align at the radix character for easy
readability. Your user can adjust the report by
setting an input parameter when submitting the
report to specifically tailor the report output to a
desired minimum precision or accept the default
which is determined from the profile option
CURRENCY:MIXED_PRECISION
(Currency:Mixed Currency Precision). Your report
submission must pass the value as a report
argument. You use P_MIN_PRECISION as the
name of this lexical.

If specified as STANDARD, then standard
precision is used. If the value is EXTENDED then

CODE

DISPLAY_
WIDTH

AMOUNT

DISPLAY

MINIMUM_
PRECISION

PRECISION

�

18 – 12 Oracle Applications Developer’s Guide

the extended precision of the currency is used to
format the number.

Optionally, specify the scaling factor to be applied
to the amount in that column. If this token is not
specified or is negative no scaling is performed.
You use P_SCALING_FACTOR as the name of this
lexical parameter.

Attention: Colon ”:” is placed in front of column names and
lexical parameters for token values. This indicates that the
value of that token is retrieved from the column or lexical
parameter. If it is omitted the value within double quotes itself
is used. For example, CODE=”:C_CODE” indicates that
currency code should be retrieved from column CODE while
CODE=”C_CODE” indicated that currency code is C_CODE.

Mixed Currency Reports

Every report with a mixed currency region should allow the user to
override the default setting of the mixed currency precision profile
option at submission time. Define a report argument that accepts this
value.

The default value of this argument should be the profile option
CURRENCY:MIXED_PRECISION (Currency:Mixed Currency
Precision) so the user does not always have to set a value explicitly.

Example Output

The following graphic illustrates various input values and the currency
amounts displayed using the user exit (negative amounts are
surrounded by parentheses) assuming the report was run in the United
States.

Item Code Input Number Output Field Notes

–––– –––– ––––––––––––––––– ––––––––––––––– –––––

 01 USD 123456.76 123,456.76

 02 USD 156.7 156.70

 03 USD 12345 12,345.00

 04 BHD 123456.764 123,456.764

 05 JPY 12345676 12,345,676

 06 BHD 12345.768 12,345.768

 07 BHD –12345.768 (12,345.768)

 08 BHD 123456.768 123,456.768

DISPLAY_
SCALING_
FACTOR

18 – 13Coding Oracle Reports Concurrent Programs

 09 BHD –123456.768 (123,456.768)

 10 BHD 1234567.768 1,234,567.768

 11 BHD –1234567.768 (1,234,567.768)

 12 BHD 12345678.768 12,345,678.768

 13 BHD –12345678.768 (12345678.768) [1]

 14 BHD 123456789.768 123,456,789.768 [2]

 15 BHD –123456789.768 (123456789.768)

 16 BHD 1234567890.768 1234567890.768

 17 BHD –1234567890.768 *************** [3]

 18 BHD 12345678901.768 12345678901.768 [1,2]

 19 BHD –12345678901.768 *************** [3]

 20 BHD 123456789012.768 *************** [3]

 21 USD 123456.765 123,456.765

 22 USD 123456.7654 123,456.7654 [2]

 23 USD 123456.76543 123,456.76543 [2,4]

Code Name Precision

USD US dollars 2

BHD Bahraini dinars 3

JPY Japanese yen 0

[1] – Thousands indicators are stripped

[2] – Digit occupies space normally reserved for

 positive or negative indicator

[3] – Value cannot fit in the field: overflow

 condition

[4] – Radix is shifted to the left due to the precision

 of the number exceeding MINIMUM_PRECISION

If the precision of the input number is less than the precision of the
currency then the number is padded with 0’s to match the precision of
the currency.

 If the precision of the input number is greater than the precision of the
currency then the radix of that number might get misaligned from
other currency amounts in the column.

If there is one space allocated on the right for displaying the positive or
negative format character (for example the profile option for displaying
negative number is set to ”()” or ”<>”) and the current number does
not use that space (if the number is positive) then that space is used. If
this is not sufficient, then the number is left shifted to display the full
precision.

18 – 14 Oracle Applications Developer’s Guide

If the formatted number does not fit within the DISPLAY_WIDTH then
the user exit strips off all thousands separators so as to fit the number
in the allowable DISPLAY_WIDTH. The amount may again be
misaligned. If it still does not fit then asterisks are printed in that field
to indicate an overflow condition.

Currency values are never rounded or truncated on display by default.
However, the values can be scaled by a number if explicitly specified
by the DISPLAY_SCALING_FACTOR token.

The tokens MINIMUM_PRECISION=”:P_MIN_PRECISION” (where
the lexical argument was designated as 3) and DISPLAY_WIDTH=”15”
apply to all items.

Items 1 through 5 show how various currencies display in a mixed
currency region with a MINIMUM_PRECISION of 3. All values align
along the radix character.

Items 6 through 20 depict how positive and negative values are
displayed as both amounts progressively increase in magnitude
(DISPLAY_WIDTH is a constant 15). When the formatted value
exceeds DISPLAY_WIDTH the thousands separators are removed as in
items 13, 15, 16, and 18. When the unformatted value exceeds
DISPLAY_WIDTH asterisks are displayed indicating an overflow as in
items 17, 19, and 20. Notice also that the positive value shifts right into
the space normally reserved for the negative indicator.

Items 21 through 23 show the effects when displaying a value which
exceeds the MINIMUM_PRECISION. Since the negative indicator uses
a space on the right, a positive value must exceed MINIMUM_
PRECISION+1 before it shifts to the left.

18 – 15Coding Oracle Reports Concurrent Programs

Example Report Using FND FORMAT_CURRENCY

The following report illustrates how various currencies are formatted
using the FND FORMAT_CURRENCY user exit for a report which
displays mixed currency values. This document explains how you
develop such a report.

Information about the radix character and thousands separator are
determined from the location of the user. The special display for
negative and positive currency values is specified by two profile
options. Hence, a report can appear differently depending upon the
location of the user and the profile options values set.

The following reports, one run by a user in United States and the other
by a user in Germany, depict this difference. In Germany the radix
character and thousand separator are switched from the US
counterpart. In these reports, both Manama and Seattle had a loss and
the negative numbers display in parentheses () or angle brackets <>
depending upon the user’s preference.

Sample Report Output

Report 1 Run in The United States

Settings include:

• Information from the territory:

– Thousand Separator: ’,’ (comma)

– Radix Character: ’.’ (decimal)

• Profile option settings:

– Negative Format: ()

– Minimum Precision: 3

– Display Thousands Separator: Yes

18 – 16 Oracle Applications Developer’s Guide

 Net Income for January 1992

 –––––––––––––––––––––––––––

 Office Net Income Currency

 –––––– ––––––––––––––– ––––––––

 Boston 12,345.00 USD

 Chicago 123,456.76 USD

 Manama (23,456.764) BHD

 Isa Town 12,345,678.766 BHD

 Seattle (12,345.50) USD

 Tokyo 12,345,676 JPY

Report 2: Run in Germany

Settings include:

• Information from the territory:

– Thousand Separator: ’.’ (decimal)

– Radix Character: ’,’ (comma)

• Profile option settings:

– Negative Format: –XXX

– Minimum Precision: 3

– Display Thousands Separator: Yes

 Net Income for January 1992

 –––––––––––––––––––––––––––

 Office Net Income Currency

 –––––– ––––––––––––––– ––––––––

 Boston 12.345,00 USD

 Chicago 123.456,76 USD

 Manama –23.456,764 BHD

 Isa Town 12.345.678,766 BHD

 Seattle –12.345,50 USD

 Tokyo 12.345.676 JPY

18 – 17Coding Oracle Reports Concurrent Programs

Procedure

Step 1. Define Your Parameters

First define all the parameters (using the Oracle Reports Parameter
Screen). Use these parameters in the user exit calls and SQL
statements.

Name: P_CONC_REQUEST_ID

Data Data Type: NUMBER

Width: 15

Initial Value: 0

You always create this lexical parameter. ”FND SRWINIT” uses this
parameter to retrieve information about this concurrent request.

Name: P_MIN_PRECISION

Data Type: NUMBER

Width: 2

Initial Value:

You reference this lexical parameter in your FND
FORMAT_CURRENCY user exit call.

Step 2. Call FND SRWINIT

You always call FND SRWINIT from the Before Report Trigger as
follows:

SRW.USER_EXIT(’FND SRWINIT’);

This user exit sets up information for use by profile options and
other AOL features.

You always call FND SRWEXIT from the After Report Trigger as
follows:

SRW.USER_EXIT(’FND SRWEXIT’);

This user exit frees all the memory allocation done in other AOL exits.

Step 3. Create the Currency Code Query

Create a query which selects the currency code and the currency
amount from your table. In this case you might use:

 SELECT OFFICE,

 SUM(AMOUNT) C_INCOME,

 CURRENCY_CODE C_CURRENCY

18 – 18 Oracle Applications Developer’s Guide

 FROM OFFICE_INCOME

 WHERE TRANSACTION_DATE = ’01/92’

 ORDER BY BY OFFICE

Step 4. Create a column for the currency call

Create one column (C_NET_INCOME) which contains the user exit
(FND FORMAT_CURRENCY) call. This is a formula column which
formats the number and displays it. The user exit call looks like the
following:

SRW.REFERENCE(:C_CURRENCY);

SRW.REFERENCE(:C_INCOME);

SRW.USER_EXIT(’FND FORMAT_CURRENCY

CODE=”:C_CURRENCY”

DISPLAY_WIDTH=”15”

AMOUNT=”:C_INCOME”

DISPLAY=”:C_NET_INCOME”

MINIMUM_PRECISION=”:P_MIN_PRECISION”’);

RETURN(:C_NET_INCOME);

Suggestion: Always reference any source column/parameter
which is used as a source for data retrieval in the user exit.
This guarantees that this column/parameter will contain the
latest value and is achieved by ”SRW.REFERENCE” call as
shown above.

Here the column name containing currency code is ”C_CURRENCY”
and the field width of the formatted amount field is 15. The source
column is ”C_INCOME” and the resulting formatted output is placed
in ”C_NET_INCOME”. The minimum precision of all the currencies
used for this report is retrieved from the lexical P_MIN_PRECISION
(which in this case is set to 3). At the end of the user exit call remember
to reference the column ”C_NET_INCOME” by
RETURN(:C_NET_INCOME), otherwise the column may not contain
the current information.

You do not include the MINIMUM_PRECISION token for single
currency reports.

Step 5. Hide the Amount

In Default layout, unselect the amount column (C_INCOME) so that it
is not displayed in the report. Do not display this amount because it
contains the unformatted database column value. In the layout painter

�

18 – 19Coding Oracle Reports Concurrent Programs

update the boiler plate text for each displayed currency field (which in
this case are C_CURRENCY and C_NET_INCOME)

Attention: Repeat steps 4 and 5 for each displayed currency
field.

Step 6. Create the title

In the layout painter paint the boiler plate text title as follows moving
previous fields and boiler plate text as necessary:

 Net Income for January 1992

 –––––––––––––––––––––––––––

Step 7. Define Your Report with Application Object Library

Define your report with Standard Request Submission. Ensure you
define an argument P_MIN_PRECISION which defaults to
$PROFILE$.MIXED_PRECISION.

The report is now ready to be run.

Summary

A brief summary of the report specifications:

Lexical Parameters:

• P_CONC_REQUEST_ID (required)

• P_MIN_PRECISION (needed for mixed currency reports)

 Column Names:

• C_CURRENCY

• C_NET_INCOME

AOL User Exits:

• FND SRWINIT (required)

• FND FORMAT_CURRENCY

• FND SRWEXIT (required)

18 – 20 Oracle Applications Developer’s Guide

Oracle Reports Troubleshooting

This section contains tips for troubleshooting common problems and
error messages.

Concurrent Request Logs

The first step of your debugging should be to examine the log of
concurrent request for obvious errors.

Running from the Operating System

If you cannot determine the cause of problem from the concurrent
request log, run the report from the operating system. Use the Oracle
Applications linked Oracle Reports executable to run the report. Along
with the standard Oracle Reports arguments, run the report with the
arguments passed by the concurrent manager. The arguments passed
by the concurrent manager can be found in the beginning of the
concurrent request log under the title ”Arguments”. For example, the
menu report can be run from the operating system as follows:

ar25run userid=name/password@database \

 destype=file desname=try.out \

 desformat=$FND_TOP/srw/L batch=yes \

 report=$FND_TOP/srw/FNDMNRMT \

 P_CONC_REQUEST_ID=123456 \

 ROOT_MENU=”Y” \

 MENU_APPL_ID=”0” MENU_ID=”0”

The P_CONC_REQUEST_ID value is a request ID for the same
program that was submitted through Oracle Applications (the request
could either be already completed, or could be a pending request that
has been placed on hold). It is important that the request ID be for the
same program (and submitted from the appropriate user and
responsibility) so that the concurrent manager environment can be
mimicked as closely as possible. The last three arguments
(ROOT_MENU=”Y” MENU_APPL_ID=”0” MENU_ID=”0”) are
arguments to the report that appeared in a concurrent request log.

If you can run the report from the command line, that indicates that
there is a problem in the environment from which the concurrent
manager was started. Ensure that you start the concurrent managers
from the same environment in which you are trying to run the report.

18 – 21Coding Oracle Reports Concurrent Programs

Use r25run in Place of ar25run

 If you cannot run ar25run as above, run a report without any Oracle
Applications user exists using r25run. For this debugging step
Application Object Library provides a report
$FND_TOP/srw/FNDNOEXT.rdf (the UNIX path name) which has no
user exits.

If this report fails, you may be running Oracle Reports from the wrong
environment or your Oracle Reports installation may be incorrect.
Contact Oracle Tools Support if FNDNOEXT.rdf cannot run.

Run the Print Environment Variable Values Report

The concurrent manager inherits its environment variables from the
shell from which it was started and then runs reports using this
environment. This environment could be different from that a a user
sees logging into the Applications because the concurrent manager may
have been started by a different user with different environment
settings. Due to this difference, it is sometimes difficult and confusing
to determine the cause of errors in running reports.

If you want to examine the value of few variables, you can run ”Prints
environment variable values” report to print out the variable as seen
by the concurrent manager to see if it is correct. Very often problems
such as a problem in compilation or the concurrent managers inability
to locate a library happen due to an incorrect REPORTS25_PATH.

Emulate Concurrent Manager Environment

For UNIX platforms, to assist in determining where the problem lies,
Oracle Application Object Library ships a program called
$FND_TOP/srw/ar25run.oc. This program helps you emulate the
concurrent manager environment when testing reports from the
operating system command line.

This program writes all the environment variables and arguments
passed to it in a log file ar25run.log (located by default in the
$FND_TOP/$APPLLOG directory) Save the ar25run.oc source code to
a file named ar25run.oc, compile it and rename the executable as
ar25run (referred to as ”new ar25run” from now on). Save
$FND_TOP/bin/ar25run (referred to as ”old ar25run” from now on)
into some other file and place new ar25run into $FND_TOP/bin. For
your convenience, compiling and relinking has been incorporated into
fnd.mk which will, by default build an executable
$FND_TOP/bin/ar25rund, which you can then rename to ar25run and
which would be your new ar25run.

18 – 22 Oracle Applications Developer’s Guide

In the ar25run.oc code, you may hardcode the directory path for
ar25run.log (for example, change ar25run.log to
”/dev/fnd/6.0/log/ar25run.log”) to direct the log file to a more
appropriate directory.

Submit the report from concurrent manager and look at the
ar25run.log.

Then run the reports from the operating system with the same
arguments as shown by ar25run.log using old ar25run.

If running with the same arguments does not help, emulate the same
environment variables which ar25run.log shows. This can be done by
printing your environment variables from the command line, sorting
them and the ar25run.log environment variables properly, and then
comparing them.

Frequently Asked Questions

Why does my report only fail from the concurrent manager?

This is because the environment from which the concurrent manager
launches a report is different from the one you are using when running
the report from the command line.

Why does my report show different data?

If your report shows different data when you run it as a standalone
report than when you run it from the concurrent manager, you may
find that you get different data from the different situations. This is
usually due to different (or no) profile option or other values being
passed to your report by the concurrent manager. This is especially
likely if your report accesses multiple organizations data.

If you have commented out the calls to SRWINIT and SRWEXIT to test
your report from a development environment that does not have the
Oracle Application Object Library user exits linked in (for example,
Microsoft Windows), check that you have re–enabled those calls before
trying to run your report from the concurrent manager.

Why do I get the error REP–0713 when I run my report?

Oracle Reports uses a text file called uiprint.txt to hold printer names.
If your printer name is not in this file, you can get the REP–0713 error.

18 – 23Coding Oracle Reports Concurrent Programs

My bitmapped report does not print in landscape. Why?

Print styles such as Landscape are associated with printer drivers that
send instructions telling the printer how to print text files. However,
bitmapped reports are not text files.

Bitmapped reports are output as PostScript files. The PostScript file is
a set of instructions telling the printer exactly what to print and how to
print it. To get a landscape report, the PostScript file must be generated
as landscape.

If you want a landscape bitmapped report, specify this either in the
Reports Designer or in the execution options of your concurrent
program.

When printing bitmapped reports, a print style is still needed to
determine the printer driver used. To avoid confusion, create a special
print style for bitmapped reports and make that the required style for
all bitmapped reports in the Define Concurrent Programs form.

Why do I get many pages of nonsense when I print my report?

You are looking at the PostScript code. The printer driver you are
using caused the printer not to recognize the file as being PostScript.
Check your driver. Some initialization strings will cause this problem.
Also, do not use the program ”enscript” to do the printing.

What does the ”REP–0065: Virtual Memory System error” mean?

Unfortunately this is not a very informative error message. This could
occur due to various reasons. Try the following to isolate the problem:

• Is your /tmp directory getting full? By default Oracle Reports
uses this directory to write temporary files. These files could be
directed to another directory using the environment variable
TMPDIR. If you have another large partition on your machine,
set TMPDIR to this partition and restart the concurrent manager
from that environment.

• Are the failing reports using Page N of M? This can consume a
lot of Oracle Reports virtual memory.

• If possible, try running the reports against a smaller database.

18 – 24 Oracle Applications Developer’s Guide

C H A P T E R

19
T

19 – 1Coding C or Pro*C Concurrent Programs

Coding C or Pro*C
Concurrent Programs

his chapter provides an overview of how to code a concurrent
program in C or Pro*C. It provides utility routines you can use in your
concurrent programs, along with examples.

The following topics are discussed in this chapter:

• Coding C and Pro*C Concurrent Programs

• Concurrent Processing Pro*C Utilitiy Routines

19 – 2 Oracle Applications Developer’s Guide

Coding C and Pro*C Concurrent Programs

This chapter describes writing a concurrent program in C or Pro*C. It
includes utilities you can use along with examples of their usage.

Pro*C Concurrent Programs

When writing a program using C or Pro*C, use the Unified Concurrent
Processing API templates EXMAIN.c and EXPROG.c to code your
program. See your Oracle Applications System Administrator’s Guide for
the exact location of these templates on your operating system.

Pro*C Concurrent Programs
Oracle Applications System Administrator’s Guide

Unified Concurrent Processing API afprcp()

The templates EXMAIN.c and EXPROG.c provide the correct
initialization for your system for your programs. You can use
concurrent program execution files written using these templates with
either the spawned or immediate execution methods.

To code a custom program, copy the files to your own directory and
rename them before changing them. We recommend against modifying
the original templates.

EXMAIN.c is the main program which performs initialization and calls
your subroutine using the afprcp() function. EXPROG.c is the
subroutine which contains your application code.

Replace SUBROUTINE_NAME everywhere it appears in both files
with the actual name of your subroutine. You should call afpend() at
the end of your subroutine to clean up and return from your concurrent
program. The utility afpend() closes the database connection, frees
Application Object Library memory, closes Application Object Library
files, and returns the status code you specify. You can specify one of
three status codes:

• FDP_SUCCESS

• FDP_ERROR

• FDP_WARNING

The following are examples of EXMAIN and EXPROG:

EXMAIN.c

19 – 3Coding C or Pro*C Concurrent Programs

/*==+

 | Example MAIN for concurrent programs |

 | File is in $FND_TOP/usrxit/EXMAIN.c |

 +==*/

/*––+

 | Copy this file to make a main for your |

 | concurrent program. Replace SUBROUTINE_NAME |

 | everywhere (2 places) with the actual name of |

 | your concurrent program subroutine. (This is |

 | the same subroutine name you register with |

 | Application Object Library.) |

 | |

 | Do not add or modify any other statements in |

 | this file. |

 +––*/

#ifndef AFPUB

#include <afpub.h>

#endif

#ifndef AFCP

#include <afcp.h>

#endif

AFP_FUNCS SUBROUTINE_NAME;

int main(argc, argv)

int argc;

char *argv[];

{

 afsqlopt options;

 return(afprcp(argc, argv, (afsqlopt *)NULL,

 (afpfcn *)SUBROUTINE_NAME));

}

EXPROG.c

19 – 4 Oracle Applications Developer’s Guide

/*==+

 | Example SUBROUTINE for concurrent programs |

 | File is in $FND_TOP/usrxit/EXPROG.c |

 +==*/

/*––+

 | Copy this file to write a subroutine for your |

 | concurrent program. Replace SUBROUTINE_NAME |

 | with the actual name of your concurrent program |

 | (This is the same subroutine name you register |

 | with Application Object Library.) |

 | |

 | Remember to register your subroutine and |

 | concurrent program with Application Object |

 | Library and to add it to a library if you wish |

 | it to be run as an immediate program. |

 | |

 | Add your code where indicated. |

 | |

 | Call afpend() to exit your subroutine. |

 +––*/

#ifndef AFPUB

#include <afpub.h>

#endif

#ifndef AFCP

#include <afcp.h>

#endif

/*––+

 | Add other include files you need here. |

 | |

 | You will need fddmsg.h if you use Message |

 | Dictionary. |

 +––*/

boolean SUBROUTINE_NAME(argc, argv, reqinfo)

int argc;

text *argv[];

19 – 5Coding C or Pro*C Concurrent Programs

dvoid *reqinfo;

{

/*

 * This is the beginning of an example program.

 * If you copied this source to create your program, delete

the lines below.

 */

 int i;

 text buffer[241];

 fdpwrt(AFWRT_LOG | AFWRT_NEWLINE, ”Hello World.”);

 fdpwrt(AFWRT_LOG | AFWRT_NEWLINE, ”Hello World.”);

 fdpwrt(AFWRT_OUT | AFWRT_NEWLINE, ”This is a test! Take

one.”);

 fdpwrt(AFWRT_OUT | AFWRT_NEWLINE, ”This is a test! Take

two.”);

 fdpwrt(AFWRT_OUT | AFWRT_NEWLINE,

”–––––––––––––––––––––––––”);

 for (i = 0; i < argc; i++)

 {

 sprintf(buffer, ”argv[%d]: %s”, i, argv[i]);

 fdpwrt(AFWRT_OUT | AFWRT_NEWLINE, buffer);

 }

/*

 * This is the end of an example program.

 * If you copied this source to create your program,

 * delete the lines above.

 */

/*––+

 | Add your code here |

 +––*/

/*––+

 | Finished |

 | |

 | Always call afpend() to clean up before |

19 – 6 Oracle Applications Developer’s Guide

 | returning from your subroutine. |

 | |

 | return(afpend(status, reqinfo, message)); |

 | |

 | status is FDP_SUCCESS |

 | FDP_ERROR |

 | FDP_WARNING |

 | |

 | message is a completion message displayed on |

 | the View Requests screen when your concurrent |

 | program/request completes. Possible values are |

 | ”” for successful completion |

 | ”text” for text |

 | buffer for text stored in a buffer |

 | afdget() for a message stored in Message |

 | Dictionary |

 +––*/

 return(afpend(FDP_SUCCESS, reqinfo, ””));

/* For successful completion */

}

Accepting Input Parameters

Use the standard argument passing method when you write a Pro*C
concurrent program. This method, provided by the Unified
Concurrent Processing API, retrieves the parameters you pass to your
program, loads them into arvg[] and sets argc, logs onto the database,
and loads the user profile option values.

If you want to make your program available through Standard Request
Submission, the first parameter you define is in argv[1]. You do not
define the parameter in argv[0].

Returning From Your Pro*C Program

When your program completes, you must use Oracle Application
Object Library macro afpend() to exit and to change the status of your
concurrent request.

19 – 7Coding C or Pro*C Concurrent Programs

The macro afpend() logs your process off of the database, indicates to
the concurrent manager whether your program was successful, and
writes a completion message to your concurrent request’s log file.
Note that you should surround the macros with parentheses. If your
program was successful, the last statement should be:

return(afpend(FDP_SUCCESS, reqinfo, ””));

The concurrent manager uses this macro to display a
Completed/Normal phase/status when a user views this concurrent
request in the Requests form. If you do not use afpend() to exit from
your program and use exit() instead, the concurrent manager marks the
request as Completed/Error.

If your program detects an error and you want to display your own
error message text, the last statement should be:

return(afpend(FDP_ERROR, reqinfo, ”error_message”));

Your users see a phase/status of Completed/Error on the Requests
form.

If your program completes successfully, but detects some exception
that needs attention, you can return a status of ”WARNING” to
indicate the situation. The final phase/status of your request on the
Requests form is then Completed/Warning. Your last statement should
be:

return(afpend(FDP_WARNING, reqinfo, ”error_message”));

If your program detects an error and you want to display an error
message from Message Dictionary, the last statements should be:

afdname(application_short_name, message_name);

return(afpend(FDP_FAILURE, reqinfo, afdget()));

You use the Oracle Application Object Library provided C routines
afdget() and afdname() to get the error message you need from
Message Dictionary.

The concurrent manager displays this error message in the Completion
Text field on Request Detail window of the Requests form.

Implementing Message Dictionary (See page 12 – 5)

Naming Your Execution File

Use the appropriate file naming convention for your operating system
as described in Oracle Applications Concepts. If your operating system is
case–sensitive, your file name should be in uppercase, and some
operating systems require file name extensions. The execution file

Syntax

19 – 8 Oracle Applications Developer’s Guide

name should match the compile file name of your copy of the
EXMAIN.c program.

When you later define your spawned concurrent program executable
with Oracle Application Object Library, you define your program with
the same name as your file name without an extension as the
executable file. For example, on Unix if you name your executable file
APPOST, then you must define your concurrent program executable
with the execution file field APPOST.

Pro*C Concurrent Programs
(Oracle Applications System Administrator’s Guide)

Testing Your Pro*C Program

You can run your concurrent program directly from the operating
system without running it through a concurrent manager. Use this
method if you want to pass arguments to your program and use
default user profile options.

PROGRAM orauser/pwd 0 Y [parameter1] [parameter2] ...

The name of your execution file containing your
program. This is the name you enter in the
Execution File field of the Define Concurrent
Program Executable form.

The ORACLE username and password that
connects you to data that your program uses.

Program specific parameters. If a parameter
contains spaces or double quotes, you must use a
special syntax. Refer to your Oracle Applications
System Administrator’s Guide for the syntax on your
operating system. For example in Unix, you can
pass a character string using ”This is an example
of a \” (double quote)”.

Implementing Standard Request Submission (See page
22 – 8)

PROGRAM

orauser/pwd

parameter1, 2 ...

19 – 9Coding C or Pro*C Concurrent Programs

Compiling Your Immediate Concurrent Program

Once you compile all the files in your concurrent program, you can
leave them as distinct object files, or put them in an object library. You
can place your object files or object library in the lib directory under
your application’s top directory. For executables, you can place them
in the bin directory under their application’s top directory.

Header Files Used With Concurrent Programs

Effective with Release 10, Oracle Application Object Library established
a new system of C program header files. Your spawned and immediate
C programs, as well as any user exits written in C, should follow the
following header conventions.

The following table lists the header files used with C APIs in Release
11.

Header File Comments

afpub.h The primary header file for AOL API’s. Include with all C pro-
grams accessing AOL routines.

afcp.h The header file used with concurrent programs using the supplied C
API’s for concurrent processing. All Pro*C programs used in con-
current processing should include this header file.

afuxit.h The header used with C API’s used in user exits. All Pro*C user
exits should include this header file.

afufld.h The header file containing the get/put field value functions. Use
this header file with <afuxit.h>.

fddutl.h The header file used with message dictionary code. All Pro*C pro-
grams accessing the message dictionary feature should include this
header.

fdpopt.h The header file used to access profile options. All Pro*C programs
accessing profile options should include this header.

Table 19 – 1 (Page 1 of 1)

If you have custom APIs that call other header files, ensure you use the
appropriate headers for the new standard.

In addition, the macro bool is obsolete in Release 11 and should be
replaced with boolean.

�

Summary

Description

Return Value

Arguments

19 – 10 Oracle Applications Developer’s Guide

Concurrent Processing Pro*C Utility Routines

This section describes C routines that you can use in your concurrent
programs. Some of these routines are optional, and some are required
and depend on the type of concurrent program you are writing. This
section also includes examples of Pro*C concurrent programs.

Attention: Do not call fdpscr(), fdpwrt(), or other concurrent
manager functions from user exits. The only supported
interface is request submission via the PL/SQL stored
procedure API, which you can code from your form.

For information on user profile C options afpoget() and afpoput(), see
the User Profiles chapter.

User Profile C Functions (See page 13 – 12)

afpend()

 #include <afcp.h>

return(afpend(status, reqinfo, message));

Call the function afpend() at the end of your subroutines written with
the unified concurrent processing API templates. Use afpend to clean
up and return from your concurrent program with a status code and
completion message. It closes the database connection, frees
Application Object Library memory, closes Application Object Library
files and returns the specified status code.

This function returns TRUE if it is successful, and returns FALSE if an
error occurs.

The status code you want to return. Valid status
codes are FDP_SUCCESS, FDP_WARNING AND
FDP_ERROR.

The completion message displayed on the View
Requests screen when your concurrent request
completes.

Possible message values are:

status

reqinfo

message

Example

Summary

19 – 11Coding C or Pro*C Concurrent Programs

No content, for successful completion.

For text.

For text stored in a buffer.

For a message stored in the Message Dictionary.

 /* use afpend to return messages with a success code */

 char errbuf[241];

 if (!submit())

 {

 /* return failure with a message */

 return(afpend(FDP_ERROR, reqinfo,

 ”Failed in submit()”));

 }

 else if (!setprofiles())

 {

 /* return warning with a message */

 return(afpend(FDP_WARNING, reqinfo,

 ”Failed in setprofiles()”));

 }

 else if (!subrequest(argc, argv, reqinfo, errbuf))

 {

 /* return failure with a message */

 return(afpend(FDP_ERROR, reqinfo, errbuf));

 }

 else

 {

 /* Successful completion. */

 return(afpend(FDP_SUCCESS, reqinfo, ””));

 }

fdpfrs()

afreqstate fdpfrs (request_id, errbuf);

text request_id;

text errbuf;

””

”text”

buffer

afdget()

Description

Return Value

Arguments

Example

19 – 12 Oracle Applications Developer’s Guide

The fdpfrs() command returns the status of a specific request id. Us
this command with the return status macros ORAF_REQUEST_XXX.

This function returns the state of the request id passed as an argument.

A null terminated string containing the request ID
you want to inquire about.

A character string returned by fdpfrs() that
contains an error message if fdpfrs() fails. You
should declare effbuf to be size 241.

#ifndef AFPUB

#include <afpub.h>

#endif

#ifndef AFCP

#include <afcp.h>

#endif

boolean check_request_status(request_id, errbuf)

text* request_id;

text* errbuf;

{

afreqstate request_status;

request_status = fdpfrs(request_id, errbuf);

If (ORAF_REQUEST_TEST_FAILURE(request_status) ||

ORAF_REQUEST_NOT_FOUND(request_status))

return FALSE;

if (ORAF_REQUEST_COMPLETE(request_status) &&

(ORAF_REQUEST_NORMAL(request_status))

return TRUE;

return FALSE;

}

request_id

errbuf

Summary

Description

Return Value

Arguments

19 – 13Coding C or Pro*C Concurrent Programs

fdpscp()

#include <afcp.h>

boolean fdpscp(argc_ptr, argv_ptr, args_method, errbuf)

int *argc_ptr;

char **argv_ptr[];

text args_method;

text *errbuf;

This function exists for compatibility with concurrent programs written
with prior versions of Oracle Application Object Library. When writing
new concurrent programs, use the unified concurrent processing API.

The function fdpscp() was called in the first statement of any spawned
Pro*C concurrent program. This function retrieves the parameters your
program expects, loads them into the argv[] array, and prints a
standard header including the run date and time in the log file. It also
logs your program onto the database. This function connects your
program to the database using the ORACLE ID that is assigned to the
application with which your concurrent program is defined.

This function returns TRUE if it successfully retrieves all the
parameters your concurrent request is called with. Otherwise, it
returns FALSE. If this function returns FALSE, your concurrent
program should print the contents of errbuf and exit with failure.

A pointer to argc, the first argument to main(). You
should call fdpscp() using &argc.

A pointer to argv, the second argument to main().
You should call fdpscp() using &argv.

This parameter is not currently used. You should
initialize it to (text)’\0’.

A character string returned by fdpscp() that
contains an error message if fdpscp() returns

argc_ptr

argv_ptr

args_method

errbuf

Example

Summary

19 – 14 Oracle Applications Developer’s Guide

FALSE. You should declare errbuf[] to be size 241.

#include <afcp.h>

/* This is an example of a Pro*C concurrent program. This

 sample program prints its input parameter to the

 log file. */

routine()

{

text args_method = (text)’\0’;

text errbuf[241];

if (!fdpscp(&argc, &argv, args_method, errbuf)){

fdpwrt(AFWRT_LOG | AFWRT_NEWLINE,

”Error calling fdpscp”);

fdpwrt(AFWRT_LOG | AFWRT_NEWLINE, errbuf);

return(afpend(FDP_ERROR, reqinfo, ”Failed to get

arguments”));

}

if (!fdpwrt(AFWRT_LOG | AFWRT_NEWLINE, argv[1])) {

return(afpend(FDP_ERROR, reqinfo, ”Failed to write

arguments”));

}

{return(afpend(FDP_SUCCESS, reqinfo, ””));}

}

fdpscr()

#include <afcp.h>

boolean fdpscr(command, request_id, errbuf)

text *command;

text *request_id;

text *errbuf;

Description

Return Value

Arguments

Example

19 – 15Coding C or Pro*C Concurrent Programs

The fdpscr() function submits a request to run a concurrent program.
You can only call this function from a Pro*C concurrent programs. The
user profile options of the child request default to those of the parent
concurrent program. You must commit after you call this function for
your request to become eligible to be run by a concurrent manager. If
you perform a rollback without having committed, your request will be
lost.

If fdpscr() successfully submits your concurrent request, it returns
TRUE. Otherwise, fdpscr() returns FALSE.

A character string that contains the parameters to
your concurrent program, preceded by the word
CONCURRENT. You should use the same
command you use when you call a concurrent
program from a form, omitting the #FND.

A character string returned by fdpscr() that
contains the request id that is assigned to your
concurrent request. You should declare
request_id[] to be size 12.

A character string returned by fdpscr() that
contains an error message if fdpscr() returns
FALSE. You should declare errbuf[] to be size 214.

/* Submit request */

 if (!fdpscr(command, request_id, errbuf))

 {

 fdpwrt(AFWRT_LOG | AFWRT_NEWLINE,

 ”Failed to submit concurrent request”);

 fdpwrt(AFWRT_LOG | AFWRT_NEWLINE, errbuf);

 return(FALSE);

 }

 else /* Successful completion */

 {

 sprintf(errbuf, ”Concurrent request %s submitted

 successfully”, request_id);

 fdpwrt(AFWRT_LOG | AFWRT_NEWLINE, errbuf);

 return(TRUE);

command

request_id

errbuf

Summary

Description

Return Value

Arguments

19 – 16 Oracle Applications Developer’s Guide

 }

fdpwrt()

#include <fdpwrt.h>

boolean fdpwrt(flag, message)

fdcoflgs flags

text *message;

The fdpwrt() function writes a text string to a standard log or report
output file. You do not need to explicitly open and close the file.
Oracle Application Object Library names your log or report output file
in the standard naming convention as described in your Oracle
Applications Concepts.

The function fdpwrt() returns FALSE if it cannot write your message to
the file that you specify. Otherwise, fdpwrt() returns TRUE.

A macro you use to specify what file you want to
write to.

AFWRT_LOG writes to a log file. AFWRT_OUT
writes to a report output file.

You can choose options to flush the buffer or add a
newline character. Use | (bitwise OR) to turn an
option on, and use &~ (bitwise AND NOT) to turn
an option off.

AFWRT_FLUSH flushes the buffer to the file
automatically after each call. By default,
AFWRT_FLUSH is on for log files and off for
report output files. AFWRT_NEWLINE adds a
newline character (\n) at the end of the string in
the buffer before flushing the buffer. By default,
AFWRT_NEWLINE is off.

A null–terminated character string.

flag

message

Example

19 – 17Coding C or Pro*C Concurrent Programs

/* Submit request */

 if (!fdpscr(command, request_id, errbuf))

 {

 fdpwrt(AFWRT_LOG | AFWRT_NEWLINE,

 ”Failed to submit concurrent request”);

 fdpwrt(AFWRT_LOG | AFWRT_NEWLINE, errbuf);

 return(FALSE);

 }

 else /* Successful completion */

 {

 sprintf(errbuf, ”Concurrent request %s submitted

 successfully”, request_id);

 fdpwrt(AFWRT_LOG | AFWRT_NEWLINE, errbuf);

 return(TRUE);

 }

19 – 18 Oracle Applications Developer’s Guide

C H A P T E R

20

T

20 – 1Coding Concurrent Programs using Java Stored Procedures

Coding Concurrent
Programs using Java
Stored Procedures

his chapter describes how to code concurrent programs using Java
Stored Procedures.

20 – 2 Oracle Applications Developer’s Guide

Coding Concurrent Programs Using Java Stored Procedures

You can define a Java stored procedure as an executable, and then
define a concurrent program using that executable.

How to Write a Concurrent Program using a Java Stored Procedure

Follow these steps in creating a Java stored procedure concurrent
program:

1. Write your stored procedure in SQLJ or JDBC code. You can use
the FND_FILE package to write to log and output files.

2. Load the Java procedure into the database.

3. Publish the procedure in the Data Dictionary.

4. Define the executable by using the Concurrent Program
Executables form. Use the execution method ’Java Stored
Procedure’. The execution file name is the published <package
name>.<procedure name>.

5. Define the concurrent program using the Concurrent Programs
form.

Example

The following is an example of a SQLJ program. It produces a list of
concurrent programs.

import java.sql.*;

// Declare a named iterator

#sql iterator ResIterator(String prog_name, String status);

class ProgramsList {

 public static void cp_programs (String[] errbuf,

 int[] retcode,

 int[] retcode,

 String appl_name) {

 ResIterator prog = null;

 int fout = 2; /* OUTPUT File */

 int flog = 1; /* LOG File */

 try {

 #sql prog =

20 – 3Coding Concurrent Programs using Java Stored Procedures

 {select substr(user_concurrent_program_name,1,70)

 AS prog_name,

decode(enabled_flag,’Y’,’Enabled’,’N’,

’Disabled’) AS status

 from fnd_concurrent_programs_vl cp,

fnd_application_vl a

 where cp.application_id = a.application_id

 and a.application_short_name = :appl_name };

 putline(fout,

 ” Available Concurrent Programs for ” +

 appl_name, 1);

 putline(fout,

 ” –––”,

 1);

 putline(fout,”\n”, 1);

 putline(fout,

”PROGRAM NAME

 STATUS”,1);

 putline(fout,

”–––

––––––––––”,1);

 // process the results

 while(prog.next()) {

 putline(fout, prog.prog_name() + ” ” +

prog.status(), 1);

 }

 // close the iterator

 prog.close();

 errbuf[0] = ”Completed Normal”;

 retcode[0] = 0;

 } catch (SQLException e) {

 errbuf[0] = ”Program Failed”;

 try {

 putline(flog, errbuf[0], 1);

 } catch (SQLException ex) {

 errbuf[0] = ”Putline problem”;

 }

 retcode[0] = 2;

 }

 }

 static void putline(int where, String str_val, int new_line)

 throws SQLException {

 if (new_line == 1)

 #sql {Begin FND_FILE.PUT_LINE(:IN where, :IN str_val

20 – 4 Oracle Applications Developer’s Guide

); End;};

 else

 #sql {Begin FND_FILE.PUT(:IN where, :IN str_val);

End;};

 }

}

To publish the procedure in the Data Dictionary use following pl/sql
script:

create or replace package FND_CONC_JSP as

/* $Header: ProgramsList.sql 115.0 99/04/26 11:24:10 vvengala

noship $ */

Procedure programs_list(errbuf OUT varchar2,

 retcode OUT number,

 appl_short_name IN varchar2);

end conc_programs;

/

create or replace package body FND_CONC_JSP as

 procedure programs_list(errbuf OUT varchar2,

 retcode OUT number,

 appl_short_name IN varchar2)

 as language java

 name ’ProgramsList.cp_programs(java.lang.String[], int[],

java.lang.String)’;

end conc_programs;

/

C H A P T E R

21
T

21 – 1PL/SQL APIs for Concurrent Processing

PL/SQL APIs for
Concurrent Processing

his chapter describes concurrent processing APIs you can use in
your PL/SQL procedures. It also includes example PL/SQL code
using these concurrent processing APIs.

The following concurrent processing packages are covered:

• FND_CONC_GLOBAL.REQUEST_DATA: Sub–request
Submission

• FND_CONCURRENT: Information on Submitted Requests

• FND_FILE: PL/SQL: File I/O

• FND_PROGRAM: Concurrent Program Loaders

• FND_SET: Request Set Creation

• FND_REQUEST: Concurrent Program Submission

• FND_REQUEST_INFO: Request Information

• FND_SUBMIT: Request Set Submission

Summary

Description

Summary

Description

21 – 2 Oracle Applications Developer’s Guide

FND_CONC_GLOBAL Package

This package is used for submitting sub–requests from PL/SQL
concurrent programs.

FND_CONC_GLOBAL.REQUEST_DATA

function FND_CONC_GLOBAL.REQUEST_DATA return varchar2;

FND_CONC_GLOBAL.REQUEST_DATA retrieves the value of the
REQUEST_DATA global.

FND_CONC_GLOBAL.SET_REQ_GLOBALS

function FND_CONC_GLOBAL.SET_REQ_GLOBALS();

FND_CONC_GLOBAL.REQUEST_DATA retrieves the value of the
REQUEST_DATA global.

Example

/*

 * This is sample PL/SQL concurrent program submits 10

 * sub–requests. The sub–requests are submitted one at a

 * time. Each time a sub–request is submitted, the parent

 * exits to the Running/Paused state, so that it does not

 * consume any resources while waiting for the child

 * request, to complete. When the child completes the

 * parent is restarted.

 */

create or replace procedure parent (errbuf out varchar2,

 retcode out number) is

 i number;

 req_data varchar2(10);

 r number;

begin

 ––

 –– Read the value from REQUEST_DATA. If this is the

21 – 3PL/SQL APIs for Concurrent Processing

 –– first run of the program, then this value will be

 –– null.

 –– Otherwise, this will be the value that we passed to

 –– SET_REQ_GLOBALS on the previous run.

 ––

 req_data := fnd_conc_global.request_data;

 ––

 –– If this is the first run, we’ll set i = 1.

 –– Otherwise, we’ll set i = request_data + 1, and we’ll

 –– exit if we’re done.

 ––

 if (req_data is not null) then

 i := to_number(req_data);

 i := i + 1;

 if (i < 11) then

 errbuf := ’Done!’;

 retcode := 0 ;

 return;

 end if;

 else

 i := 1;

 end if;

 ––

 –– Submit the child request. The sub_request parameter

 –– must be set to ’Y’.

 ––

 r := fnd_request.submit_request(’FND’, ’CHILD’,

 ’Child ’ || to_char(i), NULL,

 TRUE, fnd_conc_global.printer);

 if r = 0 then

 ––

 –– If request submission failed, exit with error.

 ––

 errbuf := fnd_message.get;

 retcode := 2;

 else

 ––

 –– Here we set the globals to put the program into the

 –– PAUSED status on exit, and to save the state in

 –– request_data.

 ––

21 – 4 Oracle Applications Developer’s Guide

 fnd_conc_global.set_req_globals(conc_status => ’PAUSED’,

 request_data => to_char(i));

 errbuf := ’Sub–Request submitted!’;

 retcode := 0 ;

 end if;

 return;

end;

Summary

Description

Summary

Description

Summary

21 – 5PL/SQL APIs for Concurrent Processing

FND_CONCURRENT Package

FND_CONCURRENT.AF_COMMIT

function FND_CONCURRENT.AF_COMMIT;

FND_CONCURRENT.AF_COMMIT is used by concurrent programs
that use a particular rollback segment. This rollback segment must be
defined in the Define Concurrent Program form.

FND_CONCURRENT.AF_COMMIT executes the COMMIT command
for the specified rollback segment.

FND_CONCURRENT.AF_COMMIT has no arguments.

FND_CONCURRENT.AF_ROLLBACK

function FND_CONCURRENT.AF_ROLLBACK;

FND_CONCURRENT.AF_ROLLBACK is used by concurrent programs
that use a particular rollback segment. This rollback segment must be
defined in the Define Concurrent Program form.

FND_CONCURRENT.AF_ROLLBACK executes the ROLLBACK
command for the specified rollback segment.

FND_CONCURRENT.AF_ROLLBACK has no arguments.

FND_CONCURRENT.GET_REQUEST_STATUS (Client or Server)

function FND_CONCURRENT.GET_REQUEST_STATUS

 (request_id IN OUT number,

 application IN varchar2 default NULL,

 program IN varchar2 default NULL,

 phase OUT varchar2,

 status OUT varchar2,

 dev_phase OUT varchar2,

 dev_status OUT varchar2,

 message OUT varchar2) return boolean;

Description

Arguments (input)

Arguments (output)

21 – 6 Oracle Applications Developer’s Guide

Returns the status of a concurrent request. If the request has already
completed, also returns a completion message.

FND_CONCURRENT.GET_REQUEST_STATUS returns both
“user–friendly” (i.e., translatable) phase and status values, as well as
“developer” phase and status values that can drive program logic.

The request ID of the program to be checked.

Short name of the application associated with the
concurrent program. This parameter is necessary
only when the request_id is not specified.

Short name of the concurrent program (not the
executable). This parameter is necessary only
when the request_id is not specified. When
application and program are provided, the request
ID of the last request for this program is returned
in request_id.

The user–friendly request phase from
FND_LOOKUPS.

The user–friendly request status from
FND_LOOKUPS.

The request phase as a constant string that can be
used for program logic comparisons.

The request status as a constant string that can be
used for program logic comparisons.

The completion message supplied if the request has
completed.

request_id

application

program

phase

status

dev_phase

dev_status

message

Example

21 – 7PL/SQL APIs for Concurrent Processing

 begin

 call_status boolean;

 rphase varchar2(80);

 rstatus varchar2(80);

 dphase varchar2(30);

 dstatus varchar2(30);

 message varchar2(240);

 call_status :=

FND_CONCURRENT.GET_REQUEST_STATUS(<Request_ID>, ’’, ’’,

 rphase,rstatus,dphase,dstatus, message);

 end;

In the above example, rphase and rstatus receive the same phase and
status values as are displayed on the Concurrent Requests form. The
completion text of a completed request returns in a message.

Any developer who wishes to control the flow of a program based on a
request’s outcome should use the following values to compare the
request’s phase and status.

Possible values for dev_phase and dev_status are listed and described
in the following table:

dev_phase dev_status Description

PENDING NORMAL Request is waiting for the next available manager.

STANDBY A constrained request (i.e. incompatible with cur-
rently running or actively pending programs) is
waiting for the Internal concurrent manager to re-
lease it.

SCHEDULED Request is scheduled to start at a future time or date.

PAUSED Child request is waiting for its Parent request to
mark it ready to run. For example, a report in a re-
port set that runs sequentially must wait for a prior
report to complete.

RUNNING NORMAL Request is being processed.

WAITING Parent request is waiting for its sub–requests to com-
plete.

Summary

21 – 8 Oracle Applications Developer’s Guide

Descriptiondev_statusdev_phase

RESUMING Parent request is waiting to restart after its sub–re-
quests have completed.

TERMINAT-
ING

A user has requested to terminate this running re-
quest.

COMPLETE NORMAL Request completed successfully.

ERROR Request failed to complete successfully.

WARNING Request completed with warnings. For example, a
report is generated successfully but failed to print.

CANCELLED Pending or Inactive request was cancelled.

TERMI-
NATED

Running request was terminated.

INACTIVE DISABLED Concurrent program associated with the request is
disabled.

ON_HOLD Pending request placed on hold.

NO_
MANAGER

No manager is defined to run the request.

SUSPENDED This value is included for upward compatibility. It
indicates that a user has paused the request at the
OS level.

Table 21 – 1 (Page 2 of 2)

FND_CONCURRENT.WAIT_FOR_REQUEST (Client or Server)

function FND_CONCURRENT.WAIT_FOR_REQUEST

 (request_id IN number default NULL,

 interval IN number default 60,

 max_wait IN number default 0,

 phase OUT varchar2,

 status OUT varchar2,

 dev_phase OUT varchar2,

 dev_status OUT varchar2,

 message OUT varchar2) return boolean;

Description

Arguments (input)

Arguments (output)

Summary

Description

Arguments (input)

21 – 9PL/SQL APIs for Concurrent Processing

Waits for request completion, then returns the request phase/status
and completion message to the caller. Goes to sleep between checks for
request completion.

The request ID of the request to wait on.

Number of seconds to wait between checks (i.e.,
number of seconds to sleep.)

The maximum time in seconds to wait for the
request’s completion.

The user–friendly request phase from the
FND_LOOKUPS table.

The user–friendly request status from the
FND_LOOKUPS table.

The request phase as a constant string that can be
used for program logic comparisons.

The request status as a constant string that can be
used for program logic comparisons.

The completion message supplied if the request has
already completed.

FND_CONCURRENT.SET_COMPLETION_STATUS (Server)

function FND_CONCURRENT.SET_COMPLETION_STATUS

 (status IN varchar2,

 message IN varchar2) return boolean;

Call SET_COMPLETION_STATUS from a concurrent program to set its
completion status. The function returns TRUE on success, otherwise
FALSE.

The status to set the concurrent program to. Either
NORMAL, WARNING, or ERROR.

request_id

interval

max_wait

phase

status

dev_phase

dev_status

message

status

21 – 10 Oracle Applications Developer’s Guide

An optional message.message

�

Summary

Description

Arguments (input)

Summary

21 – 11PL/SQL APIs for Concurrent Processing

FND_FILE: PL/SQL File I/O

The FND_FILE package contains procedures to write text to log and
output files. In Release 11i, these procedures are supported in all types
of concurrent programs.

For testing and debugging, you can use the procedures
FND_FILE.PUT_NAMES and FND_FILE.CLOSE. Note that these two
procedures should not be called from a concurrent program.

FND_FILE supports a maximum buffer line size of 32K for both log
and output files.

Attention: This package is not designed for generic PL/SQL
text I/O, but rather only for writing to request log and output
files.

 PL/SQL File I/O Processing (See page 17 – 3)

FND_FILE.PUT

procedure FND_FILE.PUT

 (which IN NUMBER,

 buff IN VARCHAR2);

Use this procedure to write text to a file (without a new line character).
Multiple calls to FND_FILE.PUT will produce concatenated text.
Typically used with FND_FILE.NEW_LINE.

Log file or output file. Use either FND_FILE.LOG
or FND_FILE.OUTPUT.

Text to write.

FND_FILE.PUT_LINE

procedure FND_FILE.PUT_LINE

 (which IN NUMBER,

 buff IN VARCHAR2);

which

buff

Description

Arguments (input)

Example

Summary

Description

Arguments (input)

Example

21 – 12 Oracle Applications Developer’s Guide

Use this procedure to write a line of text to a file (followed by a new
line character). You will use this utility most often.

Log file or output file. Use either FND_FILE.LOG
or FND_FILE.OUTPUT.

Text to write.

Using Message Dictionary to retrieve a message already set up on the
server and putting it in the log file (allows the log file to contain a
translated message):

 FND_FILE.PUT_LINE(FND_FILE.LOG, fnd_message.get);

Putting a line of text in the log file directly (message cannot be
translated because it is hardcoded in English; not recommended):

 fnd_file.put_line(FND_FILE.LOG,’Warning: Employee ’||

 l_log_employee_name||’ (’||

 l_log_employee_num ||

 ’) does not have a manager.’);

FND_FILE.NEW_LINE

procedure FND_FILE.NEW_LINE

 (which IN NUMBER,

 LINES IN NATURAL := 1);

Use this procedure to write line terminators (new line characters) to a
file.

Log file or output file. Use either FND_FILE.LOG
or FND_FILE.OUTPUT.

Number of line terminators to write.

To write two new line characters:

 fnd_file.new_line(FND_FILE.LOG,2);

which

buff

which

lines

Summary

Description

�

Arguments (input)

Example

Summary

Description

21 – 13PL/SQL APIs for Concurrent Processing

FND_FILE.PUT_NAMES

procedure FND_FILE.PUT_NAMES

 (p_log IN VARCHAR2,

 p_out IN VARCHAR2,

 (p_dir IN VARCHAR2);

Sets the temporary log and out filenames and the temp directory to the
user–specified values. DIR must be a directory to which the database
can write. FND_FILE.PUT_NAMES should be called before calling any
other FND_FILE function, and only once per session.

Attention: FND_FILE.PUT_NAMES is meant for testing and
debugging from SQL*Plus; it does nothing if called from a
concurrent program.

Temporary log filename.

Temporary output filename.

Temporary directory name.

BEGIN

fnd_file.put_names(’test.log’, ’test.out’,

’/local/db/8.0.4/db–temp–dir/’);

fnd_file.put_line(fnd_file.output,’Called stored

procedure’);

/* Some logic here... */

fnd_file.put_line(fnd_file.output, ’Reached point A’);

/* More logic, etc... */

fnd_file.close;

END;

FND_FILE.CLOSE

procedure FND_FILE.CLOSE;

Use this procedure to close open files.

p_log

p_out

p_dir

�

Example

21 – 14 Oracle Applications Developer’s Guide

Attention: Use FND_FILE.CLOSE only in command lines
sessions. FND_FILE.CLOSE should not be called from a
concurrent program.

BEGIN

fnd_file.put_names(’test.log’, ’test.out’,

’/local/db/8.0.4/db–temp–dir/’);

fnd_file.put_line(fnd_file.output,’Called stored

procedure’);

/* Some logic here... */

fnd_file.put_line(fnd_file.output, ’Reached point A’);

/* More logic, etc... */

fnd_file.close;

END;

Error Handling

With Release 11i the FND_FILE package can raise one exception,
FND_FILE.UTL_FILE_ERROR, which is raised to indicate an
UTL_FILE error condition. Specifically, the procedures
FND_FILE.PUT, FND_FILE.PUT_LINE and FND_FILE.NEW_LINE
can raise FND_FILE.UTL_FILE_ERROR if there is an error. In addition
to this package exception, FND_FILE can also raise predefined PL/SQL
exceptions such as NO_DATA_FOUND or VALUE_ERROR.

FND_FILE will raise a UTL_FILE_ERROR if it is not able to open or
write to a temporary file. It is up to the concurrent program to error
out or complete normally, after the FND_FILE.UTL_FILE_ERROR
exception is raised. FND_FILE keeps the translated message in the
message stack before raising the UTL_FILE_ERROR exception.
Developers can get the message for FND_FILE errors and use it as a
Request Completion text. It is up to the caller to get the message from
the message stack by using the FND_MESSAGE routine within an
exception handler.

The concurrent manager will keep all the temporary file creation errors
in the request log file.

Arguments (input)

Summary

Description

Summary

21 – 15PL/SQL APIs for Concurrent Processing

FND_PROGRAM: Concurrent Program Loaders

The FND_PROGRAM package includes procedures for creating
concurrent program executables, concurrent programs with parameters
and incompatibility rules, request sets, and request groups. The
FND_PROGRAM package also contains functions you can use to check
for the existence of concurrent programs, executables, parameters, and
incompatibility rules.

The arguments passed to the procedures correspond to the fields in the
Oracle Application Object Library Release 11 forms, with minor
exceptions. In general, first enter the parameters to these procedures
into the forms for validation and debugging.

If an error is detected, ORA–06501: PL/SQL: internal error is raised.
The error message can be retrieved by a call to the function
fnd_program.message().

Some errors are not trapped by the package, notably ”duplicate value
on index”.

Note that an exception is raised if bad foreign key information is
provided. For example, delete_program() does not fail if the program
does not exist, but does fail if given a bad application name.

FND_PROGRAM.MESSAGE

function FND_PROGRAM.MESSAGE return VARCHAR2;

Use the message function to return an error message. Messages are set
when any validation (program) errors occur.

FND_PROGRAM.EXECUTABLE

procedure FND_PROGRAM.EXECUTABLE

(executable IN VARCHAR2,

application IN VARCHAR2,

description IN VARCHAR2 DEFAULT NULL,

execution_method IN VARCHAR2,

execution_file_name IN VARCHAR2 DEFAULT NULL,

Description

Arguments (input)

Summary

Description

21 – 16 Oracle Applications Developer’s Guide

subroutine_name IN VARCHAR2 DEFAULT NULL,

icon_name IN VARCHAR2 DEFAULT NULL,

language_code IN VARCHAR2 DEFAULT ’US’);

Use this procedure to define a concurrent program executable. This
procedure corresponds to the ”Concurrent Program Executable”
window accessible from the System Administrator and Application
Developer responsibilities.

Name of executable (for example, ’FNDSCRMT’).

The short name of the executable’s application, for
example, ’FND’.

Optional description of the executable.

The type of program this executable uses. Possible
values are ’Host’, ’Immediate’, ’Oracle Reports’,
’PL/SQL Stored Procedure’, ’Spawned’,
’SQL*Loader’, ’SQL*Plus’.

The operating system name of the file. Required
for all but Immediate programs. This file name
should not include spaces or periods unless the file
is a PL/SQL stored procedure.

Used only by Immediate programs. Cannot
contain spaces or periods.

Reserved for future use by internal developers
only. Specify NULL.

Language code for the name and description, for
example, ’US’.

FND_PROGRAM.DELETE_EXECUTABLE

procedure FND_PROGRAM.DELETE_EXECUTABLE

(executable IN varchar2,

application IN varchar2);

Use this procedure to delete a concurrent program executable. An
executable that is assigned to a concurrent program cannot be deleted.

executable

application

description

execution_
method

execution_
file_name

subroutine_name

icon_name

language_code

Arguments (input)

Summary

21 – 17PL/SQL APIs for Concurrent Processing

The short name of the executable to delete.

The short name of the executable’s application, for
example ’FND’.

FND_PROGRAM.REGISTER

procedure FND_PROGRAM.REGISTER

(program IN VARCHAR2,

application IN VARCHAR2,

enabled IN VARCHAR2,

short_name IN VARCHAR2,

description IN VARCHAR2 DEFAULT NULL,

executable_name IN VARCHAR2,

executable_application IN VARCHAR2,

execution_options IN VARCHAR2 DEFAULT NULL,

priority IN NUMBER DEFAULT NULL,

save_output IN VARCHAR2 DEFAULT ’Y’,

print IN VARCHAR2 DEFAULT ’Y’,

cols IN NUMBER DEFAULT NULL,

rows IN NUMBER DEFAULT NULL,

style IN VARCHAR2 DEFAULT NULL,

style_required IN VARCHAR2 DEFAULT ’N’,

printer IN VARCHAR2 DEFAULT NULL,

request_type IN VARCHAR2 DEFAULT NULL,

request_type_application IN VARCHAR2 DEFAULT NULL,

use_in_srs IN VARCHAR2 DEFAULT ’N’,

allow_disabled_values IN VARCHAR2 DEFAULT ’N’,

run_alone IN VARCHAR2 DEFAULT ’N’,

output_type IN VARCHAR2 DEFAULT ’TEXT’,

enable_trace IN VARCHAR2 DEFAULT ’N’,

restart IN VARCHAR2 DEFAULT ’Y’,

nls_compliant IN VARCHAR2 DEFAULT ’N’,

icon_name IN VARCHAR2 DEFAULT NULL,

language_code IN VARCHAR2 DEFAULT ’US’

mls_function_short_name IN VARCHAR2,

mls_function_application IN VARCHAR2,

incrementor IN VARCHAR2);

executable

application

Description

Arguments (input)

21 – 18 Oracle Applications Developer’s Guide

Use this procedure to define a concurrent program. This procedure
corresponds to the ”Concurrent Program” window accessible from the
System Administrator and Application Developer responsibilities.

The user–visible program name, for example
’Menu Report’.

The short name of the application that owns the
program. The program application determines the
Oracle user name used by the program.

Specify either ”Y” or ”N”.

The internal developer program name.

An optional description of the program.

The short name of the registered concurrent
program executable.

The short name of the application under which the
executable is registered.

Any special option string, used by certain
executables such as Oracle Reports.

An optional program level priority.

Indicate with ”Y” or ”N” whether to save the
output.

Allow printing by specifying ”Y”, otherwise ”N”.

The page width of report columns.

The page length of report rows.

The default print style name.

Specify whether to allow changing the default print
style from the Submit Requests window.

Force output to the specified printer.

A user–defined request type.

The short name of the application owning the
request type.

Specify ”Y” to allow users to submit the program
from the Submit Requests window, otherwise ”N”.

program

application

enabled

short_name

description

executable_name

executable_
application

execution_
options

priority

save_output

print

cols

rows

style

style_required

printer

request_type

request_type_
application

use_in_srs

Summary

Description

Arguments (input)

21 – 19PL/SQL APIs for Concurrent Processing

Specify ”Y” to allow parameters based on outdated
value sets to validate anyway. Specify ”N” to
require current values.

Program must have the whole system to itself.
(”Y” or ”N”)

The type of output generated by the concurrent
program. Either ”HTML”, ”PS”, ”TEXT” or
”PDF”.

Specify ”Y” if you want to always enable SQL trace
for this program, ”N” if not.

Reserved for use by internal developers only. Use
”N”.

Reserved for use by internal developers only. Use
NULL.

Language code for the name and description.

The name of the registered MLS function.

The short name of the application under which the
MLS function is registered.

The incrementor PL/SQL function name.

FND_PROGRAM.DELETE_PROGRAM

procedure FND_PROGRAM.DELETE_PROGRAM

 (program_short_name IN varchar2,

 application IN varchar2);

Use this procedure to delete a concurrent program. All references to
the program are deleted as well.

The short name used as the developer name of the
concurrent program.

The application that owns the concurrent program.

allow_
disabled_values

run_alone

output_type

enable_trace

nls_compliant

icon_name

language_code

mls_function_
short_name

mls_function_
application

incrementor

program_short_
name

application

Summary

Description

�

Arguments (input)

21 – 20 Oracle Applications Developer’s Guide

FND_PROGRAM.PARAMETER

procedure FND_PROGRAM.PARAMETER

 (program_short_name IN VARCHAR2,

application IN VARCHAR2,

sequence IN NUMBER,

parameter IN VARCHAR2,

description IN VARCHAR2 DEFAULT NULL,

enabled IN VARCHAR2 DEFAULT ’Y’,

value_set IN VARCHAR2,

default_type IN VARCHAR2 DEFAULT NULL,

default_value IN VARCHAR2 DEFAULT NULL,

required IN VARCHAR2 DEFAULT ’N’,

enable_security IN VARCHAR2 DEFAULT ’N’,

range IN VARCHAR2 DEFAULT NULL,

display IN VARCHAR2 DEFAULT ’Y’,

display_size IN NUMBER,

description_size IN NUMBER,

concatenated_description_size IN NUMBER,

prompt IN VARCHAR2 DEFAULT NULL,

token IN VARCHAR2 DEFAULT NULL);

Creates a new parameter for a specified concurrent program. This
procedure corresponds to the ”Concurrent Program Parameters”
window accessible from the System Administrator and Application
Developer responsibilities.

Attention: A newly added parameter does not show up in the
SRS form until the descriptive flexfields are compiled. The
program $FND_TOP/$APPLBIN/fdfcmp compiles the
descriptive flexfields.

The short name used as the developer name of the
concurrent program.

The short name of the application that owns the
concurrent program.

The parameter sequence number that determines
the order of the parameters.

The parameter name.

An optional parameter description.

program_short_
name

application

sequence

parameter

description

Summary

Description

Arguments (input)

21 – 21PL/SQL APIs for Concurrent Processing

”Y” for enabled parameters; ”N” for disabled
parameters.

The value set to use with this parameter.

An optional default type. Possible values are
’Constant’, ’Profile’, ’SQL Statement’, or ’Segment’.

Only required if the default_type is not NULL.

”Y” for required parameters, ”N” for optional
ones.

”Y” enables value security if the value set permits
it. ”N” prevents value security from operating on
this parameter.

Optionally specify ”High”, ”Low”, or ”Pair”.

”Y” to display the parameter, ”N” to hide it.

The length of the item in the parameter window.

The length of the item’s description in the
parameter window.

The Length of the description in the concatenated
parameters field.

The item prompt in the parameter window.

The Oracle Reports token (only used with Oracle
Reports programs).

FND_PROGRAM.DELETE_PARAMETER

procedure FND_PROGRAM.DELETE_PARAMETER

 (program_short_name IN varchar2,

 application IN varchar2

 parameter IN varchar2);

Call this procedure to remove a parameter from a concurrent program.

The short name used as the developer name of the
concurrent program.

The application that owns the concurrent program.

enabled

value_set

default_type

default_value

required

enable_security

range

display

display_size

description_size

concatenated_
description_size

prompt

token

program_short_
name

application

Summary

Description

Arguments (input)

Summary

Description

21 – 22 Oracle Applications Developer’s Guide

The parameter to delete.

FND_PROGRAM.INCOMPATIBILITY

procedure FND_PROGRAM.INCOMPATIBILITY

 (program_short_name IN VARCHAR2,

application IN VARCHAR2

inc_prog_short_name IN VARCHAR2,

inc_prog_applicationIN VARCHAR2,

scope IN VARCHAR2 DEFAULT ’Set’);

Use this procedure to register an incompatibility for a specified
concurrent program. This procedure corresponds to the ”Incompatible
Programs” window accessible from the System Administrator and
Application Developer responsibilities.

The short name used as the developer name of the
concurrent program.

The short name of the application that owns the
concurrent program

The short name of the incompatible program.

Application that owns the incompatible program.

Either ”Set” or ”Program Only”

FND_PROGRAM.DELETE_INCOMPATIBILITY

procedure FND_PROGRAM.DELETE_INCOMPATIBILITY

 (program_short_name IN VARCHAR2,

application IN VARCHAR2,

inc_prog_short_name IN VARCHAR2,

inc_prog_application IN VARCHAR2);

Use this procedure to delete a concurrent program incompatibility rule.

parameter

program_short_
name

application

inc_prog_
short_name

inc_prog_
application

scope

Arguments (input)

Summary

Description

Arguments (input)

Summary

Description

21 – 23PL/SQL APIs for Concurrent Processing

The short name used as the developer name of the
concurrent program.

Application that owns the concurrent program

Short name of the incompatible program to delete.

Arguments (input)

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

21 – 24 Oracle Applications Developer’s Guide

The name of the request group to delete.

The application that owns the request group.

FND_PROGRAM.ADD_TO_GROUP

procedure FND_PROGRAM.ADD_TO_GROUP

 (program_short_name IN VARCHAR2,

 program_application IN VARCHAR2,

 request_group IN VARCHAR2,

 group_application IN VARCHAR2);

Use this procedure to add a concurrent program to a request group.
This procedure corresponds to the ”Requests” region in the ”Request
Groups” window in System Administration.

The short name used as the developer name of the
concurrent program.

The application that owns the concurrent program.

The request group to which to add the concurrent
program.

The application that owns the request group.

FND_PROGRAM.REMOVE_FROM_GROUP

procedure FND_PROGRAM.REMOVE_FROM_GROUP

 (program_short_name IN VARCHAR2,

 program_application IN VARCHAR2,

 request_group IN VARCHAR2,

 group_application IN VARCHAR2);

Use this procedure to remove a concurrent program from a request
group.

request_group

application

program_short_
name

program_
application

request_group

group_
application

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

21 – 25PL/SQL APIs for Concurrent Processing

The short name used as the developer name of the
concurrent program.

The application that owns the concurrent program.

The request group from which to delete the
concurrent program.

The application that owns the request group.

FND_PROGRAM.PROGRAM_EXISTS

function FND_PROGRAM.PROGRAM_EXISTS

(program IN VARCHAR2,

application IN VARCHAR2)

return boolean;

Returns TRUE if a concurrent program exists.

The short name of the program

Application short name of the program.

FND_PROGRAM.PARAMETER_EXISTS

function FND_PROGRAM.PARAMETER_EXISTS

(program_short_name IN VARCHAR2,

application IN VARCHAR2,

parameter IN VARCHAR2)

return boolean;

Returns TRUE if a program parameter exists.

The short name of the program

Application short name of the program.

program_short_
name

program_
application

request_group

group_
application

program

application

program

application

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

21 – 26 Oracle Applications Developer’s Guide

Name of the parameter.

FND_PROGRAM.INCOMPATIBILITY_EXISTS

function FND_PROGRAM.INCOMPATIBILITY_EXISTS

(program_short_name IN VARCHAR2,

application IN VARCHAR2,

inc_prog_short_name IN VARCHAR2,

inc_prog_applicationIN VARCHAR2)

return boolean;

Returns TRUE if a program incompatibility exists.

The short name of the first program

Application short name of the program.

Short name of the incompatible program.

Application short name of the incompatible
program.

FND_PROGRAM.EXECUTABLE_EXISTS

function FND_PROGRAM.EXECUTABLE_EXISTS

(executable_short_name IN VARCHAR2,

application IN VARCHAR2)

return boolean;

Returns TRUE if program executable exists.

The name of the executable.

Application short name of the executable.

parameter

program

application

inc_prog_short_
name

inc_prog_
applicatoin

program

application

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

Syntax:

21 – 27PL/SQL APIs for Concurrent Processing

FND_PROGRAM.REQUEST_GROUP_EXISTS

function FND_PROGRAM.REQUEST_GROUP_EXISTS

(request_group IN VARCHAR2,

application IN VARCHAR2)

return boolean;

Returns TRUE if request group exists.

The name of the executable.

Application short name of the request group.

FND_PROGRAM.PROGRAM_IN_GROUP

function FND_PROGRAM.INCOMPATIBILITY_EXISTS

(program_short_name IN VARCHAR2,

application IN VARCHAR2,

request_group IN VARCHAR2,

group_application IN VARCHAR2)

return boolean;

Returns TRUE if a program is in a request group.

The short name of the first program.

Application short name of the program.

Name of the request group.

Application short name of the request group.

FND_PROGRAM.ENABLE_PROGRAM

procedure FND_PROGRAM_ENABLE_PROGRAM

program

application

program

application

request_group

group_
application

Description

Arguments (input)

21 – 28 Oracle Applications Developer’s Guide

(short_name IN VARCHAR2,

 application IN VARCHAR2,

 ENABLED IN VARCHAR2);

Use this procedure to enable or disable a concurrent program.

The shortname of the program.

Application short name of the program.

Specify ’Y’ to enable the program and ’N’ to
disable the program.

short_name

application

enabled

Syntax:

Description

Arguments (input)

21 – 29PL/SQL APIs for Concurrent Processing

FND_REQUEST Package

FND_REQUEST.SET_OPTIONS (Client or Server)

function FND_REQUEST.SET_OPTIONS

 (implicit IN varchar2 default ’NO’,

 protected IN varchar2 default ’NO’,

 language IN varchar2 default NULL,

 territory IN varchar2 default NULL)

 return boolean;

Optionally call before submitting a concurrent request to set request
options. Returns TRUE on successful completion, and FALSE
otherwise.

Determines whether to display this concurrent
request in the end–user Concurrent Requests form.
(All requests are automatically displayed in the
System Administrator’s privileged Concurrent
Requests form, regardless of the value of this
argument.) Specify ’NO’, ’YES’, ’ERROR’, or
’WARNING’.

’NO’ allows the request to be viewed on the
end–user Concurrent Requests form.

’YES’ means that the request may be viewed only
from the System Administrator’s privileged
Concurrent Requests form.

’ERROR’ causes the request to be displayed in the
end user Concurrent Requests form only if it fails.

’WARNING’ allows the request to display in the
end–user Concurrent Requests form only if it
completes with a warning or an error.

Indicates whether this concurrent request is
protected against updates made using the
Concurrent Requests form. ’YES’ means the
request is protected against updates; ’NO’ means
the request is not protected.

implicit

protected

Summary

Description

Arguments (input)

21 – 30 Oracle Applications Developer’s Guide

Indicates the NLS language. If left NULL, defaults
to the current language.

Indicates the language territory. If left NULL,
defaults to the current language territory.

FND_REQUEST.SET_REPEAT_OPTIONS (Client or Server)

function FND_REQUEST.SET_REPEAT_OPTIONS

 (repeat_time IN varchar2 default NULL,

 repeat_interval IN number default NULL,

 repeat_unit IN varchar2 default ’DAYS’,

 repeat_type IN varchar2 default ’START’

 repeat_end_time IN varchar2 default NULL)

 return boolean;

Optionally call before submitting a concurrent request to set repeat
options. Returns TRUE on successful completion, and FALSE
otherwise.

Time of day to repeat the concurrent request,
formatted as HH24:MI or HH24:MI:SS. The only
other parameter you may use with repeat_time is
repeat_end_time.

Interval between resubmissions of the request. Use
this parameter along with repeat_unit to specify
the time between resubmissions. This parameter
applies only when repeat_time is NULL.

The unit of time used along with repeat_interval to
specify the time between resubmissions of the
request. The available units are ’MINUTES’,
’HOURS’, ’DAYS’, and ’MONTHS’. This
parameter applies only when repeat_time is NULL.

Determines whether to apply the resubmission
interval from either the ’START’ or the ’END’ of
the request’s execution. This parameter applies
only when repeat_time is NULL.

The date and time to stop resubmitting the
concurrent request, formatted as either:

language

territory

repeat_time

repeat_interval

repeat_unit

repeat_type

repeat_end_time

Summary

Description

�

Arguments (input)

21 – 31PL/SQL APIs for Concurrent Processing

’DD–MON–YYYY HH24:MI:SS’
or
’DD–MON–RR HH24:MI:SS’

FND_REQUEST.SET_PRINT_OPTIONS (Client or Server)

function FND_REQUEST.SET_PRINT_OPTIONS

 (printer IN varchar2 default NULL,

 style IN varchar2 default NULL,

 copies IN number default NULL,

 save_output IN boolean default TRUE,

 print_together IN varchar2 default ’N’)

 return boolean;

Optionally call before submitting a concurrent request to set print
options. Returns TRUE on successful completion, and FALSE
otherwise.

Attention: Some print options that are set at the program
level (i.e., using the Concurrent Programs form) cannot be
overridden using this procedure. See the following argument
descriptions to determine which print options can be
overridden.

Name of the printer to which concurrent request
output should be sent. You cannot override this
print option if it was already set using the
Concurrent Programs form.

Style used to print request output, for example
’Landscape’ or ’Portrait’. (Valid print styles are
defined using the Print Styles form.) If the Style
option was already set using the Concurrent
Programs form, and the Style Required check box
is checked, you cannot override this print option.

Number of copies of request output to print. You
can override this print option even if it was already
set using the Concurrent Programs form.

printer

style

copies

Summary

Description

�

21 – 32 Oracle Applications Developer’s Guide

Indicates whether to save the output file. Valid
values are TRUE and FALSE. You can override
this print option even if it was already set using the
Concurrent Programs form.

This parameter applies only to requests that
contain sub–requests. ’Y’ indicates that output of
sub–requests should not be printed until all
sub–requests complete. ’N’ indicates that the
output of each sub–request should be printed as it
completes.

FND_REQUEST.SUBMIT_REQUEST (Client or Server)

function FND_REQUEST.SUBMIT_REQUEST

 (application IN varchar2 default NULL,

 program IN varchar2 default NULL,

 description IN varchar2 default NULL,

 start_time IN varchar2 default NULL,

 sub_request IN boolean default FALSE

 argument1,

 argument2, ..., argument99,

 argument100) return number;

Submits a concurrent request for processing by a concurrent manager.
If the request completes successfully, this function returns the
concurrent request ID; otherwise, it returns 0.

Attention: FND_REQUEST must know information about the
user and responsibility from which the request is submitted.
Therefore, this function only works from concurrent programs
or forms within Oracle Applications.

The FND_REQUEST.SUBMIT_REQUEST function returns the
concurrent request ID upon successful completion. It is then up to the
caller to issue a commit to complete the request submission.

Your code should retrieve and handle the error message generated if
there is a submission problem (the concurrent request ID returned is 0).
Use FND_MESSAGE.RETRIEVE and FND_MESSAGE.ERROR to
retrieve and display the error (if the request is submitted from the
client side).

 Overview of Message Dictionary (See page 12 – 2)

save_output

print_together

Arguments (input)

Summary

Description

21 – 33PL/SQL APIs for Concurrent Processing

You must call FND_REQUEST.SET_MODE before calling
FND_REQUEST.SUBMIT_REQUEST from a database trigger.

If FND_REQUEST.SUBMIT_REQUEST fails from anywhere but a
database trigger, database changes are rolled back up to the point of the
function call.

After a call to the FND_REQUEST.SUBMIT_REQUEST function, all
setup parameters are reset to their default values.

Short name of the application associated with the
concurrent request to be submitted.

Short name of the concurrent program (not the
executable) for which the request should be
submitted.

Description of the request that is displayed in the
Concurrent Requests form (Optional.)

Time at which the request should start running,
formatted as HH24:MI or HH24:MI:SS (Optional.)

Set to TRUE if the request is submitted from
another request and should be treated as a
sub–request.

Starting with Release 11, this parameter can be
used if you are submitting requests from within a
PL/SQL stored procedure concurrent program.

Arguments for the concurrent request; up to 100
arguments are permitted. If submitted from Oracle
Forms, you must specify all 100 arguments.

FND_REQUEST.SET_MODE (Server)

function FND_REQUEST.SET_MODE

 (db_trigger IN boolean) return boolean;

Call this function before calling FND_REQUEST.SUBMIT_REQUEST
from a database trigger.

Note that a failure in the database trigger call of
FND_REQUEST.SUBMIT_REQUEST does not roll back changes.

application

program

description

start_time

sub_request

argument1...100

Arguments (input)

Example 1

21 – 34 Oracle Applications Developer’s Guide

Set to TRUE if request is submitted from a
database trigger.

Example Request Submissions

/* Submit a request from a form and commit*/

 :parameter.req_id :=

 FND_REQUEST.SUBMIT_REQUEST (

 :blockname.appsname,

 :blockname.program,

 :blockname.description,

 :blockname.start_time,

 :blockname.sub_req = ’Y’,

 123, NAME_IN(’ORDERS.ORDER_ID’), ’abc’,

 chr(0), ’’, ’’, ’’, ’’, ’’, ’’,

 ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’,

 ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’,

 ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’,

 ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’,

 ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’,

 ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’,

 ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’,

 ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’,

 ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’, ’’);

IF :parameter.req_id = 0 THEN

 FND_MESSAGE.RETRIEVE;

 FND_MESSAGE.ERROR;

ELSE

 IF :SYSTEM.FORM_STATUS != ’CHANGED’ THEN

 IF app_form.quietcommit THEN

 /*form commits without asking user to save changes*/

 fnd_message.set_name(’SQLGL’,

 ’GL_REQUEST_SUBMITTED’);

 fnd_message.set_TOKEN(’REQUEST_ID’,

 TO_CHAR(:PARAMETER.REQ_ID), FALSE);

 fnd_message.show;

 ELSE

 fnd_message.set_name(’FND’,

db_trigger

Example 2

Example 3

Example 4

21 – 35PL/SQL APIs for Concurrent Processing

 ’CONC–REQUEST SUBMISSION FAILED’);

 fnd_message.error;

 END IF;

 ELSE

 DO_KEY(’COMMIT_FORM’);

 IF :SYSTEM.FORM_STATUS != ’CHANGED’ THEN

 /*commit was successful*/

 fnd_message.set_name(’SQLGL’,

 ’GL_REQUEST_SUBMITTED’);

 fnd_message.set_TOKEN(’REQUEST_ID’,

 TO_CHAR(:PARAMETER.REQ_ID), FALSE);

 fnd_message.show;

 END IF;

 END IF;

END IF;

/* Submit a request where no setup is required */

declare

 req_id number;

begin

 req_id := FND_REQUEST.SUBMIT_REQUEST (’FND’,

 ’FNDMDGEN’, ’Message File Generator’,

 ’01–NOV–02 00:00:00’, FALSE, ...arguments...);

 if (req_id = 0) then

 /* Handle submission error */

 FND_MESSAGE.RETRIEVE;

 FND_MESSAGE.ERROR;

 else

 commit;

 end if;

end;

/* Submit a request from a database trigger */

result := FND_REQUEST.SET_MODE(TRUE);

req_id := FND_REQUEST.SUBMIT_REQUEST (FND’,

 ’FNDMDGEN’, ’Message File Generator’,

 ’01–NOV–02 00:00:00’, FALSE, ...arguments...);

Example 5

�

Example 6

Example 7

21 – 36 Oracle Applications Developer’s Guide

/* Submit a request inserting NULL arguments.

 This call inserts 6 arguments with arguments 1, 3,

 4, and 6 being NULL */

req_id := FND_REQUEST.SUBMIT_REQUEST (’FND’,

 ’FNDPROG’,

 ’Description of FNDPROG’,

 ’01–FEB–01 00:00:00’, FALSE,

 ’’, ’arg2’, ’’, NULL, arg5, ’’);

/* Submit a repeating request */

result := FND_REQUEST.SET_REPEAT_OPTIONS (’’, 4, ’HOURS’,

’END’);

req_id := FND_REQUEST.SUBMIT_REQUEST (’CUS’,

 ’CUSPOST’, ’Custom Posting’,

 ’01–APR–01 00:00:00’, FALSE,

 ...arguments...);

Attention: You may not want to submit a request if
FND_REQUEST.SET_REPEAT_OPTIONS returns failure.
Thus, you may wish to test the result of
FND_REQUEST.SET_REPEAT_OPTIONS before issuing the
call to FND_REQUEST.SUBMIT_REQUEST.

/* Submit a request for 5 copies of a menu report */

result := FND_REQUEST.SET_PRINT_OPTIONS (’hqunx138’,

 ’Landscape’,

 5,

 ’Yes’,

 FALSE);

req_id := FND_REQUEST.SUBMIT_REQUEST (’FND’,

 ’FNDMNRMT’,

 ’’,

 ’’,

 ’N’, 0, 101);

/* Submit a protected request that repeats at noon */

result := FND_REQUEST.SET_OPTIONS (’YES’);

result := FND_REQUEST.SET_REPEAT_OPTIONS (’12:00’);

req_id := FND_REQUEST.SUBMIT_REQUEST (’CUS’,

 ’CUSPOST’, ’Custom Posting’,

21 – 37PL/SQL APIs for Concurrent Processing

 ’01–APR–01 00:00:00’, FALSE,

 ... args ...);

Summary

Description

Arguments (input)

21 – 38 Oracle Applications Developer’s Guide

FND_REQUEST_INFO and Multiple Language Support (MLS)

FND_REQUEST_INFO APIs can be used in multi–language support
functions (MLS functions) to get information for a request.

A multi–language support function is a function that supports running
concurrent programs in multiple languages. A user can submit a single
request for a concurrent program and have that program run several
times, each time in a different language. An MLS function determines
the language(s) in which a request should run.

To enable this functionality, a developer creates an MLS function as a
stored function in the database. When called, the function determines
which languages are to be used for the concurrent program’s data set
and returns the list of language codes as a comma–delimited string.
The string is then used by the concurrent manager to submit child
requests for the concurrent program for each target language.

The MLS function can use the FND_REQUEST_INFO APIs to retrieve
the concurrent program application short name, the concurrent
program short name, and the concurrent request parameters if needed.

The developer registers the MLS function in the Concurrent Program
Executable form, and then associates the registered MLS function with
a concurrent program in the Concurrent Programs form.

FND_REQUEST_INFO.GET_PARAM_NUMBER

function GET_PARAM_NUMBER

(name IN VARCHAR2,

 param_num OUT NUMBER);

Use this function to retrieve the parameter number for a given
parameter name. The function will return –1 if it fails to retrieve the
parameter number.

The name of the parameter of the request’s
concurrent program.

name

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

21 – 39PL/SQL APIs for Concurrent Processing

FND_REQUEST_INFO.GET_PARAM_INFO

function GET_PARAM_INFO

(param_num IN NUMBER,

 name OUT VARCHAR2);

Use this function to retrieve the parameter name for a given parameter
number. The function will return –1 if it fails to retrieve the parameter
name.

The number of the parameter of the request’s
concurrent program.

FND_REQUEST_INFO.GET_PROGRAM

PROCEDURE GET_PROGRAM

(program_name OUT VARCHAR2,

 program_app_name OUT VARCHAR2);

This procedure returns the developer concurrent program name and
application short name.

The name of the concurrent program.

The concurrent program’s application short name.

FND_REQUEST_INFO.GET_PARAMETER

function GET_PARAMETER

(param_num IN NUMBER)

return varchar2;

This function returns the concurrent request’s parameter value for a
given parameter number. The function will return the value as
varchar2.

param_num

prog_name

prog_app_name

Example

21 – 40 Oracle Applications Developer’s Guide

The number of the parameter of the request’s
concurrent program.

Example MLS Function

Suppose you have a concurrent program that will send each employee
a report of his or her available vacation days. Assume that the
concurrent program will accept a range of employee numbers as
parameters. The employees all want to receive the vacation days report
in their preferred language. Without an MLS function, the user who
submits this concurrent program has to guess at all the preferred
languages for the given range of employee numbers and select those
languages while submitting the request. Selecting all installed
languages might be a waste of resources, because output may not be
required in all installed languages.

Assume you have an employees table (emp) with the following
columns:

 emp_no number(15),

 ...

 preferred_lang_code varchar2(4),

 ...

Your concurrent program has two parameters for the range of
employee numbers: parameter 1 is the starting emp_no and parameter
2 is the ending emp_no.

This MLS function could be used for other concurrent programs that
have the same parameters for starting and ending employee numbers.

CREATE OR REPLACE FUNCTION EMPLOYEE_LANG_FUNCTION RETURN

VARCHAR2 IS

 language_string varchar2(240);

 start_value varchar2(240);

 end_value varchar2(240);

 CURSOR language_cursor (starting number, ending number) IS

 SELECT DISTINCT(preferred_lang_code) language_code

 FROM emp

 WHERE emp_no BETWEEN starting AND ending

 AND preferred_lang_code IS NOT NULL;

param_num

21 – 41PL/SQL APIs for Concurrent Processing

 BEGIN

 –– Initialize the language string

 language_string := null;

 –– Get parameter values for starting and

 –– ending EMP_NO

 start_value := FND_REQUEST_INFO.GET_PARAMETER(1);

 end_value := FND_REQUEST_INFO.GET_PARAMETER(2);

 FOR languages IN language_cursor(

 to_number(start_value),

 to_number(end_value)) LOOP

 IF(language_string IS NULL) THEN

 language_string := languages.language_code;

 ELSE

 language_string := language_string || ’,’ ||

 languages.language_code;

 END IF;

 END LOOP;

 RETURN (language_string);

END EMPLOYEE_LANG_FUNCTION;

Arguments (input)

Summary

Description

Summary

21 – 42 Oracle Applications Developer’s Guide

FND_SET: Request Set Loaders

The FND_SET package includes procedures for creating concurrent
program request sets, adding programs to a request set, deleting
programs from a request set. and defining parameters for request sets.

The arguments passed to the procedures correspond to the fields in the
Oracle Application Object Library Release 11i forms, with minor
exceptions. In general, first enter the parameters to these procedures
into the forms for validation and debugging.

If an error is detected, ORA–06501: PL/SQL: internal error is raised.
The error message can be retrieved by a call to the function
fnd_program.message().

Some errors are not trapped by the package, notably ”duplicate value
on index”.

Note that an exception is raised if bad foreign key information is
provided. For example, delete_program() does not fail if the program
does not exist, but does fail if given a bad application name.

Overview of Request Sets (See page 23 – 2)

FND_SET.MESSAGE

function FND_SET.MESSAGE return VARCHAR2;

Use the message function to return an error message. Messages are set
when any validation (program) errors occur.

FND_SET.CREATE_SET

procedure FND_SET.CREATE_SET

(name IN VARCHAR2,

short_name IN VARCHAR2,

application IN VARCHAR2,

description IN VARCHAR2 DEFAULT NULL,

owner IN VARCHAR2 DEFAULT NULL,

start_date IN DATE DEFAULT SYSDATE,

end_date IN DATE DEFAULT NULL,

Description

Arguments (input)

Summary

Description

Arguments (input)

21 – 43PL/SQL APIs for Concurrent Processing

print_together IN VARCHAR2 DEFAULT ’N’,

incompatibilities_allowed IN VARCHAR2 DEFAULT ’N’,

language_code IN VARCHAR2 DEFAULT ’US’);

Use this procedure to register a Request Set. This procedure
corresponds to the master region of the ”Request Set” window.

The name of the new request set.

The short name for the request set.

The application that owns the request set.

An optional description of the set.

An optional Oracle Applications user ID
identifying the set owner, for example SYSADMIN.

The date the set becomes effective.

An optional date on which the set becomes
outdated.

Specify ”Y” or ”N” to indication whether all the
reports in a set should print at the same time.

Specify ”Y” or ”N” to indicate whether to allow
incompatibilities for this set.

Language code for the above data, for example
”US”.

FND_SET.DELETE_SET

procedure FND_SET.DELETE_SET

(request_set IN VARCHAR2,

application IN VARCHAR2);

Use this procedure to delete a request set and references to that set.

The short name of the request set to delete.

The application that owns the request set.

name

short_name

application

description

owner

start_date

end_date

print_together

incompatibilities
_allowed

language_code

request_set

application

Summary

Description

Arguments (input)

21 – 44 Oracle Applications Developer’s Guide

FND_SET.ADD_PROGRAM

procedure FND_SET.ADD_PROGRAM

(program IN VARCHAR2,

program_application IN VARCHAR2,

request_set IN VARCHAR2,

set_application IN VARCHAR2,

stage IN VARCHAR2,

program_sequence IN NUMBER,

 critical IN VARCHAR2 DEFAULT ’Y’,

number_of_copies IN NUMBER DEFAULT 0,

save_output IN VARCHAR2 DEFAULT ’Y’,

style IN VARCHAR2 DEFAULT NULL,

printer IN VARCHAR2 DEFAULT NULL);

Use this procedure to add a concurrent program to a request set stage.
This procedure corresponds to the ”Programs” region in the ”Stage
Requests” window of the ”Request Set” form.

The short name used as the developer name of the
concurrent program, for example ’FNDSCRMT’.

The short name of the application that owns the
concurrent program.

The short name of the request set.

The application that owns the request set.

The short name of the stage.

The sequence number of this program in the stage.
All programs in a stage require a unique sequence
number.

Specify ’Y’ if this program can affect the stage’s
outcome, and ’N’ if not.

An optional default for the number of copies to
print.

Specify ’Y’ to allow users to save output, or ’N’ if
the default is not to save the output.

Optionally provide a default print style.

Optionally provide a default printer.

program_short_
name

program_
application

request_set

set_application

stage

program_
sequence

critical

number_of_
copies

save_output

style

printer

Summary

Description

Arguments (input)

Summary

21 – 45PL/SQL APIs for Concurrent Processing

FND_SET.REMOVE_PROGRAM

procedure FND_SET.REMOVE_PROGRAM

(program_short_name IN VARCHAR2,

program_application IN VARCHAR2,

request_set IN VARCHAR2,

set_application IN VARCHAR2,

stage IN VARCHAR2,

program_sequence IN NUMBER);

Use ths procedure to remove a concurrent program from a request set.

The short name used as the developer name of the
concurrent program.

The short name of the application that owns the
concurrent program.

The short name of the request set.

The short name of the application that owns the
request set.

The sequence number of this program in the stage.
All programs in a stage require a unique sequence
number.

FND_SET.PROGRAM_PARAMETER

procedure FND_SET.PROGRAM_PARAMETER

(program IN VARCHAR2,

program_application IN VARCHAR2,

request_set IN VARCHAR2,

set_application IN VARCHAR2,

 stage IN VARCHAR2.

program_sequence IN NUMBER,

parameter IN VARCHAR2,

display IN VARCHAR2 DEFAULT ’Y’,

modify IN VARCHAR2 DEFAULT ’Y’,

shared_parameter IN VARCHAR2 DEFAULT NULL,

default_type IN VARCHAR2 DEFAULT NULL,

default_value IN VARCHAR2 DEFAULT NULL);

program_short_
name

program_
application

request_set

set_application

program_
sequence

Description

Arguments (input)

Summary

21 – 46 Oracle Applications Developer’s Guide

This procedure registers shared parameter information and the request
set level overrides of program parameter attributes. This procedure
corresponds to the ”Request Parameters” window of the ”Request
Sets” form.

The short name used as the developer name of the
concurrent program.

The short name of the application that owns the
concurrent program.

The short name of the request set.

The short name of the application that owns the
request set.

The sequence number of this program in the stage.

The name of the program parameter.

”Y” to display the parameter, ”N” to hide it.

”Y” to allow users to modify the parameter value,
”N” to prevent it.

If the parameter uses a shared parameter, enter the
shared parameter name here.

If the parameter uses a default, enter the type here.
Valid types are ’Constant’, ’Profile’, ’SQL Statement’,
or ’Segment’.

If the parameter uses a default, enter a value
appropriate for the default type here. This
argument is required if default_type is not null.

FND_SET.DELETE_PROGRAM_PARAMETER

procedure FND_SET.DELETE_SET_PARAMETER

program IN VARCHAR2,

program_application IN VARCHAR2,

request_set IN VARCHAR2 DEFAULT NULL,

 stage IN VARCHAR2,

set_application IN VARCHAR2,

program

program_
application

request_set

set_application

program_
sequence

parameter

display

modify

shared_parameter

default_type

default_value

Description

Arguments (input)

Summary

Description

Arguments (input)

21 – 47PL/SQL APIs for Concurrent Processing

program_sequence IN NUMBER,

parameter IN VARCHAR2);

This procedure removes a concurrent program request set parameter
from a request set definition.

The short name used as the developer name of the
concurrent program.

The short name of the application that owns the
concurrent program.

The short name of the request set.

The short name of the application that owns the
request set.

The sequence number of this program in the set.
All programs in a stage require a unique sequence
number.

The name of the program parameter to delete.

FND_SET.ADD_STAGE

procedure FND_SET.ADD_STAGE

(name IN VARCHAR2,

request_set IN VARCHAR2,

set_application IN VARCHAR2,

 short_name IN VARCHAR2,

 description IN VARCHAR2 DEFAULT NULL,

display_sequence IN NUMBER,

 function_short_name IN VARCHAR2 DEFAULT ’FNDRSSTE’

function_application IN VARCHAR2 DEFAULT ’FND’,

critical IN VARCHAR2 DEFAULT ’N’,

 incompatibilities_allowed IN VARCHAR2 DEFAULT ’N’,

 start_stage IN VARCHAR2 DEFAULT ’N’,

language_code IN VARCHAR2 DEFAULT ’US’);

Adds a stage to a request set. This procedure corresponds to the
”Stages” window of the ”Request Sets” window.

program

program_
application

request_set

set_application

program_
sequence

parameter

Summary

Description

Arguments (input)

21 – 48 Oracle Applications Developer’s Guide

The name of the stage.

The short name of the request set.

The application that owns the request set.

The stage short (non–translated) name.

Description of the stage.

Accept the default, ”FNDRSSTE”, the Standard
Stage Evaluation function.

Accept the default, ”FND”.

Specify ”Y” if the return value of this stage affects
the completion status of the request set, and ”N” if
it does not.

Specify ”Y” or ”N” to indicate whether this stage is
the start stage for the set.

Specify ”Y” or ”N” to indicate whether to allow
incompatibilities for this stage.

The language code for the above data.

FND_SET.REMOVE_STAGE

procedure FND_SET.REMOVE_STAGE

(request_set IN VARCHAR2,

set_application IN VARCHAR2,

 stage IN VARCHAR2);

Use this procedure to delete a stage from a request set.

The short name of the request set.

The short name of the application that owns the
request set.

The short name of the stage to be removed.

name

request_set

set_application

short_name

description

function_
short_name

function_
application

critical

start_stage

incompatibilities
_allowed

language_code

request_set

set_application

stage

Summary

Description

�

Arguments (input)

Summary

21 – 49PL/SQL APIs for Concurrent Processing

FND_SET.LINK_STAGES

procedure FND_SET.LINK_STAGES

(request_set IN VARCHAR2,

set_application IN VARCHAR2,

from_stage IN VARCHAR2,

to_stage IN VARCHAR2 DEFAULT NULL,

success IN VARCHAR2 DEFAULT ’N’,

warning IN VARCHAR2 DEFAULT ’N’,

error IN VARCHAR2 DEFAULT ’N’);

Use this procedure to link two stages.

Attention: This procedure updates the specified links. Sets
created by FND_SET.CREATE_SET have null links between
stages by default.

The short name of the request set.

The application that owns the request set.

The short name of the ”from” stage.

The short name of the ”to” stage.

Create success link. Specify ’Y’ or ’N’.

Create warning link. Specify ’Y’ or ’N’.

Create error link. Specify ’Y’ or ’N’.

FND_SET.INCOMPATIBILITY

procedure FND_SET.INCOMPATIBILITY

 (request_set IN VARCHAR2,

application IN VARCHAR2,

stage IN VARCHAR2 DEFAULT NULL,

inc_prog IN VARCHAR2 DEFAULT NULL

inc_prog_application IN VARCHAR2 DEFAULT NULL,

inc_request_set IN VARCHAR2 DEFAULT NULL,

inc_set_application IN VARCHAR2 DEFAULT NULL,

inc_stage IN VARCHAR2 DEFAULT NULL);

request_set

set_application

from_stage

to_stage

success

warning

error

Description

Arguments (input)

Examples

21 – 50 Oracle Applications Developer’s Guide

Use this procedure to register an incompatibility for a set or stage.
Examples are given below.

The short name of the request set.

The short name of the application that owns the
request set.

The short name of the stage (for stage
incompatibility).

Short name of the incompatible program.

Application that owns the incompatible program.

Short name of the incompatible request set.

The short name of the application that owns the
incompatible request set.

Short name of the incompatible stage.

1. Set X is incompatible with program Y:

fnd_set.incompatibility(request_set=>’X’

 application=>’APPX’

 inc_prog_short_name=>’Y’,

 inc_prog_application=>’APPY’);

2. Set X is incompatible with set Y:

fnd_set.incompatibility(request_set=>’X’,

 application=>’APPX’,

 inc_request_set=>’Y’,

 inc_set_application=>’APPY’);

 3. Set X is incompatible with stage 2 of set Y:

fnd_set.incompatibility(request_set=>’X’,

 application=>’APPX’,

 inc_request_set=>’Y’,

 inc_set_application=>’APPY’,

 inc_stage_number=>2);

4. Stage 3 of set X is incompatible with program Y:

request_set

application

stage

inc_prog

inc_prog_
application

inc_request_set

inc_set_
application

inc_stage

Summary

Description

Arguments (input)

21 – 51PL/SQL APIs for Concurrent Processing

fnd_set.incompatibility(request_set=>’X’,

 application=>’APPX’,

 stage_number=>3,

 inc_prog_short_name=>’Y’,

 inc_prog_application=>’APPY’);

FND_SET.DELETE_INCOMPATIBILITY

procedure FND_SET.DELETE_INCOMPATIBILITY

 (request_set IN VARCHAR2,

application IN VARCHAR2,

stage IN VARCHAR2 DEFAULT NULL,

inc_prog IN VARCHAR2 DEFAULT NULL

inc_prog_application IN VARCHAR2 DEFAULT NULL,

inc_request_set IN VARCHAR2 DEFAULT NULL,

inc_set_application IN VARCHAR2 DEFAULT NULL,

inc_stage IN VARCHAR2 DEFAULT NULL);

Use this procedure to delete a request set incompatibility rule.

The short name of the request set.

The short name of the application that owns the
request set.

The short name of the stage (for stage
incompatibility).

Short name of the incompatible program.

Application that owns the incompatible program.

Short name of the incompatible request set.

The short name of the application that owns the
incompatible request set.

Short name of the incompatible stage.

request_set

application

stage

inc_prog

inc_prog_
application

inc_request_set

inc_set_
application

inc_stage

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

21 – 52 Oracle Applications Developer’s Guide

FND_SET.ADD_SET_TO_GROUP

procedure FND_SET.ADD_SET_TO_GROUP

 (request_set IN VARCHAR2,

 set_application IN VARCHAR2,

 request_group IN VARCHAR2,

 group_application IN VARCHAR2);

Use this procedure to add a request set to a request group. This
procedure corresponds to the ”Requests” region in the ”Request
Groups” window in System Administration.

The short name of the request set to add to the
request group.

The application that owns the request set.

The request group to which to add the request set.

The application that owns the request group.

FND_SET.REMOVE_SET_FROM_GROUP

procedure FND_SET.REMOVE_SET_FROM_GROUP

 (request_set IN VARCHAR2,

 set_application IN VARCHAR2,

 request_group IN VARCHAR2,

 group_application IN VARCHAR2);

Use this procedure to remove a request set from a request group.

The short name of the request set to remove from
the request group.

The application that owns the request set.

The request group from which to remove the
request set.

The application that owns the request group.

request_set

set_application

request_group

group_
application

request_set

set_application

request_group

group_
application

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

21 – 53PL/SQL APIs for Concurrent Processing

FND_SUBMIT: Request Set Submission

This document describes the FND_SUBMIT APIs for request set
submission. The APIs are described in the order that they would be
called. Some of these APIs are optional.

FND_SUBMIT.SET_MODE

function FND_SUBMIT.SET_MODE (db_trigger IN boolean)

return boolean;

Use this optional procedure to set the mode if the request set is
submitted from a database trigger. Call this function before calling
FND_SUBMIT.SET_REQUEST_SET from a database trigger. Note that
a failure in the database trigger call of FND_SUBMIT.SUBMIT_SET
does not rollback changes.

Set to TRUE if the request set is submitted from a
database trigger.

FND_SUBMIT.SET_REL_CLASS_OPTIONS

function FND_SUBMIT.SET_REL_CLASS_OPTIONS

 (application IN varchar2 default NULL,

 class_name IN varchar2 default NULL,

 cancel_or_hold IN varchar2 default ’H’,

 stale_date IN varchar2 default NULL)

return boolean;

Call this function before calling FND_SUBMIT.SET_REQUEST_SET to
use the advanced scheduling feature. If both
FND_SUBMIT.SET_REL_CLASS_OPTIONS and
FND_SUBMIT.SET_REPEAT_OPTIONS are set then
FND_SUBMIT.SET_REL_CLASS_OPTIONS will take precedence. This
function returns TRUE on successful completion, and FALSE
otherwise.

db_trigger

Summary

Description

Arguments (input)

21 – 54 Oracle Applications Developer’s Guide

The short name of the application associated with
the release class.

Developer name of the release class.

Cancel or Hold flag.

Cancel this request on or after this date if the
request has not yet run.

FND_SUBMIT.SET_REPEAT_OPTIONS

function FND_SUBMIT.SET_REPEAT_OPTIONS

(repeat_time IN varchar2 default NULL,

 repeat_interval IN number default NULL,

 repeat_unit IN varchar2 default ’DAYS’,

 repeat_type IN varchar2 default ’START’,

 repeat_end_time IN varchar2 default NULL)

return boolean;

Optionally call this function to set the repeat options for the request set
before submitting a concurrent request set. If both
FND_SUBMIT.SET_REL_CLASS_OPTIONS and
FND_SUBMIT.SET_REPEAT_OPTIONS were set then
FND_SUBMIT.SET_REL_CLASS_OPTIONS will take the percedence.
Returns TRUE on successful completion, and FALSE otherwise.

Time of day at which the request set is to be
repeated.

Frequency at which the request set is to be
repeated.

Unit for the repeat interval. The default is DAYS.
Valid values are MONTHS, DAYS, HOURS, and
MINUTES.

The repeat type specifies whether the repeat
interval should apply from the start or end of the
previous request. Valid values are START or END.
Default value is START.

Time at which the repetitions should end.

application

class_name

cancel_or_hold

stale_date

repeat_time

repeat_interval

repeat_unit

repeat_type

repeat_end_time

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

21 – 55PL/SQL APIs for Concurrent Processing

FND_SUBMIT_SET.REQUEST_SET

function FND_SUBMIT.SET_REQUEST_SET

(application IN VARCHAR2,

 request_set IN VARCHAR2)

return boolean;

This function sets the request set context. Call this function at the very
beginning of the submission of a concurrent request set transaction.
Call this function after calling the optional functions
FND_SUBMIT.SET_MODE, FND_SUBMIT.SET_REL_CLASS,
FND_SUBMIT.SET_REPEAT_OPTIONS. It returns TRUE on successful
completion, and FALSE otherwise.

The short name of request set (the developer name
of the request set).

The short name of the application that owns the
request set.

FND_SUBMIT.SET_PRINT_OPTIONS

function FND_SUBMIT.SET_PRINT_OPTIONS

(printer IN varchar2 default NULL,

style IN varchar2 default NULL,

copies IN number default NULL,

save_output IN boolean default

print_together IN varchar2 default ’N’)

return boolean;

Call this function before submitting the request if the printing of output
has to be controlled with specific printer/style/copies, etc. Optionally
call for each program in the request set. Returns TRUE on successful
completion, and FALSE otherwise.

Printer name for the output.

Print style to be used for printing.

Number of copies to print.

request_set

application

printer

style

copies

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

21 – 56 Oracle Applications Developer’s Guide

Specify TRUE if the output should be saved after
printing, otherwise FALSE. The default is TRUE.

This argument applies only for subrequests. If ’Y’,
then output will not be printed untill all the
subrequests are completed. The default is ’N’.

FND_SUBMIT.ADD_PRINTER

function FND_SUBMIT.SET.ADD_PRINTER

(printer IN varchar2 default null,

 copies IN number default null)

return boolean;

Call this function after you set print options to add a printer to the
printer list. Optionally call for each program in the request set.
Returns TRUE on successful completion, and FALSE otherwise.

Printer name where the request output should be
sent.

Number of copies to print.

FND_SUBMIT.ADD_NOTIFICATION

function FND_SUBMIT.ADD_NOTIFICATION

(user IN varchar2)

return boolean;

This function is called before submission to add a user to the
notification list. Optionally call for each program in the request set.
This function returns TRUE on successful completion, and FALSE
otherwise.

User name.

save_output

print_together

printer

copies

user

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

21 – 57PL/SQL APIs for Concurrent Processing

FND_SUBMIT.SET_NLS_OPTIONS

function FND_SUBMIT.SET_NLS_OPTIONS
(language IN varchar2 default NULL,
 territory IN varchar2 default NULL)
 return boolean;

Call this function before submitting request. This function sets request
attributes. Optionally call for each program in the request set. This
function returns TRUE on successful completion, and FALSE
otherwise.

Nature of the request to be submitted.

Whether the request is protected against updates.

The NLS language.

The language territory.

FND_SUBMIT.SUBMIT_PROGRAM

function FND_SUBMIT.SUBMIT_PROGRAM
(application IN varchar2,
 program IN varchar2,
 stage IN varchar2,
 argument1,...argument100)
return boolean;

Call FND_SUBMIT.SET_REQUEST_SET function before calling this
function to set the context for the report set submission. Before calling
this function you may want to call the optional functions
SET_PRINT_OPTIONS, ADD_PRINTER, ADD_NOTIFICATION,
SET_NLS_OPTIONS. Call this function for each program (report) in
the request set. You must call fnd_submits.set_request_set before
calling this function. You have to call fnd_submit.set_request_set only
once for all the submit_program calls for that request set.

Short name of the application associated with the
program within a report set.

Name of the program with the report set.

implicit

protected

language

territory

application

program

Summary

Description

Arguments (input)

Example 1

21 – 58 Oracle Applications Developer’s Guide

Developer name of the request set stage that the
program belongs to.

Arguments for the program

FND_SUBMIT.SUBMIT_SET

function FND_SUBMIT.SUBMIT_SET
(start_time IN varchar2 default null,
 sub_request IN boolean default FALSE)

return integer;

Call this function to submit the request set which is set by using the
SET_REQUEST_SET. If the request set submission is successful, this
function returns the concurrent request ID; otherwise; it returns 0.

Time at which the request should start running,
formated as HH24:MI or HH24:MI:SS.

Set to TRUE if the request is submitted from
another request and should be treated as a
sub–request.

Examples of Request Set Submission

/* To submit a Request set which is having STAGE1 and

STAGE2. STAGE1 is having ’FNDSCARU’ and ’FNDPRNEV’

programs. STAGE2 is having ’FNDSCURS’. */

/* set the context for the request set FNDRSTEST */

success := fnd_submit.set_request_set(’FND’, ’FNDRSTEST’);

 if (success) then

 /* submit program FNDSCARU which is in stage STAGE1 */

 success := fnd_submit.submit_program(’FND’,’FNDSCARU’,

’STAGE1’, CHR(0),’’,’’,’’,’’,’’,’’,’’,’’,’’,

...arguments...);

 if (not success) then

 raise submit_failed;

stage

argument1...100

start_time

sub_request

Example 2

21 – 59PL/SQL APIs for Concurrent Processing

 end if;

 /* submit program FNDPRNEV which is in stage STAGE1 */

 success := fnd_submit.submit_program(’FND’,’FNDPRNEV’,

 ’STAGE1’,’’,’’,’’,’’,’’,’’,’’,’’,’’,’’,

 CHR(0),’’,’’,’’,’’,’’,’’,’’,’’,’’,

 ...arguments...);

 if (not success) then

 raise submit_failed;

 end if;

 /* submit program FNDSCURS which is in stage STAGE2 */

 success := fnd_submit.submit_program(’FND’,’FNDSCURS’,

 ’STAGE2’, CHR(0),’’,’’,’’,’’,’’,’’,’’,’’,’’,

 ...arguments...);

 if (not success) then

 raise submit_failed;

 end if;

 /* Submit the Request Set */

 req_id := fnd_submit.submit_set(null,FALSE);

end if;

/* To submit a request set FNDRSTEST as a repeating request

set.

Request set FNDRSTEST has STAGE1 and STAGE2.

STAGE1 contains ’FNDSCARU’ and ’FNDPRNEV’ programs.

STAGE2 has ’FNDSCURS’. */

 /* set the repeating options for the request set before

 calling the set_request_set */

 success := fnd_submit.set_repeat_options(’’, 4, ’HOURS’,

 ’END’);

 /* set the context for the request set FNDRSTEST */

 success := fnd_submit.set_request_set(’FND’,

’FNDRSTEST’);

 if (success) then

 /* submit program FNDSCARU which is in stage STAGE1 */

 success := fnd_submit.submit_program(’FND’,’FNDSCARU’,

 ’STAGE1’, CHR(0),’’,’’,’’,’’,’’,’’,’’,’’,’’,

Example 3

21 – 60 Oracle Applications Developer’s Guide

 ...arguments...);

 if (not success) then

 raise submit_failed;

 end if;

 /* submit program FNDPRNEV which is in stage STAGE1 */

 success := fnd_submit.submit_program(’FND’,’FNDPRNEV’,

’STAGE1’,’’,’’,’’,’’,’’,’’,’’,’’,’’,’’,

CHR(0),’’,’’,’’,’’,’’,’’,’’,’’,’’,

...arguments...);

 if (not success) then

raise submit_failed;

 end if;

 /* submit program FNDSCURS which is in stage STAGE2 */

 success := fnd_submit.submit_program(’FND’,’FNDSCURS’,

’STAGE2’, CHR(0),’’,’’,’’,’’,’’,’’,’’,’’,’’,

 ...arguments...);

 if (not success) then

 raise submit_failed;

 end if;

 /* Submit the Request set */

 req_id := fnd_submit.submit_set(null,FALSE);

end if;

/* To submit a Request set FNDRSTEST with 5 copies of the

Print environment variables report. Request set FNDRSTEST

has STAGE1 and STAGE2. STAGE1 has ’FNDSCARU’ and

’FNDPRNEV’ programs. STAGE2 has ’FNDSCURS’. */

 /* set the context for the request set FNDRSTEST */

 success := fnd_submit.set_request_set(’FND’,

’FNDRSTEST’);

 if (success) then

 /* submit program FNDSCARU which is in stage STAGE1 */

 success := fnd_submit.submit_program(’FND’,’FNDSCARU’,

 ’STAGE1’, CHR(0),’’,’’,’’,’’,’’,’’,’’,’’,’’,

21 – 61PL/SQL APIs for Concurrent Processing

...arguments...);

 if (not success) then

 raise submit_failed;

 end if;

 /* set the print options for the program */

 success := fnd_submit.set_print_options(’hqunx138’,

’Landscape’, 5,

 ’Yes’, FALSE);

 /* submit program FNDPRNEV which is in stage STAGE1 */

 success:= fnd_submit.submit_program(’FND’,’FNDPRNEV’,

 ’STAGE1’,’’,’’,’’,’’,’’,’’,’’,’’,’’,’’,

 CHR(0),’’,’’,’’,’’,’’,’’,’’,’’,’’,

 ...arguments...);

 if (not success) then

 raise submit_failed;

 end if;

 /* submit program FNDSCURS which is in stage STAGE2 */

 success := fnd_submit.submit_program(’FND’,’FNDSCURS’,

 ’STAGE2’, CHR(0),’’,’’,’’,’’,’’,’’,’’,’’,’’,

 ...arguments...);

 if (not success) then

 raise submit_failed;

 end if;

 /* Submit the Request set */

 req_id := fnd_submit.submit_set(null,FALSE);

end if;

21 – 62 Oracle Applications Developer’s Guide

C H A P T E R

22
T

22 – 1Standard Request Submission

Standard Request
Submission

his chapter describes Standard Request Submission in Oracle
Application Object Library.

The Overview of Standard Request Submission includes a summary of
Standard Request Submission features, definitions of key concepts, and
an outline of the steps necessary to add Standard Request Submission
to your application.

The following topics are covered:

• Overview of Standard Request Submission

• Implementing Standard Request Submission

22 – 2 Oracle Applications Developer’s Guide

Overview of Standard Request Submission

Standard Request Submission provides you with a standard interface
for running and monitoring your application’s reports. You no longer
need to design and maintain special forms to submit reports. Standard
Request Submission lets you avoid programming custom validation
logic in Oracle Forms when you add a new report to your application.

Standard Request Submission provides you with a single form you use
to submit any of your application reports and concurrent programs, as
well as another form you use to check on your reports’ progress and to
review your reports online. Standard Request Submission also lets
your users create sets of reports to submit all at once. Standard
Request Submission includes an easy–to–use interface you use to add
new reports and to specify the parameters to pass to your reports.

Standard Request Submission includes all the features your users need
to submit and monitor their reports without using concurrent
processing terminology. Although Standard Request Submission is
designed with end user reporting in mind, you can use it to submit
concurrent programs that do not create output.

To learn about running requests, viewing reports, creating request sets,
and other end–user features of Standard Request Submission, see the
Oracle Applications User’s Guide. To learn about administration of
request sets, customization of the Submit Requests window, and other
system administrator features of Standard Request Submission, see the
Oracle Applications Administrator’s Guide.

Additional Information: Oracle Applications System
Administrator’s Guide, Oracle Applications User’s Guide

Basic Application Development Needs

Oracle Application Object Library provides you with the features you
need to satisfy the following basic application development needs:

• Provide your users with a standard interface for running and
monitoring your application reports and other programs

• Let your users create and run sets of reports

• Let your users view any of their reports on line

• Let your users automatically run reports and request sets at
specific time intervals

22 – 3Standard Request Submission

• Let your users specify whether reports in a set should run
sequentially or in parallel

• Let your users specify whether to continue with the next report if
one report in a sequential set fails

• Provide your users with a single report that summarizes the
completion information about all the reports in a set

• Restrict reports users can run

• Define report parameters that have different types of validation
without programming your own validation logic

• Invisibly pass parameters whose values come from your user’s
environment to your reports

Major Features

Submit Request Form

The Submit Request form is the standard form you and your users use
to run reports and other programs. You need not build forms that
submit requests to run your reports or program trigger logic to validate
report parameters.

With just one simple form to learn and use, your users save time in
submitting reports and request sets. Your users can quickly submit as
many reports and request sets as they want. Pop–up windows let your
users easily choose the information they want to see in their reports.

Automatic Resubmission

Standard Request Submission can automatically resubmit your report
or request set periodically. When you submit your report or request
set, you can specify the starting date and time, the interval between
resubmissions, and whether to measure the interval between the
requested submission time or the completion of your request.

Alternately, you may specify a time of day for the daily resubmission of
your request. You can also specify an end date and time when your
request should cease resubmitting.

22 – 4 Oracle Applications Developer’s Guide

Request Sets

You can define sets of reports, then submit an entire set at the same
time with just one transaction. Your request sets can include any
reports or programs you submit from the Submit Request form. Using
request sets, you can submit the same reports regularly without having
to specify each report or program every time you run the set.

Users own the request sets they define, and can access their private
request sets from any responsibility. Only Oracle System
Administrators and owners can update a request set. Users may run
request sets they do not own if their report security group includes the
request set.

Request Set Options

You can define whether the reports in a request set should run in a
particular order. If you specify that the reports in a set should run
sequentially, you can control whether a request set continues to run
reports in the set or stops immediately if a report in the set ends in an
error.

For each report in a set, you can specify a printer for the output, the
number of copies, and whether to save the output to an operating
system file. Standard Request Submission saves these options so you
do not have to specify them every time you run a request set.

Request Set Log File

Oracle Application Object Library produces a single log file that
contains the completion status of all reports in a request set. If a report
in a request set fails, you can quickly identify it and review the
appropriate detailed log file to determine the reason for failure.

Viewing Requests

You and your users can monitor your reports’ progress using the View
Requests form. After your reports complete, you can view them online
through a scrolling pop–up window without the delay of printing out
the entire report.

Cross–application Reporting

Your users can use Standard Request Submission to run reports that
belong to applications other than the one they are currently using. For
Releases 10.7 and 11, all Oracle Applications products typically use the

22 – 5Standard Request Submission

APPS schema, so cross–application reporting can be greatly simplified.
However, to enable cross–application reporting where you have custom
schemas and custom applications, or you are using multiple APPS
schemas, your ORACLE DBA must ensure that the Submit Request
form can access the tables in the report’s application needed to validate
report parameters. The concurrent manager automatically uses the
ORACLE schema associated with the report’s application to run the
report.

Oracle Applications system administrators define data groups for each
responsibility. Data groups contain lists of application names and
ORACLE schemas. The responsibility’s data group determines which
ORACLE schema to use for a given application name.

Definitions

Child Request (Sub–request)

A child request or a sub–request is a request submitted by another
concurrent request (a parent request). In the case of Standard Request
Submission, when you submit a request set, the request set submits the
reports and programs that you have included in the request set. The
reports included in the request set become child requests when the
request set submits them for concurrent processing.

Parameter

A value you specify when you run a report. For example, if you run an
audit report, you might specify the audit date as a parameter when you
run the report.

Parent Request

A parent request is a concurrent request that submits other concurrent
requests. In the case of Standard Request Submission, a request set is a
parent. When you submit a request set, the request set submits the
reports or programs that you have included in the request set. A
parent request may be sequential or parallel which determines whether
the requests it submits run one at a time or all at once.

22 – 6 Oracle Applications Developer’s Guide

Program Application

The application with which you register your report in the Concurrent
Programs window.

Responsibility Application

The application with which you define your responsibility in the
Responsibility form.

Value

What you enter as a parameter. A value can be a date, a name, text, or
a number. The Submit Request form provides you with lists of values
for most parameters, to ensure you choose valid values.

Value Set

A set of values against which Oracle Application Object Library
validates values your end user enters when running your program.
You define your value set by specifying validation rules, format
constraints and other properties. For example, you could define a
value set to contain values that are character strings, validated from a
table in your application. You can specify that Oracle Application
Object Library use the same value set to validate different report
parameters. You can also use value sets that you use in your flexfields
to validate your report parameters.

Controlling Access to Your Reports and Programs

Defining Report Submission Security

Your system administrator controls which responsibilities have access
to the reports and other programs in your application. You or your
system administrator should first create related groups of reports and
request sets. When you define a new responsibility, you assign a report
security group to that responsibility.

Define Responsibility
Define Report Group
Oracle Applications System Administrator’s Guide

22 – 7Standard Request Submission

Defining Menus

When you or your system administrator define new menus, you should
put the Submit Request, View Requests, and Define Request Set
functions on the menu of every responsibility that should have access
to Standard Request Submission reports. Be sure to define a request
group for any responsibility that has access to the Submit Request
form.

Menus Window (See page 11 – 28)

22 – 8 Oracle Applications Developer’s Guide

Implementing Standard Request Submission

To take advantage of Standard Request Submission, you must:

• Build your report as a concurrent program, from writing the
execution logic and placing the execution file in the correct
location on your file system to defining a Concurrent Program
Executable for your program

• Design the parameter pop–up window your users see on the
Submit Requests form

• Define necessary value sets and validation tables

• Define your concurrent program to use Standard Submission
and define your report parameters to make use of Standard
Request Submission

The following sections provide you with implementation suggestions
for the preceding actions.

Developing Reports for Standard Request Submission

You write a concurrent program and define it as a Standard Submission
report. You plan your parameter window and identify the value sets
you need to validate your parameters. Define any new value sets that
Standard Request Submission will use to validate your report
parameters. Note that although Standard Request Submission is
designed with end user reporting in mind, you can allow your users to
use the Submit Requests form to submit any custom concurrent
programs.

Writing Your Report or Program

If your report requires parameters, it should expect to receive them in
the same order as your users enter them in the pop–up window. For
any type of report except a Oracle Reports report, you as the developer
have to maintain the same parameter order in both the report and the
pop–up window. When your report is an Oracle Reports report, the
order is irrelevant because your parameters are passed to the report
with parameter names (tokens) attached.

After you finish writing the report, place it in the appropriate place for
your platform. For example, in Unix, use the sql or srw directories
under the appropriate application top directory.

22 – 9Standard Request Submission

Use the Concurrent Program Executable window to define your report
file as an executable file. You’ll use this executable to define your
concurrent program.

Overview of Concurrent Processing (See page 15 – 2)
Implementing Concurrent Processing (See page 15 – 21)

Concurrent Program Executable Window (See page 16 – 6)
Concurrent Programs Window (See page 16 – 11)

Designing the Parameter Pop–up Window

Determine what parameters your report requires. Then determine
what order in which your user should enter parameters in the pop–up
window on the Submit Requests form. To define the pop–up window,
you also need to define one value set for each parameter. Design value
sets to limit the user’s choices to valid values. You have the option of
restricting the list of values for a table–validated parameter based on
the values your user entered for earlier parameters. You set up these
restrictions by using defining cascading dependencies when defining
your value sets.

You may want your report to expect parameter values such as internal
ID numbers that are meaningless to your users while the pop–up
window takes user–friendly values. You can select the column to use
for the ID as well as the user–friendly meaning, description or other
columns you want to use. You can define value sets to have
independent, dependent, table, special, pair or no validation.

Additional Information: Planning and Defining Values and
Value Sets
Oracle Applications Flexfields Guide

Defining Parameter Validation

Validating parameters in a report pop–up window is very similar to
validating segments in a flexfield. You create values sets for your
values, decide whether to provide a list of values for your users, and
specify any security rules for your values.

Defining Value Sets

Typically, when you write a report or other concurrent program, you
want to pass parameters that have specific data types and values.

22 – 10 Oracle Applications Developer’s Guide

Before you can define and use your report with Oracle Application
Object Library, you need to specify the value sets of your parameters.
Use the Value Sets window to define a value set for each of your report
parameters. When you define a value set, you specify format options
as well as other attributes such as whether a value is mandatory and
the maximum size of a value. Your value set can have Validation Type
of Table, Independent, Dependent, Special, Pair or None.

You can define a value set to validate from a table in your application,
such as a lookup table. Make sure the maximum size of your value set
is large enough to accommodate your validation data. Once you define
a value set, Oracle Application Object Library can use it to validate
parameters you pass to your report.

If you already have value sets defined for your key or descriptive
flexfields, you can use these to validate your concurrent program
parameters. Note that if you share value sets with flexfields, flexfield
value security can affect the report parameter values your users can
choose. You should specify for each parameter whether you want to
enable security.

With Special and Pair value sets you can pass flexfield combinations as
parameters to your report. Or you can call other user exits from your
Special value sets.

Value Sets Window
Oracle Applications Flexfields Guide

Standard Request Submission
Oracle Applications Flexfields Guide

Defining Values for Value Sets

After you register your report parameters, each report parameter
references a value set. If you are using independent or dependent
value sets, you can enter values into each corresponding value set
using the Segment Values form.

You can easily identify your value sets by using the Segment Values
form. You select the program and parameter for which you want to
define values using the Find window.

Segment Values Window
Oracle Applications Flexfields Guide

22 – 11Standard Request Submission

Defining Your Report or Other Program

You must define your report as a concurrent program with Oracle
Application Object Library before your users can run it from the
Submit Requests form or an application form. Use the Concurrent
Programs form to register your report. Define your report just like any
other concurrent program, including defining a concurrent program
executable. To indicate that your users can use the Submit Requests
form to run the program, simply check the Use in SRS check box of the
Concurrent Programs form.

Registering Your Parameters

If your report requires parameters, press the Parameters button to get
to the Parameters block to define your report parameters.

While you are registering your report parameters, you are also defining
the structure of a pop–up window that pops up when your users
submit the report in the Submit Requests form. Enter your report
parameters in the sequence you want them to appear in the pop–up
window and in the order in which the report expects them. Standard
Request Submission passes arguments to your report in the sequence
you specify. Please keep in mind that what your users enter in the
pop–up window and what Standard Request Submission passes to
your report can be different if you have specified different Value and
Meaning columns for your table–validated parameters.

Make sure you enable all parameters. You specify the value set that
identifies valid values, whether the parameter requires a value,
whether security is enabled and a default value, if any. Specify if the
parameter should display to the user. If you want to link two values in
a High_Low relationship, choose High or Low in the Range field. Low
values must come before high ones.

The Request Set window accessible from the Oracle System
Administration menu also allows you to selectively display the
parameters of a report.

Parameter Defaults

You decide whether your users enter a value for a parameter or
whether the parameter is passed behind the scenes to your report by
checking or unchecking the Display check box. If this is a parameter
your users enter, then you must define a prompt for the parameter.
You can specify a default type and value for the parameter.

22 – 12 Oracle Applications Developer’s Guide

If your parameter is displayed, your users can override the default
value you specify. If your parameter is non–displayed, your report
receives the value you specify as the default value. Use non–displayed
parameters to pass hidden values from your users’ environment, such
as SET_OF_BOOKS_ID, to your report.

Concurrent Programs Window (See page 16 – 11)

Cross–application Reporting

You can use the cross–application reporting capabilities of Standard
Request Submission to run a report belonging to an application other
than the application associated with the user’s current responsibility.

Method to Determine Which ORACLE ID to Use

When you submit a report using Standard Request Submission, your
concurrent manager uses a different method from previous releases to
decide which ORACLE schema to use to process your request. The
concurrent manager accesses the information recorded by the
AutoInstall process to detect what products you have at your site and
the products’ inter–dependencies.

AutoInstall and the Oracle Applications system administrator set up
data groups containing list of Application Name/ORACLE schema
pairs. Each responsibility has an assigned data group. When you run a
concurrent program from the Submit Requests form, the application
name of your program is matched with its associated ORACLE schema
in that responsibility’s data group.

Defining Data Groups
Oracle Applications System Administrator’s Guide

Accessing Another Application’s Validation Tables

If you are using the cross–application reporting capabilities of Standard
Request Submission to run a report, the Submit Requests form uses the
ORACLE schema of the report’s application to validate the report
parameters. The application name is matched with an ORACLE
schema through the responsibility’s data group. Your database
administrator should make sure that the ORACLE schema that the
Submit Requests form uses to validate your report parameters has all
the necessary grants, synonyms, and database privileges to access the
validation tables that your report uses.

22 – 13Standard Request Submission

For Releases 10.7 and 11, all Oracle Applications products typically use
the APPS schema, so cross–application reporting can be greatly
simplified. However, to enable cross–application reporting where you
have custom schemas and custom applications, or where you are using
multiple APPS schemas, your ORACLE DBA must ensure that the
Submit Request form can access the tables in the report’s application
needed to validate report parameters. The concurrent manager
automatically uses the ORACLE schema associated with the report’s
application to run the report.

For example, suppose you want to run an Oracle Payables report using
the Submit Requests form in an Oracle Purchasing responsibility. The
parameters of the Oracle Payables report are validated against tables in
the Oracle Payables ORACLE schema. The data group assigned to the
Oracle Purchasing responsibility contains a listing of the ORACLE
schema associated with Oracle Payables (which might be APPS). The
report runs in that ORACLE schema.

If you submit a custom application report using a responsibility
associated with a different application, you and your system
administrator need to provide the concurrent manager with the correct
ORACLE schema to use. You should include your custom applications
in the data groups of any responsibility using your custom reports.

Oracle Applications System Administrator’s Guide

22 – 14 Oracle Applications Developer’s Guide

C H A P T E R

23
T

23 – 1Request Sets

Request Sets

his chapter provides an overview of Request Sets in Oracle
Application Object Library. It includes an overview of request sets and
an outline of the steps necessary to implement requests sets in your
application.

• Overview of Request Sets

23 – 2 Oracle Applications Developer’s Guide

Overview of Request Sets

Request sets allow you to submit several requests together using
multiple execution paths. A request set is a collection of reports and/or
programs that are grouped together. You can thus submit the reports
and/or programs in a request set all at once using a single transaction.

Request sets were completely redesigned in Release 11 to support
multiple execution paths. Request sets can now be defined to submit
requests depending on the completion statuses of previously submitted
requests in the set. For example, if a certain request were to fail, a set
could submit a cleanup request, rather than continuing along its
normal execution path. A set could submit one request or another
based on the number of lines posted by earlier requests. A single set
can now execute certain groups of requests in parallel while executing
other requests serially.

Additional Information: Oracle Applications User’s Guide,
Oracle Applications System Administrator’s Guide

Sets, Stages, and Requests

Request sets are divided into stages. A stage is a component of a
request set used to group requests within the set. Each stage contains
one or more concurrent requests. All of the requests in a given stage
are executed in parallel. The request set executes one stage at a time,
following links from stage to stage. The links that are followed depend
on the completion statuses of the individual stages. A stage completes
only when all of the requests contained in the stage have completed. A
set moves on to the next stage only when the previous stage has
completed. For example, the analog of a Release 10 ”Parallel” request
set would be a set with a single stage that contains all of the requests
(running in parallel), as shown in the following diagram.

23 – 3Request Sets

The analog of a Release 10 ”Sequential” request set would be a set with
many stages and one request in each stage, as shown in the following
diagram. The concurrent manager allows only one stage in a request
set to run at a time. When one stage is complete the following stage is
submitted. A stage is not considered to be complete until all of the
requests in the stage are complete.

One advantage of using stages is the ability to run several requests in
parallel (within a single stage) and then move sequentially to the next
stage, as shown in the following diagram. This allows for a more
versatile and efficient request set.

23 – 4 Oracle Applications Developer’s Guide

Stage Completion Statuses

Like request sets and concurrent requests, stages can complete with
different statuses. Each stage might complete with Success, Warning,
or Error. The completion status of a stage can affect branching within a
set, and determine the completion status of the entire set. The
completion status of a stage is calculated by a PL/SQL function. When
you define a request set stage, you can choose the PL/SQL function
that will calculate the completion status of that stage. Oracle
Application Object Library provides a standard PL/SQL function to
compute the completion status of a stage from the completion statuses
of the requests within that stage. Other functions may be available as
well.

Request Set Execution and Stage Links

Each request set has one stage designated as the ”start stage.” The
start stage is always the first stage of a request set to be executed.
When you define a set, you specify the possible execution paths from
the start stage by linking stages together. Each stage can have one link
for each of its three possible completion statuses. When a stage
completes with a given status, the link associated with that status
specifies the next stage to be executed by the set. If no link is specified
for that status, then the set has completed.

For example, the request set shown in the following diagram always
begins execution with Stage 1. If Stage 1 were to complete with the
status Warning, then the Warning Link would be followed, and Stage 3
would be executed. After stage 3 completes, the set will end, since
there are no links that may be followed.

23 – 5Request Sets

There are no restrictions on linking stages within a set. Any stage may
be linked into any other stage, including itself. Loops are allowed.
Two or more links can point to the same stage, as shown in the
following diagram.

Figure 23 – 1

23 – 6 Oracle Applications Developer’s Guide

Stage Functions

As discussed above under Stage Completion Statuses, the completion
status of a stage is computed by a PL/SQL function. The function can
use information about the requests in a stage when calculating the
status of the stage. For example, the Standard Stage Evaluation
function uses the completion statuses of the requests in a stage to
calculate the completion status of that stage. For each stage in your set,

23 – 7Request Sets

you can choose a function from the list of registered functions. You can
also specify which concurrent requests in the stage will provide
information to be used in the function’s calculation. Most stages will
use the Standard Stage Evaluation function, but other functions are
available.

The Standard Stage Evaluation Function

Any stage may use the Standard Stage Evaluation function provided by
Oracle Application Object Library. This function computes the stage
completion status from the completion statuses of the specified
requests in the set. The Standard Stage Evaluation function will return
Success if all of the requests completed with Success. The function will
return Error if one or more requests completed with Error. Finally, the
function will return Warning if one or more requests completed with
Warning, and no requests completed with Error.

Request Set Completion Status

When a stage completes with a status for which there is no link
defined, then the request set exits. When a set exits, its completion
status is determined by one of two methods:

• By default, the completion status of the set is the same as the
completion status of the last stage executed. For example, if the
last stage were to complete with Warning status, then the request
set would exit with Warning status.

• The user can override the default behavior by declaring certain
stages to be ”critical.” If the set executes a critical stage at any
time, then when the set exits, the completion status of the set will
be equal to the completion status of the most recently executed
critical stage. This can be useful if the final stage of the set is a
”clean up” stage, and is not considered important to the overall
status of the set. For example, we may have a two–stage set
where Stage 1 is very important to us, whereas Stage 2 is not.
We would want to declare Stage 1 to be a ”critical” stage, so that
if Stage 1 fails, the completion status of the set will be
determined by Stage 1, rather than Stage 2.

23 – 8 Oracle Applications Developer’s Guide

C H A P T E R

24
T

24–1The TEMPLATE Form

The TEMPLATE Form

his chapter provides you with information on the contents of the
TEMPLATE form you use to start your application forms.

• Overview of the TEMPLATE Form

• Libraries in the TEMPLATE Form

• Special Triggers in the TEMPLATE Form

24–2 Oracle Applications Developer’s Guide

Overview of the TEMPLATE Form

The TEMPLATE form is the required starting point for all development
of new forms. Start developing each new form by copying the
TEMPLATE.fmb file, located in $AU_TOP/forms/US (or your
language and platform equivalent), to a local directory and renaming it
as appropriate.

TEMPLATE contains the following:

• Platform–independent references to object groups in the
APPSTAND form (STANDARD_PC_AND_VA,
STANDARD_TOOLBAR, and STANDARD_CALENDAR)

• Platform–independent attachments of several libraries (including
FNDSQF, APPCORE, and APPDAYPK)

• Several form–level triggers with required code.

Special Triggers in the TEMPLATE form (See page 24–6)

• Program units that include a spec and a body for the package
APP_CUSTOM, which contains default behavior for window
opening and closing events. You usually have to modify this
code for the specific form under development.

Controlling Window Behavior (See page 7 – 2)

• The Applications color palette, containing the two colors
required by the referenced visual attributes (”canvas” and
”button”), ”pure” colors (such as ”black,” ”white,” ”blue,” and
”red”), and various other colors named after their content of
Red, Blue and Green (such as ”r40g70b100”).

• Many referenced objects (from the object groups) that support
the Calendar, the toolbar, alternative regions, and the menu.
These objects include LOVs, blocks, parameters, and property
classes, and so on.

• The TEMPLATE form contains sample objects that show typical
items and layout cosmetics. These are provided merely as
samples; to remove them entirely from your form, delete the
following objects.

– blocks: BLOCKNAME, DETAILBLOCK

– window: BLOCKNAME

– canvas–view: BLOCKNAME

24–3The TEMPLATE Form

Libraries in the TEMPLATE Form
The TEMPLATE form includes platform–independent attachments of
several libraries. Some of these libraries are attached ”directly” to the
TEMPLATE (FNDSQF, APPCORE, and APPDAYPK), while the others
are attached to these three libraries. However, in Oracle Forms, the
different types of attachments are indistinguishable. If more libraries
are later attached to any of these libraries, the additional libraries will
also appear to be attached directly to TEMPLATE.

The following libraries are all attached to TEMPLATE in Release 11.
You may also see additional libraries, particularly if your site uses
Oracle Applications in multiple countries or if your site uses Oracle
Industry Applications.

Warning: You should not modify any Oracle Applications
libraries other than the CUSTOM library, or you could
seriously damage your Oracle Applications products.

APPCORE

APPCORE contains the packages and procedures that are required of
all forms to support the menu, Toolbar, and other required standard
behaviors. Additionally it contains packages that should be called to
achieve specific runtime behaviors in accordance with the Oracle
Applications User Interface Standards for Forms–Based Products, such as the
way in which fields are enabled, behaviors of specific types of
windows, and the dynamic ’Special’ menu. Finally, it contains various
other utilities for exception handling, message levels, and so on. Some
APPCORE event routines call routines in the VERT, GLOBE, and
CUSTOM libraries (in that order).

Procedures and functions in APPCORE typically have names beginning
with ”APP”.

Oracle Applications APIs (See page 29 – 1)

APPDAYPK

APPDAYPK contains the packages that control the Oracle Applications
Calendar feature.

The Calendar (See page 9 – 23)

FNDSQF

FNDSQF contains packages and procedures for Message Dictionary,
flexfields, profiles, and concurrent processing. It also has various other
utilities for navigation, multicurrency, WHO, etc.

24–4 Oracle Applications Developer’s Guide

Procedures and functions in FNDSQF typically have names beginning
with ”FND”.

Message Dictionary APIs for PL/SQL Procedures (See page
12 – 11)
Flexfield Definition Procedures (See page 14 – 30)
FND_PROFILE: User Profile APIs (See page 13 – 9)
Concurrent Processing APIs for PL/SQL Procedures (See
page 21 – 1)
 FNDSQF Routine APIs (See page 30 – 1)

CUSTOM

The CUSTOM library allows extension of Oracle Applications forms
without modification of Oracle Applications code. You can use the
CUSTOM library for customizations such as Zoom (such as moving to
another form and querying up specific records), enforcing business
rules (for example, vendor name must be in uppercase letters), and
disabling fields that do not apply for your site.

You write code in the CUSTOM library, within the procedure shells that
are provided. All logic must branch based on the form and block for
which you want it to run. Oracle Applications sends events to the
CUSTOM library. Your custom code can take effect based on these
events.

Using the CUSTOM Library (See page 28 – 1)

GLOBE

The GLOBE library allows Oracle Applications developers to
incorporate global or regional features into Oracle Applications forms
without modification of the base Oracle Applications form. Oracle
Applications sends events to the GLOBE library. Regional code can
take effect based on these events. The GLOBE library calls routines in
the JA, JE, and JL libraries.

VERT

The VERT library allows Oracle Applications developers to incorporate
vertical industry features (for automotive, consumer packaged goods,
energy, and other industries) into Oracle Applications forms without
modification of the base Oracle Applications form. Oracle Applications
sends events to the VERT library. Vertical industry code can take effect
based on these events. The VERT library calls routines in various other
libraries.

24–5The TEMPLATE Form

JA

The JA library contains code specific to the Asia/Pacific region and is
called by the GLOBE library.

JE

The JE library contains code specific to the EMEA (Europe/Middle
East/Africa) region and is called by the GLOBE library.

JL

The JL library contains code specific to the Latin America region and is
called by the GLOBE library.

�

24–6 Oracle Applications Developer’s Guide

Special Triggers in the TEMPLATE form
The TEMPLATE form contains several form–level triggers that must
exist in order for other routines to operate properly. Specific rules
about modifications you can safely make to these triggers are discussed
below.

Attention: Under no circumstances may any of these triggers
be deleted.

 The text within these triggers must remain within the trigger; however,
frequently developers need to add text before or after this text. These
triggers include:

Standard Forms Triggers:

– KEY–CLRFRM

– KEY–COMMIT

– KEY–DUPREC

– KEY–EDIT

– KEY–EXIT

– KEY–HELP

– KEY–LISTVAL

– KEY–MENU

– ON–ERROR

– POST–FORM

– PRE–FORM

– WHEN–FORM–NAVIGATE (reference)

– WHEN–NEW–BLOCK–INSTANCE

– WHEN–NEW–FORM–INSTANCE

– WHEN–NEW–ITEM–INSTANCE

– WHEN–NEW–RECORD–INSTANCE

– WHEN–WINDOW–CLOSED

– WHEN–WINDOW–RESIZED

User–Named Triggers:

– ACCEPT

– CLOSE_THIS_WINDOW (reference)

– CLOSE_WINDOW

24–7The TEMPLATE Form

– EXPORT (reference)

– FOLDER_ACTION

– FOLDER_RETURN_ACTION

– LASTRECORD (reference)

– MENU_TO_APPCORE (reference)

– QUERY_FIND

– STANDARD_ATTACHMENTS (reference)

– ZOOM (reference)

Warning: You must not change triggers that are referenced
into the form, even though it is technically possible in Oracle
Forms Developer 6i. Changing referenced triggers may cause
problems in your form or may cause problems for future
upgrades.

Triggers That Often Require Some Modification

ACCEPT

APP_STANDARD.EVENT(’ACCEPT’);

This trigger processes invocation of the ”Action, Save and Proceed”
menu choice or toolbar button. It saves and moves to the next record
of the block specified as the First Navigation Block.

Replace the code in this trigger, or create block–level triggers with
execution style ’Override’.

Save and Proceed (See page 10 – 8)

FOLDER_RETURN_ACTION

null;

This trigger allows customization of specific folder events.

Replace text with specific code needed to process folder actions.

Warning: Oracle Corporation does not support modifications
to this trigger except for Oracle Applications internal use.

KEY–DUPREC

APP_STANDARD.EVENT(’KEY–DUPREC’);

24–8 Oracle Applications Developer’s Guide

This trigger disables the default duplicate record functionality of Oracle
Forms.

To process the ”Edit, Duplicate Record Above” menu choice properly,
code a block–level KEY–DUPREC with execution style ’Override’. This
trigger should perform a duplicate_record, then validate or clear fields
as needed.

Duplicating Records (See page 7 – 31)

KEY–CLRFRM

APP_STANDARD.EVENT(’KEY–CLRFRM’);

This trigger validates the record before attempting to clear the form.

Add any additional code after the supplied text. Typically you would
add GO_BLOCK calls if you have alternative regions in your form,
where the GO_BLOCK calls repopulate your region control poplist
after a Clear Form operation.

KEY–MENU

APP_STANDARD.EVENT(’KEY–MENU’);

This trigger disables the Block Menu command of Oracle Forms.

To enable operation of Alternative Regions via the keyboard from a
specific block, code a block–level KEY–MENU with execution style
’Override’. This trigger should open an LOV with the same choices as
the Alternative Region control poplist.

Alternative Regions (See page 7 – 27)

KEY–LISTVAL

APP_STANDARD.EVENT(’KEY–LISTVAL’);

This trigger performs flexfield operations or LOV invocation.

Create block– or item–level triggers with execution style ’Override’ on
fields using the Calendar, or fields that dynamically invoke flexfields.

The Calendar (See page 9 – 23)

ON–ERROR

APP_STANDARD.EVENT(’ON–ERROR’);

This trigger processes all errors, server or client side, using Message
Dictionary calls.

24–9The TEMPLATE Form

To trap specific errors, check for your specific errors before the
APP_STANDARD call.

declare

 original_mess varchar2(80);

begin

 IF MESSAGE_CODE = <your message number> THEN

 original_mess := MESSAGE_TYPE||’–’||

 to_char(MESSAGE_CODE)||’: ’||MESSAGE_TEXT;

 ––– your code handling the error goes here

 message(original_mess);

 ELSE

 APP_STANDARD.EVENT(’ON_ERROR’);

 END IF

end;

Overview of Message Dictionary (See page 12 – 2)
APP_EXCEPTION: Exception Processing APIs (See page
29 – 15)

POST–FORM

APP_STANDARD.EVENT(’POST–FORM’);

This trigger is reserved for future use.

Add any additional code before the supplied text.

PRE–FORM

FND_STANDARD.FORM_INFO(’$Revision: <Number>$’,

 ’<Form Name>’,

 ’<Application Shortname>’,

 ’$Date: <YY/MM/DD HH24:MI:SS> $’,

 ’$Author: <developer name> $’);

APP_STANDARD.EVENT(’PRE–FORM’);

APP_WINDOW.SET_WINDOW_POSITION(’BLOCKNAME’,

 ’FIRST_WINDOW’);

This trigger initializes internal Oracle Applications values and the
menu. The values you enter here are shown when you choose ”Help,
About Oracle Applications” from the Oracle Applications menu.

You must modify the application short name. The application short
name controls which application’s online help file is accessed when the
user presses the window help button on the toolbar. If you leave the
application short name as FND, your user will not see any help because
Oracle Applications will not be able to construct a valid help target.

24–10 Oracle Applications Developer’s Guide

The form name is the user form name (form title). This is for your
reference only, and is not used elsewhere.

Oracle Corporation uses a source control system that automatically
updates the values beginning with ”$”. If you are not using that
source control system, you can and should modify those values with
your own development information.

You must also modify the APP_WINDOW call to use your own block
name (of your first block) instead of BLOCKNAME. Do not modify the
string FIRST_WINDOW.

Controlling Window Behavior (See page 7 – 2)

QUERY_FIND

APP_STANDARD.EVENT(’QUERY_FIND’);

This trigger issues a default message stating that Query Find is not
available.

Replace the code in this trigger, or create block–level triggers with
execution style ’Override’ when you create a Find window or
Row–LOV in your form.

Query Find Windows (See page 8 – 2)

WHEN–NEW–FORM–INSTANCE

FDRCSID(’$Header: ... $’);

APP_STANDARD.EVENT(’WHEN–NEW–FORM–INSTANCE’);

–– app_folder.define_folder_block(’template test’,

 ’folder_block’, ’prompt_block’, ’stacked_canvas’,

 ’window’, ’disabled functions’);

–– app_folder.event(’VERIFY’);

The APP_STANDARD.EVENT call in this trigger supports the
query–only mode invoked by FND_FUNCTION.EXECUTE. The
FDRCSID call supports the Oracle Applications source control system.
The APP_FOLDER calls are for Oracle Applications internal use only.
Custom forms do not require either the FDRCSID or the APP_FOLDER
calls, but it does no harm to leave them in the trigger.

Add any additional code before the supplied text.

Warning: Oracle Corporation does not support modifications
to the APP_FOLDER calls in this trigger except for Oracle
Applications internal use.

24–11The TEMPLATE Form

WHEN–NEW–RECORD–INSTANCE

APP_STANDARD.EVENT(’WHEN–NEW–RECORD–INSTANCE’);

This trigger manages the state of the Oracle Applications menu and
toolbar.

Create block–level triggers as needed, with execution style ’Before’.

Synchronizing (See page 10 – 8)

WHEN–NEW–BLOCK–INSTANCE

APP_STANDARD.EVENT(’WHEN–NEW–BLOCK–INSTANCE’);

This trigger manages the state of the Oracle Applications menu and
toolbar.

Create block–level triggers as needed, with execution style ’Before’.

Synchronizing (See page 10 – 8)

WHEN–NEW–ITEM–INSTANCE

APP_STANDARD.EVENT(’WHEN–NEW–ITEM–INSTANCE’);

This trigger manages the state of the Oracle Applications menu and
toolbar.

If you add a flexfields routine call, you should add it before the
APP_STANDARD.EVENT call. In general, you should not add any
other code to this trigger, as such code would affect every item in the
form and could hurt your form performance.

Create block–or item–level triggers as needed, with execution style
’Before’.

Synchronizing (See page 10 – 8)

Triggers That Cannot Be Modified

Oracle Applications does not support the modification of these
form–level triggers in any way.

CLOSE_THIS_WINDOW

This trigger invokes APP_CUSTOM.CLOSE_WINDOW from the menu
Action–>Close Window.

24–12 Oracle Applications Developer’s Guide

CLOSE_WINDOW

APP_CUSTOM.CLOSE_WINDOW(:SYSTEM.EVENT_WINDOW);

This trigger processes all window close events. Code that processes the
close window events must reside in the
APP_CUSTOM.CLOSE_WINDOW package.

Controlling Window Behavior (See page 7 – 2)

EXPORT

app_standard.event(’EXPORT’);

This trigger processes invocation of the ”Action, Export” menu choice.

FOLDER_ACTION

app_folder.event(:global.folder_action);

This trigger processes invocation of entries on the Folder menu.

KEY–COMMIT

APP_STANDARD.EVENT(’KEY–COMMIT’);

This trigger processes commits in normal or called forms.

Warning: Oracle Corporation strongly recommends against
the use of called forms. This procedure supports them for
backward compatibility only.

KEY–EDIT

APP_STANDARD.EVENT(’KEY–EDIT’);

This trigger performs flexfield operations, or Calendar or Editor
invocation.

KEY–EXIT

APP_STANDARD.EVENT(’KEY–EXIT’);

This trigger processes Close events, and leaves enter–query mode.

KEY–HELP

APP_STANDARD.EVENT(’KEY–HELP’);

This trigger invokes the Window Help system.

24–13The TEMPLATE Form

LASTRECORD

APP_STANDARD.EVENT(’LASTRECORD’);

This trigger processes the menu event Go–>Last Record.

MENU_TO_APPCORE

APP_STANDARD.EVENT(:global.menu_to_appcore);

This trigger supports the Special menu.

STANDARD_ATTACHMENTS

atchmt_api.invoke;

This trigger processes invocation of the Attachments menu entry or
toolbar button.

WHEN–WINDOW–CLOSED

execute_trigger(’CLOSE_WINDOW’);

This trigger centralizes window close events from the Oracle
Applications or Window Manager menu.

WHEN–FORM–NAVIGATE

You cannot modify this referenced trigger. It enables certain standard
behaviors, such as normalizing a minimized form when it is navigated
to.

To make use of this form event, populate a global variable called
GLOBAL.WHEN_FORM_NAVIGATE with the name of a user–named
trigger. Usually you populate this global immediately before issuing a
GO_FORM.

Passing Instructions to a Form (See page 7 – 34)

ZOOM

appcore_custom.event(’ZOOM’);

This trigger processes invocation of the ”Action, Zoom” menu choice
or toolbar button.

24–14 Oracle Applications Developer’s Guide

C H A P T E R

25
T

25 – 1Attachments

Attachments

his chapter provides you with information you need to set up the
attachments feature for your forms and reports.

• Overview of Attachments

• Planning and Defining the Attachments Feature

25 – 2 Oracle Applications Developer’s Guide

Overview of Attachments

The attachments feature enables users to link unstructured data, such
as images, word processing documents, spreadsheets, or text to their
application data. For example, users can link images to items or video
to operations as operation instructions.

Attachment information can flow through your entire application. For
example, if you enable attachments for a part number, where users
would attach images of the part, you can then enable attachments for
all your other forms that refer to your part number. Users would then
be able to see the image of the part wherever that part number occurs.

You can provide security to limit which attachments users can see from
particular forms by assigning document categories to your form
functions. Users then assign individual attachments to particular
categories.

You can add the attachments feature to your application forms and
functions without modifying form code, so long as your forms are built
using Oracle Applications standards (starting with the Oracle
Applications TEMPLATE form).

Definitions

It is useful to specifically define certain terms that have special
meaning within the context of the attachments feature.

Document

A document is any object that provides information to support another
object or action. Examples include images, word processing
documents, spreadsheets, or text.

Entity

An entity is an object within Oracle Applications data, such as an item,
an order, or an order line. The attachments feature must be enabled for
an entity before users can link attachments to the entity.

In the context of attachments, an entity can be considered either a base
entity or a related entity. A base entity is the main entity of the block.
A related entity is an entity that is usually related to the block by a
foreign–key relationship.

�

25 – 3Attachments

For example, suppose you have an Order Lines window that shows the
contents of an Order_Lines block, as shown in Figure 25 – 1. The Order
Lines entity would be considered the base entity of the Order_Lines
block. If that block included a field called Product, the Product entity
would be considered a related entity of the Order_Lines block. If you
also had a Products window that shows the contents of the Products
block, the Product entity would be considered the base entity of the
Products block.

Figure 25 – 1

Attention: The Orders/Order Lines/Products example used
throughout this chapter is a generic example meant to illustrate
attachments concepts. It is not to be confused with actual
attachments setups used in Oracle Applications such as the

25 – 4 Oracle Applications Developer’s Guide

attachments to purchase orders used in Oracle Purchasing.
Those actual setups may differ considerably from our example.

Attachment

A document associated with an entity is called an attachment.

Attachment Function

A form or form function in your application cannot use attachments
until the attachments feature is set up for that form or function; that is,
it must be defined as an ”attachment function” in the Attachment
Functions window.

Document Category

A document category is a label that users apply to individual
attachments and documents. Document categories provide security by
restricting the documents that can be viewed or added via a specific
form or form function.

When you set up the attachments feature, you assign document
categories to particular forms or form functions. When a user defines a
document, the user assigns a category to the document. The
attachments form can query only those documents that are assigned to
a category to which the calling form or form function is associated. A
”Miscellaneous” category is seeded to provide easy visibility of a
document across forms.

How Attachments Work

How Users Use Attachments

When a user is using a block in a form where the attachments feature
has been enabled, the attachments icon is enabled in the toolbar (empty
paper clip). If the user clicks on the icon, the Attachments window
opens. In the Attachments window, the user can either create a new
attachment document or attach an existing document to the base entity
of the block.

Depending on how attachments have been set up, if a document has
already been attached to the entity, the icon in the toolbar indicates that
an attachment is present (paper in paper clip). If the user clicks on the
icon, the Attachments window opens and automatically queries the

25 – 5Attachments

attachment. For a given form function, the user only sees attachments
whose assigned categories are available for that form function.

For some setups of the attachment feature, the Attachments window
automatically queries attachments for the base entity of the block. To
see attachments that are attached to related entities, the user checks the
Include Related Documents check box. The Attachments window then
queries those attachments as well as the attachments for the base entity.

However, the attachments feature can be set up so that all attachments
for both the base entity and related entities of the block can be seen
initially (without the user checking the Related Documents check box).
The user cannot modify or insert attachments for the related entities in
either case.

Behind the Scenes

When a user attaches a document to a record in a form, Oracle
Applications stores information about the document, and the
document itself (or its URL). Oracle Applications separately stores the
attachment information that links the document to the record. Storing
the linkage information separately allows users to attach the same
document to multiple records.

The information that links the entity and the document is stored in an
Oracle Application Object Library table,
FND_ATTACHED_DOCUMENTS. That information includes the
document ID and the entity name, combined with information from the
record that uniquely identifies the instance of the entity (the entity
record). For example, if you were to attach an image to a product in
the products form, the attachment linkage information that would be
stored would be the image document ID, the name of the products
entity, and the primary key information that uniquely identifies the
product (such as the product_ID). As you then move to other forms
that show the product, those attachment functions for those forms
would define, for the products entity, the primary key field as being the
product_ID field (not also the order_ID field, for example). In this way,
wherever the product entity appears in the application, the attached
image would be available so long as the corresponding attachment
functions were defined correctly).

The association between the form and the document is constructed as
follows: the form is connected to a block, and the block is connected to
an entity. Because the attachment linkage is stored with the entity
name, combined with information from the record that uniquely
identifies the instance of the entity (the entity record), the link between

25 – 6 Oracle Applications Developer’s Guide

the form block and the document are derived at runtime through the
entity.

Each document is associated with a category. Each attachment function
is also associated with one or more categories, and at runtime, only
documents whose categories are associated with the current
attachment function (form) can be viewed or attached.

Attachments for Forms or Form Functions

To enable the attachments feature in a form or form function, you need
to define information in the Attachment Functions window.

Registration at the form or form function level allows users to define
attachment data at the appropriate level. If you want all form
functions for a given form to have the same attachment capabilities,
you can define attachment data at the form level and eliminate the
need to enter redundant data for each form function. On the other
hand, if you need different attachment functionality in a form function,
you can define the data at the form–function level.

For example, the Bill of Materials form may have two form functions:
one is used by design engineers, and the other is used by production
engineers. If you want to allow a design engineer access to a broader
range of document categories than production engineers, you will need
to set up attachments separately for each of the two form functions. If
you want attachments to act the same in both form functions you
would define attachments data at the form level.

The Attachments logic first checks to see if the form function has
attachment data defined. If it does, it uses that definition to run the
attachments system. If no data exists for the form function, the
form–level is checked for defined attachment data. If attachments data
exists at the form–level, it is used to run the attachments system. If
attachment data exists, the form caches information in three record
groups that control how the attachment icon is displayed, and what
functionality is available when the attachments form is invoked. If no
attachment data is declared, the attachment icon is disabled and
nothing will happen if the user clicks on the toolbar icon.

Registration of form or form function requires information at the
following levels: Form, Block, Entity, and Category.

25 – 7Attachments

Planning and Defining the Attachments Feature

Planning to Add the Attachments Feature to Your Application

You must plan your attachments feature carefully before attempting to
set it up using the definition forms. The order in which you use the
definition forms is not the same order in which you plan your
attachments feature.

Warning: You must plan and set up your attachments feature
carefully. Once you have attachments for your entities, you
should not modify the attachment function setup except to add
categories or entities. Other modifications could cause existing
attachments to become invalid.

� To plan the attachments feature your application:

This planning task is meant to give you a high–level, skeletal structure
that will help you define your attachments feature correctly. This task
is not meant to give you a complete document containing every field
value that you will need to define in the attachments setup forms.

1. Determine which entities in your application require attachments
(such as items, purchase orders, purchase order lines, and so on).

2. For each entity, determine the main table that holds the entity.
Note that a table can contain more than one entity.

3. Determine the columns in that table that make up the primary key
for that entity. When you set up the attachments feature for your
form, you will need to specify the form fields that correspond to
these primary key columns for your entity.

For example, for an Order Lines entity, the primary key columns
could be ORDER_ID and ORDER_LINE_NUMBER. For a Product
entity, the primary key column could be PRODUCT_ID. Then,
when a user of the Order Lines window queries the attachments
for an order line, the user would see the correct attachments for
that order line and for the product that the order line references.

4. Determine which forms or form functions should show
attachments for those entities.

5. For each form that requires attachments, determine whether you
want to enable attachments for a specific form function or for all

25 – 8 Oracle Applications Developer’s Guide

occurrences of the form. See: Attachments for Forms or Form
Functions: page 25 – 6

6. For the entire form or function, identify what attachment categories
you want to use.

7. For each form (function), determine the block/entity
correspondence (see Table 25 – 1). That is, determine which entities
should have attachments and in which block(s) those entities
should have attachments.

For example, for the Orders function shown in Figure 25 – 1, you
may want to use attachments for the Order (entity), the Order
Lines (entity) on the Orders block. You may also want to use the
Order Lines entity and the Product entity on the Order_Lines
block. For each entity, you can attach pictures, notes, and so on.

8. For each block/entity combination, determine whether the entity is
a base entity or a related entity (see Table 25 – 1). Only one entity
per block can be a base entity.

In our example, the Order Lines entity is the base entity and the
Product entity is the related entity for the Order_Lines block.
Users would be able to view or add new attachments for the Order
Lines entity, but they would only be able to view attachments for
the Products entity on the Order_Lines block (users would add
Product attachments using the attachments feature on the Products
form, assuming that form is set up for attachments).

Users can query and see attachments for more than one entity in a
given form block; however, users may only insert or update
attachments for the base entity of the block. A block can have only
one base entity.

For example, for the Lines block shown in Figure 25 – 1, the Order
Lines entity is the base entity of the block, and the Product entity is
not. In this case, users would be able to create or update
attachments for the Order Lines entity, but they would only be able
to view attachments for the Products entity.

25 – 9Attachments

Block/Entity Correspondences

Form (Function):

 Categories:

 Block:

 Entity: Base or Related?

 Primary Key(s):

 Entity: Base or Related?

 Primary Key(s):

 Entity: Base or Related?

 Primary Key(s):

 Block:

 Entity: Base or Related?

 Primary Key(s):

 Entity: Base or Related?

 Primary Key(s):

 Entity: Base or Related?

 Primary Key(s):

 Block:

 Entity: Base or Related?

 Primary Key(s):

 Entity: Base or Related?

 Primary Key(s):

 Entity: Base or Related?

 Primary Key(s):

Table 25 – 1 (Page 1 of 1)

25 – 10 Oracle Applications Developer’s Guide

Setting Up the Attachments Feature for Your Form

You can set up the attachments feature for any form in your application
where you want the user to be able to attach documents, images, notes,
document URLs, files, or other information not otherwise captured in
the form.

� To set up the attachments feature for your form:

Prerequisites

❑ Plan your attachments feature for your application. See: Planning
to Add the Attachments Feature to Your Application: page 25 – 7.

1. Define your document entities using the Document Entities
window: page 25 – 11.

2. Define your document categories using the Document Categories
window: page 25 – 13.

3. Define your attachment functions using the Attachment Functions
window: page 25 – 16.

We recommend that you go through the Attachment Functions
window and its related windows to familiarize yourself with their
fields and requirements before attempting to define your
attachment functions.

25 – 11Attachments

Document Entities Window

Use this window to register attachment entities. A single table may
contain multiple entities. An entity needs to be registered only once,
even though attachments to it may be viewed in multiple places.

You must plan your attachments feature thoroughly before using this
form. See: Planning to Add the Attachments Feature to Your
Application: page 25 – 7.

Document Entities Block

Table

Enter the name of the main table that contains the entity. For example,
if you have a Products entity that is contained in the DEM_PRODUCTS
table, and that appears as a foreign key column in several other tables,
you would enter DEM_PRODUCTS.

Entity ID

Enter a name that uniquely identifies the entity internally. Typically
this name is the same as the table name, such as DEM_PRODUCTS. If
there is more than one entity in the table, append distinguishing
information to the table name, as in DEM_PRODUCTS_COMPUTER.
Use all uppercase letters and underscores. Do not use spaces or special
characters other than underscores.

Entity Name

The entity name users see in the Attachments form when the form
displays the list of attachments to an entity. Enter an entity name
meaningful to an end user attaching or viewing a document attached to
this entity.

Prompt

The user entity prompt. The prompt is required, but is not currently
used by the attachments feature. If you are building reports based on
your attachments, you may use this column to store a prompt used in
your reports.

25 – 12 Oracle Applications Developer’s Guide

Application

The application that owns the entity (or that owns the entity table).

Note that if you are defining custom attachments functionality that is
based on Oracle Applications tables and forms, you should define your
custom entity using a custom application name instead of the Oracle
Applications product name. This will help to preserve your custom
entity upon upgrade.

25 – 13Attachments

Document Categories Window

Document categories provide security by restricting the documents
that can be viewed or added via a specific form or form function.
When a user defines a document, the user assigns a category to the
document. The attachments form can only query documents that are
assigned to a category with which the form or form function is
associated.

Oracle Applications provides a ”Miscellaneous” category that you can
assign to your attachment function, so if you intend to use that
category, you do not need to define any new categories in this form.

You must plan your attachments feature thoroughly before using this
form. See: Planning to Add the Attachments Feature to Your
Application: page 25 – 7.

Document Categories Block

Category

Enter a user–friendly name for the category. Users see this name in the
Attachments window.

Default Datatype

The default datatype is the initial value for a document that is created
using the category. The user can override the default datatype.

The possible datatypes are:

• Short Text – Short Text documents are stored in the database in a
VARCHAR2(2000) column.

• Long Text – Long Text documents are stored in the database in a
LONG column.

• Web Page – Web Page documents are attached as URLs in the
format http://www.oracle.com (or the format www.oracle.com
if your browsers can use that format). When a user selects a Web
Page document to view, the lower half of the Attachments
window displays an ”Open Document” button that invokes a
web browser and passes the URL to the browser.

• File – File documents are external files such as Microsoft Word
files, Microsoft Excel files, image files such as .JPG files, or other

25 – 14 Oracle Applications Developer’s Guide

types of files. When File type documents are attached, they are
loaded into the database. When a File document is selected, the
lower half of the Attachments window displays an ”Open
Document” button that invokes a web browser and passes the
file to the browser. The web browser handles displaying the file
as appropriate based on its filename extension.

• Document Reference – Use document references to point to
documents maintained in a document management system.

Effective Dates

The effective dates for the category.

Assignments Button

This button brings up the Category Assignments window that you can
use to view and/or enter the forms or form functions for which your
category is available.

Category Assignments Window

Use the Category Assignments window to view attachment functions
that are currently using your category and/or to assign one or more
previously–existing attachment functions to your category. You cannot
assign to your category any form function that has not already been
enabled as an attachment function.

Type

Choose Form or Function.

Name

Enter the name of a form or function (that has already been enabled for
attachments) that you want to be able to use your category.

Enabled

Check the Enabled check box if the category should be enabled for the
form or function. If you uncheck the Enabled check box for a form or
function, any existing attachments to that form or function that use this

25 – 15Attachments

category will no longer be visible to the user using the Attachments
window.

25 – 16 Oracle Applications Developer’s Guide

Attachment Functions Window

Use the Attachment Functions windows to set up the attachments
feature for your form or form function. Before you use this form, you
must:

• Carefully plan your attachments feature. See: Planning to Add
the Attachments Feature to Your Application: page 25 – 7.

• Define your document entities using the Document Entities
window: page 25 – 11.

• Define your document categories using the Document
Categories window: page 25 – 13.

We recommend that you go through the Attachment Functions window
and its related windows to familiarize yourself with their fields and
requirements before attempting to define your attachment functions.

Attachment Functions Block

Type

Choose Form, Function, or Report. The function type determines the
list of values for the Name field.

Name

Use the list of values to choose the form, form function, or report for
which you want to set up the attachment feature. For a function, this
name is the internal name of the function, such as DEM_DEMXXEOR.

User Name

The user–friendly name of the form, function, or report will default in
based on the function name chosen.

Session Context Field

Optionally enter the name of the field or parameter in the form that
should be used to obtain the session context for the title of the
Attachments window. In general, the session context field holds the
organization name for manufacturing applications or the set of books
name for financial applications.

25 – 17Attachments

You must enter the Oracle Forms internal field name, not the displayed
prompt. Use the syntax block.field. You must include the block name.

Enabled

Check the enabled box if the attachment feature should be enabled for
the form, function, or report.

Categories Button

This button brings up the Categories window that you can use to view
and/or enter the document categories available to your form
(function). You must assign at least one category to your attachment
function.

Blocks Button

This button brings up the Block Declaration window that you can use
to enter the block declarations for your attachment function.

Categories Window

Use this window to view or assign document categories to your
attachment function. Categories you assign to your function are
available across all blocks in your form where attachments are enabled
(that is, you cannot have a category available in one block of a form
and not another block in the same form where both blocks have
attachments enabled).

Category

Enter the category you want to assign to this function. You must assign
at least one category to your attachment function. Oracle Applications
provides a ”Miscellaneous” category that you can assign to your
attachment function.

Enabled

Check the enabled box if this category should be enabled for this
function.

25 – 18 Oracle Applications Developer’s Guide

Block Declaration Window

Information about blocks is required to determine whether the
Attachments toolbar icon should be enabled. In addition, the various
attributes associated with a block affect how the attachments form
appears and behaves when it is invoked from a block.

If you are using this form to set up attachment categories for reports,
you need not use the Blocks or Entities windows.

Block Name

The Oracle Forms block name as entered in Form Builder. Enter only
blocks for which you want to enable the attachment feature.

Method

Choose either ”Allow Change” or ”Query Only”. ”Allow Change”
means that the user can insert, update, or delete attachments when the
attachment form is invoked from the block. ”Query Only” means that
the user can view, but not change, delete or create, attachments when
the attachment form is invoked. If you select ”Query Only” in this
field, it applies to all attachments for all entities for your block. If you
select ”Allow Change”, you can selectively restrict privileges for
specific entities using the Entities window.

Secured By

Choose Organization, Set of Books, Business Unit, or None, depending
on how the form and its data is secured. Financial applications are
typically secured by sets of books. Manufacturing applications are
typically secured by organization, and Human Resources applications
are typically secured by business unit ID.

When a document is defined, its security mechanism is defined as well.
For example, you can specify that a document is secured by
organization, and that it is owned by organization ABC. The
attachment system will now only display this document when the
attachments form is invoked by a form running in the context of the
ABC organization.

To facilitate sharing of documents across security contexts
(organization, set of books, business unit), a document can be defined
as having ”None” as its security type, or it can be defined as being
”Shared.” Defining a document with either of these attributes will
allow the attachments form to display the document regardless of the
security context of the form that invokes the attachments form.

25 – 19Attachments

Organization

If the attachment is secured by organization, enter the name of the
context field in your form that holds the organization ID. Use the
syntax block.field (for example, ITEMS.ORGANIZATION_ID). You
must include the block name.

Set of Books

If the attachment is secured by the set of books, enter the name of the
context field in your form that holds the set of books ID. Use the
syntax block.field (for example,
JOURNAL_ENTITIES.SET_OF_BOOKS_ID). You must include the
block name.

Business Unit

If the attachment is secured by business unit, enter the name of the
context field in your form that holds the business unit ID. Use the
syntax block.field (for example, EMPLOYEE.ORGANIZATION_ID).
You must include the block name.

Context 1 – Context 3

You can set up your attachment function so that when a user opens the
Attachments window, the title of the Attachments window displays up
to three values from your form. These values can help the user identify
the record to which the user is attaching the document. You can
specify the names of up to three fields from which the attachments
feature can derive these values. For example, for attachments to an
order, you may want the title of the Attachments window to display
the order number and the customer name, so you would specify the
name of the field that holds the order number and the name of the field
that holds the customer name.

Enter the name of the field that holds the context information to be
used in the Attachments form title. Use the syntax block.field (for
example, ORDERS.ORDER_ID). You must include the block name.

Entities Button

This button brings up the Entity Declaration window that you can use
to enter the entity declarations for your attachment function.

25 – 20 Oracle Applications Developer’s Guide

Entity Declaration Window

Use the Entity Declaration window to list the entities for your block
and to provide information about each entity. You must complete the
Entity Declaration window again for each block you listed in the Block
Declaration window. If you have an entity that you are using for more
than one block, you must complete the Entity Declaration window
separately for each block and provide all the entity information each
time.

You must already have used the Document Entities window to define
any entities you need before using them in this window.

Entity

Enter an entity name from the list of entities that allow attachments.

Display Method

The Attachments window has two modes in which it displays
attachments. This mode is toggled with the ”Include Related
Documents” check box. The only difference is which attachments will
be queried when the user enters the window. If the ”Include Related
Documents” check box is unchecked, the window should display only
those attachments that are directly linked to the current record. When
”Include Related Documents” is checked, attachments loosely related
to the current record can be included as well.

Specify ”Main Window” for entities whose
attachments you want to see immediately in the
Attachments window whether or not the ”Include
Related Documents” check box is checked.
Typically you would specify ”Main Window” for
the base entity of the block (or the one entity for
the block that allows insert of new attachments).

Entities that are included in turning on the
attachment toolbar icon indicator should all use the
”Main Window” display method. The user should
never be shown an icon that indicates that
attachments exist, press the toolbar icon, and find
nothing queried up in the attachments form.

Entity attachments with a display method of
”Related Window” will be displayed along with
those that use the ”Main Window” display method

Main Window

Related Window

25 – 21Attachments

only when the ”Include Related Documents”
checkbox is checked.

Attachments to entities related to the base entity by
a foreign key would typically use the ”Related
Window” display method. For example, in the
Order_Lines block attachments to either the order
or the product should be shown in the ”related”
attachment window, not the ”main” attachment
window.

Attachments not included in setting the toolbar
iconic button would typically use the ”Related
Window” display method.

Include in Indicator

Check the ”Include in Indicator” checkbox for each entity that should
be included in setting the toolbar iconic button to indicate whether or
not attachments exist for a record.

Any entity with a display method of ”Main Window” should have
”Include in Indicator” checked so the user is not surprised by finding
attachments queried up by the Attachments window when the toolbar
icon indicated that no attachments existed.

Depending on how you have implemented the attachments feature,
checking ”Include in Indicator” will cause a stored procedure to be
executed for each entity at the WHEN–NEW–RECORD–INSTANCE
event point (that is, the stored procedure will be executed for each
record as the user scrolls through a group of queried records). You
should avoid including loosely–related entities in the indicator.
Segregating attachments in this way helps performance by limiting the
entities that must be checked for attachments in order to show the
appropriate attachment toolbar icon (with or without a paper in the
paper clip).

Indicator in View

Check the ”Indicator in View” check box if you have made some
modification to the form or view to determine whether or not
attachments exist (that is, you are using a special implementation of the
attachments feature). For a ”standard” implementation of the
attachments feature, you would not check this check box, and checking
”Include in Indicator” or ”Indicator in View” would be mutually
exclusive.

25 – 22 Oracle Applications Developer’s Guide

Privileges Tabbed Region

You can define privileges to allow or prevent query, insert, update, or
delete of attachments to a specific entity for the block. You can also
define a conditional statement for privileges. For example, in the
Oracle General Ledger journal entries form, you might allow query of
attachments at any time, but not allow insert, update, or delete of
attachments if the journal has been posted.

Privileges can be defined with the values of:

• Always

• Never

• When condition True

• When condition False

Note that these settings depend on the settings of the Method field in
the Block Declaration window. If the method is set to ”Allow Change”,
then you can further restrict the privileges for particular entities in this
region. If the method is set to ”Query Only”, then you cannot use this
region to expand upon those query–only privileges (for example, to
allow inserts for a particular entity).

For documents attached as a document reference or as a file type
document, users may be able to update or delete the document
externally to the attachments system in spite of whether you allow
updates to the attachments. For example, for an attachment of a
document reference, a user may be able to modify the document itself
within the document management system that the document reference
points to. Similarly, an Excel spreadsheet could be modified within
Excel and reloaded into the attachments system.

Query

Determines whether you can query attachments to the entity.

Insert

Determines whether you can insert attachments to the entity. Only one
attachment entity per block can allow inserts (the base entity), and the
primary key fields must be populated (the attachment feature will
create the record in the FND_ATTACHED_DOCUMENTS table with
whatever values exist in those fields).

25 – 23Attachments

Update

Determines whether you can update attachments to the entity.

Delete

Determines whether you can delete attachments to the entity. Generally
you should only allow deletes from the form which defines the entity.

Field

If you base your privileges on a condition, enter the name of the field in
the calling form that contains the value to be used in evaluating the
condition. Use the syntax block.field. You must include the block name.

Operator

If you base your privileges on a condition, select the operator to be
used for evaluating the condition.

Value 1

If you base your privileges on a condition, enter the value the condition
field should be compared to. For most operators you will only enter a
value for the Value 1 field.

Value 2

Enter a second value only when using the BETWEEN operator.

Primary Key Fields Tabbed Region

Key 1 – Key 5

Enter the names of the fields in the calling form from which the
primary keys for the entity can be derived. Use the syntax block.field.
You must include the block name (for example,
ORDER_LINES.PRODUCT_ID).

You must specify at least one primary key field for each entity (and for
each block using the entity). Queries, inserts, updates, and deletes of
attachments all depend on the primary key fields in the calling form
containing values by the time the user presses the toolbar attachments
icon. If the primary key values are not available when the button is

25 – 24 Oracle Applications Developer’s Guide

pressed, the SQL statement built into the Attachments form may not
include the attachments the user expects, or may be broader than the
user expects.

These fields correspond to the primary key columns that uniquely
identify an entity in the entity table. For example, for an Order Lines
entity, the primary key columns could be ORDER_ID and
ORDER_LINE_NUMBER, with the corresponding form fields
ORDER_LINES.ORDER_ID and
ORDER_LINES.ORDER_LINE_NUMBER. For a Product entity, the
primary key column could be PRODUCT_ID, with the corresponding
form field on the Orders form of ORDER_LINES.PRODUCT_ID.

Enter the primary keys in the order in which you want the data to be
stored in FND_ATTACHED_DOCUMENTS. Data from the Key 1 field
will be stored in the PK1_VALUE column, and so on. The PK1_VALUE
through PK5_VALUE columns are defined as VARCHAR2(100)
columns to enable an index to be defined across all columns.

In order to display attachments to an entity when the toolbar button is
pressed, the necessary identifying data will have to be available in the
form fields. For more information read the description of the ”SQL
Statement” attribute.

SQL Statement Tabbed Region

Use the SQL statement field to create ”advanced” query criteria
(restrictions) that you cannot get using the standard attachment entity
attributes.

For example, if you have an Orders block and you want to include
attachments to all Purchase Order Lines for that order as ”related”
attachments, you can achieve this goal without specifying a SQL
fragment in this field. You would achieve this behavior by simply
using the Lines entity with the Orders block but only specifying the
first part of the Lines entity primary key (that is, Key 1 =
LINES.ORDER_ID). For this to work, attachments to Order Lines must
be created with ORDER_ID stored in the column
FND_ATTACHED_DOCUMENTS.PK1_VALUE (that is, in any block
where attachments for order lines can be created, the ORDER_ID field
must be defined as the first primary key field).

If, however, you only want to see attachments to ”enabled” Order
Lines, you could use the SQL statement to limit the records returned in
the attachments form using a SQL statement like: ”AND EXISTS
(SELECT 1 FROM order_lines WHERE order_id =

25 – 25Attachments

FND_ATTACHED_DOCS_FORM_VL.pk1_value AND enabled_flag =
’Y’)”.

Enter a valid SQL fragment. Because this fragment will be added to
the attachment form’s WHERE clause, it cannot reference any fields
using ”:block.field” notation. The SQL statement cannot exceed 2000
characters.

 In order to understand how to use the SQL statement, you need to
understand the basic structure of the query in the Attachments form.
The WHERE clause of the Attachments form will look something like
this:

SELECT <columns>

FROM fnd_attached_docs_form_vl

WHERE function_type = :parameter.function_type

AND function_name = :parameter.function_name

AND ((entity_name = ’<entity 1>’

 AND pk1_value = ’<key 1 value>’

 ...

 AND pk5_value = ’<key 5 value>’

 AND <your SQL Statement for entity 1>)

 OR (entity_name = ’<entity 2>’

 AND pk1_value = ’<key 1 value>’

 ...

 AND pk5_value = ’<key 5 value>’

 AND <your SQL Statement for entity 2>)

)

Warning: Using a SQL statement requires the use of dynamic
SQL to perform the checks for attachments. While this is
available in the
FND_ATTACHMENT_UTIL_PKG.get_atchmt_exists_sql
function, this function cannot be used in the definition of a
view. Therefore any use of a SQL statement should be
restricted to attachments to entities that will be displayed in the
”related” attachments window and not included in setting the
attachment indicator.

25 – 26 Oracle Applications Developer’s Guide

C H A P T E R

26
T

26 – 1Handling Dates

Handling Dates

his chapter provides you with information you need to handle
dates correctly in your code.

• Year 2000 Compliance in Oracle Applications:
Year 2000 Readiness Disclosure

• Date Coding Standards

• Conversion To Date Compliance:
Year 2000 Readiness Disclosure

• Troubleshooting

26 – 2 Oracle Applications Developer’s Guide

Year 2000 Compliance in Oracle Applications

With Release 10.7, Oracle Applications provides year 2000 compliance.
The Release 10.7 character mode, SmartClient and NCA releases are all
year 2000 certified. Release 11 and Release 11i releases continue year
2000 support.

Year 2000 compliance ensures that there is never any confusion as to
which century the date refers. Date values in the Oracle Applications
appear in form screens and form code, are used in concurrent
programs, and are manipulated and stored in the database. Custom
extensions and modifications to Oracle Applications also use date
values in custom forms, tables, APIs, concurrent programs, and other
code. This section discusses the steps that ensure that dates used in
custom extensions and modifications to Oracle Applications meet the
requirements for year 2000 compliance.

For existing code, this section contains checklists you can follow to
bring your code into compliance. These checklists are targeted for the
Oracle Applications environment. They are followed by a
troubleshooting guide that lists the most common mistakes made when
coding dates.

Year 2000 Compliance

Oracle uses a definition of year 2000 compliance based on a superset of
the British Standards Institute’s definition. This definition spells out
five factors in satisfying year 2000 compliance for date processing:

• The application must correctly handle date information before,
during, and after January 1st, 2000. The application must accept
date input, provide date output, and perform calculations on
dates throughout this range.

• The application must function according to documentation
without changes in operation resulting from the advent of the
new century.

• Where appropriate, the application must respond to two–digit
input in a way that resolves the ambiguity as to century in a
defined and predetermined manner.

• The application must store and provide output of date
information in unambiguous ways.

• The application must correctly manage the leap year occurring in
the year 2000. February 29, 2000 is of particular concern because
there was no February 29, 1900.

26 – 3Handling Dates

By following the standards outlined in this section, your code will
avoid the major Y2K issues found in the Oracle Applications
environment. If you are upgrading existing code, follow the checklists
provided to ensure that your code is year 2000 compliant.

RR Date Support

Release 10.7 SmartClient and Release 10.7 NCA are built using Oracle
Forms 4.5. Dates in these versions are always displayed in four–digit
year (YYYY) format to prevent ambiguity.

The character mode version of Oracle Applications, based on a
previous release of Oracle Forms called SQL*Forms 2.3, usually
displays dates in two–digit year format. Code associated with the
character mode version, including code shared with the graphical
versions, also sometimes references dates using the two–digit format.

To resolve the year 2000 issues associated with the character mode
forms, several solutions were considered. All dates could be changed
to display and use four–digit years (YYYY format), removing
ambiguity. Alternatively, the format of the displayed dates could be
changed from YY to RR. The RR format makes an intelligent decision
on which century to use.

The RR date standard provides year 2000 support for the
character–mode Oracle Applications that use a nine–digit date with a
two–digit year. Dates are shown in the format DD–MON–RR, where
the RR format makes an intelligent determination of the century using
the following rule:

Current Year

Last Two Two Digit Year Year RR Format

Digits Specified Returns

–––

0–49 0–49 Current Century

50–99 0–49 Next Century

0–49 50–99 Previous Century

50–99 50–99 Current Century

Dates in Oracle Applications were analyzed and those dates which
could, in some business scenarios, fall outside of the 1950 to 2049 date
range were converted to full four–digit year dates. For the rest of the
dates, Oracle Applications chose the RR format solution based on an
analysis of the potential risks of destabilizing any customer–developed

26 – 4 Oracle Applications Developer’s Guide

extensions. The RR solution provides a safer path for product stability
and customer modifications. Customers who had made modifications
or extensions to the Oracle Applications needed a safe and timely path
to allow them to move to the year 2000 compliant Release 10.7 before
encountering problems with their date fields.

Dates from 01–JAN–00 through 31–DEC–49 are interpreted as
occurring in the 21st century. Dates from 01–JAN–50 through
31–DEC–99 are interpreted as being in the 20th century.

Paths to Compliance

To ensure compliance for character mode Release 10.7 forms, use the
RR format throughout your custom forms.

In the SmartClient release, we recommend upgrading your forms
version to the date–enhanced version 1.3.3, which simplifies many of
the coding standards necessary for year 2000 compliance. If this is not
feasible, then follow the steps detailed in the conversion section to
make your code compliant.

Dates in Oracle Applications

There are two main ways that dates are stored in the applications: as
character strings or as binary, Julian dates. Dates, both as character
strings and as Julian dates, are used in various places in the
applications, including database tables, C and Pro*C code, PL/SQL
versions 1, 2, and 8, concurrent programs, Oracle Reports, Java code,
flexfield columns, form fields, and profile values.

Before continuing the discussion of how dates are used in Oracle
Applications, it is helpful to establish some definitions.

Positive and Negative Infinity Dates

Positive and negative infinity dates are used in code as comparison
values. They are meant as dates that are not reasonable valid dates in
the life of the code.

Oracle Applications use January 1, 9999 as positive infinity and January
1, 1000 as negative infinity wherever four–digit year support is
provided.

26 – 5Handling Dates

Common incorrect choices for positive infinity in custom code include
September 9, 1999 and December 31, 1999.

Format Mask

The format mask determines how the date is displayed or stored.
Format masks specify how to represent the day, month, year and time
of a date value. For example, the date March 11, 1999 can be
represented as 11–MAR–1999, 03/11/1999, or as 1999/03/11.

A default format mask variable (NLS_DATE_FORMAT) determines the
format mask unless a different mask is explicitly set. Oracle Forms 6.0
separates the displayed date format from the stored date format.
Displayed dates follow the user date format set by the variable
FORMS60_USER_DATE_FORMAT, which changes depending on the
language and territory. Oracle Applications sets the
NLS_DATE_FORMAT to be DD–MON–RR. You can set
FORMS60_USER_DATE_FORMAT (and
FORMS60_USER_DATETIME_FORMAT) as appropriate for your
installation (before starting your Forms Server).

Canonical Date Format

When dates are stored in a character format, one standard format,
called the canonical date format, is used to prevent confusion and
inconsistencies.

Oracle Applications uses YYYY/MM/DD HH24:MI:SS (the time
portion is optional) as the canonical date format whenever dates are
represented by a character string. This format is independent of the
user’s language, and preserves the sort order of the dates.

Oracle Dates and Julian Dates

Oracle dates (OraDates) include a range from January 1, 4712 BC to
December 31, 4712 AD. They are represented as seven byte binary
digits, often referred to as Julian Dates. Oracle dates have a span of
3,442,447 days. Thus, January 1, 4712 BC is Julian day 1, and December
31, 4712 AD is Julian day 3,442,447. January 1, 1 AD is Julian day
1,721,424. Oracle dates include the year, month, day and time.

The Oracle database uses Oracle dates in its date columns, and
wherever dates are stored using the DATE data type. Storing dates in
this binary format is usually the best choice, since it provides year 2000
compliance and the ability to easily format dates in any style.

26 – 6 Oracle Applications Developer’s Guide

Oracle dates are used in SQL statements, PL/SQL code, and Pro*C
code. Pro*C code uses Oracle dates by binding binary arrays as data
type 12. Oracle dates are never seen by users; the format is intended
for internal use, not for display.

The Oracle Applications do not support BC dates, so dates before
Julian 1,721,424 are not used.

Explicit Format Mask

Date values in the applications must frequently be converted from a
Julian date to a character string, or from a string to a Julian date for
storing in a date–type column or field. For example, the functions
TO_DATE and TO_CHAR perform these conversions in both SQL and
PL/SQL.

When dates are converted into a character string in SQL or PL/SQL, a
format mask can be explicitly included:

to_char(my_date,’YYYY/MM/DD’)

If the developer does not specify a format mask, the system uses a
default, implicit format mask.

When converting a date–type value, always explicitly state the format
desired. This ensures that the correct date format is used and that
context–sensitive variables do not cause your conversion to fail.

When you use a PL/SQL variable to hold the value from an Oracle
Forms DATE or DATETIME field, you can access that value using the
function NAME_IN as shown in the example below:

x_date_example := TO_DATE(NAME_IN(’block.datetime_field’),

 ’DD–MON–YYYY HH24:MI:SS’);

The NAME_IN function returns all values as CHAR. Thus when
dealing with a DATE field, you must explicitly supply a mask to
convert from a DATE format to a CHAR. However, Oracle Forms has
an internal representation and a displayed representation for dates.
When you use NAME_IN, it is accessing the internal representation.
Furthermore, Oracle Forms only uses the following masks when
accessing dates with NAME_IN:

DD–MON–YYYY

DD–MON–YYYY HH24:MI:SS

This mask is used internally only to convert from DATE to CHAR; it is
not affected by, nor does it affect, what the user sees. For this reason,

DATE fields:

DATETIME
fields:

26 – 7Handling Dates

there is not an issue concerning what date mask to use if translation is a
concern.

If a DATE field has a mask of MM/DD/YYYY, causing the user to see
something like 2/13/1995, internally you still access it with the mask
DD–MON–YYYY. You will typically assign it to a DATE variable, so
the internal mask does not cause a concern.

If you intend to assign a DATE field to a CHAR variable and
manipulate it as a CHAR, then you may have a translation issue. In
that case, you should first assign it to a DATE variable, then assign it to
the CHAR variable with a translatable mask such as DD/MM/YYYY.

Implicit Format Mask

If a conversion from a date–type value to a character string is done
without explicitly stating the format mask desired, an implicit format
mask is applied. This implicit format mask is determined by
environment settings such as NLS_DATE_FORMAT.

to_char(my_date)

Oracle Application standards require an explicit format mask.

NLS_DATE_FORMAT Variable

This environment variable usually determines the implicit date format.
Oracle tools (with the exceptions of SQL*Forms 2.3, SQL*Forms 3, and
PL/SQL versions before 2.0) use the NLS_DATE_FORMAT to validate,
display, and print dates. In all of these cases you can and should
provide an overriding value by explicitly defining the format mask.

OraDates and Binary Dates

OraDates and binary dates are encoded using Julian dates.

Flexible Date Formats

With Release 11i, Oracle Applications provides flexible date support:
the ability to view dates in forms in the user’s preferred format.
Flexible date format is the ability to display dates in the way expected
by a user, usually based on the user’s language and territory. There are
several different formats used around the world in which to view
dates. Some countries use DD–MON–YYYY, other locations use
DD/MM/YYYY. 11i also has the ability to use dates in a multilingual
environment.

26 – 8 Oracle Applications Developer’s Guide

If the applications are running multilingually, then two users of the
applications may expect different formats for the date values. Flexible
dates display the date value correctly for both users.

26 – 9Handling Dates

Date Coding Standards

There are several principles of coding with dates that are applied
wherever dates are used by the Oracle Applications. All new code
should follow these standards.

• All treatments of date values as strings in database tables use a
canonical form which handles full four–digit years and is
independent of language and display and input format. The
recommended form is YYYY/MM/DD (plus, optionally, the
time as HH24:MI:SS). Dates stored in this form are converted to
the correct external format whenever they are displayed or
received from users or other programs.

• No generic processing logic, including Pro*C code, PL/SQL
code, and SQL statements of all kinds (including statements
stored in the database), should hardcode either assumptions
about the date format or unconverted date literals.

All treatments of dates as strings should use explicit format
masks which contain the full year (four–digit years) and are
language–independent. The recommended treatment is either as
a Julian date (format = ’J’) or, if the date must be in character
format, using the canonical format YYYY/MM/DD.

• Standard positive and negative infinity dates are 9999/01/01 and
1000/01/01.

• Never use B.C. dates.

• When it is necessary to hardcode a date, avoid language–specific
months. Instead, use a Julian date and specify full century
information:

my_date = to_date(’9999/01/01’,’YYYY/MM/DD’)

Using Dates While Developing Application Forms

NLS_DATE_FORMAT

Oracle tools (with some exceptions) use the NLS_DATE_FORMAT to
validate, display, and print dates. In all of these cases code can provide
an overriding value. For instance, you can associate a format mask
with a date field in Oracle Forms. This format mask is used for
validating input as well as displaying the date in the form. Oracle

26 – 10 Oracle Applications Developer’s Guide

Application products set the NLS_DATE_FORMAT to DD–MON–RR
in Release 10.7.

Forms and NLS_DATE_FORMAT

Release 10.7 SmartClient, 10.7 NCA, and Release 11 use Oracle Forms
4.5, which expands two–digit years to four–digit years when space
provides. The NLS_DATE_FORMAT of DD–MON–RR used in Release
10.7 and Release 11 expands to DD–MON–RRRR if the date coding
standards are followed.

However, the 10.7SC Oracle Forms COPY and NAME_IN commands
do not use the NLS_DATE_FORMAT. They return either
DD–MON–YY or DD–MON–YYYY depending on the length of the
field. The APP_DATE package in the APPCORE library provides
utilities that deliver the correct format when referencing a date field.

APP_DATE and FND_DATE: Date Conversion APIs (See
page 29 – 4)

There are several restrictions in the version of Oracle Forms 4.5 used
by 10.7SC on the use of the RR date format. The two most pervasive of
these are:

• Form parameters do not expand the date format regardless of
their length.

• PL/SQL (1.0), used by Oracle Forms 4.5, does not handle the
DD–MON–RR format correctly.

Both these issues are resolved in Release 11, which is based on the
date–enhanced version of Oracle Forms.

Date–Enhanced Versions of Oracle Forms

With Release 10.7 NCA, 10SC and following, Oracle Forms provides a
mechanism to differentiate the situations where the
NLS_DATE_FORMAT sets default format masks. These include:

• BUILTIN_DATE_FORMAT (an application property), which
controls the masks used for COPY, NAME_IN, and other
built–ins. Oracle Applications sets this to ”RR.”

• PLSQL DATE_FORMAT (an application property), which
controls the default mask used by PL/SQL. Oracle Applications
sets this to DD–MON–RR.

26 – 11Handling Dates

• USER_DATE_FORMAT (an environment variable), which
controls the entry and display dates that forms use. In Release
11i this is used to provide flexible date formats.

See the Oracle white paper ”Dates in Developer 2000” for more details
on the date–enhanced releases.

Length of Dates in Oracle Forms

For Release 10SC and internet computing forms (Release 10 NCA,
Release 11, and Release 11i), all date fields are of length 11 or 20. The
property class (TEXT_ITEM_DATE or TEXT_ITEM_DATETIME) sets
this automatically.

NOTE: If a field is set incorrectly, the date may be displayed incorrectly.
For example, if the Maximum Length is 9 instead of 11, the date is
automatically displayed as ”DD–MON–YY” instead of
”DD–MON–YYYY.” Also, if you use the NAME_IN function on this
field, the date will be returned as ”DD–MON–YY” or ”DD–MON–RR”
depending on whether the date–enhanced version of Forms is used and
what the BUILTIN_DATE_FORMAT is set to.

Display Width is the display width in 1/100 inches. This should be
1200 (1.2 inches) for DATE fields and 1700 (1.7 inches) for DATETIME
fields.

Use APPCORE Library APP_DATE Routines

When getting a date out of or placing a date into a form field, use the
appropriate APP_DATE routine. You should also use the APP_DATE
routine when dealing with a date in a character field.

APP_DATE and FND_DATE: Date Conversion APIs (See
page 29 – 4)

Date Format in DECODE and NVL

Always supply a date format when using DECODE and NVL to avoid
an implicit conversion. If you do not provide a format there is a danger
that the function will return a CHAR value rather than the DATE type
the code expects. The following demonstrate correct usage with a
supplied date format:

DECODE(char_col,’<NULL>’,to_date(null),

to_date(char_col,’YYYY/MM/DD’))

NVL(to_date(null),to_date(char_col,’YYYY/MM/DD’))

26 – 12 Oracle Applications Developer’s Guide

Date Parameters

Avoid the use of date parameters before Oracle Forms 6 because they
always behave like 9–character dates.

Explicit and Implicit Date Formats

Always specify an explicit format when converting a date to a string;
never accept the default value of NLS_DATE_FORMAT. Some
conversions are subtle; the conversion to a string can be implicit:

select sysdate into :my_char from dual

In the following example the date type is converted to a character
without the use of an explicit TO_CHAR.

select to_char(sysdate, ’YYYY/MM/DD HH24:MI:SS’) into

:my_char

Avoid all types of implicit conversion in code; always control the
format mask. The use of an implicit mask causes problems if the
NLS_DATE_FORMAT variable is changed. The use of implicit
conversions creates unpredictable and misleading code.

Copying Between Date Fields

You cannot directly copy a hardcoded date value into a field:

copy(’01–FEB–2001’, ’bar.lamb’);

The month segment, for example ”FEB”, varies across the different
languages, so a direct copy is infeasible. Instead, you may call:

app_item.copy_date(’01–02–2001’, ’bar.lamb’);

This routine does the copy in this way:

copy(to_char(to_date(’01–01–2001’, ’DD–MM–YYYY’),

 ’DD–MON–YYYY’), ’bar.lamb’);

The only format that the NAME_IN and COPY functions accept are
DD–MON–

26 – 13Handling Dates

FND_STANDARD.SYSTEM_DATE return DATE;

FND_STANDARD.USER return VARCHAR2;

These functions behave identically to the built–ins, but are more
efficient since they use information already cached elsewhere.

Use these FND_STANDARD functions in Oracle Forms PL/SQL code
only; you can use the Oracle Forms built–ins in SQL statements,
$$DBDATE$$ defaulting or in stored procedures.

• Minimize references to SYSDATE within client–side PL/SQL.
Each reference is translated to a SQL statement and causes a
round–trip to the server.

• Time is included in SYSDATE and FND_STANDARD.SYSTEM_
DATE by default. Include the time for creation dates and last
updated dates. If you do not wish to include the time in the
date, you must explicitly truncate it:

:BLOCK.DATE_FIELD := TRUNC(FND_STANDARD.SYSTEM_DATE);

Truncate the time for start dates and end dates that
enable/disable data.

• Use $$DBDATE$$ to default a date value on a new record.

Using Dates With Compliant Versions of OAS

Year 2000 compliant versions of Oracle’s Application Server (OAS) are
as follows:

R10.7

All Applications 10.7 customers who are using Workflow or Self
Service functionality with the current NCA technology stack (Forms
4.5.10.X and OAS 3.0.1.0.1) are required to upgrade to OAS versions
3.0.2 (Unix) / 3.0.1.1 (NT) and Forms 4.5.10.13 (Developer 2000 1.6.1
patch 6). This is necessary because of a Year 2000 issue with cookie
expirations in OAS that will manifest itself in these two products.
Customers must also upgrade to Forms 1.6.1 patch 6.

R11

All R11 customers must upgrade to WAS 3.0.2 (Unix) / 3.0.1.1 (NT).

26 – 14 Oracle Applications Developer’s Guide

OAS 3.0.1.0.1 is not supported for R11. R11 has been certified with
3.0.1.1 and 3.0.2. In R11 customers may choose a version of Developer
2000 1.6.1 which is compatible with their maintenance pack.

26 – 15Handling Dates

Conversion To Date Compliance

The techniques described in this chapter will help avoid the majority
of year 2000 issues that you are likely to encounter while coding with
the Oracle Applications toolsets in the Applications environment.
However, environments and coding techniques vary widely enough
that no single set of steps can be completely comprehensive. You
should also take into account factors specific to your
implementation, as well as implementing a thorough testing regime
in certifying your custom code.

This section describes the procedures for converting current custom
code to year 2000 compliance. The requirements necessary for year
2000 support (conversion to ”DD–MON–RR” format) are specified,
although if a change is required, the new standard is designed to
achieve full four–digit and flexible (multilingual) date support.

Many changes are designed to take advantage of new Oracle Forms
properties that effortlessly provide extended date support. Anywhere
that dates are displayed in Oracle Forms as a date data type, new
properties work to display the date in the correct format.

Conversion Stages

There are several stages involved in bringing code up to date
compliance. First, verify that the code meets the R10 coding standards
as specified in the Oracle Applications Coding Standards. Then search for
specific areas that need changing and fix them. Finally, test your code
for compliance.

Verify Compliance

Length of Dates in Release 10.7SC and Internet Computing Releases

For Release 10.7SC and internet computing forms (Release 10 NCA,
Release 11, and Release 11i), all date fields should be of length 11 or 20.

NOTE: If a field length is set incorrectly, the date may be displayed
incorrectly. For example, if the Maximum Length is 9 instead of 11, the
date is automatically displayed as ”DD–MON–YY” instead of
”DD–MON–YYYY.” Also, for non–date–enhanced versions of forms,
NAME_IN on the shorter field returns a date as ”DD–MON–YY,”
which is not year 2000 compliant.

26 – 16 Oracle Applications Developer’s Guide

Display Width is the display width in 1/100 inches. This should be
1200 (1.2 inches) for DATE fields and 1700 (1.7 inches) for DATETIME
fields.

Character Mode and External Programs Code Review

Convert ”DD–MON–YY” to ”DD–MON–RR”

In your SQL*Forms 2.3 custom code, custom C, or other program
language code, and custom server–side PL/SQL, convert all instances
of DD–MON–YY to DD–MON–RR.

NOTE: If you write a script to automatically replace the strings, make
sure you do not convert DD–MON–YYYY to DD–MON–RRYY.

Convert DD–MON–YYYY to DD–MON–RRRR.

This is not a required step but it can be helpful in avoiding some of the
subtle Y2K issues, especially item 3 in the Troubleshooting, Date
Checklist, Year 2000 Problems section later in this document.

NOTE: Please be aware of an issue with Forms before release 6.0.6.
This causes the core libraries to work incorrectly with dates between 0
and 100 A.D. when using the DD–MON–RRRR mask.

Examine Hardcoded Dates

Examine all hardcoded dates in your code. Ensure that there are no
hardcoded dates between 1999 and 2049. Pay attention to positive and
negative infinity dates discussed earlier in this document under ”Dates
on Oracle Applications.”

Convert Existing Data

Check customer data for invalid negative infinity dates. For example,
start dates for profiles are seeded as ”01–JAN–1900.” In applications
with the ”DD–MON–RR” format, however, programs that store dates
as characters process this date as ”01–JAN–2000.” All such dates
should be changed to be no earlier than ”01–JAN–1951.” A script is
available at Oracle’s Year 2000 web site (www.oracle.com/year2000) to
assist in this task.

26 – 17Handling Dates

Date–Enhanced Forms Code Review

For date–enhanced versions of Oracle Forms, which include all internet
versions and SmartClient versions using version 1.3.3 or later of Oracle
Developer, follow the following steps to insure date compliance. This
is the recommended route to compliance; if you are not using a
date–enhanced version of Oracle Forms, we recommend upgrading.

Convert ”DD–MON–YY” to ”DD–MON–RR”

Convert all instances of DD–MON–YY in your code to DD–MON–RR.

Convert DD–MON–YYYY to DD–MON–RRRR. This is not a required
step but it can be helpful in avoiding some of the subtle Y2K issues,
especially item 3 in the Troubleshooting, Date Checklist, Year 2000
Problems section later in this document.

Convert DD–MON–YYYY to DD–MON–RRRR.

This is not a required step but it can be helpful in avoiding some of the
subtle Y2K issues, especially item 3 in the Troubleshooting, Date
Checklist, Year 2000 Problems section later in this document.

Set Variable and USER_DATE_FORMAT

In your PRE–FORM trigger, set PLSQL_DATE_FORMAT to
DD–MON–RR. Set USER_DATE_FORMAT to ”RR.”

Examine Hardcoded Dates

Examine all hardcoded dates in your code. Ensure that there are no
hardcoded dates between 1999 and 2049. Pay attention to positive and
negative infinity dates discussed earlier in this document under ”Dates
on Oracle Applications.”

Non–Date–Enhanced Forms Code Review

If you do not wish to upgrade your SmartClient version of Oracle
Forms to the date–enhanced version, you can use the following steps to
ensure date compliance for your SmartClient forms. However,
upgrading to Oracle Developer 1.6.1 usually involves less invasive
review and fewer changes.

26 – 18 Oracle Applications Developer’s Guide

Modify DD–MON–YY Dates in Oracle Reports and Oracle Forms

PL/SQL 1.0 (used by Oracle Reports 2.0 and Oracle Forms 4.5) does
not recognize the ”DD–MON–RR” construct. If you use
”DD–MON–YY” in your custom client–side or custom Oracle Report
PL/SQL code, a simple replacement will break the code. In these cases,
use the database to retrieve a year 2000 compliant version of the date,
or change the format of the character date to one which retains the
century information. In these cases you may wish to leave the
”DD–MON–YY” mask which operates with to_char as it is the
equivalent of ”DD–MON–YY” for this function.

NOTE: You can use ”DD–MON–RR” in SQL statements in Oracle
Forms 4.5 and Oracle Reports 2.0 since these format masks are
processed by the database, not by PL/SQL 1.0.

NOTE: You can use ”DD–MON–RR” for format masks for input
parameters or display fields in reports.

Convert DD–MON–YYYY to DD–MON–RRRR

This is not a required step but it can be helpful in avoiding some of the
subtle Y2K issues, especially item 3 in the Troubleshooting, Date
Checklist, Year 2000 Problems section later in this document.

Examine All Hardcoded Dates

Examine all hardcoded dates in your applications. Ensure that there
are no hardcoded dates between 1999 and 2049. Pay attention to
positive and negative infinity dates discussed earlier in this document
under ”Dates on Oracle Applications.”

Testing

Year 2000 compliance should be tested for in all standard certification
procedures. Relevant system tests should test functionality across the
year 2000 boundary. Examples of tests can be found at Oracle’s Year
2000 web site (www.oracle.com/year2000).

Explicit testing should be done around the following key dates:

• 31–DEC–1999 Time: 11:59:00 (end of the Year 1999)

• 01–JAN–00 Time: 12:01:00 am (start of the Year 2000)

• 03–JAN–00 and 03–JAN–2000 (first business day of the Year
2000)

26 – 19Handling Dates

• 31–JAN–2000 (first monthly close of 2000)

• 29–FEB–2000 (the calendar day added for the 2000 leap year)

• 31–MAR–2000 (first quarter close of 2000)

• 30–JUN–2000 (second quarter close of 2000)

• 30–SEP–2000 (third quarter close of 2000)

• 31–DEC–2000 (year end of 2000)

• 31–JAN–2001 (first monthly close of 2001)

• 31–DEC–2001 (year end of 2001)

• 31–DEC–2049 (year end of 2049)

• 09–SEP–99 (first potential Y2K problem date)

• 04–APR–04 [04/04/04] (this should be changed to 04–APR–2004)

• 02–FEB–28 [02/02/28] (this should be changed to 02–FEB–2028)

26 – 20 Oracle Applications Developer’s Guide

Troubleshooting

The section lists some of the most common problems. Where
appropriate, it also provides ways to verify that your code avoids these
year 2000 compliance problems.

Use the DATECHECK Script to Identify Issues

To identify problems, first run the datecheck script available at
Oracle’s Year 2000 web site (www.oracle.com/year2000). The output
identifies both the location and the type of problem. Consult the
checklist below for instructions on each issue.

Year 2000 and Related Problems:

• DE–1. Using a DD–MON–YY Mask With a TO_DATE: page
26 – 21

• DE–2. Using Dates Between 1999 and 2049 As Reference Dates:
page 26 – 22

• DE–3. Using a DD–MON–YYYY Mask With a Two–Digit Year:
page 26 – 22

• DE–4. Associating any Hardcoded Date Mask With a Form
Field: page 26 – 24

• DE–5. Using a pre–1950 date With a Two–Digit Year: page
26 – 24

Problems for Non–Date–Enhanced Versions:

• NDE–1. Implicit Conversions Without Format Masks in PL/SQL
1.0: page 26 – 25

• NDE–2. Using the Forms ”COPY” built-in With a Two–Digit
Year: page 26 – 26

Problems with Translated Dates:

• TD–1. Hardcoded English month: page 26 – 27

• TD–2. NEXT_DAY with English day or ordinal: page 26 – 27

Client Date Issue:

• CD–1. Getting the Date from the Client: page 26 – 28

26 – 21Handling Dates

Problems Observed During Testing

Testing is also recommended, especially around problem dates such as
December 31, 1999, January 1, 2000, January 3, 2000, February 29, 2000,
December 31, 2000, and January 1, 2001.

Determining Whether an Issue Is Year 2000 Related

Oracle’s definition of a Year 2000 bug is a bug caused by the century
changeover or leap year. Indications of Year 2000 bugs are:

• Only happens when system date is 2000 (or February 29, 2000)

• Only happens when entry date is 2000 (or February 29, 2000)

• Get an ”ORA–1841 – (full) year must be between –4713 and
+9999, and not be 0”

• A year 1999 date displays/saves as 0099

• A year 2000 date displays/saves as 1900

Date Checklist

Year 2000 Problems

DE–1. Using a DD–MON–YY Mask with a TO_DATE

The correct syntax for TO_DATE is:

my_char_date varchar2(9);

...

TO_DATE(my_char_date,’DD–MON–RR’)

Do NOT use:

TO_DATE(my_char_date,’DD–MON–YY’) [WRONG]

TO_DATE(my_char_date) [WRONG – NO FORMAT MASK]

Using a DD–MON–YY mask with an Oracle Reports Parameter:
Masks of DD–MON–YY in your reports convert the incoming string
parameters incorrectly. Masks of DD–MON–RR or DD–MON–RRRR
ensure they behave correctly for Year 2000 purposes. For example:

MYREPORT.rex: INPUT_MASK = <<”DD–MON–RR”>>

MYREPORT.rex: INPUT_MASK = <<”DD–MON–RRRR”>>

26 – 22 Oracle Applications Developer’s Guide

Leap year problem: Using the TO_DATE with a YY causes a particular
problem on leap year. This example illustrates why we recommend
converting all character date values to canonical format; sometimes the
year 2000 problems are subtle.

my_char_date =

to_char(to_date(my_char_date,’DD–MON–YY’),

’DD–MON–YY’)

Although the redundant syntax above is confusing, as long as the
character date is in the DD–MON–YY format, it seems as if the code
would work since the incorrect century is immediately truncated.

However, if the date is 29–FEB–00 this code fails. The year 2000 is a
leap year but the year 1900 was not. The TO_DATE used with
DD–MON–YY interprets the 00 as 1900, which creates an error.

DE–2. Using Dates Between 1999 and 2049 as Reference Dates

If you are checking against a hardcoded reference date, do not use
dates between 1999 and 2049. For example, the following code, which
uses an incorrect date as a positive infinity, will fail on December 31,
1999:

my_date date;

your_date date;

 ...

NVL(my_date,to_date(’12/31/1999’,DD/MM/YYYY)) =

NVL(your_date,

to_date(’12/31/1999’,DD/MM/YYYY) [WRONG]

Instead, use dates that are truly impossible to reach:

NVL(my_date, to_date(’01/01/1000’,DD/MM/YYYY)) =

NVL(your_date, to_date(’01/01/1000’,DD/MM/YYYY)

DE–3. Using a DD–MON–YYYY Mask with a Two–Digit Year

If a date stored as a nine character string is converted to a date using an
eleven–digit mask such as DD–MON–YYYY, the date is moved to the
first century. For example:

my_rr_date varchar2(9);

my_date date;

my_date2 date;

26 – 23Handling Dates

 ...

my_date2 := to_date(my_rr_date,’DD–MON–YYYY’) [WRONG]

The date stored in my_rr_date variable is now stored as a first century
date in my_date2. If my_rr_date was 30–OCT–99, my_date2 is now
30–OCT–0099.

If my_rr_date was in the year 2000, the code moves the date to the year
0, which did not exist. The Oracle Error ORA–01841 warns of this kind
of error.

To avoid these problems, avoid unnecessary TO_DATE conversions or
use the DD–MON–RR mask to convert the date (if a TO_DATE is
required):

my_date2 := my_date

my_date2 := to_date(my_rr_date,’DD–MON–RR’)

NOTE: Many user exits and other programs in Release 10.7 accept or
pass dates in both DD–MON–RR and DD–MON–YYYY format. Be
careful when coding for these programs that you do not convert both
types with DD–MON–YYYY.

Implicit Conversions: Accidental conversions of this type may occur
by performing a TO_DATE on a date type value. This only occurs in
SQL or server side PL/SQL. In SQL, performing a TO_DATE on a date
type implicitly does a TO_CHAR on that value since TO_DATE
requires a character argument. The TO_CHAR is done using a
nine–digit format mask (DD–MON–YY), which causes the problems
discussed above. This problem occurs in server–side PL/SQL such as
C programs, SQL*Forms 2.3 code, and dynamic SQL in Developer
2000.

select to_date(my_date,’DD–MON–YYYY’)... [WRONG]

Instead, avoid the unnecessary conversion:

select my_date...

Similar accidental conversions can be done by using NVL and
DECODE carelessly. If a NVL or DECODE is returning a character
instead of a date, trying to correct this error by converting the returned
value to a date can cause the first century error:

to_date(DECODE(char_col,’<NULL>’,null,sysdate),

’DD–MON–YYYY’) [WRONG]

to_date(NVL(null,sysdate),’DD–MON–YYYY’) [WRONG]

Instead, ensure that the returned value is a date type:

26 – 24 Oracle Applications Developer’s Guide

DECODE(char_col,’<NULL>’,to_date(null),sysdate)

NVL(to_date(null),sysdate)

ORA–1841 Problems: In the year 2000, transferring dates to the first
century causes an immediate problem. For dates occurring in the year
2000, there is no first century equivalent (there is no year 0). If your
code converts a date to year 0, the error ”ORA–01841: (full) year must
be between –4713 and +9999, and not be 0” occurs.

Comparison Problems: Also, when comparing date values, converting
the dates to the first century causes problems with comparisons across
the century boundary. Although 01–JAN–99 occurs before 01–JAN–01
in the DD–MON–RR format, 01–JAN–0099 is later than 01–JAN–0001 if
the dates are accidentally moved to the first century.

DE–4. Associating Any Hardcoded Date Mask with a Form Field

Any Oracle Forms field with a hardcoded mask associated with it
behaves incorrectly since the standard date fields use the mask
DD–MON–RRRR.

In Release 11i, flexible date formats allow the format to change
depending on the environment.

DE–5. Using a Pre–1950 Date with a Two–Digit Year

Oracle Applications uses DD–MON–RR mask as the default date mask.
If century information is missing, the default code ”assumes” a date is
between 1950 and 2049.

Hardcoded dates before 1950 stored with a two–digit year will be
misinterpreted. A hardcoded date with a four–digit year (using an
explicit format mask) between 1900 and 1949 is only incorrect if the
date is stored without century information (usually meaning it is stored
as a DD–MON–RR string). Most problems of this time are in
SQL*Forms 2.3, C code, or concurrent program arguments although
they are possible in PL/SQL.

Use the standard negative and positive infinity dates in all new code.
Of course, in SQL and PL/SQL you still need to ensure that the century
information is not lost.

For example, the code fragment to_date(’01–JAN–00’) would be
interpreted as January 1, 2000, while the code fragment
to_date(’01/01/1000’, ’DD/MM/YYYY) would be unambiguous.

26 – 25Handling Dates

Issues for Non–Date–Enhanced Applications

The following problems only apply to applications running with
non–date–enhanced versions of Release 10.7 SC.

NDE–1. Implicit Conversions Without Format Masks in PL/SQL 1.0

Implicit conversions cause the same problems as conversions using
DD–MON–YY, since PL/SQL 1.0 implicitly uses that mask because it
cannot use DD–MON–RR. For example:

Another example of unexpected problems caused by using the
DD–MON–YY mask in client–side PL/SQL:

my_char_date varchar2(9) := ’29–FEB–00’;

my_4digityear_char_date varchar2(11) :=’29–FEB–2000’;

my_date date;

 ...

my_date := TO_DATE(my_char_date) [WRONG]

my_date := my_char_date [WRONG]

However, PL/SQL version 1.0 (used by non–date–enhanced Oracle
Forms 4.5) does not recognize the DD–MON–RR format. If you are
using this version of Oracle Forms with your custom Release 10SC
forms, you can either use the database for the TO_DATE conversion or
change the format of the date to one that retains the century
information.

Date coding standards recommend specifying an explicit format mask.
Since client–side PL/SQL does not support DD–MON–RR until the
date–enhanced versions of the applications, the correct code either uses
the database:

select TO_DATE(my_char_date,’DD–MON–RR’) into

my_date... (adds a database hit)

or, better, makes a more fundamental coding change to:

my_date := TO_DATE(my_4digityear_char_date,

’YYYY/MM/DD’)

Report files are particularly prone to this type of error. For example, a
noncompliant report might dynamically build a SQL string as follows:

character_var = ’WHERE ’ || to_char(date_var,

’DD–MON–YY’) || ’ < SYSDATE’;

26 – 26 Oracle Applications Developer’s Guide

Substituting DD–MON–RR is impossible because PL/SQL 1.0 does not
recognize the RR mask.

Instead, to provide year 2000 compliance, dynamically build the string
as

character_var = ’WHERE to_date(’’’ ||

to_char(date_var, ’YYYY/MM/DD’) ||

’’’, ’’YYYY/MM/DD’’) < SYSDATE’;

Decode and NVL: A common place where accidental implicit
conversions occur is in a DECODE or NVL. The data types returned
by NVL and DECODE are determined by the first argument which
could be returned, and NULL is treated as a CHAR. In the following
examples, a CHAR type is returned instead of a DATE type:

DECODE(char_col,’<NULL>’,null,to_date(char_col,

’YYYY/MM/DD’)) [WRONG]

NVL(null,to_date(char_col,’YYYY/MM/DD’)) [WRONG]

To avoid this implicit conversion, convert the first argument to a DATE
type:

DECODE(char_col,’<NULL>’,to_date(null),

to_date(char_col, ’YYYY/MM/DD’))

NVL(to_date(null),to_date(char_col, ’YYYY/MM/DD’))

NDE–2. Using the Forms ”COPY” Built-In with a Two–Digit Year or
with a Date Parameter

Using the Oracle Forms COPY command can easily cause the
conversion of a 9–character date using DD–MON–YYYY as described
above. Unless you are using date–enhanced Oracle Forms, the COPY
command assumes that dates are in the form DD–MON–YYYY. In the
example below the date January 1, 2001 is copied as January 1, 0001.

my_date date;

 ...

copy(to_char(my_date),’my_block.my_field’) [WRONG]

If the field is of length 9, or is a date parameter, the COPY built–in
expects the date in DD–MON–YY form, which causes slightly different
problems, as all dates are moved to the twentieth century:

copy(to_char(my_date),’parameter.my_date’) [WRONG]

26 – 27Handling Dates

In the second example given above, the date January 1, 2001 is copied
as January 1,1901. These problems, unlike the first example, only show
up when testing against the Year 2000.

If you are using a non–date–enhanced version of Release 10SC, ensure
that you use COPY only with four–digit year dates, using COPY with
date values, and never use parameters of type DATE. Ideally use the
APP_DATE utilities and character type parameters:

app_date.date_to_field(my_date,’parameter.char_date’)

Note: date_to_field will use canonical format in character parameters.

 APP_DATE and FND_DATE: Date Conversion APIs (See
page 29 – 4)

Translated Date Issues

These issues will affect any dates that must work in a multilingual
environment. Release 11 and higher of the applications can run in
multiple languages; Release 11i and higher support multiple date
formats as well.

TD–1. Hardcoded English Month

English months fail in other languages. Use a numeric month instead.

TO_DATE(’1000/01/01’,’YYYY/MM/DD’)

Not:

TO_DATE(’01–JAN–1000’,’DD–MON–YYYY’) [WRONG]

TD–2. NEXT_DAY with English Day or Ordinal

A next_day call is not translatable if you pass in a hardcoded English
day (i.e. MON). However, it is also incorrect to pass it a hardcoded
ordinal (i.e. 1), since which days map to which numbers varies by
territory.

Use a currently known date (i.e. 11/3/1997 is a Monday) to determine
what the 3 character day in the current language is and then pass that
in.

next_day(my_date,to_char(to_date(’1997/03/11’,

’YYYY/MM/DD’),’DY’))

26 – 28 Oracle Applications Developer’s Guide

Client Date Issues

CD–1. Getting the Date from the Client

These problems are caused by the program getting the current day or
time from the client machine (a PC in the smart client release) instead
of the database. The database is preferable. Oracle Applications
currently gets all current times from the server because neither PC
vendors nor Microsoft are providing Year 2000 warranties.

Do not use $$DATE$$ to default the current date into a Forms field.
This gets the client date. Instead use the $$DBDATE$$ built–in which
gets the database date. Better still, default the date programmatically
in WHEN–CREATE–RECORD or WHEN–NEW–
FORM–INSTANCE using FND_STANDARD.SYSTEM_DATE. The use
of $$DATE$$ is not a problem in character mode (it uses code similar
to the SYSTEM_DATE call).

C H A P T E R

27

27 – 1Customization Standards

Customization
Standards

This chapter provides you with standards for building custom
application components that integrate with Oracle Applications. Using
these guidelines, you reduce the administrative effort to build and
maintain custom components.

Because all Oracle Applications products are built using Oracle
Application Object Library, you should use Oracle Application Object
Library, with other Oracle tools, to customize Oracle Applications. You
should be familiar with the concepts presented in the relevant chapters
of this guide.

The following topics are covered:

• Overview of Customizing Oracle Applications

• Customization By Extension

• Customization by Modification

• Oracle Applications Database Customization

• Oracle Applications Upgrades and Patches

• Upgrading Custom Forms to Release 11i

• The Upgrade Utility and Standards Compliance Checker: flint60

27 – 2 Oracle Applications Developer’s Guide

Overview of Customizing Oracle Applications

There are several different ways you might want to customize Oracle
Applications. Some of the most common types of customizations
include:

• Changing forms

– appearance

– validation logic

– behavior

• Changing reports or programs

– appearance

– logic

• Database customizations

– adding read–only schemas

– augment logic with database triggers

• Integrating third party or custom software

– relinking programs

Basic Business Needs

These suggestions provide you with the ability to satisfy the following
basic business needs. You should be able to:

• Enhance Oracle Applications to meet your needs by:

– Developing new components

– Modifying existing components

• Improve the Oracle Applications upgrade process by:

– Preserving custom components across upgrades

– Simplifying the upgrade of custom components

�

27 – 3Customization Standards

Definitions

Customization By Extension

Develop new components for existing Oracle Applications and develop
new applications using the development features of Oracle Application
Object Library.

Customization by extension can be as simple as copying an existing
Oracle Applications component to a custom application directory and
modifying the copy.

Customization By Modification

Also known as ”customization in place”. Modify existing Oracle
Applications components to meet your specific requirements.
Modifications range from changing boilerplate text to altering
validation logic.

Attention: Oracle Applications recommends that you avoid
doing customization by modification. You should do
customization by extension instead. You should be aware that
modifications are often not preserved during an upgrade or
patch process.

Component

A module of code (such as forms, reports, or SQL*Plus scripts) or an
Oracle Application Object Library object (such as menus,
responsibilities, and messages), or a database object (such as tables,
views, packages, or functions).

Custom Application

A custom application is a non–Oracle Applications application that is
registered with Oracle Application Object Library and typically has (at
least) its own directory structure and other components.

Overview of Building an Application (See page 1 – 15)
Overview of Setting Up Your Application Framework (See
page 2 – 2)

Database Object

A table, index, view, sequence, database trigger, package, grant, or
synonym.

27 – 4 Oracle Applications Developer’s Guide

Application Short Name

A short reference name for your application that contains no spaces.
You use an application short name when you request a concurrent
process from a form, call Message Dictionary routines, and so on.

Overview of Setting Up Your Application Framework (See
page 2 – 2)

Application Basepath

The name of an environment variable that translates into the top
directory of your application’s directory tree. Oracle Application
Object Library searches specific directories beneath the basepath for
your application’s executable files, including form files.

Overview of Setting Up Your Application Framework (See
page 2 – 2)

Application Directory Structure

The hierarchy of directories for an application. The Oracle
Applications directory structures are created when you install or
upgrade Oracle Applications. You create the directory structure for a
custom application.

Overview of Setting Up Your Application Framework (See
page 2 – 2)

Oracle Applications Concepts

Applications Environment Files

Defines the environment variables for your Oracle Applications
installation. The environment files include <dbname>.env and
adovars.env (for UNIX platforms). The <dbname>.env file contains
application basepath variables for Oracle Applications products and
other environment variables and is regenerated automatically by
Oracle Applications administration utilities. The adovars.env file
contains information on virtual directory structures used with web
servers and is modified at installation time by applications system
administrators to configure users’ environments.

27 – 5Customization Standards

Determining Your Needs

Follow these steps to determine your customization needs:

• Determine the specific requirement that is not met by Oracle
Applications

• Try to meet this requirement by altering the definition
parameters of the standard applications, as described in your
implementation and user manuals. Often, you can eliminate the
need for customization by altering the application configuration
(such as by setting up a descriptive flexfield)

• Document the requirement that you wish to meet by
customization

• Determine if you can meet this requirement by extension (adding
a new component) or if you must modify an existing component

Whenever possible, you should customize by extension rather than by
modification. By doing so, you eliminate the risk of overwriting or
losing a required piece of application logic or validation in the existing
components.

You may customize by modification, but we strongly discourage this.
These modifications introduce a level of risk, and are not supported by
Oracle Support Services, nor the Applications Division. A simple
change in form navigation may eliminate a validation check resulting in
data integrity problems, and may be lost during an upgrade or patch.

If you must modify an Oracle Applications form, your first choice
should be to determine whether you can accomplish your modification
using the CUSTOM library. You can use the CUSTOM library to
modify the behavior of Oracle Applications forms without making
invasive changes to the form code, making your modifications less
difficult to upgrade. Modifications you can do using the CUSTOM
library include hiding fields, opening other forms from the Zoom
button, enforcing business rules, adding choices to the Special menu,
and so on.

Using the CUSTOM Library (See page 28 – 1)

27 – 6 Oracle Applications Developer’s Guide

Customization By Extension

Separate your application extensions from Oracle Applications
components for easy identification and to reduce the risk of loss during
an upgrade or patch. To keep new components separate, you
implement a custom application and make it the owner of the new
components.

You may implement one custom application that owns all custom
components, or many custom applications that own custom
components. For example, you may want to define a custom general
ledger application for extensions to Oracle General Ledger, and a
custom payables application for extensions to Oracle Payables. Use
many custom applications if you will create more than a few
components for each Oracle Application. Use a single custom
application if you will only create a few components for all Oracle
Applications products.

Follow these steps for each custom application you wish to implement:

• Define your custom application

• Create your custom application directory structure

• Add your custom application to your Applications Environment
File

• Add new components to your custom application

• Document your new components

Suggestion: Use a revision control system to help you keep
track of your changes and custom components.

Overview of Building an Application (See page 1 – 15)
Overview of Setting Up Your Application Framework (See
page 2 – 2)

Documenting New Components

You should document at least the following for each new component:

• Purpose

• Input parameters (for reports and programs)

• Sample output (for reports and programs)

• Processing logic

27 – 7Customization Standards

• Database objects used and type of access (select, update, insert,
delete)

You thoroughly document each extension to simplify each of the
following tasks:

• Component modification due to changing business requirements

• Component modification due to Oracle Applications upgrades
or patches

• Identification of obsolete extensions following an Oracle
Applications upgrade or patch

If your custom component is a modified copy of an Oracle Applications
component, you should list the component in the file applcust.txt. This
file, located in the $APPL_TOP/admin directory (or platform
equivalent), provides a single location for a brief listing of
customizations. Oracle Applications uses this file during patch
processes (for Release 11.0 and later) to generate warning messages that
customizations are being overwritten or may need to be replaced after
the patch. Also, you can use the list to help determine the scope of
changes that may be needed to customizations after an upgrade or
patch.

The applcust.txt file provides a place to list the original file name and
location, the destination file name and location (the customized file),
and a brief comment. You do not need to list components that are not
customizations of Oracle Applications components (that is, you do not
need to list components of a custom application that did not start with
Oracle Applications files).

Defining Your Custom Application

Use the Applications window to register your custom application. Use
an intuitive application name and short name for your custom
application; relate the names to the Oracle Application being extended
if appropriate. For example: extensions to Oracle General Ledger could
belong to a custom application named Custom General Ledger with an
application shortname XXGL.

Although your short name can be up to 50 characters, we recommend
that you use only four to six for ease in maintaining your application
and in calling routines that use your short name.

To reduce the risk that your custom application short name could
conflict with a future Oracle Applications short name, we recommend

27 – 8 Oracle Applications Developer’s Guide

that your custom application short name begins with ”XX”. Oracle
reserves all three to four character codes starting with the letter O, the
letters CP, and the letter E, as well as all names currently used by
Oracle Applications products (query all applications in the
Applications window).

 Register Your Application (See page 2 – 3)

Applications Window (See page 2 – 6)

Creating Your Custom Application Directory Structure

Use the appropriate operating system commands to create your
application directory structure. You should define a release number as
part of the application basepath to allow for multiple versions of your
custom application in the future. Use the release number of the Oracle
Applications release in your installation, such as 11.5 for Release 11i.

Additional Information: Oracle Applications Concepts

Modifying Your Applications Environment File

Modify your applications environment file to define an environment
variable for your application basepath. Add your custom application
basepath environment variable to the adovars.env file (or platform
equivalent), not the <dbname>.env file.

You must restart your Forms Server and your Internal Concurrent
Manager after adding your basepath variable and running your new
environment file so that Oracle Application Object Library can find
your application components.

Additional Information: Oracle Applications System
Administrator’s Guide

Adding New Components

Each time you develop a new component, place it in the correct
subdirectory for the appropriate custom application.

Additional Information: Oracle Applications Concepts

Adding a Form

You build new forms using Oracle Application Object Library with
Oracle Forms to ensure seamless integration with Oracle Applications.

27 – 9Customization Standards

You must start with the TEMPLATE form and follow the Oracle
Applications form development standards described in this manual to
ensure user interface consistency between Oracle Applications and
your extensions.

Overview of Form Development Steps (See page 1 – 17)

If your extension is a modified Oracle Applications form, you copy the
original form and make your modifications to the copy.

Move your completed (or modified) form to the proper directory for
your custom application. Register the form with Oracle Application
Object Library, associating it with your custom application, and define
a function for your 958 ions.

27 – 10 Oracle Applications Developer’s Guide

Adding a New Report Submission Form

Oracle Application Object Library provides you with a Standard
Request Submission interface for running and monitoring your
application’s reports and other programs. You no longer need to
design and maintain special forms to submit concurrent programs. Use
the Submit Request window to submit reports. If you create custom
menus in your application, be sure that the Submit Request window is
on your menu.

Overview of Standard Request Submission (See page
22 – 2)

If you want to submit your report or program from a custom form,
Oracle Application Object Library provides a standard routine to
submit a concurrent program to the concurrent manager from within
an Oracle Forms trigger. A custom report submission form should
provide validation for each parameter value a user can specify.

 Overview of Concurrent Processing (See page 15 – 2)

Adding Online Help

For Release 11i, Oracle Applications provides online help in HTML
format. You can easily extend Oracle Applications online help
following the guidelines in the Oracle Applications System Administrator’s
Guide. If you extend the online help you will need to repropagate your
custom files after upgrading.

Customizing Oracle Applications Help
Oracle Applications System Administrator’s Guide

If you have built a custom application with custom forms and you
want to create context–sensitive online help for your custom
application, you can build a help system for your application.

Building Online Help for Custom Applications (See page
27 – 26)

Adding Menus

You can define new menus to call your new forms and Oracle
Application menus and forms. We recommend that you always enter

27 – 11Customization Standards

your custom application short name as part of the (hidden) menu name
when you define new menus to help clarify which menus are yours and
to help avoid collision with future Oracle Applications menu names.
During an upgrade, all menus created by Oracle Applications are
deleted, even if you have modified them or created all new menu
options. Patches may also affect Oracle Applications menus.

Overview of Menus and Function Security (See page
11 – 2)

Menus Window (See page 11 – 28)

Adding Responsibilities

You can define new responsibilities using the Responsibilities window
in the Oracle Applications System Administrator responsibility. You
should create new responsibilities for your custom menus and forms.
You can associate these custom responsibilities with your custom
application or an Oracle Application. Your custom responsibility is
preserved across upgrades, regardless of which application it is
associated with.

Responsibilities Window
Oracle Applications System Administrator’s Guide

Adding Message Dictionary Messages

You can define your own messages in Message Dictionary. Always
associate new messages with your custom application (use your own
application name when you define the message). During an upgrade,
all custom messages associated with an Oracle Applications product
are deleted. Messages associated with your custom application are not
deleted.

Messages Window (See page 12 – 55)

27 – 12 Oracle Applications Developer’s Guide

Customization By Modification

You modify Oracle Application components only when you cannot
meet a requirement using Oracle Application features and
customization by extension is not an option. You must not modify any
component without a thorough understanding of the processing logic
and underlying database structure for that component. Modifications
to Oracle Applications components introduce a level of risk, and are
not supported by Oracle Support Services, nor the Applications
Division.

If possible, copy the component to be modified into a custom
application and follow the guidelines for customization by extension.
If you cannot define the modified component in a custom application,
you should preserve a copy of the original. An example of a
customization that cannot be performed in a custom application is a
report that is submitted from an Oracle Applications report launch
form other than the Submit Request window. When the request to run
the report is executed, the concurrent manager expects the report to be
in the appropriate Oracle Applications directory with a particular
executable file name because the information that identifies the report
is typically hardcoded into the launch form.

Documenting Modifications

You should list each component that you modify in the file
applcust.txt. This file, located in the $APPL_TOP/admin directory (or
platform equivalent), provides a single location for a brief listing of
customizations. Oracle Applications uses this file during patch
processes (for Release 11.0 and later) to generate warning messages that
customizations are being overwritten or may need to be replaced after
the patch. Also, you can use the list to help determine the scope of
changes that may be needed to customizations after an upgrade or
patch. The applcust.txt file provides a place to list the original file
name and location and a brief comment. For customization files that
are copies of Oracle Applications files (customization by extension),
you also include the destination file name and location (the customized
file).

In addition to your list in applcust.txt, you should also document at
least the following for each component modification:

• Purpose of the modification

• Name of files changed

• Changes to input parameters (for reports and programs)

27 – 13Customization Standards

• Sample output (for reports and programs)

• Changes to processing and validation logic

• Changes to database objects used and type of access (select,
update, insert, delete)

Suggestion: Use a revision control system to help you keep
track of your changes and custom components.

You thoroughly document each modification to simplify each of the
following tasks:

• Further modification due to changing business requirements

• Identification of obsolete modifications following an Oracle
Applications upgrade

• Recreating modifications to upgraded Oracle Applications
components

Preserving Original Files

You should avoid customizing Oracle Applications files ”in place”.
Always make a copy of the file and modify the copy, preferably in a
custom application directory.

Before customization, place a copy of the unmodified Oracle
Application component in a directory separate from your Oracle
Applications for safekeeping (if you no longer need the modification,
you can retrieve the original component). For example, on a UNIX
system you create a subdirectory named orig beneath your Oracle
Applications installation directory (the directory denoted by the
$APPL_TOP environment variable, which typically includes a release
number designation). The directory orig contains application directory
structures for each modified component. For example, if you modify
Oracle General Ledger Release 11i form GLXSSMHR, you would copy
the original versions of GLXSSMHR.fmb and GLXSSMHR.fmx into the
directory $APPL_TOP/orig/gl/forms/<language>.

You need to create the application directories only for modified
components. For example, if you do not modify any Oracle General
Ledger Release 11i Oracle Reports reports, you do not need to create
the directory $APPL_TOP/orig/gl/reports/<language>.

You do not need to copy components into the orig directory if you copy
them into a custom application directory for modification and do not
modify the original component in the Oracle Applications directory.

27 – 14 Oracle Applications Developer’s Guide

Modifying an Existing Form

Whenever possible, confine your modification of form behavior to the
CUSTOM library. If you must modify the form itself, use the following
guidelines (which include guidelines for customization by extension).

Using the CUSTOM Library (See page 28 – 1)

Oracle Forms .fmb files are provided for all Oracle Applications. For
Release 11i, all Oracle Applications forms are located in the
$AU_TOP/forms/<language> directory. Copy the Oracle Applications
form to a custom application for modifications. Follow these steps,
using Oracle Forms Developer and Oracle Application Object Library,
to modify a form:

1. Identify the file

2. Copy the file to a custom application and rename the file

3 Preserve the original file

4. Make the modifications

5. Comment the form

6. Generate the form

7. Register the customization in applcust.txt

8. Document your customization

Identifying the file

Once you select a particular Oracle Applications form for modification,
you must identify the underlying form file. You take the following
steps to find the file:

• Select Help–>About Oracle Applications from the menu. Scroll
to the Form Information section. The form name, followed by
.fmb, is the form source file to be modified.

• The first two or three characters of the form file name are the
application short name. The file should be located under the
forms/<language> directory for that application or in the
$AU_TOP/forms/<language> directory.

Making modifications

Form modifications fall into three categories: cosmetic, navigational,
and functional. Cosmetic changes to screen boilerplate text or to the

27 – 15Customization Standards

display characteristics of fields will not impact form processing. As of
Release 11i, you can modify field prompts using the CUSTOM library
(because prompts are now properties of items and can be manipulated
programmatically). However, reordering fields on a form, or altering
field attributes between ”non–displayed” and ”displayed” (which has
the effect of reordering fields) are modifications that should be avoided
unless you thoroughly analyze the navigation and trigger firing
sequence associated with those fields and ensure that no logic or
validation changes will result. You should not remove or disable any
form validation logic. You may add validation logic, such as
permitting only specific formats or ranges for field entries (though this
is best done in the CUSTOM library instead of the form itself).

Note that for many Oracle Applications forms, most logic is contained
in libraries attached to the form (found under $AU_TOP/resource) or
in stored packages in the database, and these files may also need to be
identified and/or copied and/or modified.

Commenting the form

Oracle Applications forms provide a routine in the PRE–FORM trigger
to document the date and author of form modifications. Oracle Forms
also provides the ability to enter form–level comments. You should
make use of both of the these features when you modify a form.

The Oracle Applications FND_STANDARD.FORM_INFO routine in
the PRE–FORM trigger looks like:

FND_STANDARD.FORM_INFO(’$Revision: <Number>$’,

 ’<Form Name>’,

 ’<Application Shortname>’,

 ’$Date: <YY/MM/DD HH24:MI:SS> $’,

 ’$Author: <developer name> $’);

You should change the Form Name and Application Shortname
arguments to reflect your new file name and custom application.
However, this particular application short name affects which online
help file the user sees after choosing help for the current window. If
you want the user to see the original Oracle Applications online help
for the original form, you should keep the original application short
name. The online help is the only feature affected by this instance of
the application short name.

Each time you modify the form you should update the Date argument
(DATE_LAST_MODIFIED) value to the current date and the Author
(LAST_MODIFIED_BY) value to indicate who made the modifications.
If the Date entry does not exist, add it. You must not update the

27 – 16 Oracle Applications Developer’s Guide

revision number, as it identifies the original version of the form on
which your modified form is based. The date and revision appear in
the Help –> About Oracle Applications window.

You should also add a new entry to the form level comments each time
you modify the form. Format your form level comments as follows:

Developer Date Description

––––––––––––––– –––––––––– ––––––––––––––––––––––––––––––

J. Smith 12–SEP–97 Changed boilerplate in Type

region

R. Brown 16–SEP–98 Added ENTRY_STATUS field with

LOV to Type region

Modifying an Existing Report

Oracle Reports .rdf files are provided for all Oracle Applications. You
should copy the Oracle Application report to a custom application for
modification. Follow these steps, using Oracle Reports and Oracle
Application Object Library, to modify a report:

1. Identify the file

2. Make the modifications

3. Comment the report

4. Create a concurrent program using your file

Identifying the file

Once you select a particular Oracle Applications report for
modification, you must identify the underlying report file. You take the
following steps to find the file:

• Query the concurrent program name using the Concurrent
Programs window (using either the Application Developer
responsibility or the System Administrator responsibility). Use
the Program field as the query criteria (the program name is the
same descriptive name that appears when you submit a request
to run that program). Write down the contents of the Name field
in the Executable region.

• Navigate to the Concurrent Program Executable window using
the Application Developer responsibility. Query the executable
using the executable name you obtained from the Concurrent
Programs window.

27 – 17Customization Standards

• You identify the report type from the Execution Method field.
The file name is the Execution File Name with the appropriate
suffix. The following table lists the report execution method,
corresponding file name extension, and subdirectory.

Execution Extension Subdirectory

SQL*Plus .sql sql

Oracle Reports Program .rdf reports

SQL*Loader (control file) .ctl bin

Table 27 – 1 (Page 1 of 1)

• You should be able to find the report file in the appropriate
subdirectory in the directory structure of the application that
owns the executable file. However, Oracle Applications
programs listed with Spawned or Immediate execution styles are
typically C programs, so these programs would not be available
for modification. Programs listed with an execution style of
PL/SQL Stored Procedure are stored in the database.

Making modifications

You may modify reports that do not alter data without risk of affecting
your applications. You should have a thorough understanding of the
underlying data structures before modification to ensure your
customized report produces valid information (see the technical
reference manual for your Oracle Applications product). Before you
modify a report that alters data you should have a thorough
understanding of the report’s processing logic. You may add to the
validation logic, but you should not remove or disable any validation
logic.

Commenting the report

In SQL*Plus and PL/SQL reports, create a comments section to record
changes using remark statements and add a comment for each
modification you make:

SQL*Plus and PL/SQL:

REM Developer Date Description

REM ––––––––––– –––––––––– –––––––––––––––––––––

REM J. Smith 12–SEP–91 Changed column 1 heading

REM R. Brown 16–SEP–91 Added subtotal row

27 – 18 Oracle Applications Developer’s Guide

When you change an existing line(s) of code, comment out the original
line(s) and include detailed comments about the change in front of the
new line of code, the developer’s name, and the date. For example:

SQL*Plus and PL/SQL:

REM B. Cleaver 11–OCT–91

REM Column entered_dr format 99,999.99 heading ’Dr’

REM Expanded column width and changed heading

Column entered_dr format 9,999,999.99 heading ’Debit Amount’

In Oracle Reports reports, add comments using the Report screen.
Structure the comments as follows:

Developer Date Description

–––––––––– ––––––––– ––––––––––––––––––––

J. Smith 12–SEP–91 Changed column 1 heading

R. Brown 16–SEP–91 Added subtotal row

Create a Concurrent Program Using Your File

Define a concurrent program executable, a concurrent program using
that executable, and assign the program to report security groups.

Overview of Standard Request Submission (See page
22 – 2)

Modifying an Existing C Program

Oracle does not ship Oracle Applications C source code. You can add
new C and Pro*C programs to Oracle Applications.

Modifying an Existing PL/SQL Stored Procedure

Modifying Oracle Applications PL/SQL stored procedures may
seriously damage the operation of Oracle Applications. We
recommend that you use Customization by Extension to add new
stored procedures or database triggers to accomplish your goals, or use
the CUSTOM library if possible. Never alter Oracle Application
Object Library objects. Only alter Object Library data using Oracle

27 – 19Customization Standards

Application Object Library forms, programs or supported APIs. If
you do modify Oracle Applications stored procedures, you may need
to reapply your changes each time you upgrade or patch Oracle
Applications. Also, if you have a problem that requires assistance from
Oracle Support Services, you may need to reverse your changes to help
isolate the problem.

Modifying Existing Online Help

For Release 11i, Oracle Applications provides online help in HTML
format. You can easily modify and extend online help following the
guidelines in the Oracle Applications System Administrator’s Guide. If you
modify existing online help you will need to redo your modifications
after upgrading. If you extend the online help you will need to
repropagate your custom file after upgrading.

Customizing Oracle Applications Help
Oracle Applications System Administrator’s Guide

Modifying Existing Message Dictionary Messages

You should not modify existing Message Dictionary messages. Use
Customization by Extension to add new messages associated with your
custom application. You can create new messages under an existing
Oracle Application, but they will be deleted or overwritten during an
upgrade, and you will have to redo them. New Oracle Applications
messages that duplicate your message names (associated with Oracle
Applications products) will overwrite your messages during an
upgrade. Custom messages associated with your custom application
are preserved.

If you must alter the existing messages, thoroughly document the
changes to recreate them after each upgrade or patch.

Modifying Existing Menus and Responsibilities

You should not modify existing menus and responsibilities. Instead,
you should define new menus and responsibilities as described in the
Customization by Extension section.

27 – 20 Oracle Applications Developer’s Guide

You can use a function security report to help duplicate an existing
menu and then modify the copy. You can call Oracle Applications
menus and sub–menus from your custom application responsibilities
and menus. There are exceptional cases when a reference to an Oracle
Applications menu will become invalid following an upgrade. This
occurs when the form, menu, or sub–menu becomes obsolete or its ID
changes. You protect against this by running function security reports
before upgrading so you have a record of what your menu should call.

27 – 21Customization Standards

Oracle Applications Database Customization

You may alter your applications database by adding objects. You can
also modify existing objects, but we strongly discourage this approach.
Any changes made to Oracle Applications database objects are not
supported by Oracle Support Services or the Applications Division
and may conflict with future releases of Oracle Applications.

Always make a full backup of your database before doing any
customization.

Manipulating Oracle Applications Data

We strongly recommend that you do not manipulate Oracle
Applications data in any way other than using Oracle Applications.
Oracle Applications tables are interrelated. When you use Oracle
Applications, any changes made to the data in the Oracle Applications
tables are validated, and any relationships are maintained. When you
modify Oracle Applications data using SQL*Plus or customized
applications components, you are at risk of violating the audit ability
and potentially destroying the integrity of your data. You must be
aware of the potential damaging problems that improper customization
may cause.

Modifying Oracle Application Object Library Database Objects and
Data

Never alter Oracle Application Object Library objects such as tables
or programs. Only alter Oracle Application Object Library data
using Oracle Application Object Library forms, programs or
supported APIs.. Oracle Application Object Library is a data–driven
system with complex interrelationships between tables. Any changes
you make to Oracle Application Object Library’s underlying data may
destroy the integrity of your data and the functionality of the
application.

Documenting Database Modifications

Define all custom database objects and modifications to existing
database objects using SQL*Plus scripts. Place these SQL*Plus scripts
in your custom application admin/sql directory. These may include
object creation scripts and grant, synonym, view, and object
modification scripts. You then use these scripts to rebuild objects
following an upgrade or patch and to migrate changes to other Oracle
Applications installations.

27 – 22 Oracle Applications Developer’s Guide

Defining Your Custom Application ORACLE ID

When you create new database objects, associate them with your
custom application. Define an ORACLE schema (ORACLE ID)
specifically for your custom application objects. Use your custom
application’s application short name as the ORACLE schema name for
easy identification. You must register your ORACLE schema with
Oracle Application Object Library.

Oracle Users Window
Oracle Applications System Administrator’s Guide

You must use grants and synonyms to allow other ORACLE schemas
to access your custom objects and to allow your custom ORACLE ID
access to Oracle Applications objects. When you define a
responsibility, you assign a data group to the responsibility. When you
use that Responsibility, you connect to its ORACLE schema. Typically,
most responsibilities connect to the APPS schema, and you grant
privileges on your custom tables to the APPS schema. For information
on integrating your custom schema with the APPS schema, see the
Oracle Applications System Administrator’s Guide.

For example, if you define a custom general ledger application, with a
corresponding XXGL ORACLE schema that owns several custom
tables, you have two options (Oracle General Ledger is installed in the
GL ORACLE schema). If you have relatively few custom tables, and
they do not require more security than the Oracle Applications tables,
the recommended approach (”tightly integrated with APPS schema”)
is:

• Grant privilege on the custom tables from XXGL to APPS

• Create synonyms for XXGL tables in APPS

• Define custom responsibilities that use the APPS ORACLE
schema

If you wish to have additional security for the custom tables beyond
the security for the Oracle Applications tables, use the following
approach instead:

• Grant privilege on the Oracle Application objects from APPS to
XXGL

• Create synonyms for GL tables in XXGL to the APPS object of
the same name

• Define custom responsibilities using the XXGL schema

27 – 23Customization Standards

Note: Oracle Applications share data among applications. The correct
privileges and synonyms for Oracle Applications products are
automatically created during an upgrade. Your custom ORACLE
schema may need privileges from Oracle Applications schemas other
than the particular product you are customizing.

Defining Custom Views

If your new or modified code accesses Oracle Applications data, use
views to insulate your code from changes in the standard applications
database structure. Define views in the APPS schema. If an Oracle
Application object definition changes, you may only need to alter the
view, rather than altering code.

Adding New Objects

Because Oracle Applications are developed using the ORACLE
RDBMS, you can easily extend the database by adding objects and
relating them to existing Oracle Applications objects. Use standard
naming conventions for the new objects (see Naming Standards), and
place the new objects in your custom ORACLE schema or the APPS
schema as appropriate. New tables that contain columns used by
flexfields or Oracle Alert must be registered with Oracle Application
Object Library.

 Naming Standards (See page 31 – 2)

Table Registration API (See page 3 – 11)

Oracle Application Object Library runs forms and programs in the
ORACLE schema associated with your current responsibility (usually
APPS). Any database objects that need to be accessed must have
grants provided to and synonyms created in the ORACLE schema
used.

Modifying Oracle Applications Database Objects

You only modify an Oracle Applications database object when you
cannot satisfy your needs using flexfields or new database objects.
Never drop an object, including columns from tables. If absolutely
necessary, alter tables by adding new columns that are defined as null
allowed. Always export the table structure before alteration. When
upgrading or patching Oracle Applications you will have to ensure that
the modified objects will not affect or be affected by the upgrade (see
Oracle Applications Upgrades).

27 – 24 Oracle Applications Developer’s Guide

Oracle Applications Upgrades and Patches

By following these standards you minimize the impact of an Oracle
Applications upgrade or patch on your customizations. During the
upgrade process you need to perform specific tasks to preserve your
customizations. Many of these tasks are detailed in Upgrading Oracle
Applications. You should review the manual for your specific platform
and release, including any release updates, thoroughly before
performing an upgrade. A patch may affect customizations less than a
full upgrade, but should be given similar attention.

Check Database Modifications

If you have altered Oracle Application database objects, you should
unload the new versions of your Oracle Applications from the shipped
media (or unload the patch) and review all the scripts in the drivers
before upgrading or patching. You must determine if your
modifications will affect these scripts. If your modifications will
impact the scripts, you must reverse the modifications, run the upgrade
or patch, and then reapply the modifications.

If changes to the Oracle Applications database structure affect any
views you have created, you will need to modify the views after the
upgrade completes. If your customized components access Oracle
Applications tables directly, you will need to alter your components if
the underlying Oracle Applications data structures change.

Identify Obsolete Customizations

Review each customization and determine if the new release of Oracle
Applications satisfies the need that the customization met. If the
customization is no longer needed, archive the changes and do not
migrate them to the new release.

Migrate Customizations

All changes that are not obsolete must be migrated to the new release.
You must migrate all components that were modified in the Oracle
Applications directory structure, and you must migrate all components
in your custom application directories.

To migrate customized components that you modified in the Oracle
Application directory, you must first determine if the unmodified
component changed between releases. Compare the original version of
the prior release component (in the orig directory) to the new version
of the component. If they are different, you have to apply the

27 – 25Customization Standards

customizations to the new component (follow the guidelines for
modifying an existing component). If the component did not change
between releases, you create a copy of the new release of the
component in the appropriate orig directory and copy the modified
component from the previous release directory to the new release
directory.

To migrate your custom applications code, document your
modifications to your applications environment file before upgrading.
After the upgrade process creates your new applications environment
file, you modify the new file.

You can also use Oracle Application Object Library loaders and APIs to
extract custom Oracle Application Object Library objects, upgrade,
then use the extracted loader scripts to reapply your customizations.

Rerun Grant and Synonym Scripts

After determining which modifications are still valid upon upgrading,
you should rerun all of the appropriate grant and synonym scripts for
your customizations. These should all be located in the admin/sql
directories of your custom applications. This is necessary because the
upgrade process may lose grants by dropping and recreating an object
for which you had previously granted access to your custom
application.

Test All Customizations

As the last step of upgrade confirmation, you should test all of your
customized components to ensure they work properly and that no
changes to Oracle Applications have affected your modifications.

27 – 26 Oracle Applications Developer’s Guide

Building Online Help for Custom Applications

For general information on customizing the help files supplied with
Oracle Applications, see ”Customizing Oracle Applications Help,”
Oracle Applications System Administrator’s Guide. The following sections
provide additional details on providing online help for your custom
forms and applications.

How the Help System Works

The Oracle Applications help system for Release 11i provides
context–sensitive online help at a window–level granularity (that is,
different help for each window in the application) and for individual
Standard Request Submission reports and programs. Here is how the
context–sensitivity works:

• The user presses the Window Help button or selects
Help–>Window from the menu.

• Oracle Applications instructs the user’s web browser to retrieve
the appropriate help file from a particular URL. The URL sent to
the browser is constructed from:

– the base URL specified in the
APPLICATIONS_HELP_WEB_AGENT profile option. If
this profile option is not set, then the value specified in the
APPLICATIONS_WEB_AGENT profile option is used.
These profile options are typically set when Oracle
Applications is installed.

– the current language code

– the application short name specified in the
FND_STANDARD.FORM_INFO routine in the form

– the name of the form (such as POXACCWO)

– the name of the window (such as HEADERS)

– the value of the HELP_LOCALIZATION_CODE profile
option, if any

• Oracle Applications returns the indicated help file to the user’s
web browser.

27 – 27Customization Standards

Prepare Your Forms

Verify that your custom forms refer to your custom application short
name in the FND_STANDARD.FORM_INFO routine in the
PRE–FORM trigger:

FND_STANDARD.FORM_INFO(’$Revision: <Number>$’,

 ’<Form Name>’,

 ’<Application Shortname>’,

 ’$Date: <YY/MM/DD HH24:MI:SS> $’,

 ’$Author: <developer name> $’);

If you leave the Application Shortname value as FND, your user
will not see any help, because Oracle Applications will not be able to
construct a valid help target.

Create HTML Help Files

Create your HTML help files using your favorite HTML editor. Your
help files can contain any links and information you want. To allow
them to be called from your custom forms, you must include HTML
anchor tags of the following form near the beginning of the file:

For example, your help file might contain the anchor:

You can also create context–sensitive help for your Standard Request
Submission reports and programs, and include anchors for them in
your HTML files using the following syntax:

For example, your help file might contain the anchor:

Note: Both file names and HTML anchor names are treated in
a case–insensitive fashion by the Oracle Applications help
system.

We recommend that you have approximately one HTML help file for
every window or report in your application, but this is not required.
You can organize your HTML files however you want, provided any
particular anchor name occurs only once per application short name.

�

27 – 28 Oracle Applications Developer’s Guide

Once you have created your files, upload them to the help system
following the instructions given in ”Customizing Oracle Applications
Help,” Oracle Applications System Administrator’s Guide.

Create a Help Navigation Tree

You can also create a help navigation tree for your custom application,
and add a link to it in the main ”Library” section of the Oracle
Applications help navigation tree. For information on creating and
customizing help navigation trees, see ”Customizing Help Navigation
Trees,” Oracle Applications System Administrator’s Guide.

The HELP_TREE_ROOT profile option determines which help
navigation tree is displayed when context–sensitive help is invoked
from your custom application. For further information on this profile
option, see ”Profile Options in Oracle Application Object Library,”
Oracle Applications System Administrator’s Guide.

Upgrades and Patches

Upgrades and patches to the Oracle Applications help system should
have no effect on help files and navigation trees associated with custom
application short names. It is always a good practice, however, to keep
copies of your files and tree structures in a safe place, so you can move
them back into position after your upgrade or patch if a mishap occurs.

Attention: The help system mechanism is subject to change
for Release 12 or later, and you may need to revise your help
system when you upgrade.

�

27 – 29Customization Standards

Integrating Custom Objects and Schemas

If you have custom objects or custom schemas that need to be tightly
integrated with Oracle Applications, follow the instructions in this
section.

Note: We recommend that you consult with an Oracle
Applications consultant when integrating custom objects or
schemas with Oracle Applications.

1. Create custom schemas.

If you have custom objects in Oracle Applications schemas, you
must move them to custom schemas before you integrate with an
APPS schema.

Create one new schema to hold your custom data objects for each
Oracle Applications schema in which your objects currently reside.
Export your custom tables, indexes, and sequences from these
schemas and then import them into the new custom schemas.

Your data objects will be integrated with an APPS schema and your
code objects will be created in Step 5.

Attention: Make sure your custom objects follow Oracle
Applications naming conventions.

Naming Standards (See page 31 – 2)

2. Register custom schemas.

If you have not done so already, register your custom schema by
using the System Administrator responsibility in Oracle
Applications. Use the navigator to select Security: ORACLE:
Register.

3. Determine and set install group number.

If you have not done so already, set the install group number for
each custom schema. You can do this by using the System
Administrator responsibility in Oracle Applications. Use the
navigator to select Security: ORACLE: Register.

Use install group number 0 to represent your custom schemas that
need only single installations.

If you use Multi–Org or have only one product installation group,
enter 0 for the install group number for your custom schemas and
skip to the next step.

For the remaining custom schemas, you must choose an install
group number that matches the install group number of the Oracle

27 – 30 Oracle Applications Developer’s Guide

Applications product it customizes. For instance, if the schema
PO2 lists an install group number of 2 and your custom schema
CUST_PO2 is based upon it, then you set 2 as the install group
number for CUST_PO2 also.

4. Change your data groups to use the APPS schema.

Using the System Administrator responsibility in Oracle
Applications, select Security: ORACLE: Register from the
Navigator. Change the name in the ORACLE schema column to be
the appropriate APPS schema for each data group that previously
used your custom schema.

5. Create custom objects and grant access to APPS schema.

If you use Multi–Org or have only one product installation group,
perform the following:

• Grant ALL privileges from each custom data object to
APPS.

• Create a synonym in APPS to each custom data object in
every custom schema.

• Create custom code objects in APPS.

Otherwise, create synonyms for each table and sequence in the
appropriate APPS schema for the related custom schema. To do
this perform the following:

• Grant ALL privileges from each custom data object to each
APPS schema.

• Create a synonym in the APPS schema with the same install
group number as your custom schema for every custom
data object. For instance, create synonyms in APPS2 for
CUST_PO2 objects.

• Create custom code objects in each APPS schema.

Older Oracle Applications releases used the program FNDSCSGO
to create cross–product grants and synonyms. This script is
obsolete as of Release 11 since integration is done through the
APPS schema.

6. Drop duplicate code objects.

After upgrading from Release 10.4 or Release 10.5, and once you
determine that your customizations work correctly from each APPS
schema, you can drop any duplicate code objects from your custom
schemas.

27 – 31Customization Standards

Upgrading Custom Forms to Release 11i

This section covers upgrading custom forms built with Oracle Forms
4.5, the Oracle Applications coding standards, and Oracle Application
Object Library. It applies to custom forms built to integrate with
Releases 10SC, 10.7 NCA, and 11.

Upgrading your custom forms to Release 11i consists of the following
basic steps:

1. Convert your Oracle Forms 4.5 forms to Oracle Forms 6i using the
Oracle Forms 6i Form Generator and make any required changes
related to converting to PL/SQL 8

2. Use the Oracle Applications upgrade utility on the Oracle Forms 6i
.fmb file to apply changes that help your form conform to Release
11i standards

3. Correct any errors found by the upgrade utility, and run the utility
again to verify your changes

4. Perform any required manual changes that may be necessary, such
as changes to internal menu names

5. Perform optional manual changes, such as converting alternative
regions to tabbed regions and enhancing special menus, as desired

6. Use the Oracle Forms 6i generator to generate the .fmx file for your
upgraded form

7. Test your upgraded form within Oracle Applications 11i

Note that while it is technically possible to skip the first step and go
directly to the Oracle Applications upgrade utility step, we recommend
that you do the first step separately to better isolate the changes to your
form should there be any problem with either upgrade step.

Converting Your Form to Oracle Forms 6i

Use the Oracle Forms 6i Form Generator to convert your Oracle Forms
4.5 forms and libraries (.pll files) to Oracle Forms 6i. You should
upgrade your libraries before upgrading your forms.

During the conversion process, PL/SQL 1.1 code in your forms will be
converted to PL/SQL 8. Changes made by the PL/SQL converter will
be recorded in a log file called FORM_FILENAME.plg in the same
directory as your form. Typical changes to your form include:

• changing CHAR() data types to VARCHAR2() data types

27 – 32 Oracle Applications Developer’s Guide

• adding NULL to some RETURN statements

• changing LENGTH() to NVL(LENGTH(),0)

Additional Information: Oracle Forms Developer User’s Guide

You must review the .plg log file and correct any remaining errors so
that your form compiles cleanly. Typical errors you must fix include
correcting typos in procedure names or non–existing package names,
which may not have been flagged by the form compilation routine in
Oracle Forms 4.5.

Upgrading Your Forms to Release 11i Standards

Use the Oracle Applications upgrade utility, flint60, on the Oracle
Forms 6i .fmb file to apply changes that help your form conform to
Release 11i standards.

The Upgrade Utility and Standards Compliance Checker:
flint60 (See page 27 – 36)

Performing Required Manual Changes on Your Forms

Menu calls

If you have hardcoded calls in your form that modify the default
(pulldown) menu, such as calls that enable or disable menu entries, you
may need to modify your menu calls because the internal names of the
menu names have changed to be consistent with the rearranged menu.

Changes to Internal Menu Names from Release 11 to
Release 11i (See page 27 – 42)

You can typically find these calls by using the ”Find and Replace
PL/SQL” feature in the Oracle Forms 6i Form Builder (under the
Program menu choice) to search for the following strings (do not search
as case sensitive):

SET_MENU_ITEM_PROPERTY

GET_MENU_ITEM_PROPERTY

FIND_MENU_ITEM

APP_SPECIAL.ENABLE

These calls must be evaluated and changed if necessary.

27 – 33Customization Standards

Toolbar block calls

If you have code in your form that calls anything in the pre–11i toolbar,
such as calls to enable or disable toolbar buttons, you must modify
your code. Behind the scenes, the toolbar has been reimplemented to
not use a distinct TOOLBAR block. It is now part of the menu, and
toolbar icons are now enabled and disabled automatically when you
programmatically enable or disable menu entries using the
APP_SPECIAL routines.

Changes to Internal Menu Names from Release 11 to
Release 11i (See page 27 – 42)

APP_SPECIAL: Menu and Toolbar Control (See page
10 – 15)

You can typically find these calls by using the ”Find and Replace
PL/SQL” feature in the Oracle Forms 6i Form Builder (under the
Program menu choice) to search for the string (including the single
quote and the period):

’TOOLBAR.

Note that the TOOLBAR canvas has not been removed, because it
serves as a holding area for certain Oracle Applications fields (such as
switcher fields).

Performing Optional Manual Changes on Your Forms

Certain changes, such as converting existing alternative regions to
tabbed regions or enhancing your special menus and popup menus,
cannot be performed automatically.

Converting Alternative Regions to Tabbed Regions

You should evaluate whether you want to convert existing alternative
regions to tabbed regions. Alternative regions continue to work,
unchanged, in Release 11i, so conversion is optional. Depending on the
complexity of the form and its alternative regions, as well as the
process of learning how to do the conversion, conversion to tabbed
regions can take anywhere from less than a day to a week or more per
alternative region set.

Converting existing alternative regions to tabs cannot be performed
automatically because the alternative regions have been implemented

27 – 34 Oracle Applications Developer’s Guide

in a variety of ways, and the conversion is not necessarily a
one–for–one conversion. Incorporating tab widgets involves modifying
your form layout because the tab widgets and canvases require slightly
more space than alternative regions. The tab page paradigm is more
flexible than alternative regions, and you may want to rearrange your
layout to make more full use of the tab paradigm. For example, you
can have different tab pages with single– and multi–row layouts within
the same group of tab pages.

Coding Tabbed Regions (See page 7 – 12)

When you convert alternative regions to tabbed regions, there are some
things you can do to make the conversion easier:

• Record the name, values and labels of the poplist before deleting
it

• Use the name of the poplist for the tab canvas

• Use the poplist values as the names of your tab pages

• Use the poplist labels as the labels of the tab pages

Reusing the name of the poplist as the tab canvas name may simplify
your code changes. However, if the poplist is not already well named,
name the tab canvas something following the standard
TAB_ENTITY_REGIONS (where ENTITY is your entity such as LINES)
or similar.

Enhancing Special Menus

Special menus have been enhanced to allow you to provide pulldown
menu entries with check boxes, separator lines, and up to 45 entries (15
in each of three top–level menu entries). Adding code to your custom
forms to take advantage of these new options is optional.

Pulldown Menus and the Toolbar (See page 10 – 2)

Enhancing Right–mouse (Popup) Menus

Forms built with the TEMPLATE form and following Oracle
Applications standards automatically support a new right–mouse
(popup) menu capability with basic functions upon upgrading.
However, you can add form–specific entries to right–mouse menus.
Adding code to your custom forms to take advantage of these new
options is optional.

Pulldown Menus and the Toolbar (See page 10 – 2)

27 – 35Customization Standards

Modifying Modal Window Closing Behavior

Every window must support closing using window icons.
APP_CUSTOM.CLOSE_WINDOW must account for every window of
your form (except those referenced from APPSTAND). Closing a
modal window should be the same as if the user pressed Cancel or the
equivalent.

In previous versions, modal windows were not allowed to be closed
using the native window closing mechanism (such as the X icon in the
upper corner of a window on Microsoft Windows) and could only be
closed by pressing the OK (or equivalent) or Cancel button. Modal
windows should now be allowed to close using the native close
window mechanism (equivalent to pressing the Cancel button).

For each modal window, the WINDOW_DIALOG property class sets
Close Allowed to No. Override it and set it to Yes once you have
coded the logic for the modal window into
APP_CUSTOM.CLOSE_WINDOW. The Close Allowed property in the
WINDOW_DIALOG property class was not changed (for backwards
compatibility), so you must change the value yourself once your modal
window follows the new closing standard.

Using Cost–Based Optimization

In Release 11i, Oracle Applications now uses Oracle 8i Cost–Based
Optimization (CBO) instead of the Rule–Based Optimization (RBO)
used in previous versions. Where your custom application code was
tuned to take advantage of Rule–Based Optimization, you may need to
retune that code for Cost–Based Optimization.

Additional Information: Oracle 8i Tuning

27 – 36 Oracle Applications Developer’s Guide

The Upgrade Utility and Standards Compliance Checker: flint60

Oracle Applications provides a utility, called flint60, that you can use to
upgrade your custom forms to conform more closely to Oracle
Applications Release 11i standards. You can also use the flint60 utility
on an ongoing basis to perform standards checking on your forms.

In upgrade mode, the flint60 utility uses the Oracle Forms API to load
the form file into the database, perform various checks on the form,
and write out a new form file with the appropriate changes.

In standards checking mode, the flint60 utility performs most of the
same checks on your form, but does not write a new .fmb file of your
form.

The changes flint60 makes to your form (in upgrade mode) are listed in
a detailed .html log file. These changes may include:

• Converting most boilerplate to associated prompts for items or
frames

• Converting lines and boxes to frames

• Setting certain property classes or individual properties for
objects as appropriate (for example, lists of values have the
property class set to LOV if it is not already set)

• Adjusting y–coordinate alignments of fields if they are slightly
offset from character–cell boundaries (for example, old
display–only text items did not use bevels and were previously
offset to make them line up with fields that had bevels, but now
the display–only text items also use bevels)

• Replacing access key property settings with ampersands in labels
(for example, a label of ”Charge” with a separate access key
property setting of ”h” becomes ”C&harge” and the access key
setting is removed)

The flint60 utility also checks for certain other conditions including:

• database items whose maximum length does not match the
length of the corresponding database column

• library attachments with a hardcoded path or .pll extension

Example

27 – 37Customization Standards

Preparing to Run flint60

Setting Up the Configuration File

The flint60 utility requires a configuration file, flint60.ora, to hold the
database username and password and other information. The
flint60.ora file is a simple text file that should have the following
information:

server_host=your_web_server_name

message_file=location_of_the_message_help_file_

 on_web_server

connect=[y|n]

userid=database_username_and_password

the web server host name that will be used to
access the .html log files

the virtual path and filename of the message
descriptions file, fnderr.html

boolean that indicates whether to verify blocks
against the database

if database=y, then this is the ORACLE username
and password to use to connect to the database.
Note that when attempting to connect to the
database, flint60 uses the table
ACCESSIBLE_COLUMNS (actually a public
synonym for SYS.ALL_TAB_COLUMNS) to
determine the constraints (data type, length, null
allowed) for a database item’s column. If
ACCESSIBLE_COLUMNS is inaccessible, flint60
will generate multiple fatal errors in the log file (if
the option to connect to the database is selected).

server_host=www–apps.us.oracle.com
message_file=/r115/fnderr.html
connect=y
userid=apps/apps@devdb

You must set an environment variable, FLINT60_CONFIG (for Unix)
that points to the flint60.ora configuration file. If the FLINT60_CONFIG
environment variable is not set then flint60 will search for the file
flint60.ora in the current directory. If you see the message
”LRM–00109: could not open parameter file ’<file>’ ” when you try to
run flint60, then the configuration file could not be loaded. If you run

server_host

message_file

connect

userid

27 – 38 Oracle Applications Developer’s Guide

the flint60 utility without the configuration file, the .html log file will
not be able to provide context–sensitive links to the help file that
describes each of the messages generated by flint60, and the utility may
be unable to connect to the database (which would create additional
errors in the log file).

Verify Your Environment

It is important to verify that you are pointing to the correct versions of
Oracle Forms and Oracle Applications before running the upgrade
utility, or you may get spurious or misleading error messages. For
example, your environment must point to the correct versions of
APPSTAND.fmb and APPCORE.pll. Ensure that the environment is
configured properly and is pointing to an Oracle Forms 6i environment.
Verify that the FORMS60_PATH (Unix environment variable, or NT
registry setting) points to the directories that hold the correct versions

27 – 39Customization Standards

need to use this switch. The –c switch is ignored if
the –u switch is not present.

This is the ”standards compliance checker” mode.
If you do not use the –u switch, the flint60 utility
simply performs various checks on your form and
writes out a log file listing any standards
compliance errors or warnings.

Form name arguments

The flint60 utility expects form names on the command line:

flint60 –uc <module1>.fmb <module2>.fmb ...

The filenames can be fully qualified with paths and/or environment
variables (for Unix):

flint60 $fnd/forms/US/<module1>.fmb

/custgldev/custgl/11.5/forms/US/<module2>.fmb ...

To run flint60 for all forms in the current directory (if using an
appropriate Unix shell that expands file wildcards, such as tcsh):

flint60 *.fmb

To run flint60 for all forms in a specific directory (if using an
appropriate Unix shell that expands file wildcards, such as tcsh):

flint60 $fnd/forms/US/*.fmb

If you are running the flint60 utility on Windows NT, you may need to
create a .bat script to run multiple commands because NT does not
support expanding command line wildcards.

Reviewing flint60 Log File Output

The flint60 utility provides a detailed log file of messages as it goes
through your form. The log file is called form_filename.fmb.html, and
you can read it using any standard browser. The utility provides one
log file for each form, located in the current directory.

The message types are:

• Status: an informational message

• Action: each action taken by the flint60 utility, such as changing a
piece of boilerplate to an associated prompt

(no switches)

27 – 40 Oracle Applications Developer’s Guide

• Warning: a possible problem with your form

• Error: a coding problem with your form that must be fixed to
ensure proper runtime operation of your form

• Fatal: an error in the flint60 utility itself. For example, if the
flint60 utility cannot completely load the form then a fatal error
is written to the log file and the utility stops processing that form

The end of the log file contains a summary of the number of each type
of message that occurred. Each message line also contains a
question–mark link icon. Clicking on that icon in your browser takes
you to more explanatory text for that message. The explanatory text is
located in a file called fnderr.html, whose location is determined when
you install Oracle Applications (and listed in your flint60.ora
configuration file).

Interpreting Error and Warning messages

Messages labeled as Error require fixing for the proper operation of
your form. All other standards violations or ”coding anomalies”,
which may or may not produce the wrong runtime result are reported
as warnings.

Warnings require interpretation by the developer to determine whether
the ”coding anomaly” is significant. For example, the utility reports
base table items with widths that do not match the corresponding
database column widths. In most cases, this is a serious problem, but
not in all cases (such as for an inquiry–only form). For another
example, your form may have a WHEN–NEW–ITEM–INSTANCE
trigger with an execution style of Override. In most cases, this
indicates a problem, but it may be acceptable for your form.

Verifying changes

The Oracle Applications upgrade utility was built with the assumption
that forms followed existing Oracle Applications coding standards, and
no attempt was made to account for deviations from those standards.
While the flint60 utility has been used successfully on thousands of
Oracle Applications forms, form code varies considerably, and changes
made by the utility may or may not be appropriate for your forms. You
must carefully review the log file for each form you upgrade with the
flint60 utility. Similarly, as with any upgrade, you should test the
upgraded form thoroughly before deploying it.

27 – 41Customization Standards

The flint60 utility leaves the original .fmb file untouched, so you may
revert to the original version (so long as you have not overwritten it by
renaming the .fmb file generated from the utility).

Particular flint60 actions that you must verify were correct for your
form include:

• Boilerplate–to–prompt associations: the flint60 utility converts
most boilerplate to prompts associated with particular items or
frames. The utility uses several heuristics to determine which
piece of boilerplate belongs to which object (such as which piece
of boilerplate is to the left of and closest to a particular item).
However, those heuristics may not be valid for your form layout,
so you should verify that the correct prompts have been
associated with each object. One way to verify this without
going through each object properties in the Form Builder is to
use the Oracle Forms Function 9 feature (usually the
shift–control–F9 key combination) while running your form
within Oracle Applications. Part of the Oracle Applications
ADA–compliance feature, this key combination provides a list of
field prompts and field values (intended for use with a screen
reader device). This feature can help you verify that each field
has the correct prompt.

• Alignment of display–only text items: display–only text items
may have been moved to account for the offset previously built
in to accommodate the lack of bevel (to make those fields line up
properly with fields that had bevels). If your form was not laid
out according to Oracle Applications character–cell layout
standards (in y–increments of .125 or .25 inches vertically), these
layout changes may be inappropriate for your form.

27 – 42 Oracle Applications Developer’s Guide

Changes to Internal Menu Names from Release 11 to Release 11i

This table shows the old Release 11 internal menu names and
corresponding toolbar button names, if any, and the corresponding
menu names for Release 11i. Your forms may have used the Release 11
menu names to enable and disable menu entries and buttons
programmatically. Menu entry names must be replaced with the
corresponding Release 11i internal names. Any references to toolbar
button names must be removed from your code, as the toolbar buttons
are now handled automatically as part of the menu.

R11 Menu Name Toolbar Button Name R11i Menu Name (and Note)

FNDMENU.ACTION FNDMENU.FILE

ACTION.NAVIGATE NAVIGATE VIEW.SHOW_NAVIGATOR

ACTION.ZOOM ZOOM VIEW.ZOOM

ACTION.SAVE SAVE FILE.SAVE

ACTION.SAVE_AND_ENTER_NEXT ACCEPT FILE.ACCEPT

ACTION.PROCESS_STEP_
COMPLETED

FILE.SAVE_AND_ADVANCE

ACTION.PRINT PRINT FILE.PRINT

ACTION.EXPORT FILE.EXPORT

ACTION.DESKTOP FILE.PLACE_ON_NAVIGATOR

ACTION.REFRESH Obsolete

ACTION.CLOSE_WINDOW Obsolete (1,2)

ACTION.CLOSE FILE.CLOSE_FORM

ACTION.EXIT_ORACLE_
APPLICATIONS

FILE.EXIT_ORACLE_
APPLICATIONS

FNDMENU.EDIT FNDMENU.EDIT

EDIT.CUT EDIT.CUT

EDIT.COPY EDIT.COPY

EDIT.PASTE EDIT.PASTE

Table 27 – 2 (Page 1 of 5)

27 – 43Customization Standards

R11i Menu Name (and Note)Toolbar Button NameR11 Menu Name

EDIT.CLEAR_FIELD CLEAR.FIELD

EDIT.DUPLICATE_FIELD DUPLICATE.FIELD_ABOVE

EDIT.LIST LIST Obsolete (1, List of Values)

EDIT.INVOKE_EDITOR EDIT EDIT.EDIT_FIELD

EDIT.NEW_RECORD INSERT_RECORD FILE.NEW

EDIT.DELETE_RECORD DELETE_RECORD EDIT.DELETE

EDIT.CLEAR_RECORD CLEAR_RECORD CLEAR.RECORD

EDIT.DUPLICATE_RECORD DUPLICATE.RECORD_ABOVE

EDIT.TRANSLATIONS TRANSLATIONS VIEW.TRANSLATIONS

EDIT.ATTACHMENTS ATTACHMENTS VIEW.ATTACHMENTS

EDIT.SELECT_ALL EDIT.SELECT_ALL

EDIT.DESELECT_ALL EDIT.DESELECT_ALL

EDIT.CLEAR_BLOCK CLEAR.BLOCK

EDIT.CLEAR_ALL CLEAR_FORM CLEAR.FORM

FNDMENU.QUERY FNDMENU.VIEW

QUERY.FIND QUERY_FIND VIEW.FIND

QUERY.FIND_ALL VIEW.FIND_ALL

QUERY.ENTER QUERY.ENTER

QUERY.RUN QUERY.RUN

QUERY.CANCEL QUERY.CANCEL

QUERY.SHOW_LAST_CRITERIA QUERY.SHOW_LAST_CRITERIA

QUERY.COUNT_MATCHING_RECORDS QUERY.COUNT_MATCHING_RECORDS

QUERY.RETRIEVE_NEXT_SET Obsolete

FNDMENU.GO Obsolete

Table 27 – 2 (Page 2 of 5)

27 – 44 Oracle Applications Developer’s Guide

R11i Menu Name (and Note)Toolbar Button NameR11 Menu Name

GO.NEXT_FIELD Obsolete (1)

GO.PREVIOUS_FIELD Obsolete (1)

GO.NEXT_RECORD Obsolete (1)

GO.PREVIOUS_RECORD Obsolete (1)

GO.FIRST_RECORD RECORD.FIRST

GO.LAST_RECORD RECORD.LAST

GO.NEXT_BLOCK Obsolete (1)

GO.PREVIOUS_BLOCK Obsolete (1)

GO.SUMMARY_DETAIL SUMMARY_
DETAIL

VIEW.SUMMARY_DETAIL

FNDMENU.FOLDER FNDMENU.FOLDER

FOLDER.NEW FOLDER.NEW

FOLDER.OPEN FOLDER.OPEN

FOLDER.SAVE FOLDER.SAVE

FOLDER.SAVE_AS FOLDER.SAVE_AS

FOLDER.DELETE FOLDER.DELETE

FOLDER.SHOW_FIELD FOLDER.SHOW_FIELD

FOLDER.HIDE_FIELD FOLDER.HIDE_FIELD

FOLDER.SWAP_RIGHT FOLDER.SWAP_RIGHT

FOLDER.SWAP_LEFT FOLDER.SWAP_LEFT

FOLDER.MOVE_UP FOLDER.MOVE_UP

FOLDER.MOVE_DOWN FOLDER.MOVE_DOWN

FOLDER.INCREASE_WIDTH FOLDER.INCREASE_WIDTH

FOLDER.DECREASE_WIDTH FOLDER.DECREASE_WIDTH

FOLDER.CHANGE_PROMPT FOLDER.CHANGE_PROMPT

Table 27 – 2 (Page 3 of 5)

27 – 45Customization Standards

R11i Menu Name (and Note)Toolbar Button NameR11 Menu Name

FOLDER.AUTOSIZE FOLDER.AUTOSIZE

FOLDER.SHOW_ORDERING FOLDER.SHOW_ORDERING

FOLDER.VIEW_QUERY FOLDER.VIEW_QUERY

FOLDER.RESET_QUERY FOLDER.RESET_QUERY

FOLDER.FOLDER_TOOLS FOLDER_TOOLS FOLDER.FOLDER_TOOLS

FNDMENU.SPECIAL FNDMENU.SPECIAL

SPECIAL.SPECIAL1...SPECIAL15 SPECIAL1...3 SPECIAL.SPECIAL1...SPECIAL15

FNDMENU.WINDOWS FNDMENU.WINDOWS

FNDMENU.HELP FNDMENU.HELP

HELP.WINDOW_HELP HELP HELP.WINDOW_HELP

HELP.SYSTEM_HELP HELP.ORACLE_APPLICATIONS_
LIBRARY

HELP.SHOW_KEYS HELP.KEYBOARD_HELP

HELP.DISPLAY_ERROR DIAGNOSTICS.DISPLAY_ERROR

HELP.TOOLS HELP.DIAGNOSTICS

TOOLS.EXAMINE DIAGNOSTICS.EXAMINE

TOOLS.TRACE DIAGNOSTICS.TRACE

TOOLS.DEBUG DIAGNOSTICS.DEBUG

TOOLS.PROPERTIES DIAGNOSTICS.PROPERTIES

PROPERTIES_MENU.ITEM PROPERTIES_MENU.ITEM

PROPERTIES_MENU.FOLDER PROPERTIES_MENU.FOLDER

TOOLS.CUSTOM_CODE DIAGNOSTICS.CUSTOM_CODE

CUSTOM_CODE_MENU.NORMAL CUSTOM_CODE_MENU.NORMAL

CUSTOM_CODE_MENU.OFF CUSTOM_CODE_MENU.OFF

HELP.REQUESTS_HELP VIEW.REQUESTS

Table 27 – 2 (Page 4 of 5)

27 – 46 Oracle Applications Developer’s Guide

R11i Menu Name (and Note)Toolbar Button NameR11 Menu Name

HELP.ABOUT_THIS_RECORD HELP.RECORD_HISTORY

HELP.ABOUT_ORACLE_
APPLICATIONS

HELP.ABOUT_ORACLE_
APPLICATIONS

(new for 11i) FILE.OPEN

(new for 11i) FILE.CHANGE_LOG_ON

(new for 11i) FILE.SWITCH_RESPONSIBILITY

(new for 11i) EDIT.UNDO_TYPING

(new for 11i) EDIT.DUPLICATE

(new for 11i) EDIT.CLEAR

(new for 11i) EDIT.PREFERENCES

(new for 11i) PREFERENCES.CHANGE_PASSWORD

(new for 11i) PREFERENCES.PROFILES

(new for 11i) VIEW.QUERY

(new for 11i) VIEW.RECORD

(new for 11i) FNDMENU.VIEW

Note 1: These choices have been replaced by standard Oracle Forms func-
tion keys and are no longer needed as part of the Oracle Applications
menu

Note 2: equivalent to pressing the ’X’ in the window menu to close the
current window

Table 27 – 2 (Page 5 of 5)

C H A P T E R

28
T

28 – 1Using the CUSTOM Library

Using the CUSTOM
Library

his chapter describes the architecture and implementation details
for the CUSTOM library. The CUSTOM library allows you to write
custom extensions, such as Zooms and business rule logic, to Oracle
Applications.

The following topics are covered:

• Customizing Oracle Applications with the CUSTOM Library

• Writing Code for the CUSTOM Library

• Events Passed to the CUSTOM Library

• When to Use the CUSTOM Library

• CUSTOM Library Package Procedures

• Support and Upgrading

�

28 – 2 Oracle Applications Developer’s Guide

Customizing Oracle Applications with the CUSTOM Library

The CUSTOM library allows extension of Oracle Applications without
modification of Oracle Applications code. You can use the CUSTOM
library for customizations such as Zoom (such as moving to another
form and querying up specific records), enforcing business rules (for
example, vendor name must be in uppercase letters), and disabling
fields that do not apply for your site.

You write code in the CUSTOM library, within the procedure shells that
are provided. All logic must branch based on the form and block for
which you want it to run. Oracle Applications sends events to the
CUSTOM library. Your custom code can take effect based on these
events.

Attention: The CUSTOM library is provided for the exclusive
use of Oracle Applications customers. The Oracle Applications
products do not supply any predefined logic in the CUSTOM
library other than the procedure shells described here.

Writing Code for the CUSTOM Library

The CUSTOM library is an Oracle Forms Developer PL/SQL library. It
allows you to take full advantage of all the capabilities of Oracle Forms
Developer, and integrate your code directly with Oracle Applications
without making changes to Oracle Applications code.

The as–shipped CUSTOM library is located in the AU_TOP/resource
directory (or platform equivalent). Place the CUSTOM library you
modify in the AU_TOP/resource directory in order for your code to
take effect.

After you write code in the CUSTOM procedures, compile and
generate the library using Oracle Forms. Then place this library into
$AU_TOP/resource directory (or platform equivalent). Subsequent
invocations of Oracle Applications will then run this new code.

Warning: If there is a .plx (compiled code only) for a library,
Oracle Forms Developer always uses the .plx over the .pll.
Therefore, either delete the .plx file (so your code runs directly
from the .pll file) or create your own .plx file using the Oracle
Forms compiler. Using the .plx file will provide better
preformance than using the .pll file. Depending on your
operating system, a .plx may not be created when you compile
and save using the Oracle Forms Developer. Form Builder. In
this case, you must generate the library using the Oracle Forms

28 – 3Using the CUSTOM Library

Developer compiler from the command line (using the
parameter COMPILE_ALL set to Yes).

The specification of the CUSTOM package in the CUSTOM library
cannot be changed in any way. You may add your own packages to the
CUSTOM library, but any packages you add to this library must be
sequenced after the CUSTOM package. To ensure that your packages
remain sequenced after the CUSTOM package even after a conversion
from a .pld file, when program units are alphabetized, we recommend
you name your packages with characters that come after C (for
example, we recommend you name your own packages with names
that begin with USER_).

Coding Considerations and Restrictions

Be aware of the open form environment in which Oracle Applications
operate. Also, each running form has its own database connection.

The following considerations and restrictions apply to the CUSTOM
library and any libraries you attach to CUSTOM:

• You cannot use any SQL in the library. However, you can use a
record group to issue SELECT statements, and you can use calls
to stored procedures for any other DML operations such as
updates, inserts, or deletes.

• Oracle Forms global variables in your code are visible to all
running forms.

Attaching Other Libraries to the CUSTOM Library

You may attach other libraries to the CUSTOM library. However, you
cannot attach the APPCORE library to CUSTOM because it would
cause a recursion problem (because CUSTOM is attached to
APPCORE). As of Oracle Applications Release 11i, you may attach the
APPCORE2 library to CUSTOM. The APPCORE2 library duplicates
most APPCORE routines with the following packages:

• APP_ITEM_PROPERTY2

• APP_DATE2

• APP_SPECIAL2

These packages contain the same routines as the corresponding
APPCORE packages. Follow the documentation for the corresponding
APPCORE routines, but add a 2 to the package names. For example,
where you would have a call to the APPCORE routine
APP_ITEM_PROPERTY.SET_PROPERTY in a form, you can have a

�

28 – 4 Oracle Applications Developer’s Guide

corresponding call to the APPCORE2 routine
APP_ITEM_PROPERTY2.SET_PROPERTY in the CUSTOM library.

The CUSTOM library comes with the FNDSQF library already
attached. FNDSQF provides Oracle Applications routines for function
security (for opening forms), flexfields, and other utility routines.

Altering Oracle Applications Code

Frequently you need to know the names of blocks and items within
Oracle Applications forms for your CUSTOM logic. You should use
the Examine feature available on the Help–>Diagnostics menu while
running the form of interest; it will give you easy access to all object
names. You should not open Oracle Applications forms in the Oracle
Forms Developer to learn this information.

You should exercise caution when changing any properties or values of
items in the form from which CUSTOM logic is invoked. The
CUSTOM library is intended to be a mechanism to augment Oracle
code with your own. Using the CUSTOM library to alter Oracle code

28 – 5Using the CUSTOM Library

Events Passed to the CUSTOM Library

The CUSTOM library receives two different kind of events, generic and
product–specific. Generic events are common to all the forms in Oracle
Applications. These events are:

• WHEN–FORM–NAVIGATE

• WHEN–NEW–FORM–INSTANCE

• WHEN–NEW–BLOCK–INSTANCE

• WHEN–NEW–RECORD–INSTANCE

• WHEN–NEW–ITEM–INSTANCE

• WHEN–VALIDATE–RECORD

• SPECIALn (where n is a number between 1 and 45)

• ZOOM

• EXPORT

• KEY–Fn (where n is a number between 1 and 8)

Logic you code for WHEN–FORM–NAVIGATE, WHEN–NEW–
BLOCK–INSTANCE, WHEN–NEW–RECORD–INSTANCE, or
WHEN–NEW–ITEM–INSTANCE fires after any existing logic in those
triggers for the form, block or item.

Logic you code for WHEN–NEW–FORM–INSTANCE fires during the
call to APP_STANDARD.EVENT. That call may be anywhere within
existing WHEN–NEW–FORM–INSTANCE logic in the form.

Logic you code for WHEN–VALIDATE–RECORD fires during the call
to APP_STANDARD.EVENT or FND_FLEX.EVENT. One of those calls
may be within existing WHEN–VALIDATE–RECORD logic in the form
or block, depending on how the form was originally coded.

Logic you code for SPECIALn, where n is a number, fires before any
logic in the existing SPECIALn trigger (if there is one).

The ZOOM event occurs when the user invokes Zoom from the menu
(View–>Zoom) or the toolbar. The EXPORT event occurs after an
export operation is complete (File–>Export).

Logic you code for KEY–Fn events, where n is a number between 1 and
8, fires when the user presses the corresponding function key or key
combination. Use the Help–>Keyboard menu choice to determine the
actual key combination corresponding to the appropriate function
(F1–F8). Oracle Applications does not currently provide any logic
associated with these KEY–Fn events.

28 – 6 Oracle Applications Developer’s Guide

The CUSTOM library also receives some product–specific events
associated with the business rules of that product (for example, the
NAVIGATE event in Oracle Human Resources). Please refer to the
Open Interfaces Manual for your Oracle Applications product to see
what product–specific events, if any, are passed to CUSTOM.

When to Use the CUSTOM Library

There are several main cases for which you can code logic using the
CUSTOM library. Each of these cases must be coded differently.

• Zoom—The addition of user–invoked logic on a per–block basis.
 A Zoom typically consists of opening another form and
(optionally) passing parameter values to the opened form
through the Zoom logic.

• Logic for generic events—Augment Oracle Applications logic
for certain generic form events such as
WHEN–NEW–FORM–INSTANCE or
WHEN–VALIDATE–RECORD. You can use generic events to
change field prompts and other properties, hide fields, add
validation, and more.

• Logic for product–specific events—Augment or replace Oracle
Applications logic for certain product–specific events that
enforce business rules.

• Custom entries for the special menus—Add entries to the
special menus for Oracle Applications forms, such as an entry
that opens a custom form.

• Setting visual attributes —Use the CUSTOM library to change
the visual attributes of Oracle Applications fields at runtime.
Use the Oracle Forms built–in SET_VA_PROPERTY to set the
properties of the CUSTOM1–CUSTOM5 visual attributes, and
then use APP_ITEM_PROPERTY2.SET_PROPERTY to apply the
visual attribute to an item at runtime.

Coding Zoom

Zoom allows the addition of user–invoked logic on a per–block basis.
For example, you may want to allow access to the Vendors form from
within the Enter Purchase Order form while the user is in the PO

28 – 7Using the CUSTOM Library

Header block of that form. You can enable Zoom for just that block,
and when the user invokes it, you can open the Vendors form.

Only Oracle Applications customers use the Zoom feature; Oracle
Applications products do not ship any predefined Zoom logic. Note
that most Zooms that were predefined in the character–mode Oracle
Applications Release 10 and earlier have been incorporated into Oracle
Applications forms as buttons or windows for Release 11 and later. In
many cases, redesign of forms for Release 11 eliminated the need for
predefined Zooms. Also, the native GUI environment allows users to
cut–and–paste data between forms directly instead of relying on
Release 10 Zooms to copy the data.

Zoom for Release 11i behaves as follows:

• Oracle Applications provides a menu entry and a button on the
toolbar for the user to invoke Zoom when available. The button
and the menu entry are disabled unless Zoom logic has been
defined in the CUSTOM library for that form and block.

• Whenever the cursor changes blocks in the form, the form calls
the ZOOM_AVAILABLE function in the CUSTOM library. If this
function returns TRUE, then the Zoom entries on the menu and
toolbar are enabled; if it returns FALSE, then they are disabled.

• If the Zoom entries are enabled, then when the user invokes
Zoom the form calls the ZOOM event code in the CUSTOM
library. You write code for this event that branches based on the
current form and block.

� To code Zooms into the CUSTOM library:

1. Add a branch to the CUSTOM.ZOOM_AVAILABLE function that
specifies the form and block where you want a user to be able to
invoke Zoom. See: CUSTOM.ZOOM_AVAILABLE: page 28 – 19

2. Add a branch to the CUSTOM.EVENT procedure for the ZOOM
event.

Inside that branch, specify the form and block where you want a
user to be able to invoke Zoom. Add the logic you want to occur
when the user invokes Zoom. See: CUSTOM.EVENT: page 28 – 20

Supporting Multiple Zoom Events for a Block

As of Release 11i, Oracle Applications provides a referenced list of
values (LOV) and corresponding referenced parameter for Zooms in all
forms built using the TEMPLATE form (including custom forms). They
are the following:

Example Code

28 – 8 Oracle Applications Developer’s Guide

• List of values: APPCORE_ZOOM

• Parameter: APPCORE_ZOOM_VALUE

Use the LOV and parameter to provide users with an LOV where you
have more than one Zoom from a particular block.

� To code the Zoom LOV into the CUSTOM library:

In the CUSTOM library (within your ZOOM event code):

1. Create a record group and populate it with names and values of
available Zooms for the block.

2. Attach the record group to the APPCORE_ZOOM list of values
(LOV).

3. Call show_lov to display the LOV to the user.

4. If user picks a Zoom, the value is returned into the
APPCORE_ZOOM_VALUE parameter in the form.

5. Retrieve the parameter value and branch your Zoom code
accordingly.

The following example sets up a Zoom LOV that contains three choices.

––

procedure event(event_name varchar2) is

 form_name varchar2(30) :=

 name_in(’system.current_form’);

 block_name varchar2(30) :=

 name_in(’system.cursor_block’);

 zoom_value varchar2(30);

 group_id recordgroup;

 col_id groupcolumn;

begin

 IF (event_name = ’ZOOM’) then

 if (form_name = ’FNDSCAUS’ and

 block_name = ’USER’) then

 –– set up the record group

 group_id := find_group(’my_zooms’);

 if id_null(group_id) then

 group_id := create_group(’my_zooms’);

 col_id := add_group_column(group_id,

 ’NAME’, char_column, 30);

 col_id := add_group_column(group_id,

 ’VALUE’, char_column, 30);

 set_lov_property(’APPCORE_ZOOM’,

28 – 9Using the CUSTOM Library

 GROUP_NAME, ’my_zooms’);

 else

 Delete_Group_Row(group_id, ALL_ROWS);

 end if;

 Add_Group_Row(group_id, 1);

 Set_Group_Char_Cell(’my_zooms.NAME’, 1,

 ’Personal Profiles Form’);

 Set_Group_Char_Cell(’my_zooms.VALUE’, 1, ’FNDPOMSV’);

 Add_Group_Row(group_id, 2);

 Set_Group_Char_Cell(’my_zooms.NAME’, 2,

 ’System Profiles Form’);

 Set_Group_Char_Cell(’my_zooms.VALUE’, 2, ’FNDPOMPV’);

 Add_Group_Row(group_id, 3);

 Set_Group_Char_Cell(’my_zooms.NAME’, 3,

 ’Responsibilities Form’);

 Set_Group_Char_Cell(’my_zooms.VALUE’, 3, ’FNDSCRSP’);

 –– test the LOV results and open different forms

 if show_lov(’APPCORE_ZOOM’) then

 zoom_value := name_in(

 ’parameter.APPCORE_ZOOM_VALUE’);

 if zoom_value = ’FNDPOMPV’ then

 fnd_function.execute(

 FUNCTION_NAME=>’FND_FNDPOMPV’,

 OPEN_FLAG=>’Y’,

 SESSION_FLAG=>’Y’);

 elsif zoom_value = ’FNDSCRSP’ then

 fnd_function.execute(

 FUNCTION_NAME=>’FND_FNDSCRSP’,

 OPEN_FLAG=>’Y’,

 SESSION_FLAG=>’Y’);

 elsif zoom_value = ’FNDPOMSV’ then

 fnd_function.execute(

 FUNCTION_NAME=>’FND_FNDPOMSV’,

 OPEN_FLAG=>’Y’,

 SESSION_FLAG=>’Y’);

 end if;

 end if;

 end if; –– end of form branches within Zoom event branch

 END IF; –– end of branches on EVENT_NAME

end event;

––

Example Code

28 – 10 Oracle Applications Developer’s Guide

Coding Generic Form Events

You can code logic that fires for a particular form and block at a
particular form event. You can code logic for the following events:

• WHEN–FORM–NAVIGATE

• WHEN–NEW–FORM–INSTANCE

• WHEN–NEW–BLOCK–INSTANCE

• WHEN–NEW–RECORD–INSTANCE

• WHEN–NEW–ITEM–INSTANCE

• WHEN–VALIDATE–RECORD

• SPECIALn (where n is a number between 1 and 45)

• ZOOM

• EXPORT

• KEY–Fn (where n is a number between 1 and 8)

Some Oracle Applications forms, such as most Oracle Human
Resources forms, may provide additional events that call the CUSTOM
library. These additional events are listed in the documentation for the
product that owns the form. You can code logic in the CUSTOM
library for such events the same way you would code logic for generic
form events.

� To code logic for generic form events into the CUSTOM library:

1. Add a branch to the CUSTOM.EVENT procedure for the particular
event you want.

Inside that branch, specify the form and block where you want
your logic to occur. Add the logic you want to occur when that
event fires for the form and block you specify. See:
CUSTOM.EVENT: page 28 – 20

The following example changes various field properties and prompts.
This example also sets up and applies a custom visual attribute
(CUSTOM1), and prevents inserts and updates to a block.

––

procedure event(event_name varchar2) is

 form_name varchar2(30) :=

 name_in(’system.current_form’);

 block_name varchar2(30) :=

28 – 11Using the CUSTOM Library

 name_in(’system.cursor_block’);

begin

 if (event_name = ’WHEN–NEW–FORM–INSTANCE’) then

 if (form_name = ’FNDSCAUS’) then

 ––

 –– Hide the Fax field, force the E–mail

 –– field to be uppercase,

 –– make the description field required,

 –– change the person field

 –– color to magenta, change the Supplier

 –– field prompt.

 ––

 app_item_property2.set_property(’user.fax’,

 DISPLAYED, PROPERTY_OFF);

 app_item_property2.set_property(

 ’user.email_address’,

 CASE_RESTRICTION, UPPERCASE);

 app_item_property2.set_property(’user.description’,

 REQUIRED,

 PROPERTY_ON);

 app_item_property2.set_property(’user.employee_name’,

 BACKGROUND_COLOR, ’r255g0b255’);

 app_item_property2.set_property(

 ’user.supplier_name’,

 PROMPT_TEXT, ’Vendor Name’);

 ––

 –– Set up CUSTOM1 visual attribute as bright yellow.

 ––

 set_va_property(’CUSTOM1’, BACKGROUND_COLOR,

 ’r255g255b0’);

 –– apply CUSTOM1 visual attribute to fields

 –– (color will override

 –– gray of disabled fields, but will not

 –– override pale yellow

 –– of required fields)

 ––

 app_item_property2.set_property(’user.supplier_name’,

 VISUAL_ATTRIBUTE, ’CUSTOM1’);

 app_item_property2.set_property(’user.email_address’,

 VISUAL_ATTRIBUTE, ’CUSTOM1’);

 ELSIF (event_name = ’WHEN–NEW–BLOCK–INSTANCE’) then

 IF (form_name = ’FNDSCAUS’ and

 block_name = ’USER_RESP’) THEN

 –– prevent users from adding

 –– responsibilities

 set_block_property(block_name, insert_allowed,

 property_false);

 set_block_property(block_name, update_allowed,

28 – 12 Oracle Applications Developer’s Guide

 property_false);

 END IF;

 END IF; –– end of branches on EVENT_NAME

end event;

––

Coding Product–Specific Events

Please refer to the Open Interfaces Manual or User’s Guide for your
Oracle Applications product to see what product–specific events, if any,
are passed to CUSTOM. For product–specific events passed by Oracle
Application Object Library, see: Product–Specific Events in Oracle
Application Object Library: page 28 – 17.

� To code logic for product–specific events into the CUSTOM library:

1. Add a branch to the CUSTOM.EVENT procedure for the particular
product–specific event you want. See: CUSTOM.EVENT: page
28 – 20

Within that branch, add logic for that specific business function
See: CUSTOM.EVENT: page 28 – 20

2. If custom execution styles are supported for this product–specific
event (many product–specific events do not support custom
execution styles), add a branch to the CUSTOM.STYLE function
that specifies the execution style (before, after, override, or
standard) you want for your product–specific event logic. You can
only specify one of the styles supported for that particular
product–specific event. See: CUSTOM.STYLE: page 28 – 19

Adding Custom Entries to the Special Menu

� To code logic for Special menu entries into the CUSTOM library:

1. Add a branch to the CUSTOM.EVENT procedure for the
WHEN–NEW–FORM–INSTANCE event. See: CUSTOM.EVENT:
page 28 – 20

Example Code

28 – 13Using the CUSTOM Library

Inside that branch, specify the form and block where you want
your logic to occur. Add the logic to set up the Special menu. See:
Application–Specific Entries: The Special Menu: page 10 – 8

You should start with the highest–numbered entry on each Special
menu (SPECIAL15, 30, or 45) to avoid conflicting with any Special
menu entries already provided by the form or by the VERT or
GLOBE libraries (vertical and globablization routines) and work
backwards towards the lowest–numbered entry.

2. Add a branch to the CUSTOM.EVENT procedure for the particular
SPECIALn event you want (where n is a number between 1 and
45). See: CUSTOM.EVENT: page 28 – 20

Inside that branch, specify the form and block where you want
your logic to occur. Add the logic you want to fire from the Special
menu. This is the logic that, if you were developing the form
yourself, you would put in the user–named SPECIALn trigger. See:
Application–Specific Entries: The Special Menu: page 10 – 8

At the end of your SPECIALn logic, you must include a call to
RAISE FORM_TRIGGER_FAILURE; this ensures that any
SPECIALn trigger in the form that may already exist (with the
same number) does not fire after your logic has fired, or, if there is
no corresponding trigger, that your users do not see an error
message when the form cannot find such a trigger.

The following example sets up entries on each of the three special
menus. This example also uses function security to test whether the
menu choices should be available.

––

procedure event(event_name varchar2) is

 form_name varchar2(30) :=

 name_in(’system.current_form’);

 block_name varchar2(30) :=

 name_in(’system.cursor_block’);

begin

 if (event_name = ’WHEN–NEW–FORM–INSTANCE’) then

 if (form_name = ’FNDSCAUS’) then

 –– Add function security test before putting choices

 –– on special menus for Users form.

 –– Note that the CUST26_FNDSCAUS_SPECIAL function

 –– must be defined and added to the menu for this code

 –– branch to work.

 ––

28 – 14 Oracle Applications Developer’s Guide

 IF (FND_FUNCTION.TEST(’CUST26_FNDSCAUS_SPECIAL’)) THEN

 –– fnd_message.debug(’The Special function is available’);

 ––

 –– Put choices on the special menus.

 –– CUSTOM library calls for the same special menu

 –– choice override the

 –– special menu logic in the base form

 ––

 app_special2.instantiate(’SPECIAL10_CHECKBOX’,

 ’Special 10 Box w Line CUSTOM’,

 ’’,TRUE,’LINE’);

 app_special2.set_checkbox(’SPECIAL10_CHECKBOX’, ’TRUE’);

 app_special2.instantiate(’SPECIAL11_CHECKBOX’,

 ’Special 11 Box CUSTOM’);

 app_special2.set_checkbox(’SPECIAL11_CHECKBOX’, ’TRUE’);

 app_special2.instantiate(’SPECIAL12_CHECKBOX’,

 ’Special 12 Box CUSTOM’);

 app_special2.set_checkbox(’SPECIAL12_CHECKBOX’, ’TRUE’);

 app_special2.instantiate(’SPECIAL13’,

 ’Special 13 Line CUSTOM’, ’’,

 TRUE, separator=>’LINE’);

 app_special2.instantiate(’SPECIAL14’,

 ’Special 14 CUSTOM’);

 app_special2.instantiate(’SPECIAL15’,

 ’Special 15 CUSTOM’);

 app_special2.instantiate(’SPECIAL28’,

 ’Special 28 Line CUSTOM’,

 ’’,TRUE,’LINE’);

 app_special2.instantiate(’SPECIAL29’,

 ’Special 29 CUSTOM’);

 app_special2.instantiate(’SPECIAL30’,

 ’Special 30 CUSTOM’);

 app_special2.instantiate(’SPECIAL43’,

 ’Special 43 Line CUSTOM’,

 ’’,TRUE,’LINE’);

 app_special2.instantiate(’SPECIAL44’,

 ’Special 44 CUSTOM’);

 app_special2.instantiate(’SPECIAL45’,

 ’Special 45 CUSTOM’);

 END IF; –– end of function security if–then branch

 end if; –– end of form branches within Zoom event branch

 ––

 –– Add logic to handle the new special menu choices

 ––

 ELSIF event_name IN (’SPECIAL13’, ’SPECIAL14’,

 ’SPECIAL15’, ’SPECIAL28’,

 ’SPECIAL29’, ’SPECIAL30’,

 ’SPECIAL43’, ’SPECIAL44’,

 ’SPECIAL45’) then

28 – 15Using the CUSTOM Library

 if (form_name = ’FNDSCAUS’) then

 fnd_message.set_string(

 ’Special menu choice: ’ || event_name);

 fnd_message.show;

 raise form_trigger_failure;

 –– stop processing before menu logic

 –– in forms fires or gives an error

 end if;

 ELSIF event_name IN (’SPECIAL10_CHECKBOX’,

 ’SPECIAL11_CHECKBOX’,

 ’SPECIAL12_CHECKBOX’) then

 if (form_name = ’FNDSCAUS’) then

 if (app_special2.get_checkbox(event_name)=’TRUE’) then

 fnd_message.set_string(

 event_name || ’ is True (checked)’);

 fnd_message.show;

 raise form_trigger_failure;

 –– stop processing before menu logic

 –– in forms fires or gives an error

 else

 fnd_message.set_string(

 event_name || ’ is False (unchecked)’);

 fnd_message.show;

 raise form_trigger_failure;

 –– stop processing before menu logic in

 –– forms fires or gives an error

 end if;

 end if;

 END IF; –– end of branches on EVENT_NAME

end event;

––

Support and Upgrading

To manage your customizations and handle upgrade considerations
follow these guidelines:

Trouble with Forms Operating with the CUSTOM Library

If a form is operating incorrectly, and you have coded CUSTOM library
or Zoom logic for it, use the menu to disable the CUSTOM library code
temporarily (Help–>Diagnostics–>Custom Code–>Off) so you can
determine whether the problem comes from the customizations or
Oracle Applications code.

28 – 16 Oracle Applications Developer’s Guide

Upgrading

An Oracle Applications upgrade will typically create a new directory
structure that includes the default (as–shipped) version of the
CUSTOM library, so you must keep a backup copy of CUSTOM with
the changes you make. Place your custom version of the CUSTOM
library in the new AU_TOP/resource directory after the upgrade. You
may need to upgrade and/or regenerate the CUSTOM.plx file as part
of the upgrade.

An Oracle Applications patch will never include a new CUSTOM
library.

Remember, form and block names may change after an upgrade or
patch to Oracle Applications. You should test any custom logic that
you have defined to confirm that it still operates as intended before
using it in a production environment.

28 – 17Using the CUSTOM Library

Product–Specific Events in Oracle Application Object Library

Oracle Application Object Library provides product–specific events
that you can access using the CUSTOM library.

WHEN–LOGON–CHANGED Event

Use the WHEN–LOGON–CHANGED event to incorporate custom
validation or auditing that fires immediately after a user uses the
”File–>Log On as a Different User” choice on the default menu to log
on as a different user (after the user has signed on as the new user and
pressed the Connect button or the Return key). This routine is
applicable only to Oracle Forms Developer–based forms. This routine
is not applicable to HTML– or Java–based forms (Oracle Self–Service
Web Applications).

You can access the new user name and other profile values using the
FND_PROFILE.GET procedure. You cannot access the username or
information from the signon session the user was leaving.

If for some reason your code raises form_trigger_failure for this event,
the user would be returned to the signon screen as if the user had
typed an incorrect username or password.

Implementing User Profiles (See page 13 – 5)

This product–specific event does not support custom execution styles.

WHEN–RESPONSIBILITY–CHANGED Event

Use the WHEN–RESPONSIBILITY–CHANGED event to incorporate
custom validation or auditing that fires immediately after a user uses
the ”File–>Switch Responsibility” choice on the default menu to switch
responsibilities. This routine is applicable only to Oracle Forms
Developer–based forms. This routine is not applicable to HTML– or
Java–based forms (Oracle Self–Service Web Applications).

You can access the new responsibility name and other profile values
using the FND_PROFILE.GET procedure. You cannot access the
responsibility or information from the responsibility session the user
was leaving.

28 – 18 Oracle Applications Developer’s Guide

If for some reason your code raises form_trigger_failure for this event,
the user would be returned to the responsibility list of values as if the
user had chosen an invalid responsibility.

Implementing User Profiles (See page 13 – 5)

This product–specific event does not support custom execution styles.

Summary

Description

Example Code

Summary

28 – 19Using the CUSTOM Library

CUSTOM Package

The CUSTOM package contains the following functions and procedure:

• CUSTOM.ZOOM_AVAILABLE

• CUSTOM.STYLE

• CUSTOM.EVENT

CUSTOM.ZOOM_AVAILABLE

function custom.zoom_available return BOOLEAN;

If Zoom is available for this block, then return TRUE; otherwise return
FALSE. Always test for the form and block name. Refer to the
SYSTEM variables for form name and block name in your code and
branch accordingly. The module name of your form must match the
form file name.

By default this routine must return FALSE.

The following example enables Zooms in the following places:

Form: FNDSCAUS, Block USER and

Form: FNDCPMCP, Block PROCESS

FUNCTION zoom_available RETURN BOOLEAN IS

 form_name VARCHAR2(30) := NAME_IN(’system.current_form’);

 block_name VARCHAR2(30) := NAME_IN(’system.cursor_block’);

BEGIN

 IF (form_name = ’FNDSCAUS’ AND block_name = ’USER’) OR

 (form_name = ’FNDCPMCP’ AND block_name = ’PROCESS’)THEN

 RETURN TRUE;

 ELSE

 RETURN FALSE;

 END IF;

END zoom_available;

CUSTOM.STYLE

function custom.style(event_name varchar2) return integer;

Description

�

Example Code

Summary

28 – 20 Oracle Applications Developer’s Guide

This function allows you to determine the execution style for a
product–specific event if custom execution styles are supported for that
product–specific event (many product–specific events do not support
custom execution styles).

You can choose to have your code execute before, after, or in place of
the code provided in Oracle Applications. See the User’s Guide for your
Oracle Applications product for a list of events that are available
through this interface. Note that some product–specific events may not
support all execution styles. CUSTOM.STYLE does not affect generic
form events or Zoom.

Any event that returns a style other than custom.standard must have
corresponding code in custom.event which will be executed at the time
specified.

The following package variables should be used as return values:

• custom.before

• custom.after

• custom.override

• custom.standard

By default this routine must return custom.standard (which means that
there is no custom execution style code).

Attention: Oracle Corporation reserves the right to pass
additional values for event_name to this routine, so all code
must be written to branch on the specific event_name passed.

The following example sets up the MY_PRICING_EVENT event to
have the Override execution style.

 begin

 if event_name = ’MY_PRICING_EVENT’ then

 return custom.override;

 else

 return custom.standard;

 end if;

 end style;

CUSTOM.EVENT

procedure custom.event(event_name varchar2);

Description

�

Example Code

28 – 21Using the CUSTOM Library

This procedure allows you to execute your code at specific events.
Always test for event name, then for form and block name within that
event. Refer to the SYSTEM variables for form name and block name
in your code and branch accordingly. The module name of your form
must match the form file name.

By default, this routine must perform ”null;”.

Attention: Oracle Corporation reserves the right to pass
additional values for event_name to this routine, so all code
must be written to branch on the specific event_name passed.

The following example contains logic for a Zoom, a product–specific
event, and a generic form event.

The Zoom event opens a new session of a form and passes parameter
values to the new session. The parameters already exist in the form
being opened, and the form function has already been defined and
added to the menu (without a prompt, so it does not appear in the
Navigator).

procedure event(event_name varchar2) is

 form_name varchar2(30) := name_in(’system.current_form’);

 block_name varchar2(30) := name_in(’system.cursor_block’);

 param_to_pass1 varchar2(255);

 param_to_pass2 varchar2(255);

 begin

 if (event_name = ’ZOOM’) then

 if (form_name = ’DEMXXEOR’ and block_name = ’ORDERS’) then

 /* The Zoom event opens a new session of a form and

 passes parameter values to the new session. The

 parameters already exist in the form being opened:*/

 param_to_pass1 := name_in(’ORDERS.order_id’);

 param_to_pass2 := name_in(’ORDERS.customer_name’);

 fnd_function.execute(FUNCTION_NAME=>’DEM_DEMXXEOR’,

 OPEN_FLAG=>’Y’,

 SESSION_FLAG=>’Y’,

 OTHER_PARAMS=>’ORDER_ID=”’||

 param_to_pass1||

 ’” CUSTOMER_NAME=”’||

 param_to_pass2||’”’);

 /* all the extra single and double quotes account for

 any spaces that might be in the passed values */

 end if;

 elsif (event_name = ’MY_PRICING_EVENT’) then

 /*For the product–specific event MY_PRICING_EVENT, call a

 custom pricing routine */

28 – 22 Oracle Applications Developer’s Guide

 get_custom_pricing(’ORDERS.item_id’, ’ORDERS.price’);

 elsif (event_name = ’WHEN–VALIDATE–RECORD’) then

 if (form_name = ’APXVENDR’ and block_name = ’VENDOR’) then

 /* In the WHEN–VALIDATE–RECORD event, force the value of

 a Vendor Name field to be in uppercase letters */

 copy(upper(name_in(’VENDOR.NAME’)), ’VENDOR.NAME’);

 end if;

 else

 null;

 end if;

 end event;

end custom;

Always use FND_FUNCTION.EXECUTE to open a new session of a
form. Do not use CALL_FORM or OPEN_FORM. The form function
must already be defined with Oracle Application Object Library and
added to the menu (without a prompt, if you do not want it to appear
in the Navigator).

28 – 23Using the CUSTOM Library

Example of Implementing Zoom Using the CUSTOM Library

Here is an example of a simple customization you can do with the
Zoom feature (in the CUSTOM library).

Note: This Zoom demo/example is based on the training class
form DEMXXEOR used in the class ”Extend Oracle
Applications” (available through Oracle University).

The DEMXXEOR form is a very simple form for entering orders. In
this example, we add two parameters (ORDER_ID and
CUSTOMER_NAME) to the form that can be accepted from Zoom
upon form startup. The form then fires an automatic query based on
the parameters if one of the parameters has a value.

For the Zoom itself, we make Zoom available from the first block of the
same form. The user can have a value in one or both of the Order
Number and Customer Name fields. When the user clicks on the
Zoom button, Zoom opens another session of the same form and
automatically queries up any existing orders fitting the criteria.

Once you understand how this Zoom works and is implemented, you
should be able to take the same approach with other forms (not
necessarily zooming to another session of the same form).

Modify the Form

Using the Oracle Forms Designer, modify the Demo Orders form
(DEMXXEOR.fmb) so it is able to receive parameter(s) from the Zoom
code.

Note: The DEMXXEOR form used in the class ”Extend Oracle
Applications” already has these modifications.

1. Create parameter ORDER_ID (Char, size 255, no default value).

2. Create parameter CUSTOMER_NAME (Char, size 255, no default
value).

In theory, the parameter should match both the field the value
comes from and the field it goes to, but it depends on the purpose
of the parameter. In this case, having Char instead of number
allows wildcards for the automatic query, as does having the
parameter longer than the actual field (standard query length for
most items is 255, and these parameters will only be used for
queries).

28 – 24 Oracle Applications Developer’s Guide

3. Modify the default WHERE clause of the target block (ORDERS) to
use parameter values as query criteria if they are not null:

WHERE (:parameter.order_id is null or

dem_orders_v.order_id like :parameter.order_id)

AND (:parameter.customer_name is null or

dem_orders_v.customer_name like

:parameter.customer_name)

4. In the WHEN–NEW–FORM–INSTANCE trigger, add to the end of
the existing code:

/* fire automatic query if a parameter has a value from

Zoom */

if (:parameter.order_id is not null) or

 (:parameter.customer_name is not null) then

 GO_BLOCK(’ORDERS’);

 do_key(’EXECUTE_QUERY’);
/* clear the parameters after the query so they don’t remain

criteria for future queries */

 :parameter.order_id := null;

 :parameter.customer_name := null;

end if;

5. Compile and generate the form, and put the .fmx file in the
appropriate directory (assumes you have a custom application set
up from the class).

6. Register the form, define a function for it (DEM_DEMXXEOR), and
put the form function on a menu so you can access it. Verify that
the form works properly from the Navigator before you modify the
CUSTOM library.

Modify the CUSTOM Library

1. Open CUSTOM.pll in Oracle Forms Developer.

2. Modify the text of the CUSTOM package body as follows (the
CUSTOM library comes with extensive comments that explain each
section. You modify the actual code sections):

––

PACKAGE BODY custom IS

 ––

 –– Customize this package to provide specific responses to

 –– events within Oracle Applications forms.

 ––

28 – 25Using the CUSTOM Library

 –– Do not change the specification of the CUSTOM package

 –– in any way.

 ––

 ––

 function zoom_available return BOOLEAN is

 ––

 –– This function allows you to specify if zooms exist for the

 –– current context. If zooms are available for this block, then

 –– return TRUE; else return FALSE.

 ––

 –– This routine is called on a per–block basis within every

 –– Applications form. Therefore, any code that will enable

 –– Zoom must test the current

 –– form and block from which the call is being made.

 ––

 –– By default this routine must return FALSE.

 form_name varchar2(30) := name_in(’system.current_form’);

 block_name varchar2(30) := name_in(’system.cursor_block’);

 begin

 if (form_name = ’DEMXXEOR’ and block_name = ’ORDERS’) then

 return TRUE;

 else

 return FALSE;

 end if;

 end zoom_available;

 –––

 function style(event_name varchar2) return integer is

 ––

 –– This Zoom example does not do anything to the STYLE function

 begin

 return custom.standard;

 end style;

 –––

 procedure event(event_name varchar2) is

 ––

 –– This procedure allows you to execute your code at specific

 –– events. ’ZOOM’ or product–specific events will be passed

 –– in event_name. See the Applications Technical Reference

 –– manuals for a list of events that are available through

 –– this interface.

 form_name varchar2(30) := name_in(’system.current_form’);

 block_name varchar2(30) := name_in(’system.cursor_block’);

 param_to_pass1 varchar2(255);

 param_to_pass2 varchar2(255);

28 – 26 Oracle Applications Developer’s Guide

 BEGIN

 if (event_name = ’ZOOM’) then

 if (form_name = ’DEMXXEOR’ and block_name = ’ORDERS’)

 then

 param_to_pass1 := name_in(’ORDERS.order_id’);

 param_to_pass2 := name_in(’ORDERS.customer_name’);

/* use fnd_function.execute instead of open_form */

 FND_FUNCTION.EXECUTE(FUNCTION_NAME=>’DEM_DEMXXEOR’,

 OPEN_FLAG=>’Y’,

 SESSION_FLAG=>’Y’,

 OTHER_PARAMS=>

 ’ORDER_ID=”’||param_to_pass1||

 ’” CUSTOMER_NAME=”’||

 param_to_pass2||’”’);

/* all the extra single and double quotes account for

 any spaces that might be in the passed values */

 end if;

 else

 null;

 end if;

 end event;

END custom;

––

3. Compile All and save your changes. Exit from Oracle Forms
Developer.

4. Use the Oracle Forms Compiler program to generate a new .plx file
for the CUSTOM library.

5. Verify that your file generated successfully. If you leave out the
pathname for the output file, the file will be generated in
c:\orawin\bin (or platform equivalent). Move it to
AU_TOP/resource.

6. Make sure that the function you call in your Zoom
(DEM_DEMXXEOR) is somewhere on the menu in your
responsibility. It does not need to be accessible from the menu in
the Navigator (do this by adding it to the menu but leaving the
prompt blank). Otherwise, the Zoom button will be enabled but
the user will get a message saying that function is not available.

7. Try it out from the Oracle Applications Navigator.

C H A P T E R

29
T

29 – 1APPCORE Routine APIs

APPCORE Routine
APIs

his chapter provides you with specifications for calling many
Oracle Applications APIs from your PL/SQL procedures. Most
routines in the APPCORE library are described in this section. Some
APPCORE routines are described in other chapters (for example, the
APP_SPECIAL routines are described in the chapter called
”Controlling the Toolbar and the Default Menu”). The routines
described in this chapter include:

• APP_COMBO: Combination Block API

• APP_DATE: Date Conversion APIs

• APP_EXCEPTION: Exception Processing APIs

• APP_FIELD: Item Relationship Utilities

• APP_FIND: Query Find Utilities

• APP_ITEM: Individual Item Utilities

• APP_ITEM_PROPERTY: Property Utilities

• APP_NAVIGATE:

• APP_RECORD: Record Utilities

• APP_REGION: Region Utilities

• APP_STANDARD Package

29 – 2 Oracle Applications Developer’s Guide

• APP_WINDOW: Window Utilities

Summary

Location

Description

29 – 3APPCORE Routine APIs

APP_COMBO: Combination Block API

Use APP_COMBO to control navigation in combination blocks.

APP_COMBO.KEY_PREV_ITEM

procedure APP_COMBO.KEY_PREV_ITEM;

APPCORE library

Call this procedure in the KEY–PREV–ITEM trigger to provide the
standard behavior when back–tabbing from the first item in a record.
This procedure ensures that the cursor automatically moves to the last
item of the previous record.

Combination Blocks (See page 7 – 8)

29 – 4 Oracle Applications Developer’s Guide

APP_DATE and FND_DATE: Date Conversion APIs

You can use the APP_DATE and FND_DATE package utilities to
format, convert, or validate dates. The packages are designed to hide
the complexities of the various format masks associated with dates.
These routines are particularly useful when you are manipulating dates
as strings. The routines are designed to handle the multilingual,
flexible format mask, and Y2K aspects of these conversions.

Year 2000 Compliance in Oracle Applications:
Year 2000 Readiness Disclosure (See page 26 – 2)

The APP_DATE routines are located in the APPCORE library and can
be called from forms and other libraries, except for libraries that are
attached to APPCORE, such as the CUSTOM library. For code in the
CUSTOM library and other libraries attached to APPCORE, use the
APP_DATE2 package in the special APPCORE2 library. The
APP_DATE2 package is equivalent to APP_DATE, with the same
routines and routine arguments.

The FND_DATE package is located in the database. You can call
FND_DATE routines from SQL statements or other database packages.
Many of the routines are in both the APP_DATE and the FND_DATE
packages.

List of Date Terms

Because a date can be expressed in many different ways, it is useful to
define several date–related terms that appear in the following APIs.

A text item (in a form) that has a data type of
”Date”.

A text item (in a form) that has a data type of
”Datetime”.

A text item (in a form) that has a data type of
”Char”.

A PL/SQL variable declared as type ”Date”. Such
a variable includes both date and time
components.

Form date field

Form datetime
field

Form character
field

PL/SQL date

Summary

Location

Description

Arguments (input)

Example

29 – 5APPCORE Routine APIs

The format in which the user currently sees dates
in forms, derived from the environment variable
FORMS60_USER_DATE_FORMAT.

The format in which the user currently sees dates
with a time component in forms, derived from the
environment variable
FORMS60_USER_DATETIME_FORMAT.

A standard format used to express a date as a
string, independent of language. Oracle
Applications uses YYYY/MM/DD HH24:MI:SS as
the canonical date format.

Warning: The APP_DATE and FND_DATE routines make use
of several package variables, such as canonical_mask,
user_mask, and others. The proper behavior of Oracle
Applications depends on these values being correct, and you
should never change any of these variables.

APP_DATE.CANONICAL_TO_DATE and
FND_DATE.CANONICAL_TO_DATE

function APP_DATE.CANONICAL_TO_DATE(

 canonical varchar2)

 return date;

APPCORE library and database (stored function)

This function takes a character string in the canonical date format
(including a time component) and converts it to a PL/SQL date.

If APP_DATE.CANONICAL_TO_DATE fails, the routine displays a
message on the message line and raises form_trigger_failure. If
FND_DATE.CANONICAL_TO_DATE fails, the routine raises a
standard exception from the embedded TO_DATE call but does not
return a message.

The VARCHAR2 string (in canonical format) to be
converted to a PL/SQL date.

declare
 hire_date varchar2(20) := ’1980/01/01’;
 num_days_employed number;

User date format

User datetime
format

Canonical date
format

canonical

Example

Summary

Location

Description

Arguments (input)

29 – 6 Oracle Applications Developer’s Guide

begin
 num_days_employed := trunc(sysdate) –
app_date.canonical_to_date(hire_date);
 message(’Length of employment in days: ’||
 to_char(num_days_employed));
end;

select fnd_date.canonical_to_date(tab.my_char_date)
from ...

APP_DATE.DISPLAYDATE_TO_DATE and
FND_DATE.DISPLAYDATE_TO_DATE

function APP_DATE.DISPLAYDATE_TO_DATE(

 chardate varchar2)

 return date;

APPCORE library and database (stored function)

This function takes a character string in the user date format and
converts it to a PL/SQL date.

If APP_DATE.DISPLAYDATE_TO_DATE fails, the routine displays a
message on the message line and raises form_trigger_failure. If
FND_DATE.DISPLAYDATE_TO_DATE fails, the routine raises a
standard exception from the embedded TO_DATE call but does not
return a message.

In previous releases this function was named
APP_DATE.CHARDATE_TO_DATE (that name has been retained for
backwards compatibility).

The VARCHAR2 string (in the user date format) to
be converted to a PL/SQL date.

chardate

Summary

Location

Description

Arguments (input)

Summary

Location

Description

Arguments (input)

Example

29 – 7APPCORE Routine APIs

APP_DATE.DISPLAYDT_TO_DATE and
FND_DATE.DISPLAYDT_TO_DATE

function APP_DATE.DISPLAYDT_TO_DATE(

 charDT varchar2)

 return date;

APPCORE library and database (stored function)

This function takes a character string in the user datetime format and
converts it to a PL/SQL date.

If APP_DATE.DISPLAYDT_TO_DATE fails, the routine displays a
message on the message line and raises form_trigger_failure. If
FND_DATE.DISPLAYDT_TO_DATE fails, the routine raises a standard
exception from the embedded TO_DATE call but does not return a
message.

In previous releases this function was named
APP_DATE.CHARDT_TO_DATE (that name has been retained for
backwards compatibility).

The VARCHAR2 string (in the user datetime
format) to be converted to a PL/SQL date.

APP_DATE.DATE_TO_CANONICAL and
FND_DATE.DATE_TO_CANONICAL

function APP_DATE.DATE_TO_CANONICAL(

 dateval date)

 return varchar2;

APPCORE library and database (stored function)

This function converts a PL/SQL date to a character string in the
canonical date format. The entire time component is retained.

The PL/SQL date to be converted.

select fnd_date.date_to_canonical(hire_date)
from emp ...

charDT

dateval

Summary

Location

Description

Arguments (input)

Example

Summary

Location

Description

29 – 8 Oracle Applications Developer’s Guide

APP_DATE.DATE_TO_DISPLAYDATE and
FND_DATE.DATE_TO_DISPLAYDATE

function APP_DATE.DATE_TO_DISPLAYDATE(

 dateval date)

 return varchar2;

APPCORE library and database (stored function)

This function converts a PL/SQL date to a character string in the user
date format. Any time component of the PL/SQL date is ignored.

In previous releases this function was named
APP_DATE.DATE_TO_CHARDATE (that name has been retained for
backwards compatibility).

The PL/SQL date to be converted.

declare
 my_displaydate varchar2(30);
 my_dateval date;
begin
 my_displaydate :=
 app_date.date_to_displaydate(my_dateval);
end;

APP_DATE.DATE_TO_DISPLAYDT and
FND_DATE.DATE_TO_DISPLAYDT

function APP_DATE.DATE_TO_DISPLAYDT(

 dateval date)

 return varchar2;

APPCORE library and database (stored function)

This function converts a PL/SQL date to a character string in the user
datetime format. Any time component of the PL/SQL date is
preserved.

In previous releases this function was named
APP_DATE.DATE_TO_CHARDT (that name has been retained for
backwards compatibility).

dateval

Arguments (input)

Example

Summary

Location

Description

Arguments (input)

29 – 9APPCORE Routine APIs

The PL/SQL date to be converted.

declare
 my_displaydt varchar2(30);
 my_dateval date;
begin
 my_displaydt :=
 app_date.date_to_displaydt(my_dateval);
end;

APP_DATE.DATE_TO_FIELD

procedure APP_DATE.DATE_TO_FIELD(

 dateval date,

 field varchar2,

 datetime varchar2 default ’DEFAULT’,

 date_parameter boolean default FALSE);

APPCORE library

This procedure copies a PL/SQL date into a form field, form
parameter, or global variable. Use this routine instead of the COPY
built–in routine when date processing is required.

When copying a value into form fields where the datatype is Date or
Datetime, this procedure uses the appropriate internal mask to
maintain the datatype.

When copying a value into form fields where the datatype is Char, by
default this procedure applies the user datetime format if the field is
long enough to hold it; otherwise this procedure applies the user date
format.

When copying a value into global variables or form parameters, by
default this procedure assumes a datatype of Char and applies the
canonical date format, ignoring any time component. Use the
date_parameter argument to override this behavior.

The date to be copied.

The name of the field to which the date is copied,
including the block name.

dateval

dateval

field

Example

Summary

Location

Description

29 – 10 Oracle Applications Developer’s Guide

Use to override the default rules for determining
date or datetime format. The default value is
’DEFAULT’. Specify ’DATE’ or ’DATETIME’ to
force the copied value to have the date or datetime
formats. Typically, you would use this argument
to force the use of the datetime format in global
variables and parameters, and for forcing use of
the date format in character items that are longer
than the datetime user mask.

Use this argument only if you are copying the
value to a date parameter (with the date data type).
If this argument is set to TRUE, the value is copied
as a date value instead of as a character value.

Replace the following code:

COPY(to_char(my_date_value, ’DD–MON–YYYY
{HR24:MI:SS}’,’my_block.my_date_field’);

with the following code:

app_date.date_to_field(my_date_value,
’my_block.my_date_field’);

APP_DATE.FIELD_TO_DATE

function APP_DATE.FIELD_TO_DATE(

 field varchar2 default NULL,

 date_parameter boolean default FALSE)

 return date;

APPCORE library

This function takes a value from a form field, form parameter, or global
variable and returns a PL/SQL date. Use this routine instead of the
NAME_IN built–in routine when date processing is required.

When copying a value from form fields where the datatype is Date or
Datetime, this procedure uses the appropriate internal mask to
maintain the time component.

When copying a value from form fields where the datatype is Char, this
procedure applies the user datetime format if the field is long enough
to hold it; otherwise this procedure applies the user date format.

datetime

date_parameter

Arguments (input)

Example

Summary

Location

Description

29 – 11APPCORE Routine APIs

When copying a value from global variables or form parameters, by
default this procedure assumes a datatype of Char and applies the
canonical date format, with or without the time component depending
on the current length.

If APP_DATE.FIELD_TO_DATE fails, the routine raises a standard
exception from the embedded TO_DATE call but does not return a
message.

The name of the field from which the date should
be copied, including the block name.

Use this argument only if you are copying the
value from a date parameter (with the date data
type). If this argument is set to TRUE, the value is
copied from the parameter as a date instead of as a
character value.

Replace the following code:

to_date(NAME_IN(’my_block.my_date_field’),
’DD–MON–YYYY {HH24:MI:SS}’);

with the following code:

my_date =
app_date.field_to_date(’my_block.my_date_field’);

APP_DATE.VALIDATE_CHARDATE

procedure APP_DATE.VALIDATE_CHARDATE(

 field varchar2 default NULL)

APPCORE library

This procedure checks to see if a character value in a given form field
(datatype Char) is a valid date by parsing it with the user date format.

If the conversion to a date with no time component fails, the routine
displays a message on the message line and raises form_trigger_failure.
If the conversion succeeds, the routine copies the converted value back
into the field to ensure display consistency.

field

date_parameter

Arguments (input)

Summary

Location

Description

Arguments (input)

Summary

Location

Description

29 – 12 Oracle Applications Developer’s Guide

The name of the character field to be validated,
including the block name. If no field name is
passed in, the procedure uses
SYSTEM.CURSOR_ITEM.

APP_DATE.VALIDATE_CHARDT

procedure APP_DATE.VALIDATE_CHARDT(

 field varchar2 default NULL)

APPCORE library

This procedure checks to see if a character value in a given form field
(datatype Char) is a valid datetime string by parsing it with the user
datetime format.

If the conversion to a date with a time component fails, the routine
displays a message on the message line and raises form_trigger_failure.
If the conversion succeeds, the routine copies the converted value back
into the field to ensure display consistency.

The name of the character field to be validated,
including the block name. If no field name is
passed in, the procedure uses
SYSTEM.CURSOR_ITEM.

FND_DATE.STRING_TO_DATE

function FND_DATE.STRING_TO_DATE(

 p_string IN VARCHAR2,

 p_mask IN VARCHAR2)

 RETURN DATE;

Database (stored function)

This function converts a character string to a PL/SQL date using the
given date format mask. This function tests all installed languages, if
necessary, to find one that matches the language–dependent fragments
of the given string. Use this routine when you need to convert

field

field

Arguments (input)

Summary

Location

Description

Arguments (input)

29 – 13APPCORE Routine APIs

character string data to dates and are unsure of the language used to
store the character date.

This function returns NULL if the string cannot be converted. There is
no error message. Your code must test for a NULL return value and
handle the error as appropriate.

Language is important if the mask has language–dependent fragments,
as in the format mask DD–MON–RRRR, where the ”MON” fragment is
language dependent. For example, the abbreviation for February is
FEB, but the French abbreviation is FEV. The language testing order of
this function is:

• Current (default) database language

• Language indicated by the setting of ”NUMERIC DATE
LANGUAGE”

• The ”Base” language of the Oracle Applications installation
(where the INSTALLED_FLAG column of the
FND_LANGUAGES table is set to ”B”)

• Other installed languages, ordered by the NLS_LANGUAGE
column of the FND_LANGUAGES table (where the
INSTALLED_FLAG column is set to ”I”)

The character string to be converted.

The format mask to use for the conversion, such as
DD–MON–RRRR.

FND_DATE.STRING_TO_CANONICAL

function FND_DATE.STRING_TO_CANONICAL(

 p_string IN VARCHAR2,

 p_mask IN VARCHAR2)

 RETURN VARCHAR2;

Database (stored function)

This function is identical to FND_DATE.STRING_TO_DATE except
that this function returns a character string in the canonical date format
instead of returning a PL/SQL date. (See page 29 – 12)

p_string

p_mask

29 – 14 Oracle Applications Developer’s Guide

The character string to be converted.

The format mask to use for the conversion, such as
DD–MON–RRRR.

p_string

p_mask

Summary

Location

Description

Arguments

Summary

Location

Description

Summary

Location

29 – 15APPCORE Routine APIs

APP_EXCEPTION: Exception Processing APIs

You should use the APPCORE package APP_EXCEPTION to raise
exceptions in the PL/SQL procedures written for your forms.

APP_EXCEPTION.RAISE_EXCEPTION

procedure APP_EXCEPTION.RAISE_EXCEPTION(

 exception_type varchar2 default null,

 exception_code number default null,

 exception_text varchar2 default null);

APPCORE library and database (stored procedure)

This procedure stores exception information and raises exception
form_trigger_failure.

Additional context information.

Error prefix that specifies error type (for example,
ORA or APP)

The number that identifies the error.

APP_EXCEPTION.RETRIEVE

procedure APP_EXCEPTION.RETRIEVE;

APPCORE library and database (stored procedure)

This procedure retrieves exception information from the database.

APP_EXCEPTION.GET_TYPE

function APP_EXCEPTION.GET_TYPE return varchar2;

APPCORE library and database (stored function)

exception_text

exception_type

exception_code

Description

Summary

Location

Description

Summary

Location

Description

Description

Summary

Description

29 – 16 Oracle Applications Developer’s Guide

This function returns the exception type.

APP_EXCEPTION.GET_CODE

function APP_EXCEPTION.GET_CODE return number;

APPCORE library and database (stored function)

This function returns the exception code.

APP_EXCEPTION.GET_TEXT

function APP_EXCEPTION.GET_TEXT return varchar2;

APPCORE library and database (stored function)

This function returns the exception text.

APP_EXCEPTION.RECORD_LOCK_EXCEPTION

This is a predefined exception. Call it in an exception handler to
handle cases where the record cannot be locked. It is usually used with
the APP_EXCEPTION.RECORD_LOCK_ERROR procedure.

APP_EXCEPTION.RECORD_LOCK_ERROR

procedure APP_EXCEPTION.RECORD_LOCK_ERROR (

counter IN OUT number);

This procedure asks the user to continue or cancel an attempt to lock a
record. It returns to the calling procedure to try again if the user
continues. It displays an ”Unable to reserve record” acknowledgement
and raises FORM_TRIGGER_FAILURE if the user cancels.

APP_EXCEPTION.RECORD_LOCK_ERROR only asks the user every
two attempts to lock a record (e.g., counter = 2, 4, 6, etc.). The calling
procedure should attempt to lock the record in a loop and call

Arguments

Summary

Description

29 – 17APPCORE Routine APIs

RECORD_LOCK_ERROR in a WHEN APP_EXCEPTION.RECORD_
LOCK_EXCEPTION exception handler inside the loop. If the user
continues, RECORD_LOCK_ERROR returns and the loop repeats. If
the user cancels, RECORD_LOCK_ERROR raises
FORM_TRIGGER_FAILURE and the loop exits.

Maintained by RECORD_LOCK_ERROR to count
the attempts to lock a record. Calling procedure
should initialize to null or 0.

APP_EXCEPTION.DISABLED

procedure APP_EXCEPTION.DISABLED;

This procedure rings the bell. Call this procedure to disable simple
functions (typically in a KEY– trigger).

counter

Summary

Description

Summary

29 – 18 Oracle Applications Developer’s Guide

APP_FIELD: Item Relationship Utilities

This section describes utilities you can use to maintain relationships
between your form items.

APP_FIELD.CLEAR_FIELDS

procedure APP_FIELD.CLEAR_FIELDS(

 field1 varchar2,

 field2 varchar2 default NULL,

 field3 varchar2 default NULL,

 field4 varchar2 default NULL,

 field5 varchar2 default NULL,

 field6 varchar2 default NULL,

 field7 varchar2 default NULL,

 field8 varchar2 default NULL,

 field9 varchar2 default NULL,

 field10 varchar2 default NULL);

This procedure clears up to ten items if the items are not NULL and are
not check boxes or required lists.

APP_FIELD.CLEAR_DEPENDENT_FIELDS

procedure APP_FIELD.CLEAR_DEPENDENT_FIELDS(

master_field varchar2,

 field1 varchar2,

 field2 varchar2 default NULL,

 field3 varchar2 default NULL,

 field4 varchar2 default NULL,

 field5 varchar2 default NULL,

 field6 varchar2 default NULL,

 field7 varchar2 default NULL,

 field8 varchar2 default NULL,

 field9 varchar2 default NULL,

 field10 varchar2 default NULL);

Description

Arguments (input)

Summary

Description

29 – 19APPCORE Routine APIs

This procedure clears up to ten dependent items if the master item is
NULL and the dependent items are not NULL and not check boxes or
required lists.

Name of master item

Name of dependent item(s).

APP_FIELD.SET_DEPENDENT_FIELD

procedure APP_FIELD.SET_DEPENDENT_FIELD(

event varchar2,

master_field varchar2,

dependent_field varchar2

invalidate boolean default FALSE);

procedure APP_FIELD.SET_DEPENDENT_FIELD(

event varchar2,

condition boolean,

dependent_field varchar2

invalidate boolean default FALSE);

This procedure makes an item enterable or not enterable based on
whether the master item is NULL or a specified condition is TRUE, and
clears the field. The dependent item can be a text item, check box, or
poplist.

You typically call this procedure in the following triggers:

• WHEN–VALIDATE–ITEM on the master field

• WHEN–VALIDATE–ITEM on the field(s) the condition is based
on or in event INIT on the dependent field

• PRE–RECORD

• POST–QUERY (required only when the dependent item is in a
multi–record block)

For examples on using this procedure, see:

Item Relations (See page 9 – 2)
Mutually Inclusive Items with Dependent Items (See page
9 – 13)
Defaults (See page 9 – 18)

master_field

field1 ... field10

Arguments (input)

Summary

Description

Arguments (input)

29 – 20 Oracle Applications Developer’s Guide

Name of trigger event. If you call this trigger on a
master field, pass VALIDATE instead of the trigger
name (which may be WHEN–VALIDATE–ITEM,
WHEN–CHECKBOX–CHANGED,
WHEN–LIST–CHANGED, or
WHEN–RADIO–CHANGED, any of which can
also be used).

Name of master item

TRUE when dependent item is to be enabled

Name of dependent item

If TRUE, mark the item as invalid instead of
clearing the dependent item. Set this flag to TRUE
if the dependent item is a required list or option
group.

APP_FIELD.SET_EXCLUSIVE_FIELD

procedure APP_FIELD.SET_EXCLUSIVE_FIELD(

event varchar2,

field1 varchar2,

field2 varchar2,

field3 varchar2 default NULL);

This procedure coordinates items so that only one item of a set may
contain a value. If a value is entered in one of the items, the other items
are cleared and made non–NAVIGABLE (users can still mouse into
these items). This procedure only covers sets of two or three
mutually–exclusive items.

For examples on using this procedure, see:

Mutually Exclusive Items (See page 9 – 10)

Name of trigger event
(WHEN–NEW–RECORD–INSTANCE,
PRE–RECORD, or VALIDATE. VALIDATE is
generally used in place of

event

master_field

condition

dependent_field

invalidate

event

Summary

Description

Arguments (input)

29 – 21APPCORE Routine APIs

WHEN–VALIDATE–ITEM,
WHEN–RADIO–CHANGED,
WHEN–LIST–CHANGED, or
WHEN–CHECKBOX–CHANGED, any of which
can also be used.)

Name of exclusive item (BLOCK.FIELD)

Name of exclusive item (BLOCK.FIELD)

Name of exclusive item (BLOCK.FIELD, optional)

APP_FIELD.SET_INCLUSIVE_FIELD

procedure APP_FIELD.SET_INCLUSIVE_FIELD(

event varchar2,

field1 varchar2,

field2 varchar2,

field3 varchar2 default NULL,

field4 varchar2 default NULL,

field5 varchar2 default NULL);

This procedure coordinates up to five items so that if any of the items
contains a value, then all of the items require a value. If all of the items
are NULL, then the items are not required.

For examples on using this procedure, see:

 Mutually Inclusive Items (See page 9 – 12)

Name of trigger event
(WHEN–NEW–RECORD–INSTANCE,
PRE–RECORD, or VALIDATE. VALIDATE is
generally used in place of
WHEN–VALIDATE–ITEM,
WHEN–RADIO–CHANGED,
WHEN–LIST–CHANGED, or
WHEN–CHECKBOX–CHANGED, any of which
can also be used.)

Name of inclusive item

Name of inclusive item

field1

field2

field3

event

field1

field2

Summary

Description

Arguments (input)

29 – 22 Oracle Applications Developer’s Guide

Name of inclusive item (optional)

Name of inclusive item (optional)

Name of inclusive item (optional)

APP_FIELD.SET_REQUIRED_FIELD

procedure APP_FIELD.SET_REQUIRED_FIELD(

event varchar2,

condition boolean,

field1 varchar2,

field2 varchar2 default NULL,

field3 varchar2 default NULL,

field4 varchar2 default NULL,

field5 varchar2 default NULL);

This procedure makes an item required or not required based on
whether a specified condition is true.

For examples on using this procedure, see:

 Conditionally Mandatory Items (See page 9 – 15)

Name of trigger event

True when items should be required

Name of item

Name of item

Name of item (optional)

Name of item (optional)

Name of item (optional)

field3

field4

field5

event

condition

field1

field2

field3

field4

field5

Summary

Description

Arguments (input)

Summary

Description

Summary

Description

Arguments (input)

29 – 23APPCORE Routine APIs

APP_FIND: Query–Find Utilities

Use the following routines to implement the Find Window
functionality.

Query Find Windows (See page 8 – 2)

APP_FIND.NEW

procedure APP_FIND.NEW(

block_name varchar2);

This routine is called by the ”New” button in a Find Window to return
the user to a new record in the block on which the find is based.

The name of the block the Find Window is based
on

APP_FIND.CLEAR

procedure APP_FIND.CLEAR;

This routine is called by the ”Clear” button in a Find Window to clear
the Find Window.

APP_FIND.CLEAR_DETAIL

procedure APP_FIND.CLEAR_DETAIL(

detail_block varchar2);

This routine clears the result block of a find block (not a Find window).
This action can only be performed from triggers that allow navigation.

The name of the block to be cleared

block_name

detail_block

Example

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

Summary

29 – 24 Oracle Applications Developer’s Guide

APP_FIND.CLEAR_DETAIL(’MYBLOCK’);

APP_FIND.FIND

procedure APP_FIND.FIND(

block_name varchar2);

This routine is called by the ”Find” button in a Find Window to execute
the Find.

The name of the block the Find Window is based
on

APP_FIND.QUERY_RANGE

procedure APP_FIND.QUERY_RANGE(

low_value varchar2/date/number,

high_value varchar2/date/number,

db_item_name varchar2);

This utility constructs the query criteria for ranges in a Find Window.
Depending on the datatype of the low and high value, it creates a range
of characters, dates, or numbers.

The low value of the range

The high value of the range

The name of the item in the block that is being
queried

APP_FIND.QUERY_FIND

procedure APP_FIND.QUERY_FIND(

block_name

low_value

high_value

db_item_name

Description

Arguments (input)

29 – 25APPCORE Routine APIs

lov_name varchar2);

procedure APP_FIND.QUERY_FIND(

block_window varchar2,

find_window varchar2,

find_block varchar2);

These routines invoke either the Row–LOV or the Find Window. Call
them from a user–named trigger ”QUERY_FIND.”

The name of the Row–LOV

The name of the window the Find Window is
invoked for

The name of the Find Window

The name of the block in the Find Window

lov_name

block_window

find_window

find_block

Summary

Description

Arguments (input)

Summary

29 – 26 Oracle Applications Developer’s Guide

APP_ITEM: Individual Item Utilities

This section describes utilities for managing your items individually.

APP_ITEM.COPY_DATE

procedure APP_ITEM.COPY_DATE(

date_val varchar2

item_name varchar2);

Use this procedure to copy a hardcoded date value into a field. This
routine does the copy in this way:

copy(to_char(to_date(’01–01–1900’, ’DD–MM–YYYY’),

 ’DD–MON–YYYY’), ’bar.lamb’);

A character date, expressed in the format
’DD–MM–YYYY’

The name of the item to copy the value into,
expressed as block.item.

APP_ITEM.IS_VALID

procedure APP_ITEM.IS_VALID(

val varchar2

dtype varchar2 default ’DATE’);

function APP_ITEM.IS_VALID(

val varchar2

dtype varchar2 default ’DATE’)

date_val

item_name

Description

Arguments (input)

Summary

Description

Arguments (input)

29 – 27APPCORE Routine APIs

return BOOLEAN;

Use this routine with fields that are of character datatype but contain
data in the format of a date, number or integer. The procedure raises
an error if the value is not in a valid format for the specified datatype.
The function returns TRUE if the value is in the correct format,
otherwise FALSE

Value to be checked

Datatype value should use: DATE, INTEGER, or
NUMBER.

APP_ITEM.SIZE_WIDGET

procedure APP_ITEM.SIZE_WIDGET(

wid_name varchar2.

max_width number default 20);

This procedure reads the current label for the specified widget and
resizes the widget to fully show the label (used to ensure proper size
for a translated label). It will not make the widget any larger than the
maximum width specified, to prevent overlapping or expansion
beyond the edge of the screen. Call this procedure only for check boxes
in single–record formats, buttons and radio groups.

Name of the widget in block.field syntax

The maximum size to make the widget, in inches

val

dtype

wid_name

max_width

Summary

Description

Arguments (input)

Summary

29 – 28 Oracle Applications Developer’s Guide

APP_ITEM_PROPERTY: Property Utilities

These utilities help you control the Oracle Forms and Oracle
Applications properties of your items.

APP_ITEM_PROPERTY.GET_PROPERTY

function APP_ITEM_PROPERTY.GET_PROPERTY(

item_name varchar2,

property number)

return number;

function APP_ITEM_PROPERTY.GET_PROPERTY(

item_id item,

property number)

 return number;

This function returns the current setting of an item property. It differs
from the Oracle Forms’s get_item_property in that it returns
PROPERTY_ON or PROPERTY_OFF instead of TRUE or FALSE.

Name of the item to apply the property attribute
to. Specify both the block and item name. You can
supply the item_ID instead of the name of the item.

The property to set.

Item Properties (See page 6 – 20)

APP_ITEM_PROPERTY.SET_PROPERTY

procedure APP_ITEM_PROPERTY.SET_PROPERTY(

item_name varchar2,

property varchar2,

value number);

procedure APP_ITEM_PROPERTY.SET_PROPERTY(

item_id item,

item_name

property

Description

Arguments (input)

Summary

Description

29 – 29APPCORE Routine APIs

property varchar2,

value number);

This procedure sets the property of an item. You should never use the
Oracle Forms built–in SET_ITEM_PROPERTY to set the field properties
DISPLAYED, ENABLED, ENTERABLE, ALTERABLE, INSERT_
ALLOWED, UPDATEABLE, NAVIGABLE, REQUIRED, and
ICON_NAME directly. Use APP_ITEM_PROPERTY.SET_PROPERTY
instead.

APP_ITEM_PROPERTY.SET_PROPERTY remaps some properties to do
other things like change visual attributes. Also, there are some
properties that APP_ITEM_PROPERTY provides that native Oracle
Forms does not.

Name of the item to apply the property attribute
to. Specify both the block and item name. You can
supply the item_ID instead of the name of the item.

The property to set.

Either PROPERTY_ON or PROPERTY_OFF, or an
icon name (to change the icon property).

Item Properties (See page 6 – 20)

APP_ITEM_PROPERTY.SET_VISUAL_ATTRIBUTE

procedure APP_ITEM_PROPERTY.SET_VISUAL_ATTRIBUTE(

item_name varchar2,

property number

value number);

This procedure is no longer used. All colors are set as part of the
Oracle Look and Feel (OLAF).

item_name

property

value

Summary

Description

29 – 30 Oracle Applications Developer’s Guide

APP_NAVIGATE: Open a Form Function

Use this utility instead of FND_FUNCTION.EXECUTE to open a form
function where you want to reuse an instance of the same form that has
already been opened. Use FND_FUNCTION.EXECUTE for all other
cases of opening forms and functions.

APP_NAVIGATE.EXECUTE

procedure APP_NAVIGATE.EXECUTE(

function_name in varchar2,

open_flag in varchar2 default ’Y’,

session_flag in varchar2 default ’SESSION’,

other_params in varchar2 default NULL,

activate_flag in varchar2 default ’ACTIVATE’,

pinned in boolean default FALSE);

This procedure is similar to FND_FUNCTION.EXECUTE, except that it
allows a form to be restarted if it is invoked a second time. For
example, if form A invokes function B with this procedure, then at a
later time invokes function B again, the same instance of form B will be
reused (and form B would be restarted using any new parameters
passed in the second call to APP_NAVIGATE.EXECUTE). This
functionality is useful where you have a form B built to appear as a
detail window of another form (A), and you want the ”detail window”
to reflect changes in the ”master window”. In contrast,
FND_FUNCTION.EXECUTE always starts a new instance of a form.

Only a function that was previously invoked using this call is a
candidate for restarting; a function invoked with
FND_FUNCTION.EXECUTE cannot be restarted if later a call is made
to APP_NAVIGATE.EXECUTE.

Multiple forms can share the same target form. For example, if form A
invokes function B with APP_NAVIGATE.EXECUTE, and then later
form C also invokes function B, the current instance of form B will be
restarted.

APP_NAVIGATE.EXECUTE and FND_FUNCTION.EXECUTE store
the position and size of the current (source) window in the following
global variables so that the target form can access them:

• global.fnd_launch_win_x_pos

Arguments (input)

29 – 31APPCORE Routine APIs

• global.fnd_launch_win_y_pos

• global.fnd_launch_win_width

• global.fnd_launch_win_height

The intended usage is so that the target form can be positioned relative
to the current window of the calling form. When calling
APP_NAVIGATE.EXECUTE, these values are available when the target
form is opened the first time; it is not valid to refer to them during the
RESTART event.

Using APP_NAVIGATE.EXECUTE requires special code in the target
form (form B) to respond to the APP_NAVIGATE.EXECUTE call
appropriately. The target form must contain a user–named trigger
called RESTART, as well as the required calls to
APP_STANDARD.EVENT in the WHEN–NEW–FORM–INSTANCE
and WHEN–FORM–NAVIGATE triggers. When a form is reused with
APP_NAVIGATE, APPCORE will:

1. Issue a do_key(’clear_form’) in the target form. This fires the same
logic as when the user does Edit–>Clear–>Form. This is done to
trap any pending changes in the target form.

2. If that succeeds, then all form parameters in the target form are
repopulated (parameters associated with the function called by
APP_NAVIGATE, as well as values in the other_params argument
specifically passed in by APP_NAVIGATE).

3. User–named trigger RESTART in the target form is executed.

A good coding technique is to place all logic that responds to
parameter values in a single procedure and have your
WHEN–NEW–FORM–INSTANCE and RESTART triggers both call it.
You may also want to add code called from the
WHEN–NEW–FORM–INSTANCE trigger in the target form that
checks the variables set by FND_FUNCTION.EXECUTE or
APP_NAVIGATE.EXECUTE to indicate the position of the source form.
You can then use these values to set the position of the target form
relative to the source form.

The developer name of the form function to
execute.

’Y’ indicates that OPEN_FORM should be used;
’N’ indicates that NEW_FORM should be used.
You should always pass ’Y’ for open_flag, which
means to execute the function using the Oracle

function_name

open_flag

29 – 32 Oracle Applications Developer’s Guide

Forms OPEN_FORM built–in rather than the
NEW_FORM built–in.

Passing ’Y’ for session_flag (the default) opens
your form in a new database session, while ’N’
opens the form in the same session as the existing
form.

Opening a form in a new database session causes
the form to have an independent commit cycle.

An additional parameter string that is appended to
any parameters defined for the function in the
Forms Functions form. You can use other_params
to set some parameters dynamically. It can take
any number of parameters.

Either ACTIVATE or NO_ACTIVATE (default is
ACTIVATE). This flag determines whether the
focus goes to the new form (ACTIVATE) or
remains in the calling form (NO_ACTIVATE).

If set to TRUE will open a new instance of the
function, never to be reused (the same as
FND_FUNCTION.EXECUTE).

If set to FALSE will attempt to reuse an instance of
the function if it is currently running and was
launched via APP_NAVIGATE.EXECUTE;
otherwise it will open a new instance.

session_flag

other_params

activate_flag

pinned

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

29 – 33APPCORE Routine APIs

APP_RECORD: Record Utilities

Following are utilities that interact with a block at the record level.

APP_RECORD.TOUCH_RECORD

procedure TOUCH_RECORD(

block_name varchar2 default NULL,

record_number NUMBER default NULL);

Sets the status of a NEW record to INSERT_STATUS. For a QUERY
record, the record is locked and the status is set to
CHANGED_STATUS. In both cases this flags the record to be saved to
the database.

The name of the block to touch

The record that will be touched

APP_RECORD.HIGHLIGHT

procedure APP_RECORD.HIGHLIGHT(

value varchar2/number);

This call changes the visual attribute of the current record by calling the
DISPLAY_ITEM built–in for each multirow TEXT_ITEM, LIST and
DISPLAY_ITEM of the current record. It will do nothing for items in
which the RECORDS_DISPLAYED property is 1. To highlight data,
pass ’SELECTED_DATA’. To turn off highlighting, pass ’DATA’. You
can pass the name of any visual attribute you want to apply.

Suggestion: To improve performance for large blocks with
many hidden fields, position all hidden fields at the end of the
block, and place a non–database item named
”APPCORE_STOP” before the hidden items. When
APP_RECORD.HIGHLIGHT reaches this field, it stops
highlighting.

block_name

record_number

Summary

Description

Arguments (input)

Summary

29 – 34 Oracle Applications Developer’s Guide

The name of the visual attribute you want to apply.

Visual Attributes
Oracle Applications User Interface Standards for Forms–Based
Products

APP_RECORD.FOR_ALL_RECORDS

procedure APP_RECORD.FOR_ALL_RECORDS(

block_name varchar2,

trigger_name varchar2);

procedure APP_RECORD.FOR_ALL_RECORDS(

trigger_name varchar2);

This call executes the specified trigger for every record of the current
block or the specified block. If you specify a block, the GO_BLOCK
built–in fires. When finished, the cursor returns to the original record
and item.

If the trigger fails, FORM_TRIGGER_FAILURE is raised and the cursor
is left in the record in which the failure occurred.

You can pass arguments to the specified trigger using global variables
simply by setting the global variables before calling this routine.

APP_RECORD.FOR_ALL_RECORDS fires once when there are no
queried records.

The name of the block to navigate to

Name of the trigger to execute

APP_RECORD.DELETE_ROW

procedure APP_RECORD.DELETE_ROW(

check_delete BOOLEAN default FALSE,

product_name varchar2 default NULL,

message_name varchar2 default NULL);

function APP_RECORD.DELETE_ROW(

value

block_name

trigger_name

Description

Arguments (input)

Summary

Description

29 – 35APPCORE Routine APIs

check_delete BOOLEAN default FALSE,

product_name varchar2 default NULL,

message_name varchar2 default NULL)

return BOOLEAN;

This call provides a generic message to insure that the user really
intends to delete the row.

If the function version of this routine is called, it does not delete the
row but returns TRUE if the user responds with a confirmation to
delete the record and FALSE otherwise. If you have a complex delete,
you can first confirm that the user wants to delete the record.

If the procedure version of this routine is called, the record is deleted if
the user responds affirmatively. You should provide your own
message when there is more than one block that allows delete.

Forces block DELETE_ALLOWED to be checked
(optional)

The product shortname needed if passing your
own message. Otherwise a default message will be
supplied (optional)

The name of the message if a product_name is
supplied (optional)

APP_RECORD.VALIDATE_RANGE

procedure APP_RECORD.VALIDATE_RANGE(

from_item varchar2,

to_item varchar2,

range_name varchar2 default NULL,

event_name varchar2 default ’WHEN–BUTTON–PRESSED’,

dtype varchar2 default ’DATE’,

product_name varchar2 default NULL,

message_name varchar2 default NULL);

This call validates a range to assure that the ”from” value is less than
the ”to” value. Call this routine from the WHEN–BUTTON–PRESSED
trigger of a Find button, or a WHEN–VALIDATE–RECORD trigger (for
example) to verify that any range data entered by the user is valid.

check_delete

product_name

message_name

Arguments (input)

29 – 36 Oracle Applications Developer’s Guide

If the range is invalid, the routine attempts to navigate to the beginning
of the range. If you call VALIDATE_RANGE from a trigger that does
not allow navigation, then provide a range name so that it can be
displayed to the user when the default message is displayed.

The block.item of the from value

The block.item of the to value

Name of the range (optional)

Trigger name, used to determine if navigation is
possible (optional)

Datatype of the range (NUMBER or DATE,
defaults to DATE) (optional)

The product shortname needed if passing your
own message. Otherwise a default message will be
supplied (optional)

The name of the message, if a product_name is
supplied (optional)

from_item

to_item

range_name

event_name

dtype

product_name

message_name

Summary

Description

Arguments (input)

Example

29 – 37APPCORE Routine APIs

APP_REGION: Region Utilities

Following are utilities used with alternative regions (for backwards
compatibility only; alternative regions have been replaced by tabs).

APP_REGION.ALT_REGION

function APP_REGION.ALT_REGIONS(

poplist_name varchar2)

 return BOOLEAN;

Takes the values currently in the poplist identified by poplist_name and
shows them in LOV ’appcore_alt_regions’ (referenced in from
APPSTAND automatically). If the user selects a row from the LOV, the
corresponding poplist value will be updated and TRUE will be
returned; otherwise no changes will be made to the poplist and this
will return FALSE. Used for keyboard support of alternative region
control.

The control poplist for an alternative region
(’block.field’ format).

if APP_REGION.ALT_REGIONS(’CONTROL.LINE_REGIONS’)
then
 CONTROL.LINE_REGIONS(’WHEN–LIST–CHANGED’);
end if;

Alternative Regions (See page 7 – 27)

poplist_name

Summary

Description

Arguments (input)

Summary

Description

Arguments (input)

29 – 38 Oracle Applications Developer’s Guide

APP_STANDARD Package

APP_STANDARD.APP_VALIDATE

procedure APP_STANDARD.APP_VALIDATE (scope NUMBER);

This procedure acts similarly to Oracle Forms’ built–in Validate, except
that it navigates to the first item that caused the validation failure, and
it provides support for the button standard. Use it instead of the
Oracle Forms built–in.

The scope of the validation. Valid values are
DEFAULT_SCOPE, FORM_SCOPE,
BLOCK_SCOPE, RECORD_SCOPE, and
ITEM_SCOPE.

APP_STANDARD.EVENT

procedure APP_STANDARD.EVENT (

 event_name varchar2);

This procedure invokes the standard behavior for the specified event.
The TEMPLATE form contains all necessary calls to this trigger.

Name of the event or trigger

Special Triggers in the TEMPLATE form (See page 24–6)

scope

event_name

Summary

Description

Summary

Description

Example

29 – 39APPCORE Routine APIs

APP_STANDARD.SYNCHRONIZE

procedure APP_STANDARD.SYNCHRONIZE;

Dynamic changes to the form can affect which menu items apply,
although the state of the menu items is not re–evaluated automatically.
If you make a change that affects which items in the toolbar and menu
can be used, call this routine, and it re–evaluates the menu and toolbar.
(For example, changing the INSERTABLE property of a block, changing
the status of a record, etc.)

Pulldown Menus and the Toolbar (See page 10 – 2)

APP_STANDARD.PLATFORM

APP_STANDARD.PLATFORM varchar2(30);

This package variable stores the name of the value returned by
GET_APPLICATION_PROPERTY(USER_INTERFACE). Valid values
include ’MACINTOSH’, MSWINDOWS’, MSWINDOWS32’, and
’MOTIF’.

if APP_STANDARD.PLATFORM = ’MSWINDOWS’ then

 MDI_height := get_window_property(FORMS_MDI_WINDOW,

 HEIGHT);

end if;

Summary

Description

Summary

Description

Arguments (input)

Summary

Description

29 – 40 Oracle Applications Developer’s Guide

APP_WINDOW: Window Utilities

The following utilities operate at the window level.

APP_WINDOW.CLOSE_FIRST_WINDOW

procedure APP_WINDOW.CLOSE_FIRST_WINDOW;

This call exits the form. It raises FORM_TRIGGER_FAILURE if it fails.

APP_WINDOW.PROGRESS

procedure APP_WINDOW.PROGRESS(percent number);

This call manages all aspects of the progress_indicator object. If it is
not already visible, the call opens and centers the window. When the
percent >= 99.9, the window automatically closes. For any other
percent, the progress bar resizes (with a four inch wide maximum).

A number between 0 and 99.9, expressing the
amount competed.

APP_WINDOW.SET_COORDINATION

procedure APP_WINDOW.SET_COORDINATION(

event varchar2,

coordination varchar2,

relation_name varchar2);

This call sets the deferred coordination attribute of a relation to ON or
OFF based on the state of the coordination check box. The check box is
either ”DEFERRED” or ”IMMEDIATE.”

For a closed window, the relation is always ”DEFERRED.”

percent

Arguments (input)

Summary

Description

Arguments (input)

29 – 41APPCORE Routine APIs

When coordination is set to ”DEFERRED,” AutoQuery is turned on.

Master–Detail Relations (See page 7 – 6)

The name of the trigger event (either
WHEN–CHECKBOX–CHANGED,
WHEN–WINDOW–CLOSED, or
OPEN–WINDOW)

IMMEDIATE or DEFERRED. Defaults to
IMMEDIATE

Name of the relation, which is listed in the Oracle
Forms Designer under the Block object in the
Relation object

APP_WINDOW.SET_WINDOW_POSITION

procedure APP_WINDOW.SET_WINDOW_POSITION(

child varchar2,

rel varchar2,

parent varchar2 default NULL);

This call positions a window in the following styles:

• CASCADE

• RIGHT

• BELOW

• OVERLAP

• CENTER

• FIRST_WINDOW

If the window was open but obscured, this call raises the windows. If
the window was minimized, the call normalizes it.

If system resources are low (especially on MS Windows), a warning
message appears.

 Non–Modal Windows (See page 5 – 3)

event

coordination

relation_name

Summary

Description

Arguments (input)

29 – 42 Oracle Applications Developer’s Guide

The name of the window to be positioned

The style of the window’s position

Name of the window to relative to which you want
to position the child window

APP_WINDOW.SET_TITLE

procedure APP_WINDOW.SET_TITLE(

window_name varchar2,

session varchar2,

instance1 varchar2 default ’APP_ARGUMENT_NOT_PASSED’,

instance2 varchar2 default ’APP_ARGUMENT_NOT_PASSED’,

instance3 varchar2 default ’APP_ARGUMENT_NOT_PASSED’);

Use this utility to set the title of a window in the standard format.

Non–Modal Windows (See page 5 – 3)

The name of the window to set the title for

General session information (for example, Org, Set
of Books), no more than 64 characters

Context information from the master record
(optional). The combined length should be no
more than 250 characters.

child

rel

parent

window_name

session

instance[1,2,3]

C H A P T E R

30
T

30 – 1FNDSQF Routine APIs

FNDSQF Routine APIs

his chapter provides you with specifications for calling several
Oracle Applications APIs from your PL/SQL procedures. Most
routines in the FNDSQF library are described in this section. Some
FNDSQF routines are described in other chapters (for example, the
FND_KEY_FLEX routines are described in the chapter called
”Flexfields”). The routines described in this chapter include:

• FND_CURRENCY: Dynamic Currency APIs

• FND_GLOBAL: WHO Column Maintenance

• FND_ORG: Organization APIS

• FND_STANDARD: Standard APIs

• FND_UTILITIES: Utility Routines

Summary

Description

Arguments (input)

�

30 – 2 Oracle Applications Developer’s Guide

FND_CURRENCY: Dynamic Currency APIs

This section describes Dynamic Currency APIs that you can use in your
client– and server–side PL/SQL procedures. The Dynamic Currency
feature allows different values in arbitrary currencies to be displayed in
the same report or form, each shown with appropriate formatting.

FND_CURRENCY.GET_FORMAT_MASK (Client or Server)

function FND_CURRENCY.GET_FORMAT_MASK(

 currency_code IN varchar2

 field_length IN number)

return varchar2;

This function uses the normal default values to create a format mask.

The currency code for which you wish to retrieve a
default format mask

The maximum number of characters available to
hold the formatted value

Attention: The varchar2 field that receives the format mask
should be ten characters longer than the field_length.

This routine uses the following profiles to create the format mask:

• CURRENCY:THOUSANDS_SEPARATOR

• CURRENCY:NEGATIVE_FORMAT

• CURRENCY:POSITIVE_FORMAT

Although the profile for negative format allows three different bracket
styles, this routines only uses angle brackets (< >).

currency_code

field_length

30 – 3FNDSQF Routine APIs

Currency Examples

Client–side PL/SQL Example

The ORDER_LINES.AMOUNT field in a form is to be displayed using
Dynamic Currency formatting. The format mask is created and passed
into the APP_ITEM_PROPERTY.SET_PROPERTY call:

APP_ITEM_PROPERTY.SET_PROPERTY(’ORDER_LINE.AMOUNT’,

 FORMAT_MASK,

 FND_CURRENCY.GET_FORMAT_MASK(

 :ORDER_CURRENCY_CODE,

 GET_ITEM_PROPERTY(

 ’ORDER_LINE.AMOUNT’,

 MAX_LENGTH)));

The use of the display group separator, and positive and negative
formatting are typically user preferences. Thus these settings are
allowed to default from the User Profile system. The precision comes
from the stored information for that order’s currency code.

Server–side PL/SQL Example

Dynamic currency support is also accessible from server–side PL/SQL.
The package interfaces are identical. An example implementation has
the following calls:

DISPLAYABLE_VALUE := TO_CHAR(AMOUNT,

FND_CURRENCY.GET_FORMAT_MASK(

 DC_FORMAT_MASK, 30));

30 – 4 Oracle Applications Developer’s Guide

FND_DATE: Date Conversion APIs

The routines in the FND_DATE package are documented with the
APP_DATE package.

 APP_DATE: Date Conversion APIs (See page 29 – 4)

For a discussion of handling dates in your applications, see the chapter
on dates.

 Handling Dates (See page 26 – 1)

Summary

Description

Summary

Description

30 – 5FNDSQF Routine APIs

FND_GLOBAL: WHO Column Maintenance and Database
Initialization

This section describes Global APIs you can use in your server–side
PL/SQL procedures. The server–side package FND_GLOBAL returns
the values of system globals, such as the login/signon or “session” type
of values. You need to set Who columns for inserts and updates from
stored procedures. Although you can use the FND_GLOBAL package
for various purposes, setting Who columns is the package’s primary
use.

You should not use FND_GLOBAL routines in your forms (that is on
the client side), as FND_GLOBAL routines are stored procedures in the
database and would cause extra roundtrips to the database. On the
client side, most of the procedures in the FND_GLOBAL package are
replaced by a user profile option with the same (or a similar) name.
You should use FND_PROFILE routines in your forms instead.

Tracking Data Changes with record History (WHO) (See
page 3 – 2)
FND_PROFILE: User Profile APIs (See page 13 – 9)

FND_GLOBAL.USER_ID (Server)

function FND_GLOBAL.USER_ID

 return number;

Returns the user ID.

FND_GLOBAL.APPS_INITIALIZE (Server)

procedure APPS_INITIALIZE(user_id in number,

 resp_id in number,

 resp_appl_id in number);

This procedure sets up global variables and profile values in a database
session. Call this procedure to initialize the global security context for
a database session. You can use it for routines such as Java, PL/SQL,
or other programs that are not integrated with either the Oracle
Applications concurrent processing facility or Oracle Forms (both of
which already do a similar initialization for a database session). The

Arguments (input)

Example

30 – 6 Oracle Applications Developer’s Guide

typical use for this routine would be as part of the logic for launching a
separate non–Forms session (such as a Java program) from an
established Oracle Applications form session. You can also use this
procedure to set up a database session for manually testing application
code using SQL*Plus. This routine should only be used when the
session must be established outside of a normal form or concurrent
program connection.

You can obtain valid values to use with this procedure by using profile
option routines to retrieve these values in an existing Oracle
Applications form session. For manual testing purposes, you can use
Examine during an Oracle Applications form session to retrieve the
profile option values.

The USER_ID number

The ID number of the responsibility

The ID number of the application to which the
responsibility belongs

 fnd_global.APPS_INITIALIZE (1010, 20417, 201);

USER_ID

RESP_ID

RESP_APPL_ID

Summary

Description

Summary

Description

Summary

Description

30 – 7FNDSQF Routine APIs

FND_GLOBAL.LOGIN_ID (Server)

function FND_GLOBAL.LOGIN_ID

 return number;

Returns the login ID (unique per signon).

FND_GLOBAL.CONC_LOGIN_ID (Server)

function FND_GLOBAL.CONC_LOGIN_ID

 return number;

Returns the concurrent program login ID.

FND_GLOBAL.PROG_APPL_ID (Server)

function FND_GLOBAL.PROG_APPL_ID

 return number;

Returns the concurrent program application ID.

Summary

Description

Summary

Description

30 – 8 Oracle Applications Developer’s Guide

FND_GLOBAL.CONC_PROGRAM_ID (Server)

function FND_GLOBAL.CONC_PROGRAM_ID

 return number;

Returns the concurrent program ID.

FND_GLOBAL.CONC_REQUEST_ID (Server)

function FND_GLOBAL.CONC_REQUEST_ID

 return number;

Returns the concurrent request ID.

Summary

Description

Summary

Description

Summary

Description

Arguments (input)

30 – 9FNDSQF Routine APIs

FND_ORG: Organization APIs

Use this package to set the correct Organization in forms that use
organizations.

FND_ORG.CHANGE_LOCAL_ORG

function FND_ORG.CHANGE_LOCAL_ORG return boolean;

Use this function to change the organization of the current form. It
returns FALSE if the change is cancelled or fails.

FND_ORG.CHANGE_GLOBAL_ORG

function FND_ORG.CHANGE_GLOBAL_ORG return boolean;

Use this function to change the global organization defaults when
opening a new form. It returns FALSE if the change is cancelled or
fails.

FND_ORG.CHOOSE_ORG

procedure FND_ORG.CHOOSE_ORG(

 allow_cancel IN boolean default FALSE);

Call this procedure in PRE–FORM to ensure the organization
parameters are set. If the local form has no organization parameters
passed, the global defaults are used. If the global organization defaults
are not set, the procedure opens the organization LOV to force an
organization selection.

Allow cancelation of the LOV without forcing a
choice. The default is FALSE.

allow_cancel

Summary

Description

Summary

Description

30 – 10 Oracle Applications Developer’s Guide

FND_STANDARD: Standard APIs

This section describes utilities you can use to achieve standard
functionality in your forms.

FND_STANDARD.FORM_INFO

procedure FND_STANDARD.FORM_INFO(

 version IN varchar2,

 title IN varchar2,

 application_short_name IN varchar2,

 date_last_modified IN varchar2,

 last_modified_by IN varchar2);

FND_STANDARD.FORM_INFO provides information about the form.
Call it as the first step in your WHEN–NEW–FORM–INSTANCE
trigger. The TEMPLATE form provides you with a skeleton call that
you must modify.

Special Triggers in the TEMPLATE form (See page 24–6)

FND_STANDARD.SET_WHO

procedure FND_STANDARD.SET_WHO;

SET_WHO loads WHO fields with proper user information. Call in
PRE–UPDATE, PRE–INSERT for each block with WHO fields. You do
not need to call FND_GLOBAL if you use SET_WHO to populate your
WHO fields.

Tracking Data Changes With Record History (WHO) (See
page 3 – 2)
FND_GLOBAL:WHO Column Maintenance (See page
30 – 5)

Summary

Description

Summary

Description

30 – 11FNDSQF Routine APIs

FND_STANDARD.SYSTEM_DATE

function FND_STANDARD.SYSTEM_DATE return date;

This function behaves exactly like the built–in SYSDATE, only cached
for efficiency. You should use it in your Oracle Forms PL/SQL code in
place of the built–in SYSDATE.

FND_STANDARD.USER

function FND_STANDARD.USER return varchar2;

This function behaves exactly like the built–in USER, only cached for
efficiency. You should use it in your Oracle Forms PL/SQL code in
place of the built–in USER.

Summary

Description

Arguments (input)

Example 1

Example 2

Summary

Description

Arguments (input)

Example

30 – 12 Oracle Applications Developer’s Guide

FND_UTILITIES: Utility Routines

This section describes various utility routines.

FND_UTILITIES.OPEN_URL

procedure OPEN_URL(URL in varchar2);

Invokes the Web browser on the client computer with the supplied
URL document address. If a browser is already running, the existing
browser is directed to open the supplied URL. You can use this utility
to point a Web browser to a specific document from your forms.

This utility is not appropriate for opening Oracle Self–Service Web
Applications functions from forms, however, as it does not provide
session context information required for such functions. Use
FND_FUNCTION.EXECUTE for opening those functions.

You can pass either an actual URL string or a
:block.field reference of a field that contains a URL
string.

FND_UTILITIES.OPEN_URL(’http://www.oracle.com/index.html’);

FND_UTILITIES.OPEN_URL(:blockname.fieldname);

FND_UTILITIES.PARAM_EXISTS

function PARAM_EXISTS(name varchar2) return boolean;

Returns true if the parameter exists in the current form.

The name of the parameter to search for.

if fnd_utilities.param_exists(’APP_TRACE_TRIGGER’) then

 execute_trigger(name_in(’PARAMETER.APP_TRACE_TRIGGER’));

end if;

URL

name

C H A P T E R

31
T

31 – 1Naming Standards

Naming Standards

his chapter provides you with information you need to define all
your database and form objects. It provides naming standards and
header information for all your objects and files.

The naming standards are grouped into the following sections:

• Database objects

• Form objects

• File standards

• PL/SQL Packages and Procedures

• Reserved Words

Example

31 – 2 Oracle Applications Developer’s Guide

Naming Standards and Definitions

In general, make names meaningful and brief. Do not use generic,
all–purpose phrases like ”COMMON”, ”MISC”, ”OTHER”, or
”UTILITY” in the name.

Database Objects

In addition to specific naming conventions for particular objects, all
database objects should be named without using any special characters.
Database object names should use only letters, numbers, and
underscores, and they should always begin with a letter. Note that
database object names are case–insensitive, so ”Name” would be the
same as ”NAME”.

Include header information when you create your objects. The header
should include the following documentation

• Name

• Purpose

• Arguments

Describe arg1

Describe arg2

• Notes

7. Special usage notes

8. Special usage notes

• History

DD–MON–YY J. Doe Created

Tables

prod_objects

prod is the product short name, and objects is the name of the objects
stored in the table and should be plural. The table name should be 20
characters or less. It can be longer, but you will need to abbreviate it
for the table handler package name, which must be 24 characters or
less.

PO_VENDORS, AS_LOOKUPS

Arg1

Arg2

Standard

Example

Example

31 – 3Naming Standards

Views

table_V or table_criteria_V

table is the name of the root table the view is based on. The criteria is a
qualifier of the objects shown by the view. Use the criteria qualifier if
using table name alone is not unique, the view is based on a join of 2 or
more tables, the view contains a WHERE clause, or the view is unusual.

PO_VENDORS_CHICAGO_V, AS_LOOKUPS_RANK_V

Triggers

table_Ti

table is the name of the table on which the trigger is based, and i is a
unique ID starting at 1.

PO_HEADERS_T1

Synonyms

table

Your synonym should have the same name as the table or view it is
based on.

Using two different names (the synonym name and the underlying
object name) is confusing. If you change object names, you should
clean up your code instead of creating synonyms.

Constraints

table_PK

table_Ui

table_Fi

Use Message Dictionary message naming
standards

 Overview of Message Dictionary (See page 12 – 2)

table is the name of the table on which the constraint is created, while i
is a unique id starting at 1. You should name all of your constraints so
that you can enable or disable them easily.

Standard

Standard

Standard

Primary Key

Unique

Foreign Key

Check

Example

Example

Example

Example

31 – 4 Oracle Applications Developer’s Guide

Packages

prod_module or prod_description

prod is the product short name, module is a functional module, and
description is a one or two word explanation of the purpose. Stored
package names should be 24 characters or less. For library packages,
your package should be unique within 27 characters. Wrapper
packages use a three character prefix. Select a description that helps
simplify the names of procedures in the package.

OE_SCHEDULE, AOL_FLEXFIELD

Packaged Procedures

verb_noun

verb_noun is a brief explanation of the purpose. Do not reuse the
product short name or any part of the package name in the procedure
name. Remember that you will invoke the procedure as package
procedure. For example, if the package name is APP_ORDER_BY, then
the procedures should simply be named APPEND and REVERT. Be
careful you don’t name your package procedure a SQL, PL/SQL,
Oracle Forms, or other reserved word, or redefine an Oracle Forms
built–in.

CALCULATE_PRICE_VARIANCE,
TERMINATE_EMPLOYEE

Table Handler Package and Procedures

table_PKG

table is the name of the table on which the package acts (to insert,
update, delete, or lock a record, or to check if a record in another table
references a record in this table). The package name should be 24
characters or less.

PO_LINES_PKG

Private Packages

package_PRIVATE

package is the name of the owning package.

APP_ITEM_PROPERTY_PRIVATE

Standard

Standard

Package

Standard

Example

Example

Example

31 – 5Naming Standards

Forms PL/SQL Program Units (Stand–Alone Procedures)

prod_verb_noun

prod is the product short name, and verb_noun is a brief explanation of
the purpose.

AP_INITIALIZE_FORM

PL/SQL Variables

variable or X_variable

variable should be a logical, meaningful, and concise name. Precede
variable name with X when the variable is used in a SQL statement, so
that there is no possibility of conflicts with database object names or
confusion as to which are PL/SQL variables and which are database
objects.

X_header_id

PL/SQL Global Variables

G_variable

variable should be a logical, meaningful, and concise name. Precede
variable name with G to distinguish global variables from local
variables.

G_set_of_books_id

Form Objects

In general, objects that can show multiple items (record groups, LOVs,
etc.) should have plural names, while singular objects (modules,
blocks) have singular names.

Modules

file name

Your form module name should match your form file name. For
example, if a form is called POXPOMPO.fmb, make sure the Module
Name (visible in the Designer) is POXPOMPO. This is especially
important if you reference objects from your form. ZOOM also relies
on the Module Name being correct.

Standard

Standard

Standard

Standard

Example

Example

31 – 6 Oracle Applications Developer’s Guide

Record Groups

object

object is the name of the object that the record group contains.

Oracle Forms Global Variables

prod_variable

prod is the product short name, and variable is the name you would
normally give to the variable.

PO_SECURITY_LEVEL, MFG_ORGANIZATION

Item

Use logical, meaningful, and concise names. Note that table columns
based on LOOKUP_CODES should have a ”_CODE” or ”_FLAG”
suffix, and the displayed meaning item should have the same name but
without the suffix.

Mirror Items use the name of the item plus a ”_mir” suffix. So if the
item in the detail portion is ”ename”, name the mirror–item
”ename_mir”.

Blocks

case_short_name or object

case_short_name is the CASE block short name, and object is the name of
the objects in the block. The block name should be 14 characters or
less.

ORDER, LINES

Special Blocks

TOOLBAR

CONTROL

CONTEXT

Standard

Standard

Standard

Block containing
toolbar

Block containing
control items

Block containing
display–only,
context info

Example

31 – 7Naming Standards

program or report

action or action_object

If the block is shared with other forms, make the block name unique by
preceding it with the name of your form.

Canvasses

object

object is the name of the object shown on the canvas.

Alternative Region Stacked Canvasses

block_region

The region field belong to block. region describes the fields shown in the
region. For example, a block LINES has two alternative regions, one
showing price information (base price, discounted price, total price)
and the other showing account information. The alternative region
stacked canvases are named LINES_PRICE and LINES_ACCOUNT.

LINES_DESCRIPTION, LINES_PRICES

Query–Find Canvasses, Windows, and Blocks

QF_object

To distinguish windows, blocks and canvasses used for Find Windows,
prefix the object name with ”QF_”.

Windows

object

object is the name of the object shown in the window.

LOVs

object

object is the name of the object shown in the LOV.

Blocks to submit
concurrent
requests

Non–database
blocks (such as
search blocks)

Standard

Standard

Standard

Standard

Standard

Example

Example

31 – 8 Oracle Applications Developer’s Guide

ORDER_SALESREPS, LINE_SALESREPS,
FREIGHT_CODES

LOV Record Groups

object or object_criteria

object is the name of the objects in the record group, usually the same as
the basic item or LOV name. criteria is a brief description of why
specific objects are included in the record group. Use the criteria
description only if using object name alone is not unique. Abbreviate
the object name or criteria description if object_criteria exceeds 30
characters.

Query LOVs and Related Record Groups

QF_object

To distinguish between LOVs and record groups used for entry from
those used for querying purposes (such as Find Windows), prefix the
object name with ”QF_”. For example, QF_FREIGHT_CODES,
QF_DEMAND_CLASSES.

Alternative Region LOVs and Related Record Groups

block_REGIONS

To distinguish the LOVs and record groups invoked when pressing
KEY–MENU in an alternative region, append _REGIONS to the block
name.

LINES_REGIONS, ORDERS_REGIONS

Relations

master_detail

master is the name of the master block in the relation, and detail is the
name of the detail block in the relation.

Item and Event Handler Packages and Procedures

block or form

item

Standard

Standard

Standard

Standard

Package

Item Handler
Procedure

31 – 9Naming Standards

block is the name of the block owning the items, form is the name of the
form, and item is the name of the item on which the item handler
procedure acts.

Combination Block Parameter

block_RECORD_COUNT

block is the name of the combination block.

File Standards

All file names must be no greater than 8 chars in length plus a three
character extension (FILENAME.ext). The files names must be all caps
except for the extension. This will provide a consistent naming scheme
across all platforms.

Form Source File Names

pppggxxx.fmb, pppggxxx.fmx, or pppggxxx.fmt

ppp is the two or three character product short name, g is a
two–character abbreviation for the functional group, and xxx is a
three–character abbreviation for the explanation of the purpose.

fmb is the suffix for the source binary file, fmx is the suffix for the
executable binary file, and fmt is the suffix for the source text file. The
files reside in $prod/forms/US (or the platform equivalent).

APPSTAND Equivalents

The APPSTAND form provides many standard settings and
components that other forms reference in. Particular applications and
functional groups may create their own standard form that they use for
reference.

The naming convention of these APPSTAND equivalents is:

PPPSTAND

PPP is the two or three character product short name, such as OE for
Order Entry (OESTAND) or GL for General Ledger (GLSTAND).

Standard

Standard

Standard

31 – 10 Oracle Applications Developer’s Guide

PL/SQL Packages, Procedures and Source Files

Note that PL/SQL packages and procedures are documented slightly
differently: Packages do not have Arguments sections and procedures
do not need to have History sections.

Begin all SQL and PL/SQL files with the following lines (after the
copyright header):

SET VERIFY OFF

WHENEVER SQLERROR EXIT FAILURE ROLLBACK;

End all SQL and PL/SQL files with the following lines:

COMMIT;

EXIT;

PL/SQL Stored Package Source File Names

pppgxxxs.pls or pppggxxb.pls

ppp is the two or three character product short name, g is a
one–character abbreviation for the functional group, and xxx is a
three–character abbreviation for the explanation of the purpose. If you
do not need three characters for that purpose, you may use two
characters for the functional group. s indicate a specification file, and b
indicates a body file. Each file defines only one package specification
or body. The files reside in $prod/install/sql (or the platform
equivalent).

Table Handler Package Source File Names

pppgixxs.pls and pppgixxb.pls

i indicates (table) ”interface.”

PL/SQL Library File Names

pppggxxx.pll, pppggxxx.plx, and pppggxxx.pld

The files reside in $prod/plsql and, for run–time, in $au/plsql (or the
platform equivalent).

Standard

Standard

Standard

31 – 11Naming Standards

Icon File Names

ppxxxxxx.ico, ppxxxxxx.bmp

pp is the two–character product short name, and xxxxxx is an icon
name up to six characters long. The files reside in $TK2_ICON (or the
platform equivalent).

Reserved Words

In addition to all words reserved by Oracle8, PL/SQL, and Oracle
Forms, do not use any words that begin with the following letters
(including the words themselves):

• FOLDER

• CALENDAR

• APPCORE

Standard

31 – 12 Oracle Applications Developer’s Guide

Glossary – 1

Glossary

applet See Java applet.

appletviewer A program residing on a client
machine that runs and displays a Java
applet or application.

Applications database server The machine or
machines containing Oracle Applications
Release 11 Server code and the Oracle
Server holding Oracle Applications data.
The Applications database server holds all
data and data–intensive programs and
processes all SQL requests from the forms
–servers and concurrent processing servers.
In previous releases, this was known as the
Oracle Applications Server.

application server Machines that reside
between the client machines and database
servers, providing load balancing, business
logic, and other functionality. The Oracle
Web Application Server handles most of
this logic. Also see forms server.

applmgr The login used to install and
upgrade Oracle Applications on a server. It
owns the server product files.

background process A non–interactive
process that runs in an operating system
environment and performs a task.

bitmap Definition of a physical bit image on a
coordinate plane. A bitmap has a height,
width, and vertical and horizontal
resolution.

character mode An interface in which users
access screen fields and regions through
menus or keystrokes. Contrast GUI.

character set A set of encoded binary values
that represent the letters, numerals, and
punctuation marks of a language, or of a
group of languages that use similar written
symbols. For example, the WE8ISO8859P1
character set can be used by English and
many other languages that use a
Latin–based alphabet and Arabic numerals.
Terminals and printers handle text data by
converting these encoded values to
characters. A character set may also be
called a codeset.

client A general term for a computer that
requires the services, data, or processing of
another computer. See client/server
architecture.

client/server architecture A computing
arrangement in which one or several
servers perform database processing for
applications that are run on clients.
Contrast multi–tier architecture.

Glossary – 2 Oracle Applications Developer’s Guide

command An instruction or request for the
system to perform a particular action. An
entire command can consist of the
command name, parameters, and
qualifiers.

concurrency The simultaneous access of the
same data by multiple users.

concurrent manager A process manager on
the Applications database server that
coordinates the concurrent processes
generated by users’ concurrent requests.
See also concurrent processing facility.

concurrent process A task run by a concurrent
manager. A concurrent process runs
simultaneously with interactive functions
and other concurrent processes.

concurrent processing facility An Oracle
Applications facility that runs
time–consuming, non–interactive tasks in
the background.

concurrent processing server A machine on
which concurrent processing facilities are
run.

concurrent queue A list of concurrent
requests awaiting completion. Each
concurrent manager has its own queue of
pending requests.

concurrent request A request issued to the
concurrent processing facility when you
submit a non–interactive task, such as
running a report.

customization The process of tailoring an
Oracle Applications system to the needs of
a specific user community.

data dictionary A set of tables and views that
contains administrative information about
users, data storage, and privileges. It is
created and maintained automatically.

database A set of operating system files in
which an Oracle Server stores a set of data
dictionary tables and user tables.

database instance A running ORACLE
system. There is always a one–to–one
correspondence between an ORACLE
instance and a system global area (SGA).

database object A logical entity created and
stored in a database. Tables, views,
synonyms, indexes, sequences, and stored
procedures are all examples of database
objects.

DBA A database administrator responsible for
the maintenance of the Oracle Server and
the database objects of Oracle Applications.

desktop client A machine on a user’s desktop
that sends requests for data and then
displays the results. In Release 11 (NCA),
the desktop client runs the Oracle Forms
client Java applet using a Java–enabled web
browser or appletviewer, which sends user
requests to the forms–server and handles
its responses.

environment variable A variable maintained
by the UNIX shell that can be referenced by
any program running within the shell.
Environment variables hold values used by
many Oracle programs and utilities.

extension The second part of the full file
specification used to indicate the type or
purpose of the file. For example, the
extension ”.sql” indicates a SQL script. See
also filename.

filename The name component of a file
specification. A filename is assigned by
either the user or the system when the file
is created. See also extension.

Glossary – 3

form A logical collection of fields, regions,
and zones that appears on a single screen.
Oracle Applications forms resemble paper
forms used to run a business. You enter
data by typing information into the form.

Forms Cartridge Handler An Oracle Web
Application Server cartridge that parses a
dynamic initial HTML file used for
launching the Oracle Forms client Java
applet. When a user invokes the initial
HTML page from a web browser or
appletviewer, the Forms Cartridge Handler
reads in the HTML file and substitutes
values for items that may differ among
users. For example, it can choose the
least–loaded forms server to run the
Applications forms. The results of parsing
the HTML file are then sent to the
requesting user’s web browser or
appletviewer.

Forms Server listener A process that
continuously runs on a forms server that
handles requests to display Oracle Forms
form files. These requests are sent from the
Oracle Forms client Java applet running on
a desktop client.

forms server A specific type of application
server that hosts the Oracle Forms Server
engine. This server processes end–user
requests by sending messages directly back
to the client or by making requests for data
to the Applications database server. Data is,
in turn, cached on the forms –server and
provided to the client as needed.

GUI Graphical User Interface (Also known as
a bit–mapped interface). An interface used
with personal computers and workstations
that allows the user to access fields and
regions of the screen with a pointing device,
typically a mouse. Contrast character
mode.

hypertext A document format that contains
links leading to other information or other
documents. Also see World Wide Web.

Java applet A program, typically small in size,
written in the Java programming language
that is downloaded and run by a web
browser or appletviewer.

LAN Local Area Network. A
limited–distance, high–speed, data
communications network that allows
various data processing resources to be
connected and shared. Contrast WAN.

LOCAL For Windows platforms, this
parameter specifies the SQL*Net database
alias to use when no communications
driver is specified upon loading an Oracle
tool.

log in (verb) To perform a sequence of actions
that establishes communication with the
operating system and sets up default
characteristics for the session. Also called
signing on.

Megabyte (MB) A unit of memory or disk
space equal to 1,048,576 bytes (1024 x 1024).
Often rounded to one million bytes.

multiple sets of books See set of books.

Multiple Organization Architecture
(Multi–Org) A single installation of any
Oracle Applications product to support any
number of organizations or different sets of
books. The data contained in product
schemas is for all organizations, and is
partitioned by the ORG_ID column in
tables.

Glossary – 4 Oracle Applications Developer’s Guide

multi–tier architecture The underlying
architecture of Release 11 (NCA). The
architecture consists of desktop clients
requesting information from application
servers (including forms servers) that
mediate connections to the Applications
database server. Contrast client/server
architecture.

operating system The computer software that
performs basic tasks such as allocating
memory and allowing computer
components to communicate.

ORACLE An Oracle Server database. This
generally refers to a database and the
objects it contains, not to the Oracle Server
executable files.

Oracle Applications System Administrator
The person responsible for administering
Oracle Applications security and tailoring
system operation.

Oracle Installer The program used to install
most Oracle products. Oracle
Developer/2000 uses it to install its
software; Oracle Applications Release 11
does not.

Oracle Server The database management
system sold by Oracle Corporation. The
term refers in general to the product
executable files and/or the ORACLE
databases created through those files.

ORACLE_SID An environment variable that
identifies an ORACLE database.

parameter An object of a command. A
parameter can be a file specification, a
symbol value passed to a command
procedure, or a word defined by the
operating system.

password An identification word associated
with a username. A user must supply a
password to access an ORACLE database
or an Oracle Applications system.

patch driver A file read by AutoPatch that
lists the actions required to apply a patch or
release update. Examples of actions include
copying a file, generating a form, or
running a SQL script.

platform Any individual operating system.
Although most Oracle Applications
procedures are the same across platforms,
some procedures vary. The latter
procedures are called platform–specific.

PL/SQL A procedural extension of SQL that
provides programming constructs such as
blocks, conditionals, and procedures.

product group A set of Oracle Applications
products that uses a single installation of
Oracle Application Object Library tables.

prompt Words presented on the terminal
screen to assist a user’s data entry.

queue A line of items waiting to be
processed.

Glossary – 5

Release 10SC (SmartClient) Provides a
graphical user interface to Oracle
Applications through the use of Oracle
Forms 4.5 run from client machines. Release
10SC is a client/server release supplement
to Oracle Applications Release 10.6 or 10.7.

report An organized display of Oracle
Applications information. A report can be
viewed online or sent to a printer. The
content of a report can range from a
summary to a complete listing of values.

server A computer in a client/server or
multi–tier architecture that handles
requests made by client machines or other
servers. In a client/server architecture, the
server addresses the functions required for
concurrent, shared data access to an
ORACLE database. In a multi–tier
architecture, the role of the server may
vary: see application server, forms server,
and Applications database server. In some
cases, the term ”server” may be used to
denote a machine or a process running on a
machine.

set of books An organization or group of
organizations within Oracle Applications
that shares a common Accounting Flexfield
structure, calendar, and functional currency.
You must define at least one set of books
for each business location.

SGA System Global Area. Memory that
provides communication between all
database users and the ORACLE
background processes.

short name An abbreviation for an Oracle
Applications product (such as gl for Oracle
General Ledger) or an Oracle Applications
language (such as brapor for Brazilian
Portuguese).

shut down (verb) The process of stopping a
running instance to make a database
unavailable, including closing and
dismounting a database if one has been
mounted and opened.

SmartClient See Release 10SC.

spawned process A background process
initiated by a running program. These
include programs run by concurrent
managers and SQL*Net listeners.

SQL Structured Query Language. An
internationally standard language used to
access data in a relational database. The
acronym is pronounced ”sequel.”

SQL*Loader An Oracle Server tool used to
load data from operating system files into
Oracle Server database tables.

SQL script A file containing SQL statements
that can be run through SQL*Plus to
perform queries or database administration
and installation tasks.

Standard Request Submission A standard
interface in Oracle Applications that lets
you run and monitor concurrent requests.

stored procedure or function a procedure or
function that resides and executes in the
Oracle Server. Also called server–side
procedure or function.

subdirectory A directory that is contained
within another directory.

synonym An alias for a table, view, sequence,
or program unit that masks the real name
and owner of the object, provides public
access to the object, and simplifies SQL
statements for database users.

Glossary – 6 Oracle Applications Developer’s Guide

SYS schema One of two standard DBA
usernames automatically created with each
database (the other is SYSTEM). SYS owns
the base data dictionary tables and views.

system administrator See Oracle Applications
system administrator.

SYSTEM schema One of two standard
usernames automatically created with each
database (the other is SYS). The SYSTEM
username is the preferred username to use
when performing database maintenance.

SYSTEM.DUAL table A necessary table that
contains exactly one row. It is used as a
”dummy” table to guarantee a known
result, such as ”true.”

table The basic unit of storage in a relational
database management system. A table
represents entities and relationships, and
consists of one or more units of information
(rows), each of which contains the same
kinds of values (columns).

tablespace A logical portion of an Oracle
Server database used to allocate storage for
data and to group related logical structures.
For example, one tablespace may group all
of an application’s database objects.

temporary tablespace A tablespace used
when a SQL statement requires the creation
of temporary segments (for example, the
creation of an index).

tier A virtual grouping of one or more servers
performing the same set of functions. In
Release 11 (NCA), for example, the desktop
clients make up the lowest–level tier, the
forms servers comprise a middle tier, and
the Applications database server and
concurrent processing servers form the
uppermost tier.

transaction processing option An Oracle
Server option for handling a large volume
of transactions with a high amount of
concurrency.

URL Uniform Resource Locator. An address
used to uniquely identify a document on
the World Wide Web. An example of a URL
is http://www.oracle.com.

user exit A program related to a form. Users
invoke it to perform tasks outside the scope
of the form.

username A name that grants access to an
Oracle Server database schema and defines
which database objects the user can
manipulate. Every username is associated
with a password.

view A custom–tailored presentation of the
data in one or more tables. A view can be
thought of as a ”stored query.”

virtual directory Part of a URL that indicates
the location of a document on a web server.
The web server translates the virtual
directory, entered by the user, to a physical
location on the machine’s file system.

WAN Wide Area Network. A long–distance,
low–speed (typically 128 Kbps or slower),
data communications network that allows
various data processing resources to be
connected and shared. Contrast LAN.

web browser A program used to retrieve and
display documents on the World Wide Web.
Netscape Navigator and Microsoft Internet
Explorer are the most common web
browsers.

web client A machine on which a user is
running a web browser or appletviewer.
See also desktop client.

Glossary – 7

web listener The main component of a web
server program that runs as a background
process, accepting incoming requests and
returning the requested data or document.
For example, the Oracle Web Application
Server contains the Spyglass Web Listener,
but may also work with web listeners from
other vendors, such as Microsoft or
Netscape.

web server A program that accepts requests
to retrieve and display documents on the
World Wide Web. The requests are typically
sent by a web browser, and may be
processed by additional programs (called
cartridges in the Oracle Web Application
Server), before being passed to the web
listener. The term ”web server” may be
used to denote either this program or the
actual machine on which the software is
running.

World Wide Web (WWW) A network of
machines running web servers that provide
access to hypertext documents. The
network may consist of machines on the
Internet, a corporate intranet, or a
combination of both. Also called simply
”the Web.”

Glossary – 8 Oracle Applications Developer’s Guide

Index – 1

Index

�

������ ���		
�� ���

���������	 ��
���
��� ��� �
� ��
���
���

����� � �! 	
� " � ##� " � #"

 ��
����$%� #� � #"

 ��	
�$%� #� � #� #& � �

 ��� '
$%� #� � #(� #& � �

 ���)�*$%� #� � ��

 ���!���$%� #� � �#

 ����!
�$%� #� � �#

 ���� ��$%� #� � �#

 ��
��$%� #& � �� #& � �� #& � #+

 �����$%� #, � � #, � ##� #& � �

��
���� - � #�

�.��/�0.� ����
���� - � �#

�.��/�0.���.12 ����
���� - � �#

���
�� ��3
 �
	����� � � ��
��� ���� � 44
� �
	����
����/�5678 �������� �& � "�
4
) 3���� � � ��
�����	
� '��
� � � ��
���3
����	 �� � 44
� �
	����� �� � ""
��9�:�81 ���		
�� ��(
� '��	� "# � �� "# � (

�����7:07� ��9��/�;�6��:� � � (�
�& � "

�����12�7:
�.72��<68�7<� � � "� � � �
7��8�<68�7<� , � � , � ,� � � �

��������� �- � ##� �& �
��8786��.��7������ �& � ,
�=�/������7������ �& � -
�=�/����7������ �& � �
������7���8786��.� �& � �
������7��=�/����� �& � (
������7��=�/��� �& � (
������7��6�.�� �& � &
�6�.���7������ �& � #+
;�.6������=�/����� �& � ##
;�.6������=�/��� �& � #�

���������� �(� "
��� ���� ��������
� �! 	
� �& �

�����>����678� �& � #,
�62�0.��� �& � #�
5����7��� �& � #-
5�����>�� �& � #-
5����9��� �& � #,
/�62���>����678� �& � #,
/��7/��.7����//7/� �& � #-
/��7/��.7����>����678� �& � #-
/��/6�;�� �& � #,

�����6�.�
�.��/�����8��8���6�.�2� �& � #(
�.��/��6�.�2� �& � #(
2�������8��8���6�.�� �& � #&
2����>�.126;���6�.�� �& � �+
2���68�.126;���6�.�� & � #�� �& � �#
2���/�?16/����6�.�� & � #,� �& � ��

Index – 2 Oracle Applications Developer’s Guide

�����68�
�.��/� �& � �"
�.��/�����6.� �& � �"
�68�� �& � �
8�<� �& � �"
?1�/9��68�� �& � �
?1�/9�/�85�� �& � �

����6��:
�7�9������ �- � #�� �& � �-
62�;�.6�� �& � �-
26@��<6�5��� �& � ��

����6��:��/7��/�9
5����/7��/�9� �& � �(
2����/7��/�9� �& � �(
2���;621�.����/601��� �& � �&

����6��:��/7��/�9�� �(� "
��� ��������6��:��/7��/�9

����8�;65���� �>��1��� ## � #��
�& � "+

��� ���� �8���18��678

�����7�1�� 682��8�6���� #+ � #"

����/��7/�
��.����/7<� �& � "
�7/��..�/��7/�2� �& � "
=65=.65=�� �& � ""
�71�=�/��7/�� �& � ""
;�.6�����/�85�� �& � ",

����/�5678� �.��/�56782� �& � "�

����2���6�.� #+ � &� #+ � ##
�8�0.�� #+ � #�
5����=���07>� #+ � #(
682��8�6���� #+ � #,
2����=���07>� #+ � #&

����2���6�.�� �(� "
��� ��������2���6�.

����2��8��/�
����;�.6����� - � ##� �& � "(
�;�8�� �& � "(
�.���7/:� �& � "&
298�=/786@�� �& � "&

����<68�7<
�.72���6/2��<68�7<� �& � +
�/75/�22� �& � +
2����77/�68��678� �& � +
2����6�.�� �& � �
2���<68�7<��726�678� �& � #

����7/� ��4� ��� # � � # � #�� ��"� �& � #

����7/�� ��4� ��� # � #�� �(� "� �& �

�����9�� ��4� ��� # � � ��"

����.�/ ��4� ��� # �

 ����������� ���
� �� � �� �� � #�

������ ����� �
	���
���	� � � -

������ ���� 4 �
� �)� � � �� � � (

������ ���� �
3
���'
�� ��
��� # � #-

������ ����
�3����'
�� 3 �� 4�
� � � (

������ ���� �)��� � '

 �� �����
)
��� ��&� �� � ��
��� �����' ����� ������ � �

���2��8� ���'� # � #+� ���

��� �)��	 ��4� ��
�� # � ,

��� �)'
�� ��������� ���'� �, � #-

��� �)'
���� �, � �
����'
�� � �
	���
�� �, � #"
����'
��
�����
�� �, � ##
���������� �, � #-
�
����	 ��� �, � #+

�����4��
�� 3��� �� # � #

�
0���! !
� '��
� 3�
*�� " � &

0���!�� , � #+
��'4�� ����� , � #-� � � (
����
��� , � ##
�� ��	� , � ##
��� '�� A�
��
�� , � #�
' ��
���
� �� �
� ������ , � #-� � � -
'������
����� , � #
���	�
��
����� , � #"

Index – 3

*��) �� 4 �
 � 4�
� , � #"

4��� $�4���
�
%� #& � &

4���
 �� #& � &

0��������� �
�� �
'
��� ���� � #

0������� - � #+
����;�.6����� - � ##

��
��A�
�� '��
� - � ##

�

��.�8��/
�;�8�� & � �(
2��1�� & � �,� & � �(
2=7<� & � �(

� �
�� �� & � �"
����� ������ '��
� & � �
�� � �
 ��
���� - � "

��..��7/:� � #
 �� �������� �
������� � #

� ����� � � �
 ���' �� �- � ,

� �3 ��
�� , � (
�� �!
�� , � (

� �� �
 �
�
�
� " � �

� �� ���	 �
�
��
��
� & � (

�)
�! 4��
�� - � &

���
����
�3
� ����
�� � -

���
������
� �
��������� � "

�.72���=62�<68�7< ���		
�� ��##

��'4�� ���� 4���!�� , � #-� � � (

��'4�� ����� �� 3 ��
�� # � -
��� ���� �
� ��
���
���

��'4�� ����� � 4�
� # � ##� # � #,

��'' �� ���� �� 3��

��'�����	 ��
���
���� # � #+

�������
�� : � 	
�� #, � "

�������
�� ����
����	� � �
 4���' � �
�'�� ����� #, � #(
 ���' �
� �
��3
��� #, � #�
�) �	��	 ��� �������� #, � #-
�)��� �
A�
��� #, � �
� � 4 �
 ����
�� '
�)��� �� � #�
��	�� � � � 4 �
� #, � �
� �
�� �
A�
��� #, � �
������
 �������� #, � "� #, � #-
���	� '�� #- � ##
A�
���	� #, � � #, � (
�
������ #, � "
�
A�
�� ���
�� #, � -
�
A�
���� #, � �� #, � #�
��4��
A�
��� #, � �
�
����	� #, � #"
�����
� �������
�� ����
����	 ��6� #& � �
������� ������
�� #& � #+
3�
*��	 ����'� ��4�
 � �!�� #- � ##
*)
� �� ��
� #, � (

�������
�� ���	� '�� #, �
��� ���� �������
�� ����
����	
� ����	 ���' ���	� '� #, � #
���
�� ���
 ��4'������� #, � #,
� � 4 �
 �
����� �������� #- � #(
�
3
�����	� #, � (� #, � �#
��� 4���	� #- � ##

�
������ '
�)��� #- � (� #- � ##
���
 � '��	 ���3
������� #- � "� #& � ��

#& � &
�8�.60/� #- � ,
) �����	 ����
' � ����
� #, � #+
)��� � �	� 	
� #, � ��
�''
�� �
� #, � -� #, � ��� #- �
����'� ��4�
� #, � &� #- � ##� #- � �+
��4� �� ��� #, � -� #- � � #- � ��� #& � &
�� �
� ������
�� �# � #,
��	 ���
�� #, � �"
'������
 � �	� 	
 �������� #- � (� #- � #�

�# � "(� �# � +
7� ��
 /
������ #� � �� #(� �� #(�
������ ���
�� #, � �"
� � '
�
� ���3
������� #� � ,� #(� � #& � -
� � '
�
� �
����������� #, � #+
� � '
�
� �
A�
��
� #- � �"

Index – 4 Oracle Applications Developer’s Guide

�.B2?.� #, � �#� #� � �� #� � ,
�
���� ���
�� #& � -� #& � �
������	 ���
� #- � ##� #- � #,
�� *�
�� #, � -� #, � ##� #, � �#� #& � �
2?.C.� �
�� #, � �#� #� � �� #� � ,
2?.C����� #, � �#� #� � �� #� � ,
2?.C/
����� #, � �#� #� � �� #� � ,
��4������
�� #- � &
���
� ��� #, � &� #, � �#
������� ������
�� #& � #+� �# � #
3�
*��	� #- � ##
<=7 ����'��� " � �� #, � �
*�����	 �� ���
�� #, � �"

�������
�� �
A�
��
�������� #, � #-
�
A�
�� ���
� #, � -
�� ��� ��� #, � #�

��������� ��� �
�
��
�� ��
'�� & � ,

��������� ��� ' �� ���� ��
'�� & � #,

����
�� � �3 �
����
��� �� ��� , � (
��D��	� , � (
����� , � (

����
�� 4���!�� , � ##

������� ����
�)
�! 4��� � � -
' ��
���
� ��� � � -

�����0 �
� 7���'�D
� $�07%� " � �� �� � ",

������ ����� ���� �
������	
�����' ����� ����� �� � #"
7/��.� 6�� �� � #�
� � '
�
� 3 ��� ����� �� � #�
������
 �������� �� � #"
���	� ' ����� ����� �� � -
�
������4����� ����� ����� �� � -

����
���

� '��
�� "+ � "
�8���1//�8�9 � �! 	
� "+ � �

����
�� �
���� ����� ���� , � #

�12�7:
�;�8�� �(� �+
2�9.�� �(� #&
@77:��;�6.�0.�� �(� #&

�12�7: ��4� ��� ��� �(� �
����7/� ��4� �� ��� �(� "
����7/�� ��4� �� ��� �(� "
 ��)��
����
� �(� �
�) �	��	 ��
' ����
���
�� �(� -� �(� #+
�����	 �� �� ��� ��� �(�
��� 4���	� �(� #,

3
��� � ��
�� �(� ,� �(� �+

� '��
� �(� �"
�8�2?� ��4� �� ��� �(�
��� ���� ��� �(� �
����
���
�� �(� #&
����������
�����
3
���� �(� #�� �(� #�
�
����������� �(� "
2�
�� � '
�� ��	��� �(� -� �(� #�� �(� #"
��	� ���	� �(� #-
*)
� �� ��
� ��� �(� �� �(� -
@��'� �(� -� �(� �
@��' .7;� �(� (

�����'�D��	 7� ��
 ������ ������ �(� #

�
������/6..�7<8� - � �-

�����/�?16/��� - � �-

�����2���6�.� - � �-

���� � � ���
� - � "

� �
 ��
���
� �
�� �� - � "
������	 3 ��
�� �- � #�
���' ��� - � "
�.B2?. 3 �� 4�
�� �- � -

� �
 ���' ��� - � "
� ����� �� �- � ,

�������� �- � -� �- � #�
��
��4�
� �- � �
�'������� �- � �� �- � #�

� �
 � � '
�
��� �- � #�

Index – 5

� �
�
 �� 8.2�������7/:��� �- � #+
� ����� � � �
 ���' �� �- � ,
�����	 �� �� ���� �- � &
���3
����� ������
�� �& �
���' � ' �!�� �- � ,
) �����	� �- � �
�� 7� ��
 ������ ������ �- �
E��� �� �- � ,
7� ��
 � �
� $7� � �
�%� �- � ,
����4�
�)�����	� �- � �+
9
 � �+++ ��'��� ��
� �- � �� �- � #,�

�- � �+

�����6:� � � ���
� - � "

�
�� � ��3
 ������ ����� 7� ��
 �� " � ,

�
� ��� 3 ��
�� �3
������	� # � �

�
� ����� & � #(

��.����5/71�� �# � �"

�
�
�
�� ��
3
����	� , � #+

�
�
��
�� 6�
'�� & � "

�
�������3
 ��
���
���� - � #&
��� ���� ��
���
���
 ����	 ��
������	 � 4�
�� # � ��
 ����	 �� ���'� # � #+
�) �	��	
������	� # � ��
����'��� # � &� # � �#
��'�����	� # � #+
����
�� ����'�� # � &� # � �#� # � �&
����
�� ���'��� # � �&
����
�� �
�
�
��
�� # � (#
� � 4 �
 �
��	� ���� # � &� # � �#
�
�����	� # � &
�
���������� # � "
�'��
'
����	� # � �+
:������
�� # � (
:������
� ����'�� # � �#
�
�
�
��
 ��
���� # � (#
�
	���
���	� # � #+� # � �� # � �(
�
	'
���� ��'4
� ��� # � ��
�
����	 ��� # � �(

��������
 �
�����	 ����'�� # � &� # � �#�
� �&

� 4�
 ����'��� # � �#
*)
� �� ��
� # � (

�� ��	 4���!�� , � ##

��� 4�
� 6�
'�� <=�8�;�.6�����6��:
���		
�� & � �

����� � ��
'�� - �

�62�.�9�� ����
���� - � �"

����'
�� � �
	���
� ���'� �, � #"

����'
�� ������
� *����*� �, � ##

�������*� ����� ���� , � #,

������ ���	 �
������ � � "#

��� '�� ����
���
��� ���� ����
���
� '��
 �
����� #(� #,
*��) 7� ��
 /
������ #(� &

��� '�� A�
��
�� , � #�

��� '�� ����
� 2�4'�� /
A�
��� ���'� ## � �

�
�������� - � #(

�8�0.�� ����
���� - � �

�8��/�0.� ����
���� - � ��

��3����'
�� 3 �� 4�
� � � �

�3
��) ���
��� � #&
� '��	� "# � (

�3
���� ����������
�����
�� �12�7: ��4� ��� �(� #�� �(� #�
�� 7� ��
 ������ ���� 74F
�� .�4� ��� �(� #�

�>:�68��� #& � �

�>�/75���
� '��
� #& �

�>�/75�� � #& � �

���
�� � ���	� '� �������
�� ���	� '� #, � ��

�
�������) � #� � ##

Index – 6 Oracle Applications Developer’s Guide

������$%� #& � ##

���	�3$%� #" � #�

�����3$%� #" � #�

������$%� #& � #"

������$%� #& � #

���*��$%� #, � �"

���'�	$%� #& � #-

���� <����*� (�

���
� ��
���� � � #�
��� ���� � 44
� �
	����

��
���
�� A� ����
��� # � �
��� ���� �
� ��
���
���

��
���
���
��� �����
�������3
 ��
���
���G �
� ��
���
���
 ����� ���� ��	� �
�� # � #+
����'��� # � &
��'�����	� # � #+
� � 4 �
 �
��	� ���� # � &
�
�����	� # � (
�
�������3
� - � #&
�8����2�/��.�> ����
���
�� # � "+� #

� ",� # � "-
�8���.�>��;�8�� # � �(
�8����9��.�> ����
���
�� # � "+� # �

"-
�8��/�85���.�> ����
���
�� # � "+�

� ""� # � "-
�'��
'
����	� # � ##
�� ���� *����*�� # � --
!
�� - � #&
'������
 �
�������3
 ��
���
��� �� � 4�
� # � �"
��
���	 ���' ��� ���� # � �&
A�
����	 ��� # � -,
�
��'�����	� # � #+
�
	���
���	� # � &
�
	���
���	 � 4�
� ���� " � ##
��������
� # � ,� # � -
��������
 �
�����	 ����'�� # � (
��	� �
�� # � #+

�����-+� �� � "�� �� � "-
��'' �� ���
 ���� �� �� � "(

�����-+��� �����	�� ���� ���
� �� � "�

�8� �7/:����1//�8�9� #(� #+

�8� 2/<�>6�� #(� (

�8� 2/<686�� #(� (

�8���78��5.70�.� �# � �
/�?1�2������� �# � �
2���/�?�5.70�.2� �# � �

�8���78�1//�8�
����7::6�� �# � ,
���/7..0���� �# � ,
5���/�?1�2��2���12� �# � ,
2����7:�.��678�2���12� �# � &
<�6���7/�/�?1�2�� �# � (

�8���1//�8�9

� '��
�� "+ � "
5����7/:���:�2�� "+ � �

�8������� �& �
��� ���� ��������
��8786��.��7������ �& � ,
������7���8786��.� �& � �
������7��62�.�9����� �& � (
������7��62�.�9��� �& � (
�62�.�9������7������ �& � -
�62�.�9����7������ �& � �
2�/685��7���8786��.� �& � #"
2�/685��7������ �& � #�

�8����2�/��.�>
���68�� # � ",

� '��
�� # � ,�
1���������686�678� # � -

�8���6.�
�.72�� �# � #"
8�<�.68�� �# � #�
�1�� �# � ##
�1��.68�� �# � ##
�1��8�:�� �# � #"

�8���.�>� �;�8�� # � �,� # � �(

�8���18��678
�>��1��� ## � #-
��� ���� ����8�;65���
 �� ����8�;65�����>��1��� �& � "+

?1�/9� ## � #,

Index – 7

��2�� ## � #,
12�/��18��678�8�:�� ## � #&�

� �+

�8���18��678��>��1��� ��
� *��)
@��'� �(� �-

�8��5.70�.
�78��.7568�6�� "+ � �
�78���/75/�:�6�� "+ � (
�78��/�?1�2��6�� "+ � (
.7568�6�� "+ � �
�/75����.�6�� "+ � �
12�/�6�� "+ � ,

�8����9��.�>
���68�� # � "+

� '��
�� # � ,,� # � -,
1���������686�678� # � -+

�8��:�22�5�
�.��/� #� � ##
��015� #� � ##
�/�2�� #� � #�
�//7/� #� � #�
5��� #� � #"
=68�� #� � #
?1�2�678� #� � #
/��/6�;�� #� � #�
2���8�:�� #� � #�
2���2�/685� #� � #&
2����7��8� #� � #&
2=7<� #� � ��
<�/8� #� � ��

�8��7/5
�=�85��5.70�.�7/5� "+ � &
�=�85��.7��.�7/5� "+ � &
�=772��7/5� "+ � &

�8���/7�6.�
5��� #" � #+
�1�� #" � &
;�.1�� #" � ##

�8���/75/�:
�����7�5/71�� �# � �
��.�����>��1��0.�� �# � #-
��.����5/71�� �# � �"

��.����68�7:���606.6�9� �# � ��
��.������/�:���/� �# � �#
��.�����/75/�:� �# � #&
�>��1��0.�� �# � #,
68�7:���606.6�9� �# � ��
:�22�5�� �# � #,
��/�:���/� �# � �+
/�562��/� �# � #�
/�:7;���/7:�5/71�� �# � �
/�?1�2��5/71�� �# � �"

�8��/�85���.�>
���68�� # � ""

� '��
� # � ,�
1���������686�678� # � -�

�8��/�?1�2�

� '��
�� �# � "
2���:7��� �# � ""
2���7��6782� �# � �&
2����/68��7��6782� �# � "#
2���/������7��6782� �# � "+
210:6��/�?1�2�� �# � "�

�8��/�?1�2��68�7
5�����/�:�68�7� �# � "&
5�����/�:�81:0�/� �# � "(
5�����/�:���/� �# � "&
5����/75/�:� �# � "&

�8��2��
�����/75/�:� �# �
����2����7�5/71�� �# � ,�
����2��5�� �# � �
�/�����2��� �# � �
��.����68�7:���606.6�9� �# � ,#
��.�����/75/�:���/�:���/�

�# � -
��.����2��� �# � "
68�7:���606.6�9� �# � &
.68��2��5�2� �# � &
:�22�5�� �# � �
�/75/�:���/�:���/� �# � ,
/�:7;���/75/�:� �# � ,
/�:7;��2����/7:�5/71�� �# � ,�
/�:7;��2��5�� �# � (

�8��2��8��/�
�7/:�68�7� ��&� �� � ��� "+ � #+

Index – 8 Oracle Applications Developer’s Guide

2���<=7� " � �� "+ � #+
292��:������ "+ � ##
12�/� "+ � ##

�8��210:6�
����87�6�6���678� �# � ,-
�����/68��/� �# � ,-
/�?1�2��2��� �# � ,,
2���:7��� �# � ,"
2���8.2�7��6782� �# � ,�
2����/68��7��6782� �# � ,,
2���/�.��.�22�7��6782� �# � ,"
2���/������7��6782� �# � ,
210:6���/75/�:� �# � ,�
210:6��2��� �# � ,(

�8��186?1��6��8�6�6�/��78�/7.
� 4�
� " � #+

�8��1�6.6�6�2
7��8�1/.� "+ � #�
��/�:��>62�2� "+ � #�

�8�.7��� ����	 �� �� � '
�� 	
�� #� � -�
#� � �

�8�2?� ��4� ��� # � � ��"� "+ � #
�12�7: ��4� �� ��� �(�

�7.��/�/��1/8����678 ���		
�� ���

���
�	� �
� ������ ���� " � �

���' ��������� =�.����/5�� � � '
�
��
� (

���' ���������� ## � (

���' ��	� �
 �������H �����-+� �� � "-

���' � ' �!�
� �
�� �- � ,

�������� �- � -

���'�� , � �
������ ������ � � -
�
���
 :
��� ## � �"� ## � �(
�
3
���'
�� ����
��� # � #�
�
	���
���	� ## � �#

�7/:2-+����=� # � (

�������� !
��
��
3
����	 ��
 ��� , � ##� , � #
����	� �)�� ���3
������� 3��

�������� �
������� ## � #
�8���18��678��1//�8���7/:�

�18��678� ## � �+
�8���18��678��>��1��� ## � #-
�8���18��678�?1�/9� ## � #,
�8���18��678���2�� ## � #,
�8���18��678�12�/��18��678�

8�:�� ## � #&
���' ��������� ## � "� ## � � ## � -
�
����� ��� ## � #
������
�� ## � #,
�� �� ���� ## � &

�������� 2
������ �������� /
����� ## � #

�������� 2
������ :
�� /
����� ## � #

�������� 2
������ 8 3�	 ��� /
����� ## � #

�
5
�
� �
 :
�� 	
� ���	� '� #� � -

5���/�?1�2��2���12�
�8���78�1//�8�� �# � ,

5��4 � 3 ��
�
��� ����1�
� ������
�
��
�
����� #" � ,

5.70� ��4� ��� ��

�
= ���
��� # � "� � #�

3
��� � #&
��
'� � #�
� 4�
� � �+

=
��� ���7����
)
��

=
�� � �	
��� �) �	��	 �)
 ���' � '
� ## � (

�
6''
�� �
 �������
�� ���	� '�� #, � -�

#, � ��

Index – 9

6��
���	
�� !
��� ��� �
� ��
���
���

6�
') ���
��� � #�
���' �� � #(
686�
3
��� � #(
� '��	� "# � &

6�
' ����
���
�� - � �+
�.��/�0.�� - � �+� - � �#
�.��/�0.���.12� - � �+� - � �#
����6��:��/7��/�9� �& � �(
�) �	��	 �� �12�7: ��4� ��� �(� #+
�62�.�9��� - � �+� - � �"
�8�0.��� - � �+� - � �
�8��/�0.�� - � �+� - � ��
��
' �� ���� ��
 �
3
��� - � �,
/�?16/��� - � �+� - � �,
�
����	� - � �+� �& � �(

6�
'�
����� �� - �
�
��� & � �

�
E� ��4� ��� ��,

E� ��4� ��� ��,

E. ��4� ��� ��,

E��� � � �
�� �- � � �- � ,

�
�
� ��
���
���� - � #&
��� ���� ��
���
���
 ����	 �� ���'� # � #+
��6�� # � #,
���
 ��'4�� ������ # � #,
����'��� # � &� # � #,
��'4�� ������ # � -
��'4�� ����� ���'� # � ##
��'4�� ����� � 4�
� # � -� # � &� # � ##�

� #,
��'�����	� # � #+
� � 4 �
 �
��	� ���� # � &� # � #,

�
� ��� ��
�
�
��
� # � �
�
��3
� ����'�� # � #&
�
���������� # � "
��� '�� ���
���� # � -� # � &� # � #-
��
���
�� A� ����
��� # � �� # � #(� # � �
���
�	� � 4�
�� # � ##� # � #�
	
�
��� � 4�
�� # � -� # � &
�'��
'
����	� # � ##
��'4
� �� �
	'
���� # � #-
A� ����
��� # � �� # � #(
� �	
� �� 3 ��
�� # � ##� # � #� # � #�
�
	���
���	� # � #+� # � #(� # � �#
�
	'
�� A� ����
��� # � �� # � #(� # � �,
�
	'
���� ��'4
� ��� # � #,� # � #-
�)���) ��
����� # � �
��
����� � 4�
�� # � -� # � #-
3 ��� ��'4�� ������ # � -
*)
� �� ��
� # � (� # � ##

��9� ���		
��� � #�

��9��./�/: ���		
�� ��(

��9��1�/�� ���		
�� ���

��9�.62�;�. ���		
�� ��(

��9�:�81 ���		
�� ��(

�
��� ��������� ��
3
����	 ��
 ��� , � ##� , � #

�
. �	� 	
 �) � ��
� �
�� # � (

. �	� 	
�� ���:������
 . �	� 	
 2������
$:.2%

.�2�/��7/� ���		
�� ��#"

.�4� ��
�� # �
����7/�� # � #�� ��"� �& � #
����7/��� # � #�� �(� "� �& �
�����9��� # � #�� ��"
����.�/� # � #�
 ����� �������
������ # � ,
 �� �)
� �� ��:�.��� ���'� # � #�� ��"
 �� �)��	� # � ,
��.�8��/� & � �(
�12�7:� ��� �(� #&
�8�2?�� # � #�� ��"� "+ � #

Index – 10 Oracle Applications Developer’s Guide

5.70�� ��
�� ��:�.��� ���'� ���
E�� ��,
E�� ��,
E.� ��,
��� ���� �� ���
�� # � ,
���
� �� � ��� ���' ����7/�� ��"
�� �� ��� # � ##
;�/�� ��

.��� �� ; ��
� $.7;%� - � #�
�� �8��/�?1�/9 '��
� - � #,
� '��	� "# � �� "# � (

.����� ��������� - � -

.�	�� � � � 4 �
� #, � �

.785 � � ���
� " � �

.785 /�<� � ���
� " � �

.7;� ��9�.62�;�. ���		
�� ��(

.7; ;�
* � '
� - � #,

: ��
� �� �
�
��
�� 6�
'�� & � "

: ��
���
� �� �
� �����)���� , � #-� � � -
������� ����� � � -
��)
� 4
) 3����� , � #�

:
��
 ����� �������
�����
����
�� #+ � (
��)��'���
 '
���� #+ � #+
2 3
 �� ����

�� #+ � (

:
���� #+ � �
��� ���� �������� �
������
�) �	
� ���' /
�
 �
 ##� �� � �
�
�����	� ## � �" �� ## � �(�

� �(�� ## � ""
�
�����	 '
��
����� ## � �&

��
���	 �	�'
���� ## � �,
'
�� ���'���� ## � "+
�
A�
��
 ��'4
��� ## � "+

:
�� 	
 ������� ��� #� � �
 ��	
�� #� � #
 ��� '
� #� � #(
 ���)�*� #� � ��
 ���!���� #� � �#
 ����!
�� #� � �#
 ���� ��� #� � �#
�
�����	 '
�� 	
�� #� � ,
���
����� ��������
 ���� #� � ,
�8��:�22�5� ������
�� #� � ##
� '��	 �� �� ���� #� � �-
�
�3
�����
 '
�� 	��	� #� � &
3 �� 4�
 ��!
�� #� �

:
�� 	
 ���
�� ��
 ���	� #� � -

:
�� 	
 ��'4
���	 �� �� ���� #� � ��

:
�� 	
 ��!
� �� �� ���� #� � ""

:����� 6�
'�� "# � -

:.2 ��������� #- � (� #- � #� �# � "(

� '��
� �# � +

:�� � *����* *��) :
��� , � ,

:�� � *����*�� , � ,
��� ���� �� ��	 4���!�
������	� , � -
��������� , � -

:����
�� , � �

:������ �	� 	
 �������� $:.2 ��������%�
#- � (� #- � #� �# � "(

� '��
� �# � +

:������
���� 4���!�� , � #
����
�� �
���� ����� ���� , � #
�������*� �
���� ����� ���� , � #,

:������
 �
�
��
�� 6�
'�� & � -

:������
 . �	� 	
 2������ $:.2%� :.2
��������� �# � "(� �# � +

:��� ��� �������3
 6�
'�� & � #+

:��� ��� 6������3
 6�
'�� & � #�

!
8�:��68� �- � -

Index – 11

8 '��	 �� �� ���� "# � #
 ��
�� ��3
 �
	����� "# � �� "# � (
4���!�� "# � -
� �3 ��
�� "# � �
� � 4 �
 �4F
���� "# � �
���
�� "# � &
���' �4F
���� "# � ,
���'�� "# � ,
	
�
� �� "# � �
��
'�� "# � -� "# � (
.7;�� "# � �� "# � (
'
�� 	
�� #� � �-
'����
�� "# � ,
� �! 	
�� "# � � "# � (� "# � #+
����
���
�� "# � � "# � ,� "# � (
�
���� 	������ "# � -� "# � (
�
� ������ "# � (
� 4�
) ���
��� "# �
� 4�
�� "# � �
3 �� 4�
�� "# � ,� "# � -
3�
*�� "# � "
������ "# � �

8
�� 0���! ����
���� , � ##

8.2�������7/:�� 3 �� 4�
� �- � �� �- � &�
�- � #+

8.2�.�85 3 �� 4�
� # � (

8���'�� � *����*�� , � "
������	� , �
��� '�� ����
� � � ,
��
���	� , � ,
����
� , �
*���) ��)
�)�� , �

8��� 3 ��
��) �����	 �� �.B2?.� � ,

�

78��//7/ ���		
�� ��(

7����
)
��
 ����� ���� �)��� � '
� ��&� �� � ��
4������)
�� ��� �����' ����� ������ �� � �-
��
 ���)�'� ���
�� �� � ��

)�* �)
)
�� ����
' *��!�� �� � �-
� 3�	 ���� ��

�� �� � �(
��
� ���	 ���� ���'�� �� � ��
��	� ���	� �� � �(

7��8��7/:� �� �������� �
������� � #�
� -� ## � #�

7����� 	������ - � (

7������� ���1�
� ������
�

7� ��
 ������ ������ �����'�D��	� �(� #

7� ��
 � �
�� �- � ,

7� ��
 .��! �� �

�� ��� 3���4�
 � �
��	� ��'
�
� � #�

7� ��
 /
�����
 3 �� 4�
 ��
�
����� #(� (
4��' ��
�� #- � #"� #(� "
�������
�� ����
����	� #(� �
���
	� ����� #(� �
�.B2?. ��4� ��
�� #(� "
���	� ' �	�'
���� #(�
�
����	� #(� -
����4�
�)�����	� #(� �+
��
�
����� #(� ,

7� ��
 2
���2
�3��
 <
4 ������ �����
���������� ## � "
��
���	 ���������� ## � #�� ## � #(� "+ � #�

7� ��
 ������ #, � ,

7/��.�����.6���6782 3 �� 4�
� # � &

73
����* �
	����� , � #&

"

� �! 	
�
�����7:07� �& � "
��������� �& �
���������� �(� "� �& �
�����>����678� �& � #,
�����6�.�� �& � #(
�����68�� �& � �"
����6��:� �& � �-
����6��:��/7��/�9� �& � �(

Index – 12 Oracle Applications Developer’s Guide

����6��:��/7��/�9�� �(� "
����8�;65���� �& � "+
����/��7/�� �& � ""
����/�5678� �& � "�
����2���6�.� #+ � #,
����2���6�.�� �(� "
����2��8��/�� �& � "(
����<68�7<� �& � +
��.�8��/� & � �(
�12�7:� �(� #&
�
�����	� � "
�8���78�1//�8�� �# � #
�8���1//�8�9� "+ � �
�8���6.�� �# � ##
�8���18��678� ## � #,
�8��5.70�.� "+ � ,
�8��:�22�5�� #� � ##
�8��7/5� "+ � &
�8���/7�6.�� #" � &� "+ � #+
�8���/75/�:� �# � #,
�8��/�?1�2�� �# � #
�8��/�?1�2��68�7� �# � "(
�8��2��� �# � �
�8��210:6�� �# � ,"
�8��1�6.6�6�2� "+ � #�
��D��	� � "

� � '
�
�
�
� ��� 3 ��
� �� � ##
�
��������� �� � ,
���78��/�?1�2��6�� #(� ,
� � '
�
� *����*� �� � &
3 ��� ����� �� � #�
3 ��
 �
�� �� � &

�
����' ��
� # � ,
����	 3�
*�� # � ,

�.B2?.� 	
�
� � �����	 ����
�� � "

�.B2?. ����
� ����
���
�� #� � "

��������� - � -

��������� '�� � *����*�� , � -

�72���7/: ���		
�� ��&

�/���7/: ���		
�� ��&

��
3���� 0���! ����
���� , � ##

���C� �������
�� ���	� '�� �
����	� #& � (

���C� �������
�� ���	� '�� #& � �

����
���
�
�
�����	� � �

������ � &
��� ����� � -

����������
�����
3
���
�����	 �� �12�7: ��4� ��� �(� #�
�� 7� ��
 ������ ���� 74F
�� .�4� ��� �(� #�

������
 �������
��� ����1�
� ������
�
������ ����� ���� /
������	� �� � #"
���	�3$%� #" � #�
�����3$%� #" � #�
�� 7� ��
 /
������ #(� ,
���
�� ��� 	
�
� �
�� #" � ,� #" � -
��
�
���
� �������� #" � ,
3 ��� ���	� #" � #-

������
�� ���1�
� ������
�

����
���
�� ��� 6�
' ����
���
�

����
��� �� ��
�� # � #"

������*� '
���� #+ � �

#

?� ����
��� # � �
��� ���� �
� ��
���
���
�
��3
� ����'�� # � #&
��
���
��� # � �
�
	'
��� # � �

?�
�� ����� (� �

?�
���7��� ���'�� ## � -

?1�/9��68� ���		
�� ��#+

?���!���!
 ����	 �� ���'� #" � #-� #" � #�
���		
��� #" � #-� #" � #�

Index – 13

�

/ ��� 	������ ���7����� 	�����

/�<� � ���
�� " � �

/
���� =������ $<=7%� " � �

/
���� ����� ���� , � #� , � #,

/
�
�
��
� �4F
���� 3�
*��	 ' �!
� ���� # � (

/
�
�
��
� ���		
��� ��#"

/
�
�
��� � 6��
	����� & � �+

/
	����� , � #&
 ��
�� ��3
� � � ��
�3
����*� , � #&
� 44
�� � � #�

/
	���
�
 ����� ����� � � -
�������
�� ���	� '� #- � ##
�������
�� ���	� ' ��4� ��� #- � � #- � ��
���'� ## � �#

/
	���
���	 � 4�
�� " � ##

/
��'4
���	 /
������ � � "�

/
���� �
��
��� ���� /
A�
�� �
��
�
��4'������� �� � "
�
������� �� � -

/
�����
� � '
�
� *����*� �� � &
� � '
�
��� �� � ,
�
��4'������� �� � "
�
������� �� � -
3 ��� ����� �� � #�
3 ��
 �
�� �� � &

/
A�
�� �
��� �" � �
�
��������� �� �
�8��210:6� � �! 	
� �# � ,"
�� 	
 ���������� �" � -
�� 	
�� �" � �
�� �� �� �� 	
 ��������� �" � �

/�?16/�� ����
���� - � �,

/
�
�3
� *����� "# � ##
�� � 4�
 ����'��� " � �

/
�����
 �)
�!��	� � #"

/�)��'���
 $�����% '
��� �� ��	� ���	
�����' ���'�� �� � "

/�)��'���
 '
��� $����� '
���%� #+ � #+

/�*�.7;� (� "

/7<6�� 3�
*�� " � (

/��
�0 �
� 7���'�D
� $/07%� " � �� �� � ",

�
2 3
 �� ����

�� #+ � (

2
������� ��� �������� �
������

2
	'
�� A� ����
��� # � �
��� ���� �
� ��
���
���

2
	'
���� �
�������3
 ��
���
�� ����'��� # � �#

2
���2
�3��
 ������ ������ ��
���	 ����������
� "� ## � #�� ## � #(� "+ � #�

2
����
�3��
 ���������� ## � "� ## � #�

2
A�
��
�� " � #+
������	 3 ��
�� " � #+

2
�3
�����
� �
��������� � "

2����7:�.��678�2���12�
�8���78�1//�8�� �# � &

2)�* �
�� �
��������� ����
���� � #�

2)�* �
�� ����
���� � #�

2��	�
 � 4�
 3�
*�� " � &

2��	�
��
���� 4���!�� , � #"

2� *�
� �������
�� ���	� '�� #, � -� #, � ##�
#, � �#

2�
�� � '
��� #+ � (� #+ � #,
 �� ��	� ���	 �����' ���'�� �� � "
�� �12�7: ��4� ��� �(� -� �(� #�� �(� #"

2?.C.� �
�� #� �

2?.C�.12 ���	� '�� #� � �

2� �!
� � �3 ��
�� , � (

Index – 14 Oracle Applications Developer’s Guide

2� �!
� �
	����� ��� ���
�� ��3
 �
	����G � 44
�
�
	����

2� �� �� /
���� 2�4'������
�)��� �
A�
��� �� � ,
� �
�� �
A�
��� �� � ,

2� �� �� /
���� 2�4'������ $2/2%
��� ���� 2� �� �� /
A�
�� 2�4'������ $2/2%
 ���' ��� �
��4'������� �� � "
������ ����� ���� �
������	� �� � � �� � #�
� � 4 �
 ����
�� '
�)��� �� � #�
�'��
'
����	� �� � (
� � '
�
� *����*� �� � &
��
�
���
� 3 ��
 �
��� �� � #+
���	� ' ����� ����� �� � -
�
������4����� ����� ����� �� � -

2� �� �� /
A�
�� 2�4'������ $2/2%
��� ���� /
����
������ ����� ���� �
������	� �� �

2� �� ��� ��'��� ��
 �)
�!
�H �����-+� �� � "-

2� ����� #, � #,

2�������
 �
�����	 ����'�� �
�������3
 ��
���
����
� �#

2�4����������)����	 ���' ��
�� ## � ##

2���)����D��	� #+ � (

292����� �- � #�

$

� 4) ���
�� � � #�

� 4 � 	
� � � #�

� 44
� �
	����
 ��
�� ��3
 �
	��� ��
���� � � #�
4
) 3���� � � #"
�����	� � � #�� � � #
��
��4����
�� � � #,

���3
����	 ���' ��
�� ��3
 �
	����� �� � ""
�
���������� � � #�
��� '�� � 4�� � � �"
� ���� �� �� ���� � � #-

'������
 �
�� �� � 4�� � � �#
� 4) ���
�� � � #�� � � #(

� 4�
 ����'��
�
�������3
 ��
���
��� # � �#
!
� ��
���
��� # � #,

� 4�
) ���
��� � �+
���
�� ���

� '��
� � �#
�
�3
� ���

� '��
� � �

� 4�
 �
	���� ���� ��6� " � ##
����� ����
���
�� " � ##� " � #"

� 4�
�� �
	���
���	� " � ##

� 4�� ��� � 44
� �
	����

��:�.��� ���'� # � ##� ���
��4� ��
�� ��"
��
�� � ���		
��� ��-

�
�� 6�
'� A�
�� �
�	�)� - � �

�
�� ��
'�� - � �

�)����� ��� ���	� '� �������
�� ���	� '�
#, � ��

����
�
��� '�� *����*� � � ,
����'�� � *����*�� , �

����4 �� #+ � �
 ����� �������
�����
����
�� #+ � (
�) �	
� ���' /
�
 �
 ##� �� � �
����������	� #+ � #,

���		
��
�� ���	�
��
���� 4���!�� , � #
��9 ���		
�� �� �� ��	 4���!�� , � ##

�����	� �� � ",

����	� �)�� ���3
������� 3��

%
1����
� �������
�� ����
����	� #& � �

1��A�
�
�� �)
�!� & � #&

1�	� �
 �������� �����-+� �� � "�� �� � "-

1�	� ���	 �����' ���'�� �� � "#

Index – 15

1�
�
����
�� 7� ��
 /
������ #(� ,
7� ��
 /
������ #(� ,

1�
�
����� ��
���
�
�.�>6�;�.� #(� -� #(� (
�.�>2?.� #(� -� #(� (
�7/:����1//�8�9� #(� -� #(� (
5��5.70�.� #" � ,
5���/7�6.�� #" � ,
	��4 � 3 ��
�� #" � ,
2/<�>6�� #(� ,
2/<686�� #(� ,
��
� ������
�� #" � ,

1�
�
����� *�����	
�) �	
 ������
� #" � #�
���	�3$%� #" � #�
�����3$%� #" � #�
	
� ������
� #" � #�

1�
� ������
�� #" � �
��� ���� ������
 �������
�������
�� ����
����	 �������� #, � #-
�
�����	 �������� #" � "� #" � #
�
��������� #" � �
���	�3$%� #" � #�
�����3$%� #" � #�
5���/7�6.�� #" � ,
)�
� ��)�� #" � �#
�
3
��� #" � �#
�
���� � ������
� #" �
�
����	 ������ 3 ��
�� #" �
��
�
����� #" � ,
3 ��� ����� #" � #-

12�/�8.2�.�85 3 �� 4�
� 3�����	� # � (

1������ ������
�� ���1�
� ������
�

&

; ��� ��'4�� ������ # � -
��� ���� �
� ��
���
���
� 4�
�� # � -

;�/� ��4� ��� ��

;�
*�� " � �
4���! �
� :��
� " � &
�����	 ���		
��� " � &
�
����' ��
 ��� " � (
�
 ���� ��� ��
 ���	� " � �
/7<�6� ��� " � (
���	�
 � 4�
� " � &

;��� � ����4��
�� # � #

'
<�6���7/�/�?1�2��

�8���78�1//�8�� �# � (

<
4� �����	 ��� ��'� ��4������ # � -

<=�8��/�����/��7/�� ��� '��
A�
������� '��
� � #�

<=�8��7/:�8�;65��� ���		
�� ��#"

<=�8�.7578��=�85�� �3
��� �(� #�

<=�8�8�<�0.7���682��8�� ���		
��
��##

<=�8�8�<��7/:�682��8�� ���		
��
��#+

<=�8�8�<�6��:�682��8�� ���		
��
��##

<=�8�8�<�/��7/��682��8��
���		
�� ��##

<=�8�/�2�782606.6�9��=�85��
�3
��� �(� #�

<=�8�;�.6�����6��: ���		
�� ��� 4�
�
��
'�� & � �

<=7
�������
�� ���	� '�� #, � �
�8��5.70�.� "+ � ,
�
�3
� ���
 3 ��
�� "+ � ,
�
����	 <=7 �����' ����� " � � "+ � ,

<=7 $/
���� =������%
�������
�� ���	� '�� " � �
�8��2��8��/��2���<=7� " � �

<����*�� , � "
������	� , � � , � -

Index – 16 Oracle Applications Developer’s Guide

'�� �� , � ,
� '��	 �� �� ���� "# � �
����'�� �� , � "
��
���	� , � ,

(
9
 � �+++ ��'��� ��
� �- � �� �- � #,� �- � �+

)

@��'� �(� -
��� ���� �12�7:��;�8�
�����	 �� �12�7: ��4� ��� �(� -

3
��� ��� �12�7:��;�8�

� '��
� �(� #&� �(� �#� �(� �"
.7; ��� �12�7: ��4� ��� �(� (

Reader’s Comment Form

Oracle� Applications Developer’s Guide VOLUME 2
Part No. A83704–03

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness
of this publication. Your input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the topic, chapter,
and page number below:

Please send your comments to:

Oracle Applications Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood City, CA 94065 U.S.A.

If you would like a reply, please give your name, address, and telephone number below:

Thank you for helping us improve our documentation.

	Contents
	Preface
	Audience for This Guide
	Other Information Sources
	Do Not Use Database Tools to Modify Oracle Applications Data
	Typographic Conventions
	About Oracle
	Your Feedback

	Overview of Coding Standards
	Overview of Coding Standards
	Importance of these Standards
	Coding Principles
	Coding With Handlers
	Libraries
	Performance
	Coding for Web Compatibility

	The Standard Development Environment
	Oracle Application Object Library for Release 11i
	Setting Object Characteristics
	Shared Objects
	Standard Libraries
	Property Classes
	Visual Attributes

	Overview of Building an Application
	Overall Design Issues to Consider
	Overview of Application Development Steps
	Overview of Form Development Steps

	Setting Up Your Application Framework
	Overview of Setting Up Your Application Framework
	Definitions
	Set Up Your Application Directory Structures
	Register Your Application
	Modify Your Environment Files
	Set Up and Register Your Oracle Schema
	Create Database Objects and Integrate with APPS Schema
	Add Your Application to a Data Group
	Set Up Concurrent Managers

	Applications Window
	Prerequisites
	Applications Block

	Building Your Database Objects
	Overview of Building Your Database Objects
	Using Cost–Based Optimization
	Tracking Data Changes with Record History (WHO)
	Oracle8i Declarative Constraints
	LONG, LONG RAW and RAW Datatypes
	Columns Using a Reserved Word
	Views
	Sequences

	Table Registration API

	Using PL/SQL in Oracle Applications
	Overview of Using PL/SQL in Applications
	Definitions
	General PL/SQL Coding Standards
	Database Server Side versus Client Side
	Formatting PL/SQL Code
	Exception Handling
	SQL Coding Guidelines
	Triggers in Forms
	Resources

	Replacements for Oracle Forms Built–ins
	Coding Item, Event and Table Handlers
	Coding Item Handlers
	Coding Event Handlers
	Coding Table Handlers
	Example Client–Side Table Handler
	Example Server–Side Table Handler

	Setting the Properties of Container Objects
	Modules
	Windows
	Non–Modal Windows
	Modal Windows

	Canvases
	Content Canvases
	Stacked Canvases

	Blocks
	Context Blocks
	Dialog Blocks
	Data Blocks With No Base Table
	Single–Record Data Blocks
	Multi–Record Blocks
	Combination Blocks
	Master–Detail Relations
	Dynamic WHERE Clauses

	Regions
	Tabbed Regions
	Alternative Regions (Obsolete for Release 11i)
	Overflow Regions

	Setting the Properties of Widget Objects
	Text Items
	Date Fields

	Display Items
	Poplists
	Option Groups
	Check Boxes
	Buttons
	Lists of Values (LOVs)
	LOV Behaviors
	LOVs in ENTER–QUERY Mode

	Alerts
	Editors
	Flexfields
	Setting Item Properties
	Using APP_ITEM_PROPERTY.SET_PROPERTY
	Item Properties with Unique Oracle Applications Behavior
	Impact of Item–level and Item–instance–level Settings
	Setting Properties at Design Time
	Setting Visual Attributes Programatically

	Controlling Window, Block and Region Behavior
	Controlling Window Behavior
	Positioning Windows Upon Opening
	Closing Windows
	Setting Window Titles Dynamically

	Controlling Block Behavior
	Coding Master–Detail Relations
	Implementing a Combination Block

	Coding Tabbed Regions
	Definitions
	Tabbed Region Behavior
	Three Degrees of Coding Difficulty
	Implementing Tabbed Regions
	Tab Handler Logic
	WHEN–TAB–PAGE–CHANGED Logic
	WHEN–NEW–ITEM–INSTANCE Logic
	Handling Dynamic Tabs
	Other Code You May Need

	Coding Alternative Region Behavior
	Alternative Regions
	Example: Coding an Alternative Region

	Controlling Records in a Window
	Duplicating Records
	Renumbering All Records in a Window

	Passing Instructions to a Form

	Enabling Query Behavior
	Overview of Query Find
	Raising Query Find on Form Startup

	Implementing Row–LOV
	Implementing Find Windows

	Coding Item Behavior
	Item Relations
	Dependent Items
	Conditionally Dependent Item
	Multiple Dependent Items
	Two Master Items and One Dependent Item
	Cascading Dependence
	Mutually Exclusive Items
	Mutually Inclusive Items
	Mutually Inclusive Items with Dependent Items
	Conditionally Mandatory Items

	Defaults
	Integrity Checking
	Uniqueness Check
	Referential Integrity Check

	The Calendar
	Advanced Calendar Options
	Calendar Examples

	CALENDAR: Calendar Package
	CALENDAR.SHOW
	CALENDAR.SETUP
	CALENDAR.EVENT

	Controlling the Toolbar and the Default Menu
	Pulldown Menus and the Toolbar
	Menu and Toolbar Entries
	Save and Proceed
	Synchronizing
	Application–Specific Entries: Special Menus
	Customizing Right–Mouse Menus (Popup Menus)

	APP_POPUP: Right–Mouse Menu Control
	APP_POPUP.INSTANTIATE

	APP_SPECIAL: Menu and Toolbar Control
	APP_SPECIAL.INSTANTIATE
	APP_SPECIAL.ENABLE
	APP_SPECIAL.GET_CHECKBOX
	APP_SPECIAL.SET_CHECKBOX

	Menus and Function Security
	Overview of Menus and Function Security
	Terms
	Forms and Subfunctions
	How Function Security Works
	Using Form Functions

	Function Security Standards
	General Function and Menu Standards
	Form Function Standards
	Subfunction Standards

	Function Security Reports
	Function Security APIs for PL/SQL Procedures
	FND_FUNCTION.TEST
	FND_FUNCTION.QUERY
	FND_FUNCTION.EXECUTE
	FND_FUNCTION.USER_FUNCTION_NAME
	FND_FUNCTION.CURRENT_FORM_FUNCTION

	Forms Window
	Prerequisites
	Forms Block

	Form Functions Window
	Form Functions Block

	Menus Window
	Menus Block
	Menu Entries Block

	Message Dictionary
	Overview of Message Dictionary
	Major Features
	Definitions

	Implementing Message Dictionary
	Create Your Message Directories
	Define Your Messages
	Create Your Message Files
	Code Logic to Set Up Messages
	Code Logic to Display Messages

	Message Dictionary APIs for PL/SQL Procedures
	FND_MESSAGE.CLEAR
	FND_MESSAGE.DEBUG
	FND_MESSAGE.ERASE
	FND_MESSAGE.ERROR
	FND_MESSAGE.GET
	FND_MESSAGE.HINT
	FND_MESSAGE.QUESTION
	FND_MESSAGE.RETRIEVE
	FND_MESSAGE.SET_NAME
	FND_MESSAGE.SET_STRING
	FND_MESSAGE.SET_TOKEN
	FND_MESSAGE.SHOW
	FND_MESSAGE.WARN

	Application Message Standards
	Definitions
	Message Naming Standards
	Message Numbering Standards
	Message Type Standards
	Message Description Standards

	Message Content Standards
	Message Token Standards
	A Few General Guidelines for Writing Good Messages
	When the User Needs to Get Help
	Complex Messages
	Specific Types of Message Content
	Message Writing Style
	Special Purpose Messages

	Messages Window
	Prerequisites
	Messages Block

	User Profiles
	Overview of User Profiles
	Definitions
	Defining New User Profile Options
	Setting User Profile Option Values
	Setting Your Personal User Profile

	Implementing User Profiles
	Predefined User Profile Options

	FND_PROFILE: User Profile APIs
	FND_PROFILE.PUT
	FND_PROFILE.GET
	FND_PROFILE.VALUE

	User Profile C Functions
	afpoget
	afpoput

	Profiles Window
	Prerequisites
	Profiles Block

	Flexfields
	Overview of Flexfields
	Definitions
	Building a Flexfield into Your Application
	Flexfields and Application Upgrades

	Implementing Key Flexfields
	Defining Key Flexfield Database Columns
	Registering Your Key Flexfield Table
	Registering Your Key Flexfield
	Add Your Flexfield to Your Forms

	Implementing Descriptive Flexfields
	Planning for Reference Fields
	Defining Descriptive Flexfield Database Columns
	Adding a Descriptive Flexfield to a Table with Existing Data
	Protected Descriptive Flexfields
	Registering Your Descriptive Flexfield Table
	Registering Your Descriptive Flexfield
	Add Your Flexfield to Your Forms

	Adding Flexfields to Your Forms
	Create Your Hidden Fields
	Create Your Displayed Fields
	Create Your Flexfield Definition
	Invoke Your Flexfield Definition from Several Event Triggers

	Flexfield Definition Procedures
	Key Flexfield Definition Syntax
	Range (Type) Flexfield Definition Syntax
	Descriptive Flexfield Definition Syntax
	Flexfield Definition Arguments
	Flexfield Definition Examples
	Updating Flexfield Definitions
	Update Key Flexfield Definition Syntax
	Update Range (Type) Flexfield Definition Syntax
	Update Descriptive Flexfield Definition Syntax
	Updating Flexfield Definition Example
	Using Key Flexfields in Find Windows
	Using Range Flexfields in Query Find Windows

	Troubleshooting Flexfields
	Register Key Flexfields
	Register Key Flexfields Block
	Qualifiers Window
	Columns Window

	Register Descriptive Flexfields
	Register Descriptive Flexfields Block
	Reference Fields Window
	Columns Window

	Overview of Concurrent Processing
	Overview of Concurrent Processing
	Basic Application Development Needs
	Major Features
	Definitions

	Overview of Designing Concurrent Programs
	Submitting Concurrent Programs on the Client
	Using Concurrent Processing
	Automated Recovery for Concurrent Processing

	Overview of Implementing Concurrent Processing
	Choosing Your Implementation

	Defining Concurrent Programs
	Defining Concurrent Programs
	Concurrent Program Executable Window
	Concurrent Program Executable Block
	Stage Function Parameters Window

	Concurrent Programs Window
	Concurrent Programs Block
	Concurrent Programs Buttons
	Copy to Window
	Session Control Window
	Incompatible Programs Window
	Concurrent Program Parameters Window
	Argument Detail

	Concurrent Program Libraries Window
	Prerequisites
	Concurrent Program Libraries Block
	Concurrent Programs Block
	Rebuild Library

	Coding Oracle Tools Concurrent Programs
	Oracle Tool Concurrent Programs
	SQL*PLUS Programs
	PL/SQL Stored Procedures
	SQL*Loader
	Accepting Input Parameters For Oracle Tool Programs
	Naming Your Oracle Tool Concurrent Program

	Coding Oracle Reports Concurrent Programs
	Oracle Reports
	Concurrent Processing with Oracle Reports
	Oracle Reports Parameters
	Accessing User Exits and Profile Options

	User Exits Used in Oracle Reports
	FND SRWINIT / FND SRWEXIT
	FND FLEXIDVAL / FND FLEXSQL

	Using Dynamic Currency in Oracle Reports
	FND FORMAT_CURRENCY User Exit

	Example Report Using FND FORMAT_CURRENCY
	Sample Report Output
	Procedure

	Oracle Reports Troubleshooting
	Frequently Asked Questions

	Coding C or Pro*C Concurrent Programs
	Coding C and Pro*C Concurrent Programs
	Pro*C Concurrent Programs
	Header Files Used With Concurrent Programs

	Concurrent Processing Pro*C Utility Routines
	afpend()
	fdpfrs()
	fdpscp()
	fdpscr()
	fdpwrt()

	Coding Concurrent Programs using Java Stored Procedures
	Coding Concurrent Programs Using Java Stored Procedures
	How to Write a Concurrent Program using a Java Stored Procedure
	Example

	PL/SQL APIs for Concurrent Processing
	FND_CONC_GLOBAL Package
	FND_CONC_GLOBAL.REQUEST_DATA
	FND_CONC_GLOBAL.SET_REQ_GLOBALS
	Example

	FND_CONCURRENT Package
	FND_CONCURRENT.AF_COMMIT
	FND_CONCURRENT.AF_ROLLBACK
	FND_CONCURRENT.GET_REQUEST_STATUS (Client or Server)
	FND_CONCURRENT.WAIT_FOR_REQUEST (Client or Server)
	FND_CONCURRENT.SET_COMPLETION_STATUS (Server)

	FND_FILE: PL/SQL File I/O
	FND_FILE.PUT
	FND_FILE.PUT_LINE
	FND_FILE.NEW_LINE
	FND_FILE.PUT_NAMES
	FND_FILE.CLOSE
	Error Handling

	FND_PROGRAM: Concurrent Program Loaders
	FND_PROGRAM.MESSAGE
	FND_PROGRAM.EXECUTABLE
	FND_PROGRAM.DELETE_EXECUTABLE
	FND_PROGRAM.REGISTER
	FND_PROGRAM.DELETE_PROGRAM
	FND_PROGRAM.PARAMETER
	FND_PROGRAM.DELETE_PARAMETER
	FND_PROGRAM.INCOMPATIBILITY
	FND_PROGRAM.DELETE_INCOMPATIBILITY
	FND_PROGRAM.REQUEST_GROUP
	FND_PROGRAM.DELETE_GROUP
	FND_PROGRAM.ADD_TO_GROUP
	FND_PROGRAM.REMOVE_FROM_GROUP
	FND_PROGRAM.PROGRAM_EXISTS
	FND_PROGRAM.PARAMETER_EXISTS
	FND_PROGRAM.INCOMPATIBILITY_EXISTS
	FND_PROGRAM.EXECUTABLE_EXISTS
	FND_PROGRAM.REQUEST_GROUP_EXISTS
	FND_PROGRAM.PROGRAM_IN_GROUP
	FND_PROGRAM.ENABLE_PROGRAM

	FND_REQUEST Package
	FND_REQUEST.SET_OPTIONS (Client or Server)
	FND_REQUEST.SET_REPEAT_OPTIONS (Client or Server)
	FND_REQUEST.SET_PRINT_OPTIONS (Client or Server)
	FND_REQUEST.SUBMIT_REQUEST (Client or Server)
	FND_REQUEST.SET_MODE (Server)
	Example Request Submissions

	FND_REQUEST_INFO and Multiple Language Support (MLS)
	FND_REQUEST_INFO.GET_PARAM_NUMBER
	FND_REQUEST_INFO.GET_PARAM_INFO
	FND_REQUEST_INFO.GET_PROGRAM
	FND_REQUEST_INFO.GET_PARAMETER
	Example MLS Function

	FND_SET: Request Set Loaders
	FND_SET.MESSAGE
	FND_SET.CREATE_SET
	FND_SET.DELETE_SET
	FND_SET.ADD_PROGRAM
	FND_SET.REMOVE_PROGRAM
	FND_SET.PROGRAM_PARAMETER
	FND_SET.DELETE_PROGRAM_PARAMETER
	FND_SET.ADD_STAGE
	FND_SET.REMOVE_STAGE
	FND_SET.LINK_STAGES
	FND_SET.INCOMPATIBILITY
	FND_SET.DELETE_INCOMPATIBILITY
	FND_SET.ADD_SET_TO_GROUP
	FND_SET.REMOVE_SET_FROM_GROUP

	FND_SUBMIT: Request Set Submission
	FND_SUBMIT.SET_MODE
	FND_SUBMIT.SET_REL_CLASS_OPTIONS
	FND_SUBMIT.SET_REPEAT_OPTIONS
	FND_SUBMIT_SET.REQUEST_SET
	FND_SUBMIT.SET_PRINT_OPTIONS
	FND_SUBMIT.ADD_PRINTER
	FND_SUBMIT.ADD_NOTIFICATION
	FND_SUBMIT.SET_NLS_OPTIONS
	FND_SUBMIT.SUBMIT_PROGRAM
	FND_SUBMIT.SUBMIT_SET
	Examples of Request Set Submission

	Standard Request Submission
	Overview of Standard Request Submission
	Basic Application Development Needs
	Major Features
	Definitions
	Controlling Access to Your Reports and Programs

	Implementing Standard Request Submission
	Developing Reports for Standard Request Submission
	Defining Parameter Validation
	Defining Your Report or Other Program
	Cross–application Reporting

	Request Sets
	Overview of Request Sets
	Sets, Stages, and Requests
	Stage Functions
	Request Set Completion Status

	The TEMPLATE Form
	Overview of the TEMPLATE Form
	Libraries in the TEMPLATE Form
	Special Triggers in the TEMPLATE form
	Triggers That Often Require Some Modification
	Triggers That Cannot Be Modified

	Attachments
	Overview of Attachments
	Definitions
	How Attachments Work
	Attachments for Forms or Form Functions

	Planning and Defining the Attachments Feature
	Planning to Add the Attachments Feature to Your Application
	Setting Up the Attachments Feature for Your Form

	Document Entities Window
	Document Entities Block

	Document Categories Window
	Document Categories Block
	Category Assignments Window

	Attachment Functions Window
	Attachment Functions Block
	Categories Window
	Block Declaration Window
	Entity Declaration Window

	Handling Dates
	Year 2000 Compliance in Oracle Applications
	RR Date Support
	Paths to Compliance
	Dates in Oracle Applications

	Date Coding Standards
	Using Dates While Developing Application Forms
	Using Dates With Compliant Versions of OAS

	Conversion To Date Compliance
	Verify Compliance
	Character Mode and External Programs Code Review
	Date–Enhanced Forms Code Review
	Non–Date–Enhanced Forms Code Review
	Testing

	Troubleshooting
	Use the DATECHECK Script to Identify Issues
	Problems Observed During Testing
	Date Checklist

	Customization Standards
	Overview of Customizing Oracle Applications
	Basic Business Needs
	Definitions
	Determining Your Needs

	Customization By Extension
	Defining Your Custom Application
	Adding a Form
	Adding a Report or Concurrent Program
	Adding a New Report Submission Form
	Adding Online Help
	Adding Menus
	Adding Responsibilities
	Adding Message Dictionary Messages

	Customization By Modification
	Modifying an Existing Form
	Modifying an Existing Report
	Modifying an Existing C Program
	Modifying an Existing PL/SQL Stored Procedure
	Modifying Existing Online Help
	Modifying Existing Message Dictionary Messages
	Modifying Existing Menus and Responsibilities

	Oracle Applications Database Customization
	Oracle Applications Upgrades and Patches
	Building Online Help for Custom Applications
	How the Help System Works
	Prepare Your Forms
	Create HTML Help Files
	Create a Help Navigation Tree
	Upgrades and Patches

	Integrating Custom Objects and Schemas
	Upgrading Custom Forms to Release 11i
	Converting Your Form to Oracle Forms 6i
	Upgrading Your Forms to Release 11i Standards
	Performing Required Manual Changes on Your Forms
	Performing Optional Manual Changes on Your Forms

	The Upgrade Utility and Standards Compliance Checker: flint60
	Preparing to Run flint60
	Running the flint60 Utility
	Reviewing flint60 Log File Output

	Changes to Internal Menu Names from Release 11 to Release 11i

	Using the CUSTOM Library
	Customizing Oracle Applications with the CUSTOM Library
	Writing Code for the CUSTOM Library
	Events Passed to the CUSTOM Library
	When to Use the CUSTOM Library
	Coding Zoom
	Coding Generic Form Events
	Coding Product–Specific Events
	Adding Custom Entries to the Special Menu
	Support and Upgrading

	Product–Specific Events in Oracle Application Object Library
	WHEN–LOGON–CHANGED Event
	WHEN–RESPONSIBILITY–CHANGED Event

	CUSTOM Package
	CUSTOM.ZOOM_AVAILABLE
	CUSTOM.STYLE
	CUSTOM.EVENT

	Example of Implementing Zoom Using the CUSTOM Library
	Modify the Form
	Modify the CUSTOM Library

	APPCORE Routine APIs
	APP_COMBO: Combination Block API
	APP_COMBO.KEY_PREV_ITEM

	APP_DATE and FND_DATE: Date Conversion APIs
	List of Date Terms
	APP_DATE.CANONICAL_TO_DATE and FND_DATE.CANONICAL_TO_DATE
	APP_DATE.DISPLAYDATE_TO_DATE and FND_DATE.DISPLAYDATE_TO_DATE
	APP_DATE.DISPLAYDT_TO_DATE and FND_DATE.DISPLAYDT_TO_DATE
	APP_DATE.DATE_TO_CANONICAL and FND_DATE.DATE_TO_CANONICAL
	APP_DATE.DATE_TO_DISPLAYDATE and FND_DATE.DATE_TO_DISPLAYDATE
	APP_DATE.DATE_TO_DISPLAYDT and FND_DATE.DATE_TO_DISPLAYDT
	APP_DATE.DATE_TO_FIELD
	APP_DATE.FIELD_TO_DATE
	APP_DATE.VALIDATE_CHARDATE
	APP_DATE.VALIDATE_CHARDT
	FND_DATE.STRING_TO_DATE
	FND_DATE.STRING_TO_CANONICAL

	APP_EXCEPTION: Exception Processing APIs
	APP_EXCEPTION.RAISE_EXCEPTION
	APP_EXCEPTION.RETRIEVE
	APP_EXCEPTION.GET_TYPE
	APP_EXCEPTION.GET_CODE
	APP_EXCEPTION.GET_TEXT
	APP_EXCEPTION.RECORD_LOCK_EXCEPTION
	APP_EXCEPTION.RECORD_LOCK_ERROR
	APP_EXCEPTION.DISABLED

	APP_FIELD: Item Relationship Utilities
	APP_FIELD.CLEAR_FIELDS
	APP_FIELD.CLEAR_DEPENDENT_FIELDS
	APP_FIELD.SET_DEPENDENT_FIELD
	APP_FIELD.SET_EXCLUSIVE_FIELD
	APP_FIELD.SET_INCLUSIVE_FIELD
	APP_FIELD.SET_REQUIRED_FIELD

	APP_FIND: Query–Find Utilities
	APP_FIND.NEW
	APP_FIND.CLEAR
	APP_FIND.CLEAR_DETAIL
	APP_FIND.FIND
	APP_FIND.QUERY_RANGE
	APP_FIND.QUERY_FIND

	APP_ITEM: Individual Item Utilities
	APP_ITEM.COPY_DATE
	APP_ITEM.IS_VALID
	APP_ITEM.SIZE_WIDGET

	APP_ITEM_PROPERTY: Property Utilities
	APP_ITEM_PROPERTY.GET_PROPERTY
	APP_ITEM_PROPERTY.SET_PROPERTY
	APP_ITEM_PROPERTY.SET_VISUAL_ATTRIBUTE

	APP_NAVIGATE: Open a Form Function
	APP_NAVIGATE.EXECUTE

	APP_RECORD: Record Utilities
	APP_RECORD.TOUCH_RECORD
	APP_RECORD.HIGHLIGHT
	APP_RECORD.FOR_ALL_RECORDS
	APP_RECORD.DELETE_ROW
	APP_RECORD.VALIDATE_RANGE

	APP_REGION: Region Utilities
	APP_REGION.ALT_REGION

	APP_STANDARD Package
	APP_STANDARD.APP_VALIDATE
	APP_STANDARD.EVENT
	APP_STANDARD.SYNCHRONIZE
	APP_STANDARD.PLATFORM

	APP_WINDOW: Window Utilities
	APP_WINDOW.CLOSE_FIRST_WINDOW
	APP_WINDOW.PROGRESS
	APP_WINDOW.SET_COORDINATION
	APP_WINDOW.SET_WINDOW_POSITION
	APP_WINDOW.SET_TITLE

	FNDSQF Routine APIs
	FND_CURRENCY: Dynamic Currency APIs
	FND_CURRENCY.GET_FORMAT_MASK (Client or Server)
	Currency Examples

	FND_DATE: Date Conversion APIs
	FND_GLOBAL: WHO Column Maintenance and Database Initialization
	FND_GLOBAL.USER_ID (Server)
	FND_GLOBAL.APPS_INITIALIZE (Server)
	FND_GLOBAL.LOGIN_ID (Server)
	FND_GLOBAL.CONC_LOGIN_ID (Server)
	FND_GLOBAL.PROG_APPL_ID (Server)
	FND_GLOBAL.CONC_PROGRAM_ID (Server)
	FND_GLOBAL.CONC_REQUEST_ID (Server)

	FND_ORG: Organization APIs
	FND_ORG.CHANGE_LOCAL_ORG
	FND_ORG.CHANGE_GLOBAL_ORG
	FND_ORG.CHOOSE_ORG

	FND_STANDARD: Standard APIs
	FND_STANDARD.FORM_INFO
	FND_STANDARD.SET_WHO
	FND_STANDARD.SYSTEM_DATE
	FND_STANDARD.USER

	FND_UTILITIES: Utility Routines
	FND_UTILITIES.OPEN_URL
	FND_UTILITIES.PARAM_EXISTS

	Naming Standards
	Naming Standards and Definitions
	Database Objects
	Form Objects
	File Standards
	PL/SQL Packages, Procedures and Source Files
	Reserved Words

	Glossary
	Index

